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Abstract

Cointegration inference is often built on the correct specification for the short-run dynamic

vector autoregression. However, this specification is unknown a priori. A too small lag length

leads to erroneous inference due to misspecification, while using too many lags leads to dra-

matic increase in the number of parameters, especially when the dimension of time series is

high. In this paper, we develop a new methodology which adds an error correction term for

long-run equilibrium to a latent factor model for modeling short-run dynamic relationship.

Two eigenanalysis based methods for estimating, respectively, cointegration and latent factor

process consist of the cornerstones of the inference. The proposed error correction factor model

does not require to specify the short-run dynamics explicitly, and is particularly effective for

high-dimensional cases when the standard error-correction suffers from overparametrization.

It also increases the predictability over a pure factor model. Asymptotic properties of the

proposed methods are established when the dimension of the time series is either fixed or

diverging slowly as the length of time series goes to infinity. Illustration with both simulated

and real data sets is also reported.
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1 Introduction

Cointegration refers to the phenomenon that there exists a long-run equilibrium among several

distinct nonstationary series, as illustrated in, for example, Box and Tiao (1977). Since the

seminal work of Granger (1981), Granger and Weiss (1983) and Engle and Granger (1987), it has

attracted increasing attention in econometrics and statistics. An excellent survey on the early

developments of cointegration can be found in Johansen (1995).

Up to present, considerable effort has been devoted to the inference on the long-run trend

(cointegration) restrictions in vector autoregression (VAR); see, among others, Engle and Granger

(1987), Johansen (1991), Phillips (1991) for estimation and testing, and Engle and Yoo (1987), Lin

and Tsay (1996) for forecasting. As shown in Engle and Granger (1987), VAR with cointegration

restrictions can be represented as a vector error correction model (VECM) which reflects the

correction on the long-run relationship by short-run dynamics. One of the remarkable features

of VECM is that it identifies clearly the gain in prediction from using the cointegrated variables

over the standard ARIMA approach, as noted by Engle and Yoo (1987), Lin and Tsay (1996) and

Peña and Poncela (2004). However, it is a prerequisite to specify a finite autoregressive order for

the short-run dynamic before the inference can be carried out on the cointegration part of the

model. In many applications, using different orders for the VAR results in different conclusions

on the cointegration. Especially when the VAR order is under-specified or the process lies outside

the VAR class, the optimal inference on the unknown cointegration will lose validity (Hualde

and Robinson, 2010). To overcome this shortcoming, information criteria such as AIC, BIC and

HQIC have been applied to determine both the autoregressive order and the cointegration rank.

See, for example, Chao and Phillips (1999) and Athanssopoulos, et al. (2011). While appealing

for practitioners, all these methods are nevertheless subject to pre-test biases and post model

selection inferential errors (Liao and Phillips, 2015). Furthermore VECM is ineffective when the

dimension of time series is high, not least due to the overparametrization of a VAR specification.

Relative to considerable effort on long-run restriction, one may argue that the importance

of short-run restrictions has not received due attention in cointegrated literature. On the other

hand, common cyclical movements exist extensively in macroeconomics. For example, Engle and

Kozicki (1993) found common international cycles in GNP data for OECD countries. Issler and

Vahid (2001) reported the common cycles for macroeconomic aggregates and sectoral and regional
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outputs in US. It has been shown that using (short-run) rank restrictions in stationary VAR can

improve short-term forecasting ability, as documented by Ahn and Reinsel (1988), Vahid and

Isser (2002) and Athanasopoulos and Vahid (2008), Athanasopoulos et al. (2011). Hence it

is reasonable to expect that imposing appropriate short-run structures will improve the model

performance in cointegrated systems. Note that Athanasopoulos et al. (2011) recognized the

factor structure in the short-run dynamics, but did not utilize it in their subsequent inference

procedure. Issler and Vahid (2001) used a similar argument to the cointegration for the short-run

effect. Based on VECM, they proposed to model the common cycles based on sample squared

canonical correlations and Johansen’s likelihood method is used to identify the cointegration

relationship.

When the dimension of time series is high, VAR models suffer from having too many parame-

ters even with some imposed rank restrictions. Furthermore most the classical inference methods

for cointegration, including Johansen’s likelihood method, will not work or not work effectively.

See the numerical studies reported in Gonzalo and Pitarakis (1995) and Ho and Sørensen (1996).

Although high-dimensional problems exist extensively in macroeconomic and financial data, the

development in both theory and methodology in the context of cointegration is still in its infancy.

We propose in this paper an error correction factor model which is designed for catching the

linear dynamical structures, in a parsimonious and robust fashion, for high-dimensional cointe-

grated series. More specifically the long-run equilibrium relationship among all nonstationary

components is represented by a cointegration vector, i.e. the correction term to equilibrium. This

term is then utilized to improve a factor representation for the short run dynamics for the dif-

ferenced processes. Comparing to the classical VECM, our setting does not require to specify

the short run dynamics explicitly, avoiding the erroneous inference on cointegration due to, for

example, a misspecification of the autoregressive order.

Factor models have been popular for modeling high-dimensional time series to achieve di-

mension reduction. See, for example, Bai (2003), Bai and Ng (2004), Banerjee, Marcellino and

Masten (2014a and b) and Barigozzi, Lippi and Luciani (2016a and b). In this paper, we adopt

a latent and low-dimensional factor process to represent the high-dimensional short run dynam-

ics. Comparing to a pure factor model, the cointegration term improves the modelling and the

prediction for short run dynamics. In terms of inference, we first adopt the eigenanalysis based
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method of Zhang, Robinson and Yao (2015) (ZRY, hereafter) to identify both the cointegration

rank and cointegration space; no prespecification on the short run dynamics is required. We then

calculate the regression estimation for the error correction term, and recover the latent factor

process from the resulting residuals using the eigenanalysis based method of Lam and Yao (2012).

Once the latent factor process has been recovered, we can model separately its linear dynamics

using whatever an appropriate time series model. Due to the errors accumulated in estimation,

fitting a dynamic model for the factor process turns out to be an error-in-observation problem in

autoregression. This problem has not been thoroughly investigated in the literature, for which we

propose a version of corrected Yule-Walker method. See Section 2.2.3 below.

The proposed methodology is further supported by the newly established asymptotic theory

and numerical evidences. Especially our numerical results corroborate the findings from the

asymptotic theory. In particular, Monte Carlo simulation reveals that the cointegration rank, the

cointegration space, the number of factors and the factor co-feature space can all be estimated

reasonably well with typical sizes of observed samples. Our empirical example on forecasting

the twelve U.S. industrial production indices shows that the proposed error correction factor

model outperforms both VECM and univariate AR models for each component in post-sample

forecasting, for most forecast horizons considered.

The rest of the paper is organized as follows. We spell out the proposed error correction model

and the associated estimation methods in Section 2. In Section 3 the asymptotic properties for

the estimation methods are established with the dimension of time series both fixed or diverging

slowly, when the length of time series goes to infinity. The proposed methodology is further

illustrated numerically in Section 4 with both simulated and real data sets. Furthermore we

compare the forecasting performance of the proposed error correction factor model to those of

the reduced rank VECM, and the univariate AR models in each component. The forecasting

performances for real data were evaluated for different forecast horizons based on the criterion of

Clements and Hendry (1993).
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2 Methodology

2.1 Error Correction Factor Models

We call a vector process ut weakly stationary if (i) Eut is a constant vector independent of t,

and (ii) E‖ut‖2 < ∞, and Cov(ut,ut+s) depends on s only for any integers t, s, where ‖ · ‖

denotes the Euclidean norm. Denoted by ∇ the difference operator, i.e. ∇ut = ut − ut−1. We

use the convention ∇0ut = ut. A process ut is said to be weakly integrated process with order

1, abbreviated as weak I(1), if ∇ut is weakly stationary with spectral density finite and positive

definite at frequency 0 but ut itself is not. Since we only deal with weak I(1) processes in this

paper, we simply call them weakly integrated processes.

