Error-Correction Factor Models*

Yundong Tuf Qiwei Yao®! Rongmao Zhang*

fGuanghua School of Management and Center for Statistical Science,
Peking University, Beijing, 100871, China
tDepartment of Statistics, London School of Economics, London, WC2A 2AE, U.K.
*School of Mathematics, Zhejiang University, Hangzhou, 310058, China

yundong.tu@gsm.pku.edu.cn  q.yao@Qlse.ac.uk  rmzhang@zju.edu.cn

8 August 2015

Abstract

Cointegration inference is often built on the correct specification for the short-run dynamic
vector autoregression. However, this specification is unknown in prior. A too small lag length
leads to erroneous inference due to size distortions, while using too many lags leads to dramatic
increase of the number of parameters, especially when the dimension of time series is high. In
this paper, we develop a new methodology which adds an error correction term for long-run
equilibrium to a latent factor model for modeling short-run dynamic relationship. Two eige-
nanalysis based methods for estimating, respectively, cointegration and latent factor process
consists of the cornerstones of the inference. The proposed error correction factor model does
not require to specify the short-run dynamics explicitly, and increases the predictability over a
pure factor model. Asymptotic properties of the proposed methods are established when the
dimension of the time series is either fixed or diverges slowly as the length of time series goes

to infinity. Illustration with both simulated and real data sets is also reported.
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1 Introduction

Cointegration refers to the phenomenon that there exists a long-run equilibrium among several
distinct nonstationary series, as illustrated in, for example, Box and Tiao (1977). Since the
seminal work of Granger (1981), Granger and Weiss (1983) and Engle and Granger (1987), it has
attracted increasing attention in econometrics and statistics. An excellent survey on the early
developments of cointegration can be found in Johansen (1995).

Up to present, considerable effort has been devoted to the inference on the long-run trend
(cointegration) restrictions in vector autoregression (VAR); see, among others, Engle and Granger
(1987), Johansen (1991), Phillips (1991) for estimation and testing, and Engle and Yoo (1987), Lin
and Tsay (1996) for forecasting. As shown in Engle and Granger (1987), VAR with cointegration
restrictions can be represented as a vector error correction model (VECM) which reflects the
correction on the long-run relationship by short-run dynamics. One of the remarkable features
of VECM is that it identifies clearly the gain in prediction from using the cointegrated variables
over the standard ARIMA approach, as noted by Engle and Yoo (1987), Lin and Tsay (1996) and
Pena and Poncela (2004). However, it is a prerequisite to specify a finite autoregressive order for
the short-run dynamic before the inference can be carried out on the cointegration part of the
model. In many applications, using different orders for the VAR results in different conclusions
on the cointegration. Especially when the VAR order is under-specified or the process lies outside
the VAR class, the optimal inference on the unknown cointegration will lose validity (Hualde
and Robinson, 2010). To overcome this shortcoming, information criteria such as AIC, BIC and
HQIC have been applied to determine both the autoregressive order and the cointegration rank.
See, for example, Chao and Phillips (1999) and Athanssopoulos, et al. (2011). While appealing
for practitioners, all these methods are nevertheless subject to pre-test biases and post model
selection inferential errors (Liao and Phillips, 2015).

Relative to considerable effort on long-run restriction, one may argue that the importance
of short-run restrictions has not received due attention in cointegrated literature. On the other
hand, common cyclical movements exist extensively in macroeconomics. For example, Engle and
Kozicki (1993) found common international cycles in GNP data for OECD countries. Issler and
Vahid (2001) reported the common cycles for macroeconomic aggregates and sectoral and regional
outputs in US. It has been shown that using (short-run) rank restrictions in stationary VAR can
improve short-term forecasting ability, as documented by Ahn and Reinsel (1988), Vahid and Isser
(2002) and Athanasopoulos and Vahid (2008), Athanasopoulos et al (2011). Hence it is reasonable
to expect that imposing appropriate short-run structures will improve the model performance in

cointegrated systems. Note that Athanasopoulos et al (2011) recognized the factor structure in



the short-run dynamics, but did not utilized it in their sequential inference procedure.

