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Abstract
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0 Introduction

Until quite recently non-linear time series modeling has been dominated by the parametric
approach (see, e.g., Tong (1990), for an introduction). The non-parametric approach has a much
shorter history, although there has been a rapidly increasing literature on the kernel approach
to non-linear time series modeling; see e.g. Auestad and Tjgstheim (1990), Cheng and Tong
(1992), Masry (1989) and Truong and Stone (1990), to name just a few. The class of non-linear
autoregressive models appears to be the most readily amenable to the kernel treatment by
virtue of its affinity with non-linear regression models. As a result, much of the non-parametric
literature in this area concentrates on the (univariate) non-linear autoregressive models. How-
ever, within this context, only recently has the important problem of order determination been
addressed by Auestad and Tjgstheim (1990), Tong (1990), Tjgstheim and Auestad (1992a,b),
and Cheng and Tong (1992). It has been pointed out in the last reference that order determina-
tion has an important role to play beyond its statistical confine. Specifically, in the important
science of chaos, the detection of a low dimensional attractor from (possibly long) experimental
data remains one of the great challenges todate. One key question in the detection exercise is an
estimate of the dimension of the space in which the attractor lives, namely the so-called embed-
ding dimension. It turns out that the order determination mentioned above has an important
contribution to make in this respect and hence, in the detection of chaos.

In many situations, a univariate autoregressive model is rather restrictive. For example,
there may exist some ‘exogenous’ time series or ‘covariates’ in, say, a non-linear transfer func-
tion system such as in the so-called TARSO model (see, e.g., Tong (1990), p.101). Even within
the context of univariate autoregressive modeling, we may sometimes wish to identify the ‘dom-
inant’ lag variables, i.e. an appropriate subset autoregressive model, or to identify the lag struc-
ture in the ‘diffusion term’ (i.e. conditional variance) as in the so-called ARCH models (see,
e.g., Tjpstheim and Auestad 1992b). One framework which encompasses all these cases is the
stochastic regression. Lai and Wei (1982) have discussed least squares estimation of parameters
of this model, i.e. within a parametric setting.

In this paper, we use the framework of non-linear stochastic regression. Without assuming

any specific form for the regression function, our objective is to introduce a cross-validation



method based on the kernel estimation of the conditional mean to determine a proper subset
of the stochastic regressors to fit the underlying regression model. To justify this approach, we
show that under the assumption the observations are strictly stationary and absolutely regular,
the selected subset is a consistent estimate of the optimum subset of the stochastic regressors,
and, moreover, the fitted model is asymptotically efficient in two senses. To highlight the
statistical ideas, without the accompanyment of too much technical detail, we deal only with
the case in which it is assumed that the regressors have a compact support. We argue that this
assumption is not so restrictive in practice since any real data set which is reasonably stationary
could be considered a bounded set. On the other hand, similar to Theorem 6 of Zhang (1991),
it can be proved theoretically that by introducing some random weight functions in the residual
sums of squares, the cross-validatory selection is still consistent in the case that the regressors
are not bounded. Zhang adopted this strategy in studying the cross-validatory method with
i.i.d. observations. He also discussed some statistical issues involved in the model selection.
The plan of the paper is as follows. In §1 we introduce the non-linear stochastic regression
model and the notion of the optimum subset of the regressors. We show that this model
can also be used to investigate possible conditional heteroscedasticity in a general regression
model. In §2 we describe the cross-validatory selection procedure and state the main results:
Theorem 1 on the consistency of the cross-validation selection, and Theorem 2 on the asymptotic
efficiency of the fitted model. The method is illustrated with the Canadian lynx data, the Wolf’s
sunspot numbers, and also two simulated models in §3. All lengthy proofs are relegated to the

appendices.

1 Model

Suppose that {(Y;, X;); t = 1,..., N} is a strictly stationary random sequence, ¥; € R! and
X; = (Xu,..., X)) € RY (L > 1). Consider the regression model

Y}ZE(YE|Xt)+6tEF(Xt)+€t, ].StSN, (11)

where ¢, = Y; — E(Y;| X;). Obviously E(¢ | X;) = 0. The goal of this paper is to determine,

without assuming that F' is known, a proper subset {Xy;,,..., X, } with d as small as possible



which provides (almost) the same information on Y; as {Xy1,..., X1}, ie.
E(Y%lXtila"'aXtid):E(Y;letL a.s. .

We now formalize the problem. First, we introduce the following definition, which is based

on the variance function,

o?(i1,...,ix) = E[Y; — E(Yy| Xtiys---, Xuip, )%, (1.2)
fOTlSkSL,1§i1<...<ikSL.
Definition. If there exists a subset of {1,..., L}, say {1,...,d}, with d < L, for which

(i) o2(1,...,d) = o*(1,...,L),
(ii) for any {%1,...,9} C {1,...,L} with k < d and {1,...,d} # {é1,...,%k} ,

o2(it,...,i5) > o02(1,...,L), (1.3)
then {Xy,..., X} is called the optimum subset of the regressors of Y;.
Remark 1. It might be possible that there exists another subset {i1,...,iq} C {1,...,L} but
{i1,---,iq} # {1,...,d} for which the equality o2(i1,...,iq) = 02(1,...,L) holds. This makes
our discussion more complicated. Since it is not a likely case in practice, we agree to discard

this case. Note that the notion of an optimum subset obviates any philosophical debate on the

existence of a true model, which we do not wish to enter in this paper.