Let yt be observable p×1 weakly I(1) process with the initial values yt = 0 for t ≤ 0. Suppose

that cointegration exists, i.e., there are r (≥ 1) stationary linear combinations of yt, where r is

called the cointegration rank and is often unknown. The error correction factor model is defined

as

∇yt = Cyt−1 + Bft + εt, (2.1)

where C is a p×p matrix with rank r and Cyt is weakly stationary, ft is an m×1 weakly stationary

process and B is a p×m matrix, εt is a p× 1 white noise with mean zero and covariance matrix

Σε, and uncorrelated with yt−1 and {ft}. Comparing with VECM, (2.1) represents the short-run

dynamics by the latent process ft. Its linear dynamic structure is completely unspecified. Note

that ft does not enter the inference for the error correction term Cyt−1. Model (2.1) is particularly

useful when p is large and m is small, which is often the case with many real data sets, as it leads

to an effective dimension-reduction in modelling high-dimensional time series.

Without loss of generality, we assume in (2.1) B to be an orthogonal matrix, i.e., B′B = Im,

where Im denotes the m×m identity matrix. This is due to the fact that any non-orthogonal B

admits the decomposition B = QU, where Q is an orthogonal matrix and U is an upper-triangular

matrix, and we may then replace (B, ft) in (2.1) by (Q,Uft).

Before ending this section, we illustrate with a simple toy model (i.e. a drunk and a dog

model) the gain in prediction of the proposed error correction factor model over a pure factor
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model. Let yt,1 be the position of the drunk at time t, i.e.

y0,1 ≡ 0, yt,1 = yt−1,1 + εt for t = 1, 2, · · · ,

where εt ∼ IID(0, 1). Let yt,2 = yt,1 +zt denote the position of the dog, as the dog always wanders

around his master (i.e. the drunk), where zt ∼ IID(0, σ2), and {εt} and {zt} are independent

with each other. Then both yt,1, yt,2 are I(1), and yt,1 is a random walk but yt,2 is not. Let

yt = (yt,1, yt,2)
′. It holds that

∇yt = (0, 1)′ft + (εt, εt)
′, (2.2)

where ft = zt − zt−1 can be viewed as a latent factor process. Thus (2.2) is a pure factor model.

Now there is a clear cointegration:

zt = (−1, 1)yt = yt,2 − yt,1.

Consequently, the error correction factor model is

∇yt = (0,−1)′zt−1 + (εt, εt + zt). (2.3)

Note that for this simple example, the factor is identical to 0, as both εt and zt are independent

sequences. Using the info available up to time t, the best predictor for ∇yt+1 based on error

correction factor model is ∇̂yt+1 = (0,−1)′zt with the mean squared predictive error:

E(‖∇yt+1 − ∇̂yt+1‖2) = Var(εt+1) + Var(εt+1 + zt+1) = 2 + σ2. (2.4)

On the other hand, the best predictor for ∇yt+1 based on factor model (2.2) is ∇̃yt+1 = (0, 1)′f̂t+1

with the mean squared predictive error:

E(‖∇yt+1 − ∇̃yt+1‖2) = E(‖ft+1 − f̂t+1‖2) + 2Var(εt+1) = E(‖ft+1 − f̂t+1‖2) + 2,

where f̂t+1 is the best predictor for ft+1 based on yt,yt−1, · · · . Since ft = zt − zt−1 is a latent

5



MA(1) process. The best predictor for ft+1 is the one based on ft and is equal to

f̂t+1 = −E(ftft+1)

E(f2t )
ft = ft/2

with E(‖ft+1 − f̂t+1‖2) = 3σ2/2. Hence

E(‖∇yt+1 − ∇̃yt+1‖2) = 3σ2/2 + 2,

which is greater than E(‖∇yt+1−∇̂yt+1‖2); see (2.4). This shows that adding the error correction

term increases the predictability of factor model (2.2).

2.2 Estimation

In model (2.1), C is a p × p matrix with the reduced rank r(< p). Hence it can be expressed as

C = DA′2, where D, A2 are two p×r matrices. Furthermore, columns of A2 are the cointegration

vectors, r is the cointegration rank. Although A2 is not unique, the coefficient matrix C is uniquely

determined by (2.1). Once we specify an A2 such that A′2yt−1 is weakly stationary, consequently

D can be uniquely determined. Thus, to fit model (2.1), the key is to estimate r, A2, the factor

dimension m and the factor loading matrix B. Then the coefficient matrix D can be estimated

by a multiple regression, the latent factors ft can be recovered easily, and the forecasting can be

based on a fitted time series model for ft.

To simplify the inference, in the sequel we always assume that Cyt−1 and ft are uncorrelated.

This avoids the identification issues due to possible endogeneity. Note that this condition is always

fulfilled if we replace (C, ft) in (2.1) by (C∗, f∗t ), where

C∗ = {D + BE[ft(A
′
2yt−1)

′][E((A′2yt−1)(A
′
2yt−1)

′)]−1}A′2,

f∗t = ft − E(ft(A
′
2yt−1)

′)[E((A′2yt−1)(A
′
2yt−1)

′)]−1(A′2yt−1).

2.2.1 Estimation for cointegration

While the representation of the cointegration vector A′2yt is not unique, the cointegration space

M(A2), i.e. the linear space spanned by the columns of A2, is uniquely determined by the process

yt; see ZRY. In fact we can always assume that A2 is a half-orthogonal matrix in the sense that
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A′2A2 = Ir. Let A1 be a p × (p − r) half orthogonal matrix such that A = (A1,A2) be a p × p

orthogonal matrix. Let xt,i = A′iyt for i = 1, 2. Then xt,2 is a weakly stationary process, and all

the components of xt,1 are weak I(1).

We adopt the eigenanalysis based method proposed by ZRY to estimate r as well as A2. To

this end, let

Ŵ =

j0∑
j=0

Σ̂jΣ̂
′
j ,

where j0 ≥ 1 is a prescribed and fixed integer, and

Σ̂j =
1

n

n−j∑
t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ =
1

n

n∑
t=1

yt.

We use the product Σ̂jΣ̂
′
j instead of Σ̂j to make sure that each term in the sum is non-negative

definite, and that there is no information cancellation over different lags. Let λ̃1 ≥ · · · ≥ λ̃p be

the eigenvalues of Ŵ, and γ̃1, · · · , γ̃p be the corresponding eigenvectors. Then A2 is estimated

by Â2 = (γ̃p−r+1, · · · , γ̃p), and the cointegration rank is estimated by

r̂ = arg min
1≤l≤p

IC(l), (2.5)

where IC(l) =
∑l

j=1 λ̃p+1−j + (p− l)ωn, and ωn →∞ and ωn/n
2 → 0 in probability (as we allow

ωn to be data-dependent). ZRY has shown that bothM(Â2) and r̂ are consistent estimators for,

respectively, M(A2) and r.