When the dimension of time series is high, VAR models suffer from having too many parame-
ters even with some imposed rank restrictions. Furthermore most the classical inference methods
for cointegration, including Johansen’s likelihood method, will not work or not work effectively.
See the numerical studies reported in Gonzalo and Pitarakis (1994) and Ho and Sgrensen (1996).
Although high dimensional problems exist extensively in macroeconomic and financial data, the
development in both theory and methodology in the context of cointegration is still in its infancy.

We propose in this paper an error correction factor model which is designed for catching high-
dimensional linear dynamical structures exhibiting cointegration in a parsimonious and robust
fashion. More specifically the long-run equilibrium relationship among all nonstationary compo-
nents is represented by a cointegration vector, i.e. the correction term to equilibrium. This term
is then utilized to improve a factor representation for the short run dynamics for the differenced
processes. Comparing to the classical VECM, our setting does not require to specify the short
run dynamics explicitly, avoiding the erroneous inference on cointegration due to, for example, a
misspecification of the autoregressive order. Furthermore the high-dimensional short run dynam-
ics is represented by a latent and low-dimensional factor process, avoiding the difficulties due to
too many parameters in a high-dimensional VAR setting. Comparing to a pure factor model, the
cointegration term improves the modelling and the prediction for short run dynamics. In terms
of inference, we first adopt the eigenanalysis based method of Zhang, Robinson and Yao (2015)
(ZRY, hereafter) to identify both the cointegration rank and cointegration space; no prespefici-
tion on the short run dynamics is required. We then calculate the regression estimation for the
error correction term, and recover the latent factor process from the resulting residuals using the
eigenanalysis based method of Lam and Yao (2012). Once the latent factor process has been
recovered, we can model separately its linear dynamics using whatever an appropriate time series
model.

The proposed methodology is further supported by the newly established asymptotic theory
and numerical evidences. Especially our numerical results corroborate the findings from the
asymptotic theory. In particular, Monte Carlo simulation reveals that the cointegration rank, the
cointegration space, the number of factors and the factor co-feature space can all be estimated
reasonably well with typical sizes of observed samples. Our empirical example on forecasting
the ten U.S. industrial production indices shows that the proposed error correction factor model
outperforms both VECM and vector AR models in post-sample forecasting. This finding is also
robust with respect to the different forecast horizons.

The rest of the paper is organized as follows. We spell out the proposed error correction model

and the associated estimation methods in Section 2. In Section 3 the asymptotic properties for



the estimation methods are established with the dimension of time series both fixed or diverging
slowly, when the length of time series goes to infinity. The proposed methodology is further
illustrated numerically in Section 4 with both simulated and real data sets. Furthermore we
compare the forecasting performance of the proposed error correction factor model to those of
the VECM with cointegration rank determined by Johansen’s procedure and lag length selected
by AIC, and unrestricted VAR in level model. The forecasting performances for real data were

evaluated for different forecast horizons based on the criterion of Clements and Hendry (1993).

2 Methodology

2.1 Error Correction Factor Models

We call a vector process u; weakly stationary if (i) Eu; is a constant vector independent of ¢,
and (ii) E|lw|*> < oo, and Cov(us,usrs) depends on s only for any integers t¢,s, where | - ||
denotes the Euclidean norm. Denoted by V the difference operator, i.e. Vuy = vy — w;_1. We
use the convention V%u; = u;. A process w; is said to be weakly integrated process with order
1, abbreviated as weak I(1), if Vu, is weakly stationary with spectral density finite and positive
definite at frequency 0 but wu; itself is not. Since we only deal with weak I(1) processes in this

paper, we simply call them weakly integrated processes.

Let y; be observable p x 1 weakly I(1) process with the initial values y; = 0 for ¢ < 0 and
Var(y;) be full-ranked. Suppose that cointegration exists, i.e., there are r (> 1) stationary linear
combinations of y;, where r is called the cointegration rank and is often unknown. The error

correction factor model is defined as
Vyt = Cy—1 + Bf; + &4, (2.1)

where C is a p X p matrix with rank » and Cy; is weakly stationary, f; is an m x 1 weakly
stationary process and B is a p x m matrix, {e;} is a p x 1 white noise with mean zero and finite
fourth moments. Comparing with VECM, (2.1) represents the short-run dynamics by the latent
process f;. Its linear dynamic structure is completely unspecificed. Note that f; does not enter
the inference for the error correction term Cy;_1.