From now on, we always make the following assumption.

(M1) The optimum subset of the regressors of Y; exists. There is no loss of generality to

assume that the optimum subset is {Xy1,..., X4}, (1<d<L).

It is easy to see that under the assumption (M1),

E(Y, | Xn,...,Xu) = B(Y;| X)) as., 1<t<AN. (1.4)



Thus the model (1.1) can be expressed as
Y, =E(Y; | Xp,....,Xuq)+e as., 1<t<N.

Before ending this section, it is worth mentioning that the above framework can also be
used to investigate possible conditional heteroscedasticity in a regression model. To see this,

let us assume that in the model (1.1), ¢ is of the form

ft:)\(etathu---athq)a 1Sj1<---<quL,1§QSL, (15)
where {e;} is a strictly stationary noise process and e; is independent of {Y;_1,...,Y7, Xy,..., X1}
Suppose that we regress Y;? on Xy1, ..., X;r. If there is no “redundancy” amongst { Xy, , . . ., Xtj, }

in the expression (1.5), which can be formulated precisely in a similar way as (1.3), the opti-
mum subset of the regressors for ¥;? will be the union of {Xyj,,..., Xy, } and {Xp,..., X4}
(under assumption (M1)). Thus, we suggest that heteroscedasticity should be investigated if
the selected subset of the regressors of Y;? contains the selected subset of Y; as a proper subset.

Further study on the heteroscedasticity will be reported elsewhere.

2 Cross-validatory selection

We now propose to use the cross-validation approach, based on the kernel estimate of the
regression function, for the selection of the optimum subset of regressors, and make the follow-
ing assumptions on the model. First, note that ¢ always denotes some finite positive constant;

it may be different in different places.

(M2) X, has probability density function f, and G = {z : f(z) > 0} is a compact subset of
RL.

(M3) f satisfies a Lipschitz condition, i.e.
[f(z1) = fz2)| S cllwy —mall, Vo732 €G

where || - || denotes the Euclidean norm.

(M4) For t > 1, E(Y; | Xy,..., X1, Yieq,..., Y1) = E(Y [ X3).



(M5) E|Y|® < oo.

(M6) For F(-) given in (1.1), |F(z1) — F(z2)| < ¢||z1 — z2||* for all 21,22 € G, where p > 0
is a constant.

(M7) Let B, = supy> E [SuPAEf,fin |P(A|FF) — P(A)|], where F}! is the sigma field gen-
erated by {(Y;,X;); t = k,k+1,...,n}. Then 8, = O(n=?+9/%) as n. — oo, where ¢ is a
constant in (0, 2/5). Furthermore, there exists a positive integer N; = N;(N) such that for
Ny = [N/(2]N1)] > 0, Limsupy_, o (1 + 6728/ M) N2 < o0,

Assumption (M2) implies that X; is bounded, which avoids the ‘infinite integration prob-
lem’ in the asymptotic expansion encountered by Auestad and Tjgstheim (1990). The condition
that {z : f(z) > 0} is closed guarantees the uniform convergence of the kernel estimate for the
regression functions (cf. Gyérfi et.al. (1989), §3.3.2). (M3) — (M6) are self-explanatory. As-
sumption (M7) implies that the process {Y;, X;} is absolutely regular. Further, the assumptions
on the rate of convergence of 3, allow us to apply the results of Yoshihara (1976) and Rous-
sas (1988). In fact, the condition 8, = O(n~(279)/%) is for technical convenience, and is not
the weakest possible. Further, the assumption that the process is absolutely regular could be
replaced by the weaker mixing conditions (cf. Gyoérfi et.al. (1989)), in which case the proof

would then contain more technical details.

We now state the kernel estimate of the regression function, based on which the cross-
validatory residual sum of squares will be formed. For analytical convenience, the Nadaraya-
Watson method will be used (cf. Nadaraya (1965), and Watson (1964)).

For any 1 <4 < ...7, < L, with 1 < k < L, let pi(-) be a probability density function on
RF, and h(iy,...,i5, N) = N~A@%) be the bandwidth, where A(-) is a positive function.
Simply, write it as

h = h(k,N) = N~ \*), (2.1)

though h can be different for different regressors. Note that A(k) stands for the function
A1, .-, 0k)-



The kernel estimate for the density of (Xy;,,..., Xy, ) is

Fir i (@1, = (NhF)~ Z ( — X L Tk _hth'k) _ (2.2)
=1
The cross-validatory approach leaves one out each time, i.e. for s =1,..., N, define
RIS, M T
and estimate the regression function E(Y; | Xy;,,..., Xy, ) by
ﬁ;(f,)...,ik (1,...,2) = ]\l;__kl Zyipk (7:”1 _hXtil 1o 7Xt%) /f“, ik (@1, k),  (24)

t#£s
and interpret “0/0” as 0. Based on this, the cross-validatory residual sum of squares is defined

as
CV(ila-- 50 Z{Y 11, ,zk XSila'--aXSik)}Qa (25)

forall1 < < ... <4 < L,k=1,...,L.