Having obtained the estimated cointegration vector Â′2yt−1, the coefficient matrix D can be

estimated using the standard least squares estimation. Let di, i = 1, 2, · · · , p be the row vectors

of D and ∇yt = (∇y1t , · · · ,∇y
p
t )
′. The least square estimator for di is defined as

d̂i = arg min
di

n∑
t=1

(∇yit − diÂ
′
2yt−1)

2, (2.6)

which leads to d̂i =
∑n

t=1∇yti(Â′2yt−1)′
(∑n

i=1(Â
′
2yt−1)(Â

′
2yt−1)

′
)−1

. Consequently, the esti-

mator for the coefficient matrix D can be written as

D̂ =

n∑
t=1

∇yt(Â
′
2yt−1)

′

(
n∑
i=1

(Â′2yt−1)(Â
′
2yt−1)

′

)−1
.
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2.2.2 Estimation for latent factors

We adopt the eigenanalysis based method of Lam and Yao (2012) to estimate the factor loading

space M(B) and the latent factor process ft based on the residuals v̂t ≡ ∇yt − D̂Â′2yt−1, t =

1, · · · , n. To this end, let

Ŵv =

j0∑
j=1

Σ̂v(j)Σ̂
′
v(j), (2.7)

where j0 ≥ 1 is a prespecified and fixed integer, and

Σ̂v(j) =
1

n

n−j∑
t=1

(v̂t+j − v̄)(v̂t − v̄)′, v̄ =
1

n

n∑
t=1

v̂t.

where j0 ≥ 1 is a prespecified and fixed integer. One distinctive advantage of using the quadratic

form Σ̂v(j)Σ̂v(j)
′ instead of Σ̂v(j) in (2.7) is that there is no information cancellation over different

lags. Therefore this approach is insensitive to the choice of j0 in (2.7). Often small values such

as j0 = 5 are sufficient to catch the relevant characteristics, as serial dependence is usually most

predominant at small lags. See Lam and Yao (2012) and Chang et al. (2015). Let (γ̂1, · · · , γ̂m)

be the orthonormal eigenvectors of Ŵv corresponding to the m largest eigenvalues. Consequently,

we estimate B and ft by

B̂ = (γ̂1, · · · , γ̂m), and f̂t = B̂′v̂t. (2.8)

Since m is usually unknown and the last p−m eigenvalues of Ŵv may not be exactly 0 due

to the random fluctuation, the determination of m is required. We propose to select m by using

the ratio-based method of Lam and Yao (2012). In particular, let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the

eigenvalues of Ŵv. We define an estimator for the number of factors m as follows:

m̃ = arg min
1≤i≤R

λ̂i+1/λ̂i, (2.9)

with m < R < p. In practice we may pick, for example, R = p/2, following the recommendation

of Lam and Yao (2012).

Remark 1. The above ratio estimator of m is not necessarily consistent, though it works fine in
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practice. See Lam and Yao (2012), and also Tables 1, 2 and 3 in Section 4.1 below. To establish

the consistency, one can estimate m using the information criterion defined as

m̂ = arg min
1≤i≤p

IC(l),

where IC(l) =
∑p

j=l+1 λ̂j + lωn, is the information criterion and ωn is the turning parameter. It

can be shown as ωn → 0 and ωnn
1/2/p→∞, m̂ is consistent for m.

2.2.3 Fitting linear dynamics for factors

Once we have recovered the factor process f̂t, we can fit an appropriate model to represent its

linear dynamic structure. As an illustration, below we fit ft with a VAR model.

Let

ft =

s∑
i=1

Eift−i + et, (2.10)

where Ei, 1 ≤ i ≤ s are m × m matrices and {et} is a sequence of independent vectors with

mean zero and independent of {x′t2, f ′t , ε′t}. In our setting, ft are unobservable latent factors and

estimated by f̂t = B̂′v̂t is given in (2.8). It can be shown that

f̂t = ft + B′εt +
4∑
i=2

ζt,i.

See (6.19) in the Appendix below. If we ignore the term
∑4

i=2 ζt,i, f̂t can be viewed as the

observation of ft with measurement error. Thus, Ei can be estimated through a VAR model

with observations in errors. This is an interesting and important topic and has been actively

pursued in various contexts, see for example, Carroll, Ruppert and Stefanski (1995). However,

time series models with measurement errors have not received enough attention. Note that when

f̂t = ft + B′εt, then (2.10) can be written as a vector ARMA model (VARMA) with same order

of AR and MA parts. One can estimate Ei based on VARMA models. An alternative method is

to use the classic least squares procedure, which estimates Ei based on {f̂}, i.e.,

(Ẽ1, · · · , Ẽs) = argminE1,··· ,Es

n∑
t=s+1

||̂ft −
s∑
i=1

Eif̂t−i||2. (2.11)
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However, just as in simple linear regression for independent data, Ẽi can not estimate Ei consis-

tently when the spectral norm of the covariance of B′εt +
∑4

i=2 ζt,i has the same order as that

of f̂t and a correcting factor is required. To see this, we simply assume f̂t = ft + B′εt and s = 1,

then

Ẽ′1 −E′1 = (

n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

(ft−1 + B′εt−1)(et + B′εt −E1B
′εt−1)

′

= (
n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

[(ft−1 + B′εt−1)e
′
t + ft−1(ε

′
tB− εt−1BE′1)]

−(
n∑
t=2

f̂t−1f̂ ′t−1)
−1

n∑
t=1

B′εt−1ε
′
t−1BE′1.

Under some regular condition, (
∑n−1

t=1 f̂tf̂ ′t)
−1∑n−1

t=1 B′εtε
′
tB

p−→ [Var(f1 + B′ε1)]
−1Var(B′ε1).

Thus, a corrected factor is required and one may use the modified LSE: Ê′1 = [Var(f1)]
−1[Var(f1 +

B′ε1)]Ẽ
′
1 to estimate E′1. One simple method is to correct the LSE given in (2.11) by

(Ê1, · · · , Ês)
′ =

[
n∑

t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M

]−1 [ n∑
t=s+1

f̂t(f̂
′
t−1, · · · , f̂ ′t−s)

]′
, (2.12)

where M = diag(Σ̂Bε(1), · · · , Σ̂Bε(s)) and Σ̂Bε(i) =
∑n

t=s+1 B′εt−iε
′
t−iB. This is in the same

spirit as the corrected Yule-Walker estimator proposed by Staudenmayer and Buonaccorsi (2005)

for AR model with measurement error. The autoregressive order s may be determined by, for

example, the standard criteria such as AIC or BIC. See, for example, Section 4.2.3 of Fan and

Yao (2015).

Combining (2.1), (2.10) and (2.12), we have h-step ahead forecast, for h = 1, 2, as:

yt+1|t = (I + Ĉ)yt + B̂f̂t+1 = (I + Ĉ)yt + B̂

(
s∑
i=1

Êif̂t+1−i

)
,

yt+2|t = (I + Ĉ)yt+1|t + B̂f̂t+2|t

= (I + Ĉ)2yt + (I + Ĉ)B̂

(
s∑
i=1

Êif̂t+1−i

)
+ B̂

[
s−1∑
i=1

Êif̂t+1−i + Ê1

(
s∑
i=1

Êif̂t+1−i

)]
.

We can similarly deduce any h-step ahead forecast yt+h|t, for h ≥ 3, by recursive iteration.
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3 Asymptotic Theory

In this section, we investigate the asymptotic properties of the proposed estimators. For given m,

we measure the distance between the cofeature space M(B) and its estimate by

D(M(B̂),M(B)) =

√
1− 1

m
tr(B̂B̂′BB′). (3.1)

Then D(M(B̂),M(B)) ∈ [0, 1], being 0 if and only ifM(B̂) =M(B), and 1 if and only ifM(B̂)

and M(B) are orthogonal. We consider two asymptotic modes: (i) p is fixed while n → ∞, and

(ii) both p and n diverge, but r is fixed.

3.1 When n→∞ and p is fixed

We introduce the regularity conditions first.