Without loss of generality, we assume in (2.1) B to be an orthogonal matrix, i.e., B'B =1,,,
where I,,, denotes the m x m identify matrix. This is due to the fact that any non-orthogonal B
admits the decomposition B = QU, where Q is an orthogonal matrix and U is an upper-triangular
matrix, and we may then replace (B, f;) in (2.1) by (Q, Uf}).

Before the end of this section, we illustrate with a simple toy model (i.e. a drunk and a dog

model) the gain in prediction of the proposed error correction factor model over a pure factor



model. Let y;1 be the position of the drunk at time ¢, i.e.
Yo1 =0, Y1 =y—11+¢e for t=1,2,---,

where e, ~ IID(0, 1). Let yr2 = y¢.1 + 2 denote the position of the dog, as the dog always wanders
around his master (i.e. the drunk), where z; ~ IID(0,0?), and {&;} and {2} are independent
with each other. Then both w:1,y:2 are I(1), and v is a random walk but y;2 is not. Let
vt = (Y,1,yr,2). It holds that

Vy: = (0,1) fi + (e1,61), (2.2)

where f; = z; — z;—1 can be viewed as a latent factor process. Thus (2.2) is a pure factor model.

Now there is a clear cointegration:
2t = (—1, 1)Yt =Yt2 —Yt,1-
Consequently, the error correction factor model is
Vy: = (0,—1) 21 + (4,6 + 21). (2.3)

Note that for this simple example, the factor is identical to 0, as both &; and z; are independent
sequences. Using the info available upto time ¢, the best predictor for Vy;;; based on error

correction factor model is ﬂt +1 = (0,—1)"2 with the mean squared predictive error:
E(IVyi41 = Vyal*) = Var(eer) + Var(err + ze1) = 2+ 07, (2.4)

On the other hand, the best predictor for Vy;; based on factor model (2.2) is /V;Hl = (0, 1)'ﬁ+1

with the mean squared predictive error:

E(|Vytr1 = Vyeall?) = E(I ferr = Feral®) +2Var(err1) = Bl for1 = for ) +2,

where J?t+1 is the best predictor for f;11 based on y¢,y¢—1,---. Since fi = 2z — 2;_1 is a latent

MA(1) process. The best predictor for fiy; is the one based on f; and is equal to

~ E
fry1 = —gziﬁ?gl)ft = fi/2

with E(|| frs1 — fre1]|?) = 302/2. Hence
B(IVyee1 = Vyial?) = 30°/2+ 2,

which is greater than E(||Vy+1 —ﬂt +111%); see (2.4). This shows that adding the error correction

term increases the predictibility of factor model (2.2).



2.2 Estimation

In model (2.1), C is a p x p matrix with the reduced rank r(< p). Hence it can be expressed as
C = DAJ,, where D, Ay are two p x r matrices. Furthermore Ay, 1 is the cointegration vector,
r is the cointegration rank. Although A, is not unique, the coefficient matrix C is uniquely
determined by (2.1). Once we specify an Ay such that ALy ; is weakly stationary, consequently
D can be uniquely determined. Thus, to fit model (2.1), the key is to estimate r, Ag, the factor
dimension m and the factor loading matrix B. Then the coefficient matrix D can be estimated
by a multiple regression, the latent factors f; can be recovered easily, and the forecasting can be
based on a fitted time series model for f;.

To simplify the inference, in the sequel we always assume that Cy;_; and f; are uncorrelated.
This avoids the identification issues due to possible endogeneity. Note that this condition is always

fulfilled if we replace (C,f;) in (2.1) by (C*, fY), where

C* = {D + BE[£ (Aby:1)][E(Aby.—1)(Abye—1))] ' }AS,
£ = £, — E(6(Abyi1))[E((Abye1) (Abyi1))] " (Abyir).

2.2.1 Estimation for cointegration

While the representation of the cointegration vector Aly; is not unique, the cointegration space
M(Aj), i.e. the linear space spanned by the columns of A,, is uniquely determined by the process
y¢; see ZRY. In fact we can always assume that As is a half-orthogonal matrix in the sense that
ALA; =1,. Let Aj be a p x (p— r) half orthogonal matrix such that A = (A1, A3) beap X p
orthogonal matrix. Let x;; = Aly; for i = 1,2. Then x; is a weakly stationary process, and all
the components of x; ; are weak I(1).