The cross-validatory criterion. Choose that subset S¢, of {1,...,L} which minimizes

CV(ig,...ig) overall 1 <7< ... <4 < Lwithl <k<L.

Under the following assumptions on the kernel densities and the bandwidths, Theorem 1
below shows that the probability of the event that {Xy; : ¢ € S} coincides with the optimum
subset of regressors of Y; tends to 1. To simplify the discussion, we prove the theorem only
with deterministic bandwidths, though we strongly believe that the same conclusion holds for

the more relevant method with data-driven bandwidths (cf. Zhang (1991), also Section 3).
(K1) For 1 <k < L, pg(-) is bounded, and

lpk(z1) — pr(xo)| < cllzy — z2|, for all zy,z9 € RE.

(K2) For 1 <k < L,0 < kX(k) < 1/2.
(K3) For N; = N;i(N) given in (M7), limsupy_, o, No/N**) < o0 for all 1 <k < L.
(K4) For p given in (M6), (k+ p)X(k) > 1/2 for all1 <k < L.



(K5) kX(k) is a strictly increasing function of &k in the range of 1 < k < L.

Remark 2. We can take A(k) = 1/(2k + ), which satisfies conditions (K2), (K4) and (K5).

Assumptions (K1) — (K3) were introduced by Roussas (1988). Assumption (K4) is a stan-

dard condition in non-parametric inference. Assumption (K5) is essential for the proof of

asymptotically negligible over-fitting. Obviously, the above assumptions do not offer an explicit

construction of the bandwidth. In practice, a frequently used bandwidth selection technique

is the cross-validation method. Our experience suggests that the bandwidths selected in this

data-driven way seem to satisfy the assumption (K5) with minor modification (cf. Examples

3, and 4 in Section 3).

Theorem 1. Under assumptions (M1) — (M7) and (K1) — (K5),

lim P(Se ={1,...d} ) =1.
N—oo

The proof of Theorem 1 is based on the following Lemma, 1, the proof of which is postponed

to Appendix A.

Lemma 1. Suppose assumptions (M2) — (M7) and (K1) — (K4) hold.
(i) Forany 1 <41 < ... <4 <L, 1<k <L,as N — o0,

CV(ir,...,i5) 5 02(i1,. .., k),

where 02 (i1, ..., i) is given in (1.2).

(ii) For some 1 < iy < ... <ip < L, 1 <k <L, let &%) =V, — B(V;| Xy, ...

egil""’ik) = €, a.s. forall s=1,...,N,
where {e;,s =1,...,N} is as given in (1.1), then, as N — oo,

CV(ila"'aik) = UJQV + 721;;Zk/(Nhk(k‘1N)) + OP(N_lh_k(k’N))a



where 6% = N"' YN, 7, and

Yityensin, = E{Eg/fila---;ik (Xtil’ e aXtik)} ’ /pi(x)dw (27)

Proof of Theorem 1. Forany 1 <4 < ... <4 < L, 1<k<L,if

o2(iry...,ix) > 02(1,...,L) = 0?(1,...,d),

Lemma 1 (i) implies that for such (i1, ... i)

P{CV(1,...,d) < CV(i,...,ix)} — L.

If 02(iy,...,ix) = 02(1,...,d), it is easy to see that the relation (2.6) holds in this case.

From the definition of the optimum subset of regressors, k must be larger than d. Assumption

(K5) implies that

he(d, N)/hF(k,N) = NFAE)=dMd) 5 6 a5 N — oo.

Hence, by Lemma 1 (ii),

P{CV(i1,...,ix) — CV(1,...d) > 0} = P{NR%d, N)[CV (i,...,ix) — CV(1,...,d)] > 0}
d
= P{ %1, ...ix Z,cé: x; - Vyd + op(%) >0} — L (2.9)

Consequently, P(S¢, = {1,...,d}) — 1. This completes the proof.

Based on S, = {7,... ,T(i} say, a natural estimate of the regression function F(X;) =

E(Y;| X}) can be defined as follows.

~ XT .’I,'TA—XtTA
F(z) = N7'h(d,N)]~ Zytpd< (dNt)l’m’ ij(cZN)d>

X le,...,TJ(xTI7 .- awT(i)a (2.10)
where z = (z1,...,21) € RL , and h and f are given in (2.1) and (2.2) respectively. Obviously
d,m,... ,7; are random functions defined on the whole sample {(Y}, X;),1 < ¢t < N}. The

statements (i) and (ii) in the following theorem represent two kinds of asymptotic efficiency of



the estimate F'. The proof is given in Appendix B.