Condition 1. The process {x′t2,∇y′t, ε
′
t} is a stationary α-mixing process with mean

zero, E‖(x′t2,∇y′t, ε
′
t)‖

4γ
∞ <∞ for some constant γ > 1 and the mixing coefficients αt

satisfying the condition
∑∞

t=1 α
1−1/γ
t < ∞, where ‖x‖∞ denote the maximum norm

of a vector x = (x1, · · · , xn), i.e., ‖x‖∞ = max(|x1|, · · · , |xn|).

Condition 2. The characteristic polynomial of VAR model (2.10) has no roots on or

outside of the unit circle so that it is a causal VAR model.

Theorem 1. Let Condition 1 hold.

(a) Let vech(D) = (d1, · · · ,dp)′. As n→∞ and p fixed, it holds that

√
n(vech(D̂)− vech(D))

d−→ N(0,Ω1),

where Ω1 is an rp×rp positive definite matrix and ||Ĉ−C||2 = Op(n
−1/2), and ||·||2 denotes

the spectral norm of a matrix.

(b) Let m be known, then D(M(B̂),M(B)) = Op(n
−1/2).

(c) If Condition 2 and E‖et‖2γ <∞ hold in addition, then

||(Ê1 −E1, · · · , Ês −Es)||2 = Op(n
−1/2).
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Theorem 2. Let 1 ≤ m < p and Condition 1 hold. For m̃ defined in (2.9),

lim
n→∞

P ( m̃ ≥ m ) = 1.

3.2 When n→∞ and p = o(nc)

Let zjt ≡ ∇x
j
t , j = 1, · · · , p − r, zt = (z1t , · · · , z

p−r
t )′ and νt = (z′t,x

′
t2)
′. In this subsection, we

extend the asymptotic results in the previous section to the cases when p → ∞ and p = o(nc)

for some c ∈ (0, 1/2). Technically we employ a normal approximation method to establish the

results.

Condition 3.

(i) Let M be a p × k constant matrix with k ≥ p and c1 ≤ λmin(M) ≤ λmax(M) ≤

c2, where c1, c2 are two positive constants. Suppose that νt = Mvt, all the

components of vt = (v1t , · · · , vkt )′ are independent and with mean zero.

(ii) The process {v′t,∇y′t, ε
′
t} is a stationary α-mixing process with E‖(v′t,∇y′t, ε

′
t)‖2θ∞ <

∞ for some θ > η ∈ (2, 4] and the mixing coefficients αm satisfying

∞∑
m=1

α(θ−η)/(θη)
m <∞. (3.2)

(iii) c3 ≤ λmin(D) ≤ λmax(D) ≤ c4 for some positive constants c3, c4.

Theorem 3. Let m be known. Suppose Condition 3 holds with k = o(n1/2−1/η) and p =

O
(
n1/2−1/η/(log n)2

)
, then the following assertions hold.

(a) max{||D̂−D||2, ||Ĉ−C||2} = Op((pr)
1/2n−1/2 + p1/2k2n−1).

(b) D(M(B̂),M(B)) = Op(pn
−1/2).

(c) ||(Ê1 −E1, · · · , Ês −Es)||2 = Op((pm)1/2n−1/2 + p1/2k2n−1), provided that Condition 2

and E||et||θ <∞ hold in addition.

Theorem 4. Let 1 ≤ m < p, Condition 3 holds with k = o(n1/2−1/η) and p = O
(
n1/2−1/η/(log n)2

)
.

For m̃ defined in (2.9),

lim
n→∞

P ( m̃ ≥ m ) = 1.

12



Remark 2. All the above asymptotic theorems can be generalized to other stationary noise νt

considered by ZRY.

4 Numerical Studies

In this section, we first evaluate the finite sample performance of our proposed inference procedure

via Monte Carlo simulation. We then illustrate the advantage in forecasting of the proposed error

correction factor model via a real data example.

4.1 Monte Carlo Simulations

In our simulation, we let yt = Axt, where A = (A1,A2) is an orthogonal matrix which was

drawn elementwisely from U [0, 1] independently first and was then orthogonalized, and xt =

(x′t1,x
′
t2)
′ in which the r components of xt2 are independent Gaussian AR(1) processes with

identical autoregressive coefficient 0.5, and the (p − r) vector xt1 is I(1) according to a factor

augmented AR(1) defined as

xt1 = xt−1,1 + Υft + et. (4.3)

In the above expression, Υ is a (p− r)×m half orthogonal matrix (i.e. Υ′Υ = Im) generated in

the same manner as A, the components of factor ft are independent stationary Gaussian AR(1)

with identical autoregressive coefficient 0.5, and et are independent and N(0, Ip). Then it is to

see that yt satisfies equation (2.1) with C = 0.5A2A
′
2 and B = A1Υ.

With p = 5, 10, 20, 40, 60, r = 1, 2, 4, 6, 8, 10, and m = 1, 2, 4, 6, 8, 10 (m ≤ p− r), we generate

a time series yt with length n = 100, 200, 400, 800, 1200, 1600, 2000, 2400 and estimate r,C,m and

B. For estimating r, we use the IC criterion (2.5) with the penalty wn = log nλ̃p. The number of

factor m is estimated using the ratio method (2.9). For each setting we replicated the experiment

1000 times.

Tables 1-3 list the relative frequencies of the occurrence of the events (r̂ = r) and (m̃ = m)

in simulation with 1000 replications. We make the following observations from Table 1 which

contains the results with p = 5, 10 and 20. First, with p = 5 or 10, the relative frequencies for

the correct specification for the cointegration rank r and the number of factors m are as high

as 85% even for the sample size n as small as 200. When n increases to 400, those relative

13



frequencies increase to 100%. Secondly, with fixed n and r the correct estimation rates for m

increases when dimension p increases, a phenomenon coined as the “blessing-of-dimensionality”.

This is consistent with the findings in Lam and Yao (2012) which only dealt with purely stationary

processes. Thirdly, the inference on r tends to be more challenging when p increases. For example,

the relative frequency for correct estimation of r(= 2), when m = 1 and n = 200, decreases from

68.5% to 65.4% with p increasing from 5 to 10. This is in line with the findings in ZRY. Lastly, we

note that the increase in p, r and m would generally demand a larger n to maintain the same level

of estimation accuracy. This is consistent with our theory that requires p = o(nc) for c ∈ (0, 1/2).

Some similar conclusions can be drawn from results reported in Table 2-3. In particular, the

inference on the number of factor (when m is relatively small compared to p) is relatively easy

when p = 40 and 60, with a sample size equal to 800. Unreported results for n = 200, 400 also

corroborate this conclusion. However, the inference on the cointegration rank is more difficult

when n is small or/and r is large.

To evaluate the performance of the estimation for both cointegration space and factor cofeature

space, we present the boxplots of D(M(Â2),M(A2)) and that of D(M(B̂),M(B)) in Figure 1,

for a few (selected) combinations of p, r and m, with n = 400, 800, 1600, 3200. The overall profile

of the estimation accuracy is similar to those in Tables 1-3. For example, when p increase,

the estimation accuracy of cointegration space becomes worse, while that of factor cofeature

space tends to improve. That is, the “curse-of-dimensionality” in inferring cointegration space is

coupled with the “blessing-of-dimensionality” in estimating the factor cofeature space. It is further

observed that the estimation in general improves as n increases, which confirms our consistency

theory.