We adopt the eigenanalysis based method proposed by ZRY to estimate r as well as As. To
this end, let

Vo3 e,
=0

where jo > 1 is a prescribed and fixed integer, and

n—

<.

i =

M
3=

_ _ 1
Ve ==y y=-> v
t=1

i
I\

~ o~/ ~
We use the product 3;3; instead of 3; to make sure that each term in the sum is non-negative

definite, and that there is no information cancelation over different lags. Let Xl > e > Xp be

the eigenvalues of \/7\\7, and 74, -+ ,7, be the corresponding eigenvectors. Then Ay is estimated
by A, = (Yp—rt1>°°* »7¥p), and the cointegration rank is estimated by

r=arg min IC(I 2.5

g min 1C(D), (2.5)
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where IC(l) = 23:1 Xerl,j + (p — l)wp, and w, — oo and w,/n? — 0 in probability (as we allow
wp, to be data-dependent). ZRY has shown that both M(Kg) and 7 are consistent estimators for,
respectively, M(A3) and 7.

Having obtained the estimated cointegration vector A’zyt,l, the coefficient matrix D can be

estimated using the standard least squares estimation. Let d;, : = 1,2,--- ,p be the row vectors

of D and Vy; = (Vy}, -+, Vy?). The least square estimator for d; is defined as

~

n
d;, = arg n’éi’n ;(Vyé —d;Aby;1)?, (2.6)

(3

~ N - ~ -1
which leads to d; = > )" ; Vyri(AbQyi—1) (Z?Zl(A’Qyt_l)(A’Qyt_l)’) . Consequently, the esti-

mator for the coefficient matrix D can be written as
n n -1
D =) Vyi(Ayy 1) <Z(AI2Yt1)(AI2Yt1)/> :
t=1 i=1
2.2.2 Estimation for latent factors
We adopt the eigenanalysis based method of Lam and Yao (2012) to estimate the factor loading

space M((B) and the latent factor process f; based on the residuals v, = Vy; — ]/jl&’zyt,l,
t=1,---,n. To this end, let

~

Jo
<=7 S . / .
W, =) S.()E,0), (2.7)
j=1
where jg > 1 is a prespecified and fixed integer, and
1

%, (j) = ~ S @ - NF -V, V=
t=1

S|

n
E Vi.
t=1

where jg > 1 is a prespecified and fixed integer. One distinctive advantage of using the quadratic
form 3, (7)E, ()’ instead of £, (5) in (2.7) is that there is no information cancellation over different
lags. Therefore this approach is insensitive to the choice of jy in (2.7). Often small values such
as jo = b are sufficient to catch the relevant characteristics, as serial dependence is usually most
predominant at small lags. See Lam and Yao (2012) and Chang et al. (2014). Let (¢, -+ ,7,,)
be the orthonormal eigenvectors of WU corresponding to the m largest eigenvalues. Consequently,

we estimate B and f; by
]§ - (317 e 7%m)7 and /f?t = ﬁl{’\t- (28)

Since m is usually unknown and the last p — m eigenvalues of \/7\\7U may not be exactly 0 due

to the random fluctuation, the determination of m is required. We propose to select m by using



the ratio-based method of Lam and Yao (2012). In particular, let /)\\1 > /)\\2 > e > /)\\p be the

eigenvalues of \/7\\/'1,. We define an estimator for the number of factors m as follows:
= in A1/ 2.9
m = arg 12?}2 z+1/ i ( )

with m < R < p. In practice we may pick, for example, R = p/2, following the recommendation

of Lam and Yao (2012).

Remark 1. The above ratio estimator of m is not necessarily consistent, though it works fine in
practice. See Lam and Yao (2012), and also Tables 1, 2 and 3 in Section 4.1 below. To establish

the consistency, one can estimate m using the information criterion defined as
m = arg min [C(I
g min IC(1),

where IC(1) =370,

can be shown as w, — 0 and wnnl/Q/p — 00, M s consistent.

/):j + lwy, is the information criterion and w, is the turning parameter. It

2.2.3 Fitting linear dynamics for factors

Once we have recovered the factor process /ft, we can fit an appropriate model to represent its
linear dynamic structure. As an illustration, below we fit f, with a VAR model.