Theorem 2. Suppose that assumptions (M1)— (M7) and (K1) — (K5) hold. Then as N — oo,

the following limits hold if either E |Y;|¥ < oo for any k > 1, or kA(k) < 2/5 for 1 <k < L.

(i) For any random vector (Y, X) which is independent of {(¥}, X;),1 <t < N},

and identically distributed as (Y1, X1), E[Y — F(X)]? = 02(1,...,L) ;
() N'ELY-FX)P S, D),

where 02(-) is defined as in (1.2).

3 Examples

To get insight into the finite-sample behaviour of the cross-validatory selection method, we
use two simulated examples and two real data sets as illustrations. In the following examples, we
always use the Gaussian kernel. Our experience suggests that the choice of the kernel is much
less critical than the choice of the bandwidth. The bandwidth is chosen among 100 values
by the cross-validatory approach. It turns out that the data-driven bandwidths satisfy the
monotone assumption (K5) to a high degree of approximation, even without any modification.
(See Examples 3 and 4 below). In fact, in each of Examples 3 and 4, minor modification will
readily furnish a sequence of bandwidths which satisfies assumption (K5) fully (leading to the
same optimal subset), if rigid adherence to (K5) is deemed necessary.

It is generally accepted in non-parametric estimation that the sample size should increase
exponentially as the dimensionality of regressors increases. Notice that the convergence in (2.8)
is slow for small values of (k — d). Furthermore, for commonly used kernels, e. g. Gaus-
sian and triangular, [ p?(z)dz decreases rapidly as k increases. Therefore, a large N seems
necessary to obviate the over-fitting (cf. (2.9) and (2.7)). However, the following examples
show that the proposed method works quite well even for moderate sample sizes despite the
asymptotic theory. Other examples and simulation results are available in Cheng and Tong

(1992), and Tong (1992). This suggests that there might be some nice features beyond our



present understanding of the kernel method in subset selection (or order determination) prob-
lems. Although the kernel method suffers from the burden of dimensionality for the estimation

of the functional form of F', the sample size requirement for subset selection seems not as severe.

Example 1. We begin with the simple model
Y; = 06X2, + ¢, t=1,...,N,

where {X;} is an AR(1) process given by X; = 0.5X;_1 + 74, and €, g, t = 1,2, ..., are inde-
pendent random variables with the same distribution as the random variable 7, and 7 is equal
to the sum of 48 independent random variables each uniformly distributed on [-0.25, 0.25]. Ac-
cording to the central limit theorem, we can treat n as being nearly a standard normal random
variable. However it has bounded support, namely [-12, 12]. Note that the standard linear
methods based on cross-spectral analysis or cross-correlation analysis will fail in estimating the
delay between the input X and the output Y. Set Xy, X;_1, X¢_o, X;_3, Y;_1, and Y;_o as the
candidates of the regressors. The cross-validatory subset selection is performed on the simu-
lated data with N = 200. Out of 100 replications, { Xy o} is selected 97 times as the regressor;
the other three choices are {X;_1, X; o}, {X;_2, X¢ 3}, and {X;, Xy 2, X¢_3}. The above
all-subset search took about 100 CPU hours on a SUN4 workstation to produce results for the

100 replications.

Example 2. Let
Y; = 03Y;_1eX! + sinX; ; + ¢, t=1,...,N,

where {X;} is an AR(2) precess given by X; = 0.1X;_; —0.56X;_9 + 1, and €, m, t = 1,2,. .,
are independent random variables with the same distribution as the random variable 0.67, and
7 is the same as in Example 1. Set X;, X;_1, X¢—9, Y;_1,Y; o, and Y;_3 as the candidates of
the regressors. Table 1 reports the results of the simulation for N = 200, and 500, each with
100 replications. The complete calculation took about 130 CPU hours in the distributed array
processor AMT DAP 500.

(Table 1 is about here)

10



Example 3. Let {Y;, 1 <t < N} denote the Canadian lynx data for 1821 — 1934 (listed
in Tong (1990)). Now N = 114. Set Y; 1, ..., Y; ¢ as the candidates of the regressors.
On applying the cross-validatory subset selection with the Gaussian kernel for Y; and Y;?, the
results are respectively reported in Table 2 and Table 3. In both cases, the global minimum
is attained at the subset {Y;_1, Y;_3, Y;_g}. As expected, there is no evidence of conditional
heteroscedasticity in this data set (cf. Tong 1990). The above calculation took about 35 minutes
on a SUN4 workstation.