4.2 A Real Data Example

To further illustrate the proposed approach, we apply the proposed error correction factor model

(ECFM) to the ten U.S. Industrial Production monthly indices in January 1959 — December 2006,

extracted from Stock and Watson (2008)∗, namely, products total, final products, consumer goods,

durable consumer goods, nondurable consumer goods, business equipment, materials, durable

goods materials, nondurable goods materials, manufacturing, residential utilities and fuels. The

estimated cointegration rank is r̂ = 5, and the number of factor is m̃ = 2. We also fit the

∗The data are available at http://www.princeton.edu/ mwatson/.
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Table 1: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 5 n = 100 n = 200 n = 400 n = 800
m = 1 r = 1 (92.0, 93.5) (100, 99.3) (100, 99.9) (100, 100)

r = 2 (44.6, 89.3) (68.5, 96.6) (83.7, 99.8) (98.6, 100)

p = 10 n = 200 n = 400 n = 800 n = 1200
m = 1 r = 1 (85.3, 100) (100, 100) (100, 100) (100, 100)

r = 2 (65.4, 100) (82.0, 100) (95.4, 100) (99.6, 100)
m = 2 r = 1 (86.5, 82.2) (100, 97.7) (100, 99.9) (100, 100)

r = 2 (62.4, 83.4) (75.1, 97.8) (94.3, 100) (98.8, 100)

p = 20 n = 400 n = 800 n = 1200 n = 1600
m = 2 r = 2 (85.5, 99.7) (92.8, 100) (96.7, 100) (98.9, 100)

r = 4 (20.5, 95.0) (43.3, 99.8) (68.8, 100) (86.3, 100)
m = 4 r = 2 (82.0, 93.2) (89.5, 99.9) (93.8, 99.9) (96.3, 100)

Table 2: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 40 n = 800 n = 1200 n = 1600 n = 2000

m = 2 r = 2 (72.8, 100) (94.7, 100) (100, 100) (100, 100)
r = 4 (64.0, 99.9) (99.5, 100) (99.3, 100) (99.7, 100)
r = 6 (86.4, 93.8) (95.2, 98.9) (96.2, 99.7) (97.5, 100)
r = 8 (53.8, 100) (77.4, 100) (82.2, 100) (89.6, 100)

m = 4 r = 2 (73.3, 100) (89.5, 100) (99.9, 100) (100, 100)
r = 4 (66.8, 99.9) (99.3, 100) (99.5, 100) (99.2, 100)
r = 6 (75.1, 99.5) (88.3, 100) (89.5, 100) (91.0, 100)
r = 8 (27.1, 99.7) (59.0, 100) (64.4, 100) (75.9, 100)

m = 6 r = 2 (72.7, 99.6) (86.2, 100) (99.6, 100) (100, 100)
r = 4 (69.2, 96.5) (98.6, 99.4) (98.3, 100) (98.4, 100)
r = 6 (65.6, 99.7) (83.1, 100) (86.1, 100) (88.8, 100)
r = 8 (16.9, 98.7) (41.3, 100) (50.8, 100) (62.4, 100)

m = 8 r = 2 (73.7, 99.9) (81.1, 100) (99.8, 100) (100, 100)
r = 4 (71.0, 89.1) (98.3, 99.2) (98.2, 99.9) (98.0, 100)
r = 6 (60.8, 98.7) (82.1, 99.9) (82.1, 100) (87.0, 100)
r = 8 (12.7, 83.7) (37.0, 96.5) (45.3, 98.5) (52.6, 99.6)

data with a vector error correction model (VECM) using Johansen’s trace test to determine the

cointegration rank r for each given autoregressive order between 1 and 8, and then using the Akaike

Information Criterion (AIC) to select the optimal autoregressive order 4. The corresponding

estimated cointegration rank is also 5. Hence both the fitted models suggest the same cointegration

rank 5, while VECM represents the short-run dynamics in terms of a twelve-dimensional vector

AR(4) process (with reduced rank 2), and, in contrast, the newly proposed ECFM captures this
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Table 3: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 60 n = 1200 n = 1600 n = 2000 n = 2400

m = 2 r = 2 (20.8, 100) (34.3, 100) (97.3, 100) (100, 100)
r = 4 (16.2, 100) (87.3, 100) (100, 100) (99.9, 100)
r = 6 (63.4, 100) (99.1, 100) (99.5, 100) (99.5, 100)
r = 8 (88.4, 100) (98.9, 100) (97.5, 100) (97.1, 100)
r = 10 (72.0, 100) (92.4, 100) (89.7, 100) (89.6, 100)

m = 4 r = 2 (19.8, 100) (23.3, 100) (94.3, 100) (99.9, 100)
r = 4 (16.7, 100) (78.4, 100) (100, 100) (100, 100)
r = 6 (59.3, 100) (97.7, 100) (99.1, 100) (98.7, 100)
r = 8 (80.1, 100) (95.3, 100) (92.7, 100) (92.5, 100)
r = 10 (51.0, 100) (77.8, 100) (73.4, 100) (71.5, 100)

m = 6 r = 2 (20.4, 100) (29.6, 100) (86.6, 100) (99.5, 100)
r = 4 (13.4, 100) (72.5, 100) (99.8, 100) (100, 100)
r = 6 (58.9, 100) (97.2, 100) (98.6, 100) (98.1, 100)
r = 8 (73.3, 100) (91.7, 100) (87.0, 100) (87.0, 100)
r = 10 (29.9, 100) (62.5, 100) (59.2, 100) (57.2, 100)

m = 8 r = 2 ( 20.7, 100) (24.9, 100) (79.3, 100) (99.3, 100)
r = 4 (33.2, 100) (70.1, 100) (99.5, 100) (99.7, 100)
r = 6 (59.3, 100) (95.6, 100) (98.8, 100) (98.2, 100)
r = 8 (67.9, 100) (89.9, 100) (84.3, 100) (85.4, 100)
r = 10 (23.7, 99.7) (54.0, 100) (50.9, 100) (51.6, 100)

m = 10 r = 2 (20.3, 100) (21.2, 100) (76.6, 100) (98.5, 100)
r = 4 (33.8, 100) (65.8, 100) (99.4, 100) (100, 100)
r = 6 (60.0, 100) (94.7, 100) (98.7, 100) (98.3, 100)
r = 8 (61.6, 100) (87.6, 100) (84.7, 100) (85.4, 100)
r = 10 (18.6, 99.9) (49.5, 100) (48.0, 100) (48.2, 100)

dynamics in a bivariate latent factor process, achieving a massive reduction in the number of

parameters required. The difference between the cointegration space estimated by our ECFM

and that produced by Johansen’s method is computed as

D(M(Â2),M(Ã2))
2 = 1− 1

5
tr{Â2Â

′
2(Ã2(Ã

′
2Ã2)

−1Ã2)
′} = 0.0131,

where columns of Â2 denote the loadings of the five cointegrated variables identified by our

method and those of Ã2 by Johansen’s. This suggests that the estimated cointegration spaces by

both approaches be effectively equivalent.

We further examine the forecasting performance of the proposed ECFM. To this end, we

compare the out-of-sample forecasting performance of our ECFM with those of (i) univariate

AR (UAR) models with lag length each selected by the standard Schwarz criterion, and (ii) the
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Figure 1: Boxplot of D(M(Â2),M(A2)) (left panel) and D(M(B̂),M(B)) (right panel), 400 ≤
n ≤ 3200
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Table 4: Percentage improvement in forecast accuracy measures: US IP indices

Horizon (h) ECFM versus UAR ECFM versus VECM(AIC+J)
TMSFE GFESM TMSFE GFESM

1 9.4 6.4 -7.9 -5.6
4 4.6 21.9 -7.8 -57.6
8 4.7 26.7 12.1 -16.7
12 -0.6 30.2 27.8 12.1
16 0.4 13.3 37.0 15.6

reduced rank VECM with rank and lag length selected simultaneously using the Hannan-Quinn

criterion and cointegration rank chosen by PIC (Athanasopoulos et al., 2011). For each of the

last 5% of data points, we fit the models using the data upto its previous month and forecast

the values using the three fitted models. Following Athanasopoulos et al. (2011), we measure

the forecast accuracy using traditional trace of the mean-squared forecast error matrix (TMSFE)

at each forecast horizon h = 1, · · · , 16. We also calculate the generalized forecast error second

moment (GFESM), i.e., the determinant of the expected value of the outer product of the vector

of stacked forecast errors of all future times up to the horizon of interest, of Clements and Hendry

(1993). GFESM is invariant to elementary operations that involve different variables, and also

to elementary operations that involve the same variable at different horizons. The forecasting

comparison results are presented in Table 4.