Let
~ S ~
fi = Z Eif; i + e, (2.10)

where E;, 1 <i < s are m x m matrices and {e;} is a sequence of independent vectors with mean

zero and independent of {x},, f/, €;}. We estimate the parameters E; by least squares method, i.e.

(E1,---,E,) = argming, .. g Z IIE, — ZE £, (2.11)
t s+1
where /f\t =B V¢ is given in (2.8). The autoregressive order s may be determined by, for example,
the standard criteria such as AIC or BIC. See, for example, Section 4.2.3 of Fan and Yao (2015).
Combining (2.1), (2.10) and (2.11), we have h-step ahead forecast, for h = 1,2, as:

S
yerp = (I+C)y:+Bfiy =1+ Cy, +B (Z Ezft+1z> ;
i=1

Virop = I+ C)yerae + By

= (I+C)y;+(I+C)B (Z +1—i>+]§

1

s—1 s
ZEift—i—l—i + Eq (Z Eift—i—l—i)] .
i=1

i=1

We can similarly deduce any h-step ahead forecast yyp;, for h > 3, by recursive iteration.
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3 Asymptotic Theory

In this section, we investigate the asymptotic properties of the proposed estimators. We first show
that the estimator C is consistent. And given m, we measure the distance between the cofeature

space M(B) and its estimate by

D(M(B), M(B)) = \/ - %tr(ﬁﬁ’BB’). (3.1)

~

Then D(M(B), M(B)) € [0,1], being 0 if and only if M(B) = M(B), and 1 if and only if M(B)
and M(B) are orthogonal. Furthermore, we show that the estimator m, defined in (2.9), is a
consistent estimator for the true number of factors m. We consider two asymptotic modes: (i) p
is fixed while n — oo, and (ii) both p and n diverge, but r is fixed.

3.1 When n — oo and p is fixed

We introduce a regularity condition first.

Condition 1. The process {x},,f/,€;} is a stationary a-mixing process with mean

zero, B||(x, f/,€})||*7 < oo for some constant v > 1 and the mixing coefficients ay

satisfying the condition Y ;7 ai71/7 < 0.

Condition 2. The characteristic polynomial of VAR model (2.10) has no roots on or

outside of the unit circle so that it is a casual VAR model.
Theorem 1. Let Condition 1 hold.
(a) Let vech(D) = (dy,--- ,dp). Asn — oo and p fized, it holds that
Vn(vech(D) — vech(D)) —% N(0, Qy),

where ¥ is a rp X rp positive definite matriz and ||6 —Clla = 0,(n"Y?), and || - ||2 denotes

the spectral norm of a matriz.
(b) Let m be known, then D(M(ﬁ),M(B)) = Op(n—l/Q)‘

(c) If Condition 2 and El|le||>” < oo hold in addition, there exists a positive definite matriz

Qs such that
Vn(vech(Ey,- - | By) — vech(Eq, -+, E,)) - N(0, ).
Theorem 2. Let 1 < m < p and Condition 1 hold. For m defined in (2.9),

lim P(m>m)=1.

n—oo



3.2 When n — oo and p = o(n°)

J = J o5 _ (1 p—Ty/ — () <
Let z =V, j=1,--- ,p—r, 2z, = (2, ,2 ) and vy = (z;,X}5) .

In this subsection, we
extend the asymptotic results in the previous section to the cases when p — oo and p = o(n®)
for some ¢ € (0,1/2). Technically we employ a normal approximation method to establish the

results.

Condition 3.

(i) Let M be a p x k constant matrix with & > p and ¢; < Apin(M) < Apax(M) <

¢, where c1,co are two positive constants. Suppose that vy = Mvy, all the

components of v; = (v},--- ,vF) are independent and with mean zero.
(ii) The process {vy,f;,&;} is a stationary a-mixing process with E||(v}, f/, })||? < oo
for some 6 > n € (2,4] and the mixing coefficients v, satisfying
oo
> alfmm/en < oo, (3.2)

m=1

(iii) There exist two positive constants cs, ¢4 such that cg < Apin(D) < Apax(D) < ¢4.

Theorem 3. Let m be known. Suppose Condition 3 holds with k = o(n'/>=1/") and p =
(@) (n1/2’1/’7/(log n)2), then the following assertions hold.

(a) max{|

(b) D(M(B), M(B)) = Oy(pn~'/2).