In the last column of each table, we list the values of kA(k) (= —klog(h)/log(N), cf. (2.1)),
for the selected bandwidth h using a data-driven method. The assumption (K5) is fulfilled
except for K = 4 in Table 2 and k = 5 in Table 3. In fact, if we use h = 0.326 instead of 0.361
for the case k = 4 in Table 2, (thereby increasing the corresponding CV-value by 0.0010), the
CV-selected lag variables are unchanged. The modified results are reported in parentheses.
However, the value of 4\(4) becomes 0.944. Therefore, now kA(k) is strictly increasing as k
increases. Of course, the global minimum is unchanged. The same adaptation can be applied

to Table 3.
(Table 2, Table 3 are about here)

Example 4. Finally we illustrate the method with Wolf’s annual sunspot numbers (1700 -
1988) listed in Tong (1990). First, normalize these data by division by the sample standard
deviation. For t = 1,2,...,289, let Y; = the normalized sunspot number in the year (1699
+t), and let Xy = the normalized sunspot number in the year (1699 +t —4). Set L = 10.
Table 4 below shows that the global minimum of C'V with respect to all possible subsets and
the bandwidths of a Gaussian kernel is attained at the subset {1,2,4} i.e. {X;_1, X;_o, X¢_4}
with a CV value = 0.1462. Note that the subset {1,2,4,7} ie. {X;_1, X9, Xi—4, Xi—7}
with a CV value = 0.1465 is almost just as optimal. Therefore, we argue that any reasonable
‘confidence set’ of the optimal subsets must include both of the above subsets. The above
optimization over all possible subsets and over the bandwidths took about 50 hours on a SUN4

workstation.
(Table 4 is about here)

11



Table 5 below shows the results of the C'V selection for the case of Y;? on X;1, ..., X¢10. Here
the global minimum of CV is attained at the subset {1,2,5,7} with a CV value of 2.7431. The
subset {1,2,4, 7} has a CV value of 2.7692 (at the bandwidth 0.283), which is the next smallest
and is only marginally greater than 2.7431. Again, we argue that any reasonable ‘confidence’
set of optimal subsets must include these two subsets. Together with the results of Y; on X,
and also some plots on the residuals which are not reported here, we would conclude that there
is not strong evidence of conditional heteroscedasticity in the sunspot data.

Our choice may be compared with (i) {1,2,9}, the best subset linear autoregressive based
on AIC (Subba Rao and Gabr, (1984)); (ii) {1,2,3,4,5,9}, the ASTAR model of Lewis and
Stevens (1991); and (iii) {1,2,3,7,9} as reported by Tjgstheim in his discussion of Cheng and
Tong (1992).

Similar to Example 3, we modified a few bandwidths subjectively to satisfy condition (K5)
rigidly. The modified results are reported in parentheses. Obviously, the modifications do not

change the overall conclusions.

(Table 5 is about here)

Appendix A: Proof of Lemma 1.

We use the same notation as Section 2.

For1<i1 <...<ip, <L 1<k<L,let
Fil,...,ik(xla o axk) = E( 1/—t | Xtil = T1y--- 7Xtik = Tk )
Then the expression (2.5) can be written as follows.

N
, . 1 .
OV (i1, yik) = 5 DB Ksir o+ Xoiy) = B (Koo, X, )]
s=1

1 & i 2 N i .
+N Z(egzl,...,zk))2 + N Z 6.(:1,...,11@)[1;’1.17.“,% (st'la . 7Xsik) _ F;(ls,)...,ik (Xs’i1; o 7Xsik)]- (Al)
s=1 s=1

It follows from the standard ergodic theorem that the second term on the right hand side of

(A.1) converges to o2(i1,...,i). From Lemma 2 (i) and (ii) below, the other two terms on the

12



right hand side of (A.1) converges 0. Hence, Lemma 1 (i) holds. Note that under the condition
(2.6), the second term on the right hand side of (A.1) is equal to 0%. Consequently, Lemma
1 (ii) follows immediately from Lemma 2 (iii) and (iv) below. The proof of Lemma 1 is now

complete.

Lemma 2: Suppose that conditions (M2) — (M7) and (K1) — (K4) hold. Then, for any

1<i1<...<4, <L,1<k<L,as N — o0,

. 11 yeensl 7 P
(i) % EsNzl eg“, 7Zk)[Fil,---,% (Xsigs - - ’XSik) - Fz(i),zk (Xsigs - - » Xsiy )] = 0;
(ll) % Zévzl[ﬂl,..-,ik (Xsila .. ’Xs’ik) - ﬁvi(lsy)___yik (Xs’ila .. aXS’ik)]2 _P) 0

Furthermore, if the relation (2.6) holds, then
(i) & S0 e, (Kairs oy Xai) = F s (Xiys -, Xaiy )] = 0p (N B (s, N)J71);
(i) & SN P iy Kooy Xi) = B (X, X )P
= Vi | N BE (R, N)H(1 4 0,(1)),

where 7;, _;, is the same as (2.7).

To prove Lemma 2, we adopt the technique which was used in §3 and §4 of Cheng and Tong
(1993). To proceed, we need the following Lemma 3 which follows Theorem 3.1 of Roussas

(1988) immediately.