It is observed from Table 4 that both ECFM and reduced rank VECM provide more accurate

forecasts than the univariate AR models in most horizons. For example, for 16 month ahead

forecast, ECFM achieves improvement in TMSFE, and GFESM by, respectively, 0.4%, 13.3%,

compared to the univariate AR models. The improvement from using ECFM over reduced rank

VECM is obvious especially for long horizons. These findings together illustrate the superiority

of ECFM in forecasting.

5 Conclusions

Traditionally, cointegration inference is built on the correct specification for the short-run dynamic

vector auto-regression. It is known that choosing too short a lag length will lead to size distortions,

too many lags will leads to dramatic increase of the parameters, especially in high-dimensional
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systems. To avoid the misspecification and address the cofeature information on the short-run

dynamic, in this paper, we propose to model the dynamic relationship by dynamic factor model

and estimate the vector error correction model (VECM) based on two-step eigenanalysis: the first

step is to estimate the long-run coefficients based on the estimated cointegration space (Zhang,

Robinson and Yao, 2015); the second step is to estimate the loading matrix and common factors

for the short-run dynamic based on principle component analysis. It is shown from asymptotic

theory and numerical studies that the proposed procedure perform well.

There are some questions to be further investigated in future studies. First, in order to apply

the result of Zhang, Robinson and Yao (2015), the dimension p cannot be too large (i.e. not

greater than O(n1/4)). It would be interesting and more challenging to consider the cases with

larger p. Note that the rank of the matrix C is r. One possible solution is to replace the first

step in the procedure via sparse shrinkage technique by solving the following optimal problem:

Ĉ = argminC∈Rp×p

{
n∑
t=1

||∇yt −Cyt−1||2 + λn|||C|||s1

}
, (5.4)

where ||C||s1 =
∑p

j=1 λj(C), and λ1(C), λ2(C), · · · , λp(C) denote the singular values of C.

Secondly, since the focus of this paper is on prediction and inference for the cofeatures, we

can impose the condition that Cyt−1 and ft are uncorrelated; see the beginning of Section 2.2.

However, for some applications the main concern may be on the original C and ft. Since Cyt−1

and ft may be correlated with each other, the inference method proposed in this paper will lead to

inconsistent estimators. It would be interesting to consider the inference based on some iterative

equations as in Bai (2009), i.e., estimate {C,F,B} via the least squares loss defined as

SSR(C,F,B) =
n∑
t=1

(∇yt −Cyt−1 −Bft)
′(∇yt −Cyt−1 −Bft) (5.5)

subject to the constraint B′B = Im.

6 Appendix: Technical proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have

1

n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2) = op(1). (6.1)
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Proof. We first show the case with fixed p. Since {xt2, ft, εt} is α mixing with mixing coefficients

αm satisfying

∞∑
m=1

α1−1/γ
m <∞, (6.2)

it follows that {∇yt} is a α mixing process with mixing coefficients satisfying (6.2). Thus, by

Theorem 3.2.3 of Lin and Lu (1997), there exists a p-dimensional Gaussian process g(t) such that

y[nt]/
√
n

d−→ g(t), on D[0, 1]. (6.3)

From (6.3) and the continuous mapping theorem, it follows that

1

n2

n∑
t=1

yty
′
t

d−→
∫ 1

0
g(t)g′(t) dt. (6.4)

Further, by E||xt2||2γ <∞ for some γ > 1, we have

max
1≤t≤n

||xt2 − Ext2||/
√
n = op(1), and

1

n

n∑
t=1

||xt2 − Ext2|| = Op(1). (6.5)

Combining (6.3) and (6.5) (see Lemma 7 of ZRY) yields

1

n3/2
||

n∑
t=1

ytx
′
t2||2 = op(1). (6.6)

On the other hand, by ∇xt1 = A′1∇yt, we know (∇xt1,xt2) is also α mixing with mixing coeffi-

cients satisfying (6.2). As a result, by the proof of Theorem 1 in ZRY,

||Â2 −A2||2 = Op(1/n). (6.7)

By (6.4), (6.6) and (6.7), we have

|| 1
n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 yt(A
′
2yt)

′

n
+

∑n−1
t=1 (A′2yt)y

′
t

n
(Â2 −A2)

+(Â2 −A2)
′
∑n−1

t=1 yty
′
t

n
(Â2 −A2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 ytx
′
t2

n
+

∑n−1
t=1 xt2y

′
t

n
(Â2 −A2) + (Â2 −A2)

∑n−1
t=1 yty

′
t

n
(Â2 −A2)

′||2
= op(1). (6.8)

Next, consider the case p = o(nc). Let ςt be a k-dimensional I(1) process such that ∇ςt = vt.

By Remark 2 of ZRY, we know that Condition 3 (i) and Remark 3 of ZRY hold for ςt. Let
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M1,M2 be k × (p − r) and k × r matrices such that M given in (i) of Condition 3 satisfying

M′ = (M1,M2). Let F(t) = (F 1(t), · · · , F k(t))′ be defined as in ZRY and ς̄ = 1
n

∑n
t=1 ςt, then

|| 1

n2

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′ −M′

1

∫ 1

0
F(t)F′(t) dtM1||2

= ||M′
1

(
1

n2

n∑
t=1

(ςt − ς̄)(ςt − ς̄)′ −
∫ 1

0
F(t)F′(t) dt

)
M1||2 = op(1). (6.9)

By Remark 3 of ZRY, we have λmin

(∫ 1
0 F(t)F′(t) dt

)
≥ 1/k in probability. Since c1 ≤ λmin(M) ≤

λmax(M) ≤ c2, it follows λmin

(
M′

1

∫ 1
0 F(t)F′(t) dtM′

1

)
≥ 1/k in probability. Further, for any

given j ≥ 0,

|| 1
n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(xt+j,2,xt2)||2

= ||M′
2

( 1

n

n∑
t=1

[(vt+j − v̄)(vt − v̄)′ − Cov(vt+j ,vt)]
)
M2||2 = op(1), and (6.10)

|| 1

n3/2

n−j∑
t=1

(xt+j,1 − x̄2)(xt2 − x̄2)
′||2 = ||M′

1

(
1

n3/2

n∑
t=1

(ςt+j − ς̄)(vt − v̄)′

)
M2||2

= Op(k/n
1/2), (6.11)

where vt is given in (i) of Condition 3.

By (6.9)–(6.11), similar to the proof of Theorem 3 in ZRY, it can be shown that when k =

o(n1/2−1/η),

||Â2 −A2||2 = Op(p
1/2k/n). (6.12)

Similar to (6.9), there exists a k-dimensional Gaussian process w(t) such that

|| 1

n2

n∑
t=1

yty
′
t −A1M

′
1

∫ 1

0
w(t)w′(t) dtM1A

′
1||2 = op(1) (6.13)

and similar to (6.11), we can show (6.6) holds provided k/n1/2 → 0 as n → ∞. Thus, by (6.12)

and (6.13), we also have (6.8) and complete the proof of Lemma 5.