D - D||2,|C — Cll2} = Op((pr)"/>n~/2 4 p2k?n 1),

(c)||(By,- Ey)ll2 = O, ((pm)2n=124p12k2n=1) | provided that Condition 2 and E||e;||? <

oo hold in addition.

Theorem 4. Let 1 < m < p, Condition 3 holds with k = o(n*/>=Y/") andp = O (n1/2*1/’7/(10g n)?).
For m defined in (2.9),
lim P(m>m)=1.

n—oo

Remark 2. All the above asymptotic theorems can be gemeralized to other stationary noise vy

considered by ZRY.

4 Numerical Studies

In this section, we first evaluate the finite sample performance of our proposed inference procedure
via Monte Carlo simulation. We then illustrate the advantage in forecasting of the proposed error

correction factor model via a real data example.

10



4.1 Monte Carlo Simulations

In our simulation, we let y; = Axy, where A = (A1, A3) is an orthogonal matrix which was
drawn elementwisely from UJ0,1] independently first and was then orthogonalized, and x; =
(x};,X}5)" in which the r components of x;2 are independent Gaussian AR(1) processes with
identical autoregressive coefficient 0.5, and the (p — r) vector x4 is I(1) according to a factor
augmented AR(1) defined as

X1 =X—11 + Y + e (4.3)

In the above expression, Y is a (p — r) x m half orthogonal matrix (i.e. Y'Y = I,,) generated in
the same manner as A, the components of factor f; are independent stationary Gaussian AR(1)
with identical autoregressive coefficient 0.5, and e; are independent and N (0,I,). Then it is to
see that y; satisfies equation (2.1) with C = 0.5A3A) and B = A, Y.

With p = 5,10,20,40,60, r = 1,2,4,6,8,10, and m = 1,2,4,6,8,10 (m < p — r), we generate
a time series y; with length n = 100, 200, 400, 800, 1200, 1600, 2000, 2400 and estimate r, C, m and
B. For estimating r, we use the IC criterion (2.5) with the penalty w,, = log nxp. The number of
factor m is estimated using the ratio method (2.9). For each setting we replicated the experiment
1000 times.

Tables 1-3 list the relative frequencies of the occurrence of the events (¥ = r) and (m = m)
in simulation with 1000 replications. We make the following observations from Table 1 which
contains the results with p = 5,10 and 20. First, with p = 5 or 10, the relative frequencies for
the correct specification for the cointegration rank r and the number of factors m are as high
as 85% even for the sample size n as small as 200. When n increases to 400, those relative
frequencies increase to 100%. Secondly, with fixed n and r the correct estimation rates for m
increases when dimension p increases, a phenomenon coined as the “blessing-of-dimensionality”.
This is consistent with the findings in Lam and Yao (2012) which only dealt with purely stationary
processes. Thirdly, the inference on r tends to be more challenging when p increases. For example,
the relative frequency for correct estimation of (= 2), when m = 1 and n = 200, decreases from
68.5% to 65.4% with p increasing from 5 to 10. This is in line with the findings in ZRY. Lastly, we
note that the increase in p, r and m would generally demand a larger n to maintain the same level
of estimation accuracy. This is consistent with our theory that requires p = o(n¢) for ¢ € (0,1/2).

Some similar conclusions can be drawn from results reported in Table 2-3. In particular, the
inference on the number of factor (when m is relatively small compared to p) is relatively easy
when p = 40 and 60, with a sample size equal to 800. Unreported results for n = 200,400 also
corroborate this conclusion. However, the inference on the cointegration rank is more difficult

when n is small or/and r is large.
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To evaluate the performance of the estimation for both cointegration space and factor cofeature
space, we present the boxplots of D(M(Ajy), M(As)) and that of D(M(B), M(B)) in Figures
1, for a few (selected) combinations of p,r and m, with n = 400,800, 1600,3200. The overall
profile of the estimation accuracy is similar to those in Tables 1-3. For example, when p increase,
the estimation accuracy of cointegration space becomes worse, while that of factor cofeature
space tends to improve. That is, the “curse-of-dimensionality” in inferring cointegration space is
coupled with the “blessing-of-dimensionality” in estimating the factor cofeature space. It is further
observed that the estimation in general improves as n increases, which confirms our consistency

theory.