Lemma 3. Suppose that conditions (M2),(M3),(M7) and (K1) — (K3) hold. Then for any

1<i1<...<iu, <L,1<k<L,as N — o0,

sup | fil,---,ik (7) — Jityeosi (z) | =0,

where f;, ;. is the marginal probability density function of (Xy,,..., Xy, ), fil,---,ik is as given

in (2.2), and the supremum is taken over all values of = such that f;, . ; () > 0.

Proof of Lemma 2. First we prove (i).
For given 1 <4y,...,i; < L, let Z, = (Xiy,. .., Xsi, ), s = 1,..., N. It follows from Lemma

3 that

(Z2) = [Fa, iy (Z2) — B, (2 feielZe) o ) s,

By, (2,) — B
1, 7k( ) fil,...,ik(Zs)

81 yeensl



where the term 0, (1) does not depend on s. Note that the relations (2.2) - (2.4) imply that

[E17"',ik (Zs) - ﬁ‘z(ls,),lk( )]flla ﬂk = (Z CS t Z 6 Zl, ,Zk S t -I_ El, ,1k (Zs)pk(0)> )
t#£s

where

Zs— 7
d=m (P57 ) 0 Cot=dua [Fiyiy(2) = Fapi(20)

Hence, the sum in (i) can be expressed as follows

N . .
N2 h—k{zz ngl""’lk)[cs,t o 6§Z1""’zk)ds,t]fi;,]:..,ik (Zs)

s=1t#£s

+px (0 Z (o WEy L (Z9) i (29N 1+ 0p(1)) = Ri+Ra+0p(R), say,

where R = R; + Rs. By the standard ergodic theorem, Ry f) 0. To calculate Ry, we write

er = (Zy, egil""’ik)) . Moreover, define

H(et,es) _ fgil""’ik)[cs,t _ Egil’m’ik)ds,t] -1 (Zs) +6£i1,---,ik)[ct,s _ Ggil""’ik)dt,s] -1 (Zt),

11,092k 115092k

and

H(et):/H(et,eS)dP(es) = i L (7,) /CtsdP ),

where P(£) denotes the probability distribution of the random vector £. It is easy to see that

R1 can be expressed as follows

N
Ry = NWZ (eur0) — Hler) — He)] + e S Her), (A.2)
t=1

and the first term on the right hand side is symmetric in ¢ and s, which can be interpreted as
the remainder in Hoeffding’s projection decomposition of the U-statistic generated by H (e, es)
since [ H(e;)dP(e;) = 0 (cf. Yoshihara (1976), (2.11) ). With assumption (M2), the following

inequality holds
[H (er, )] < e(ef)] 4 1)) 4 eplefro)] - ™)) as,
where ¢, co are some positive constants. Hence, by assumption (M5),
/ H (es, e)|? dP(er) dP(e,) < oo.
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Since under assumption (M7), {e;,t > 1} is an absolutely regular process, it follows from
Lemma 1 of Yoshihara (1976) that sup,., E |H (e, e5)[> < oo, which, together with Lemma 2

of Yoshihara (1976), implies that

E {% ST Her, e) — Hier) - H(es)]} _ o(N72).

t#£s
Consequently,
1 1,
INZIE ; [Her,e5) — Her) — H(es)] = op(N™'h75). (A3)
t£s

On the other hand, it is easy to show that under assumption (M6),
\Fy,y (1) — Fyy i (22)| < ||z — ao||* for all zy,z9 € R, (A.4)

Since |H(e;)| < chk+“|egi1""’ik)| a.s., it follows from the standard ergodic theorem,

N-1X
57 > Hle)
‘ Nth t=1

which, together with (A.3), implies that R; tends to 0 in probability. The proof of (i) is now

1 &
<chH N > e,E“""’Zk) | - 0, as.
t=1

complete.

The proof of (ii) is more detailed and tedious than the above proof of (i) but involves no
fundamentally new idea. It is therefore omitted.

To prove (iii), note the fact that (2.6) and (M4) imply that for any s # ¢, E[ H(e;) H(es)]| =

0. Consequently, by assumption (M2) and inequality (A.4),

2
1 1 2 4k+2
ElN;H(et)] - v EPH (e;) < ch* T2 /N.
Hence, by assumption (K4),

N -1

NOHE ZH(%) = Op(W*H#/VN) = 0p(N~'h7F).

With inequality (A.4), we can show that Ris = 0,(N A ¥) in the same way. Together with
(A.3), we have now proved (iii).

Similarly, we can show that the sum in (iv) is equal to
h* N3 Z € d?,t z:?,zk(zs) + 0p(N"'hTH).
ss;iétt
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On writing the sum in above expression as a U-statistic by symmetrization, and performing the
Hoeflding’s projection decomposition on the U-statistic (cf. (A.2) ), it follows from Lemma 2

of Yoshihara (1976) that the primary term in the decomposition is the integral

N-1}- 2k/ &3, [ i (Zs) dP(es) dP(ey),

where (eg, e;) is the same as in (A.2). The proof is completed by the fact that the above ex-

pression is asymptotically equivalent to 7;,,...q, /(IV hF).