Lemma 6. Under Condition 1,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1),
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and under the conditions of Theorem 3,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2). (6.14)

Proof. When p is fixed, similar to (6.6), we have

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = op(1).

As a result, it follows from (6.7) that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1). (6.15)

When p tends to infinity as n→∞, using the same idea as in (6.11), we can show

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = Op(k/n

1/2). (6.16)

Thus, by (6.12) and p ≤ k = o(n1/2), it follows that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2).

Thus, we have Lemma 6.

Lemma 7. Let Σ = E{(f ′t−1, · · · , f ′t−s)′(f ′t−1, · · · , f ′t−s)}. Under Condition 1 , for any given posi-

tive integer s,

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]

p−→ Σ (6.17)

and under the condition of Theorem 3, in probability

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]
> 0, (6.18)

where A > 0 means that A is a positive definition matrix.

Proof. By some elementary computation, we have

f̂t = [ft + B′εt] + [(B̂−B)′(Bft + εt)] + [B̂′(D− D̂)xt2] + [B̂′D̂(A2 − Â2)
′yt−1]

≡
4∑
i=1

ζt,i. (6.19)
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Next, we first show (6.17) holds for fixed p. By (6.33) (see below), we have

||B̂−B||2 = Op(n
−1/2), (6.20)

which gives

|| 1
n

n∑
t=s+1

(ζ′t−1,2, · · · , ζ′t−s,2)′(ζ′t−1,2, · · · , ζ′t−s,2)||2 = op(1). (6.21)

Similarly, by (6.29) (see below) and (6.7), we have

4∑
i=3

|| 1
n

n∑
t=s+1

(ζ′t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,i, · · · , ζ′t−s,i)||2 = op(1). (6.22)

On the other hand, by law of large numbers for α-mixing process, we get

1

n

[ n∑
t=s+1

(ζ′t−1,1, · · · , ζ′t−s,1)′(ζ′t−1,1, · · · , ζ′t−s,1)−M
]

p−→ Σ. (6.23)

Combining (6.21)–(6.23) yields that

1

n

n∑
t=s

[(f̂t−1)
′, · · · , (f̂t−s)′]′[(f̂t−1)′, · · · , (f̂t−s)′]

=
1

n

n∑
t=s+1

(
4∑
i=1

ζ′t−1,i, · · · ,
4∑
i=1

ζ′t−s,i)
′(

4∑
i=1

ζ′t−1,i, · · · ,
4∑
i=1

ζ′t−s,i)

=
1

n

n∑
t=s+1

(ζ′t−1,1, · · · , ζ′t−s,1)′(ζ′t−1,1, · · · , ζ′t−s,1) + op(1)
p−→ Σ

and (6.17) follows.

Now, we turn to show the case with p varying with n. Since p = o(n1/2), (6.23) still holds.

Note that 1
n

∑n
t=s(ζ

′
t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,i, · · · , ζ′t−s,i) ≥ 0 for i = 1, · · · , 4. For the proof of

(6.18), it is enough to show for all 1 ≤ i 6= j ≤ 4,

|| 1
n

n∑
t=s+1

(ζ′t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,j , · · · , ζ′t−s,j)||2 = op(1). (6.24)

We only give i = 1, j = 4 in details, other cases can be shown similarly. Since yt = Axt, it follows

from (2.1) that

ζt,1 = B′(∇yt −Dxt−1,2) = B′Aet −B′(D + A2)xt−1,2 = B′AMvt −B′(D + A2)M
′
2vt−1.
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Thus, by the fact that for any −s− 1 ≤ j ≤ s+ 1,

||
n∑
t=1

t∑
s=1

vsvt+j ||2 = Op(kn) (6.25)

and (6.12), we have the left-hand side of (6.24) is of order Op(p
1/2k2/n) = op(1), where (6.25)

holds because the components of vt are independent. Thus, we have (6.18) and complete the

proof of Lemma 7.

Proof of Theorem 1. Let bi, i = 1, · · · , p be the rows of B. Lemmas 5 and 6 implies that for

any 1 ≤ i ≤ p,

√
n(d̂i − di) =

(
1√
n

n∑
t=1

(bift + εit)y
′
t−1A2

)(
1

n

n∑
i=1

(A′2yt−1)(A
′
2yt−1)

′

)−1
+ op(1)

=

(
1√
n

n∑
t=1

(bift + εit)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt2x
′
t2

)−1
+ op(1). (6.26)

Since {xt2} is α mixing with mixing coefficients satisfying (6.2), it follows that

1

n

n−1∑
i=0

xt2x
′
t2

p−→ E(xt2x
′
t2) =: Π. (6.27)

On the other hand, by central limit theory (CLT) for α-mixing process {(bift + εit)x
′
t−1,2, 1 ≤ i ≤

p}, there exists a pr × pr matrix Λ such that

1√
n

(
n∑
t=1

(b1ft + ε1t )x
′
t−1,2, · · · ,

n∑
t=1

(bpft + εpt )x
′
t−1,2

)
d−→ N(0,Λ). (6.28)

Thus, by (6.27) and (6.28), we have

√
n(vech(D̂)− vech(D))

d−→ N(0,Π−1ΛΠ−1). (6.29)

Further, by (6.29) and (6.7), it is easy to show that

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂(Â′2 −A′2)||2 = Op(n
−1/2).

Next, we show (b) of Theorem 1. Observe that

v̂t = ∇yt − D̂Â′2yt−1 = (∇yt −Dxt−1,2)− (D̂−D)[(Â2 −A2)
′yt−1 + xt−1,2]−D(Â2 −A2)

′yt−1,
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which means that

1

n

n−j∑
t=1

[
v̂t+jv̂

′
t − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′]
=

1

n

n−j∑
t=1

[
(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′ − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)
′]

+(D̂−D)

(
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1 + xt+j−1,2][(Â2 −A2)

′yt−1 + xt−1,2]
′

)
(D̂−D)′

+D(Â2 −A2)
′

(
1

n

n−j∑
t=1

yt+j−1y
′
t−1

)
(Â2 −A2)D

′

− 1

n

n−j∑
t=1

(∇yt+j −Dxt+j−1,2){[y′t−1(Â2 −A2) + x′t−1,2](D̂−D)′ + y′t−1(Â2 −A2)D
′}

− 1

n

n−j∑
t=1

{(D̂−D)[(Â2 −A2)
′yt+j−1 + xt+j−1,2] + D(Â2 −A2)

′yt+j−1}(∇yt −Dxt−1,2)
′

+
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1y

′
t−1 + xt+j−1,2y

′
t−1](Â2 −A2)D

′

+
1

n

n−j∑
t=1

D(Â2 −A2)
′[yt+j−1y

′
t−1(Â2 −A2) + yt+j−1x

′
t−1,2](D̂−D)′. (6.30)

By (6.7), (6.29) and the law of large numbers, we have that the spectral norm of the last six terms

of the right-hand side in (6.30) is Op(n
−1). And by CLT of α mixing process, for any given j, the

first term of the right-hand side of (6.30) is Op(n
−1/2). Similarly, we can show

∣∣∣∣∣∣ 1
n

n−j∑
t=1

v̄v̂′t

∣∣∣∣∣∣
2

= Op(n
−1). (6.31)

Thus,

||Σ̂v(j)−Σv(j)||2 = Op(n
−1/2), (6.32)

where Σv(j) = E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)
′. Since j0 is fixed, it follows from (6.32) that

||Ŵ −
j0∑
j=1

Σv(j)Σ
′
v(j)||2 = Op(n

−1/2). (6.33)