Table 1: Relative frequencies (x100) of the occurrences of events 77 = r (1st entries in parebtheses)

and m = m (2nd entries in parentheses) in a simulation with 1000 replications.

p=5 n =100 n = 200 n = 400 n = 800
m=1 r=1 (920,935  (100.0,99.3)  (100.0, 99.9) (100.0, 100.0)
r=2 (44.6,89.3) (685, 96.6)  (83.7,99.8)  (98.6, 100.0)

p=10 n = 200 n = 400 n = 800 n = 1200

m=1 r=1 (85.3,100.0) (100.0,100.0) (100.0, 100.0) (100.0, 100.0)
r=2 (65.4,100.0) (82.0,100.0) (95.4, 100.0)  (99.6, 100.0)

m=2 r=1 (865, 822) (100.0,97.7)  (100.0, 99.9) (100.0, 100.0)
r=2 (62.4,834) (75.1,97.8)  (94.3,100.0)  (98.8, 100.0)

p=20 n = 400 n = 800 n = 1200 n = 1600

m=2 r=2 (855, 99.7) (928, 100.0) (96.7, 100.0)  (98.9, 100.0)
r=4 (205,95.0) (43.3,99.8)  (68.8, 100.0)  (86.3, 100.0)

m=4 r=2 (82.0,932) (89.5,99.9)  (93.8,99.9)  (96.3, 100.0)

4.2 A Real Data Example

To further illustrate the proposed approach, we apply the proposed error correction factor model
(ECFM) to the ten U.S. Industrial Production monthly indices in January 1959 — December
2006, extracted from Stock and Watson (2008), namely, products total, final products, consumer
goods, durable consumer goods, nondurable consumer goods, materials, durable goods materials,
nondurable goods materials, manufacturing, and residential utilities. The estimated cointegration
rank is 7 = 5, and the number of factor is m = 1. We also fit the data with a vector error correction

model (VECM) using Johansen’s trace test to determine the cointegration rank r for each given

12



Table 2: Relative frequencies (x100) of the occurrences of events ¥ = r (1st entries in parebtheses)

and m = m (2nd entries in parentheses) in a simulation with 1000 replications.

p =40 n = 800 n = 1200 n = 1600 n = 2000

m=2 r=2 (72.8,100.0) (94.7,100.0) (100.0, 100.0) (100.0, 100.0)
r=4 (64.0,99.9) (99.5,100.0) (99.3, 100.0)  (99.7, 100.0)
r=6 (86.4,938) (952, 98.9)  (96.2,99.7)  (97.5, 100.0)

r=8 (53.8,100.0) (77.4,100.0) (82.2, 100.0)  (89.6, 100.0)
m=4 r=2 (73.3,100.0) (89.5,100.0) (99.9, 100.0)  (100.0, 100.0)
r=4 (66.8,99.9) (99.3,100.0) (99.5, 100.0)  (99.2, 100.0)
r=6 (75.1,99.5) (88.3,100.0) (89.5, 100.0)  (91.0, 100.0)
r=8 (27.1,99.7) (59.0, 100.0) (64.4, 100.0)  (75.9, 100.0)
m=6 r=2 (72.7,99.6) (86.2,100.0) (99.6, 100.0) (100.0, 100.0)
r=4 (69.2,96.5) (98.6,99.4) (98.3,100.0)  (98.4, 100.0)
r=6 (65.6,99.7) (83.1,100.0) (86.1,100.0)  (88.8, 100.0)
r=8 (16.9,98.7) (41.3,100.0) (50.8, 100.0)  (62.4, 100.0)
m=8 r=2 (73.7,99.9) (81.1,100.0) (99.8, 100.0)  (100.0, 100.0)
r=4 (71.0,89.1) (98.3,99.2)  (98.2,99.9)  (98.0, 100.0)
r=6 (60.8,987) (82.1,99.9) (82.1,100.0) (87.0, 100.0)
r=8 (12.7,83.7) (37.0,96.5)  (45.3,98.5)  (52.6, 99.6)

autoregressive order between 1 and 8, and then using the Akaike Information Criterion (AIC)
to select the optimal autoregressive order 6. The corresponding estimated cointegration rank
is also 5. Hence both the fitted models suggest the same cointegration rank 5, while VECM
represents the short-run dynamics in terms of a ten-dimensional vector AR(6) process (with 6
10 x 10 autocoefficient matrices), and, in contrast, the newly proposed ECFM captures this
dynamics in a univariate latent factor process, achieving a massive reduction in the number of
parameters required. The difference between the cointegration space estimated by our ECFM and