Appendix B: The proof of Theorem 2.

Forany 1 <i; <...<i, <L, 1<k<L,and z = (z1,...,21) € RE, define

. Z; A&' T; —‘)Qi
B — N'h(k, N)] Y, e k)
zl,...,zk(w) [h’ Z tpk( k N) ’ ’ h(k,N)

X fil,...,ik (xim s amik)-

To prove Theorem 2, we need the following lemma, which shows that Fl,...,d converges to F
uniformly on G = {f > 0}. Similar results have been proved by Gyérfi et. al. (1989) under

different assumptions.

Lemma 4. Suppose that the assumption (M1) — (M7) hold, and also the assumptions (K1) —
(K4) hold specifically only for £ = d. Then as N — oo, the following limits hold if either
E|Y;|F < oo for any k > 1, or d\(d) < 2/5.

sup | F(z) — Fy,_q(z)| 5 0.
zeG
Proof. It follows from Lemma 2 that for any z € G,
~ 1 —d e z1— X g — X
Fl,...,d(x) =N 1h dfl,_l_ l‘la -y L and( L tla"'a d h td) (1+Op(1))’ (B]')

where the term o0,(1) does not depend on x. Thus

sup B Py a(z) = suph™@f ! (21,...,24) B{ E(Y;| Xp1, ..., Xua)
zelG T€G

— X — X
Xpd<x1 A tl,...,$d 5 td)}-l—o(l)
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= sugfl_,_l__,d(wl,...,xd)/E(YHXﬂ =11 —hz1,...,Xg =24 — hzq)
e
X pg(21s---2a) f1,..a(x1 — hz1, ..., 29 — hzq) dz1 -+ - dzqg + o(1)

— supE(Y:| Xy =x1...,X4qg =24) = sup F(zx). (B.2)
zelG T€eG

The above limit follows from the assumptions (M3) and (M6), and the last equality follows
from (1.4).
For M = M(N) > 0, which will be specified later, we define

N 1 — X g — X

Ri(z) = N_lh_dzytpd< - A 4,2 A td) Itv,<wrys
t=1
N 1 — X g — X

RZ(.’L’) = Nlhdznpd< ! h tl,..., d h, td) I{YtZM}
t=1

By Schwarz’ inequality and Chebyshev’s inequality, we have

P(sup|Ry(z) — ERy(z)| >¢€) < ce 'h™ M F/2 (B.3)
zeG

for any € > 0 and k > 1 such that E |Y;|¥ < oo.

It follows from Theorem 3.1 of Roussas and Ioannides (1988) that
P(|Ri(z) — ERi(z)|>€) < 1 eXp(—CQGZNh_Zd/MZ)
for some positive constants ¢; and co independent of x. This leads to

sup P(|Ri(z) — ERy(z)| >¢€) < c1exp(—cae? Nh™24/M?).
T€G

Using the same arguments as in p.30-31 of Gy6rfi et. al. (1989), it can be shown that for any
€ > 0, the following inequality holds for all N greater than an integer N..
P(sup|Ri(z) — ERi(z)| >¢€) < ch Pexp(—cae? Nh™2¢/M?), (B.4)
el
where p > 0 is an integer, which is independent of N.
Let M = N—¢ with ¢ < 0.5—d\(d). Then the right hand side of (B.4) tends to 0 as N — oo.
In case E|Y;|¥ < oo for any k > 1, the right hand side of (B.3) tends to 0 for sufficiently
large k. In case dA(d) < 2/5, the limit still holds by choosing & > dA(d)/4. Therefore, we have
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proved that for i = 1,2, | R;(z) — E R;(z) | converges to 0 in probability. It follows from (B.1)

and the assumption (M2) that

sup|13’1,___,d(:c) - EFl,...,d($)|
TeG

< ¢ (sup|R1(x) — ERy(z)| + sup|Re(z) — E Ry(x) |> + 0p(1) £o. (B.5)
zelG z€G

The lemma follows immediately from (B.2) and (B.5).

Proof of Theorem 2. Since X; is bounded, it is easy to show that for any 1 <4 < ... <
ir <L, 1<k < L,and any compact set B C R"
R , 1 XN 2 ¢ &,
sup | F5,,..iu (#)* < c(ﬁtgw) < Nf,:zl Y
It follows from assumption (M5) that {Y;2,# > 1} and hence also {N"'YN, V2 N > 1}
are uniformly integrable. Thus, {sup,cp | Fil,---,ik ()%, N > 1} is uniformly integrable. Take
B = G , which is compact in R by assumption (M2). Then,

A

E[F(X)] < E[Slelg F@)P? <c) E[Sggﬂl,...,ik (@) I(s,y={ir,..ix})]” < 00, (B.6)

where the sum is taken over all 1 <41 < ... <4, < L,1<k <L, and I4 denotes the indicator
function of set A.