Note that D(M(B̂),M(B)) = Op(||Ŵ−
∑j0

j=1 Σv(j)Σ
′
v(j)||2) (see for example, Chang, Guo and

Yao (2015)), we have (b) of Theorem 1 as desired.
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Now, we turn to show (c). By (6.19), we get

n∑
t=s+1

[̂f ′t−1, · · · , f̂ ′t−s]′ [̂ft −
s∑
i=1

Eif̂t−i]
′

=

n∑
t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[e′t + ε′tB]

−
n∑

t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[
s∑
i=1

ε′t−iBE′i]

+

n∑
t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

+
n∑

t=s+1

4∑
j=2

[ζ′t−1,j , · · · , ζ′t−s,j ]′[et + B′εt −
s∑
i=1

EiB
′εt−i +

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

=:

4∑
i=1

∆ni. (6.34)

By (6.7), (6.20) and (6.29), we can show that for any given positive integer s,

||∆n3||2 + ||∆n4||2 = Op(
√
n). (6.35)

On the other hand, since for any 1 ≤ i, j ≤ s and l 6= i, vech{(ft−i+Bεt−i)(e
′
t+ε

′
tB), ft−iε

′
t−jB, B′vt−iε

′
t−lB}

is a α mixing process with finite 2γ-moment and mixing coefficients satisfying (6.2), it follows

from the CLT of α mixing process (see for example Corollary 3.2.1 of Lin and Lu) that for some

matrix Γ1,

1√
n

n∑
t=s+1

vech{(ft−i + Bεt−i)(e
′
t + ε′tB), ft−iε

′
t−jB, B′vt−iε

′
t−lB}

d−→ N(0,Γ1). (6.36)

Set Ω =
[∑n

t=s+1(f̂
′
t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M

]
. By the definition of Êi, i = 1, 2, · · · , s,

we have 
Ê′1 −E′1

...

Ê′s −E′s

 = Ω−1




∑n
t=s f̂t−1(f̂t −

∑s
i=1 Eif̂t−i)

′

...∑n
t=s f̂t−s(f̂t −

∑s
i=1 Eif̂t−i)

′

+M


E′1
...

E′s

 .

 (6.37)

Thus, by Lemma 7 and (6.34)–(6.36), we have conclusion (c) and complete the proof of Theorem

1.

Next, we first develop bounds for the estimated eigenvalues λ̂j , j = 1, 2, · · · p.

Lemma 8. Let λj , j = 1, · · · , p be the eigenvalues of Wv. Under Condition 1 or conditions of
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Theorem 3,

|λ̂m − λm| = Op(pn
−1/2) and |λ̂m+1| = Op(pn

−1/2). (6.38)

Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any 1 ≤ i ≤ p,

|λ̂i − λi| ≤ ||Ŵv −Wv||2 = Op(pn
−1/2) and λm+1 = · · · = λp = 0.

This gives Lemma 8 as desired.

Proof of Theorem 2. It is enough to show that

lim
n→∞

P{m̃ < m} = 0. (6.39)

Suppose m̃ < m is true, then by Lemma 8, there exists a positive constant c1 such that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ ≥ c1} = 1, and lim
n→∞

P{λ̂m+1/λ̂m < c1/2} = 1.

This implies that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ > λ̂m+1/λ̂m} = 1,

which contradicts the definition of m̃. Thus, (6.39) holds.

Proof of Theorem 3. Since p = o(n1/2) and {xt2} is a α mixing process with mixing coefficients

satisfying (3.2), it follows that (6.27) also holds for this case. Further, note that for any 1 ≤ i ≤ p
and 1 ≤ j ≤ r, applying CLT of mixing process to {(bift+ εit)x

j
t−1,2}, which is a α mixing process

with coefficients satisfying (3.2), we get

|
n∑
t=1

(bift + εit)x
j
t−1,2| = Op(

√
n),

which implies

|| 1
n

n∑
t=1

(Bft + εt)x
′
t−1,2||2 = Op(n

−1/2(pr)1/2). (6.40)
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Thus, by Lemmas 5 and 6,

||D̂−D||2 =

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇yty
′
t−1Â2

)(
1

n

n∑
i=1

Â′2yt−1y
′
t−1Â2

)−1
−D

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇ytx
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1
−D

∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

(Bft + εt)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

= Op(n
−1/2(pr)1/2 + p1/2k2/n), (6.41)

this combining with (6.12) yields

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂′(Â′2 −A′2)||2 = Op(n
−1/2(pr)1/2 + p1/2k2/n). (6.42)

Thus, (a) of Theorem 3 follows from (6.41) and (6.42).

Next, we show (b). It is easy to see that

‖ 1

n2

n−j∑
t=1

yt−1y
′
t−1‖2 = Op(p). (6.43)

Thus, by (6.12), (6.41) and (iii) of Condition 3, it can be shown that || · ||2 norm of the last

six terms of the right-hand side in (6.30) are of order o(pn−1/2), provided k = o(n1/2) and

p = O(n1/4). On the other hand, applying CLT of α mixing process to the first term of the

right-hand side of (6.30), we get for any given j, this term is of order Op(pn
−1/2). Similarly, we

can show n−1
∑n−j

t=1 v̄v̄′t = Op(n
−1/2p). Thus,

||Σ̂v(j)−Σv(j)||2 = Op(n
−1/2p). (6.44)

Since j0 is fixed, it follows from (6.44) that

||Ŵ −
j0∑
j=1

Σv(j)Σ
′
v(j)||2 = Op(n

−1/2p). (6.45)

Note that D(M(B̂),M(B)) = Op(||Ŵ−
∑j0

j=1 Σv(j)Σ
′
v(j)||2) (see for example, Chang, Guo and

Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c). Let ∆ni, i = 1, 2, 3, 4 be defined as in (6.34). By

conclusions (a), (b) of Theorem 3 and (6.12), we can show that

||∆n3 + ∆n4||2 = Op

(
n1/2(pr)1/2[n−1/2(pr)1/2 + p1/2k2/n+ pn−1/2] + p1/2k2

)
. (6.46)

On the other hand, applying CLT of α mixing to the elements of vech{(ft−i + Bεt−i)(e
′
t +
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ε′tB), ft−iε
′
t−jB, B′vt−iε

′
t−lB, l 6= i, 1 ≤ i, j ≤ s}, we get

||∆n1 + ∆n2 −M ||2 = Op((pmn)1/2). (6.47)

Combining equations (6.46)–(6.47) with Lemma 7 and p = o(n1/2) yield

||(E1, · · · ,Es)||2 = O(p1/2k2n−1 + pm1/2n−1/2), (6.48)

this gives (c) and completes the proof of Theorem 3.

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly as for Theorem 2. There-

fore, we omit the detailed proofs.

Proof of Remark 1. Since the proofs are similar, we only show the case with fixed p in details.

It follows from the definition of m̂ that

p∑
j=m̂+1

λ̂j + m̂ωn ≤
p∑

j=m

λ̂p+1−j +mωn. (6.49)

Suppose that m̂ > m, it follows from (6.49) that

(m̂−m)ωn ≤
m̂∑

j=m+1

λ̂j ≤ (m̂−m)λ̂m+1. (6.50)

Since ωn/n
−1/2 →∞, it follows from Lemma 8 that equation (6.50) holds with probability zero.

This gives that

lim
n→∞

P{m̂ > m} = 0. (6.51)

On the other hand, if m̂ < m, equation (6.49) yields

(m− m̂)λ̂m ≤
m∑

j=m̂+1

λ̂j ≤ (m− m̂)ωn. (6.52)

Lemma 8 implies λ̂m ≥ λm/2 > 0. Thus, by (6.52) and ωn → 0 as n→∞, we have

lim
n→∞

P{m̂ < m} = 0. (6.53)

Equation (6.51) together with (6.53) give the consistency of m̂ as desired.
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