It follows from Theorem 1 that for any € > 0, there exists a positive integer N, such that
when N > N, S¢, coincides with {1,...,d} on a subset with probability greater than 1 — e.

Hence, by (B.6)

~

BIF(X) - F(X) < ce + B[F(X) - F1,_a(X)]" (B.7)

geeey

Tt follows from Lemma 4 that sup,c¢ | F(z) — Fy, () |—P>0. By the standard mean convergence

theorem, E[F(X) — F’l,___’d(X) ]2 — 0. Together with (B.7), this gives
E[F(X)-F(X)]? — o.
Consequently, by the Schwarz inequality,
| B{[Y - FOO)[F(X) - F(X)]} | < {EY2-B[F(X) - PO} - 0.

18



Finally, we have

~

BlY - F(X)P? = B[Y -F(X)] + E[F(X) - F(X)]
+2E{[Y - F(X)][F(X) - F(X)]}

— E[Y -F(X)]? = ¢*(1,...,L),

which competes the proof of (i).

(ii) can be proved in a similar but simpler way, which is omitted here.
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Table 1. Frequencies of selected regressors in 100 replications for Example 2

Selected regressors N =200 N =500
{Xi-1,Yi-1 } 80 95
{Xt-1,Y1, X2 } 6 1
{Xi 1,V 1,V 2} 5 -
{Xt-1,Y1, X3} 2 3
{Xi-1,Yio1, Xp2,Yi-3 } 2 -
{Xi-1,Yi-1,Yi-3} 1 1
{Xi-1,Yi-1, X1, Y33} 1 -
{Xe-1,Ye1, Xe, Xy9, Y3} 1 -
{ X1, X2 } 1 -
{Xi-1,Yi2 } 1 -

Table 2. Subset regression of Y; in Example 3

Typically row 3 reads: amongst all subsets containing three regressors, the minimum CV
is attained at the subset {Y;_1, Y;_3, Y;_¢} with a CV value = 0.2002 and the bandwidth

= 0.256; further, for this bandwidth 3\(3) is equal to 0.86.

k lags CV-value bandwidth kA(k)

1 {1} 0.4136 0.326 0.24

2 {1,2} 0.2034 0.221 0.64

3 {1,3,6} 0.2002 0.256 0.86

4 {1,2,3,6) |0.2099 (0.2109) | 0.361 (0.326) | 0.86 (0.94)
5 {1,235 6} | 0.2200 0.384 1.01

6 {1,...,6} 02268 0.407 1.14
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Table 3. Subset regression of Y2 in Example 3

Same convention adopted as in Table 2.

k lags CV-value bandwidth kX(k)

1 (1} 42.83 0.209 0.33

2 (1,2} 20.32 0.209 0.66

3 {1,3,6)} 19.66 0.244 0.89

4 {1,356} |21.34 0.302 1.01

5 {1,2,3,5 6} | 22.57 (22.59) | 0.407 (0.361) | 0.95 (1.08)

6 {1,...,6} |23.12 0.407 1.14

Table 4. Subset regression of Y; in Example 4.
Same convention adopted as in Table 2.

k lags CV-value bandwidth kX(k)
1 {1} 0.3511 0.103 0.40
2 {13} 0.1630 0.154 0.66
3 {1,241 0.1462 0.180 0.91
4 (1,247} 0.1465 (0.1468) | 0.283 (0.261) | 0.89 (0.95)
5 {1,2,5,6,10 } 0.1492 0.309 1.04
6 {1,2,3,4,6,10 } 0.1558 0.309 1.24
7 {1,2,3,4,5,6,10 } 0.1594 0.335 1.35
8 {1,2,3,4,5,6,7,8 } 0.1803 0.361 1.45
9 {1,2,3,4,5,6,7,910 } | 0.1994 (0.2021) | 0.438 (0.386) | 1.31 (1.51)
0 |{1,...,10} 0.2227 (0.2301) | 0.541 (0.412) | 1.13 (1.57)
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Table 5. Subset regression of Y;? in Example 4.

Same convention adopted as in Table 2.

k lags CV-value bandwidth kA(k)

1 {1} 5.8179 0.309 0.21

2 {13} 3.3179 0.231 0.26

3 {1,3,5} 2.8987 0.231 0.39

4 {1,257 ({1,247 }) | 2.7431 (2.7692) | 0.309 (0.283) | 0.83 (0.89)
5 {1,2,5,6,10 } 2.8154 0.335 0.96

6 {1,2,4,5,6,10 } 2.9436 0.361 1.09

7 {1,2,3,4,5,6,10 } 3.0036 0.386 1.18

8 {1,2,3,4,5,6,7,9 } 3.1546 0.361 1.45

9 {1,2,3,4,5,6,7,8,9 } 3.5037 (3.5612) | 0.489 (0.401) | 1.14 (1.45)
10 {1,...,10} 3.9869 (4.0291) | 0.489 (0.412) | 1.26 (1.56)
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