that produced by Johansen’s method is computed as
—~ ~ 1 o~ o o~ e~ ~
D(M(A2), M(A2))?> =1~ gtr{AQA;(lALQ(A’zAz)*lAz)’} = 0.0157,

where columns of Kz denote the loadings of the five cointegrated variables identified by our
method and those of A by Johansen’s. This suggests that the estimated cointegration spaces by
both approaches be effectively equivalent.
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Table 3: Relative frequencies (x100) of the occurrences of events ¥ = r (1st entries in parebtheses)

and m = m (2nd entries in parentheses) in a simulation with 1000 replications.

p =60 n = 1200 n = 1600 n = 2000 n = 2400
m=2 r=2 (20.8,100.0) (34.3,100.0) (97.3, 100.0) (100.0, 100.0)
r= (16.2, 100.0)  (87.3,100.0) (100.0, 100.0)  (99.9, 100.0)

= (63.4, 100.0)  (99.1, 100.0)  (99.5, 100.0)  (99.5, 100.0)

r=8 (88.4,100.0) (98.9,100.0) (97.5,100.0)  (97.1, 100.0)

r=10 (72.0,100.0) (92.4, 100.0)  (89.7, 100.0)  (89.6, 100.0)

m=4 r= (19.8, 100.0)  (23.3, 100.0)  (94.3, 100.0)  (99.9, 100.0)
r= (16.7, 100.0)  (78.4, 100.0) (100.0, 100.0) (100.0, 100.0)

r= (59.3, 100.0)  (97.7, 100.0)  (99.1, 100.0)  (98.7, 100.0)

r=8  (80.1,100.0) (95.3,100.0) (92.7, 100.0)  (92.5, 100.0)

r=10 (51.0, 100.0) (77.8,100.0) (73.4, 100.0)  (71.5, 100.0)

m=6 r= (20.4, 100.0)  (29.6, 100.0)  (86.6, 100.0)  (99.5, 100.0)
r=4 (134, 100.0) (72.5, 100.0) (99.8, 100.0)  (100.0, 100.0)

= (58.9, 100.0)  (97.2, 100.0)  (98.6, 100.0)  (98.1, 100.0)

r= (73.3,100.0)  (91.7, 100.0)  (87.0, 100.0)  (87.0, 100.0)

r=10 (29.9,100.0) (62.5, 100.0) (59.2, 100.0)  (57.2, 100.0)

m=8 r=2 (20.7,100.0) (24.9,100.0) (79.3,100.0)  (99.3, 100.0)
r= (33.2, 100.0)  (70.1, 100.0)  (99.5, 100.0)  (99.7, 100.0)

r=6  (59.3,100.0) (95.6,100.0) (98.8, 100.0)  (98.2, 100.0)

r=8 (67.9,100.0) (89.9,100.0) (84.3,100.0)  (85.4, 100.0)

r=10 (23.7,99.7)  (54.0, 100.0)  (50.9, 100.0)  (51.6, 100.0)

m=10 r=2 (20.3,100.0) (21.2,100.0) (76.6, 100.0)  (98.5, 100.0)
r=4 (33.8,100.0) (65.8, 100.0) (99.4, 100.0)  (100.0, 100.0)

r=6  (60.0,100.0) (94.7,100.0) (98.7, 100.0)  (98.3, 100.0)

r=8 (6.6, 100.0) (87.6, 100.0) (84.7, 100.0)  (85.4, 100.0)

r=10 (18.6,99.9) (49.5, 100.0) (48.0, 100.0)  (48.2, 100.0)

We further examine the forecasting performance of the proposed ECFM. To this end, we
compare the out-of-sample forecasting performance of our ECFM with those of (i) unrestricted
VAR in log-levels with lag length selected by the standard Schwarz criterion, and (ii) VECM

with cointegration rank chosen by Johansen’s procedure (trace test with 5% critical values) and
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Table 4: Percentage improvement in forecast accuracy measures: US IP indices

Horizon (h) ~ ECFM versus VAR in level VECM(AICH+J) versus VAR in level ECFM versus VECM(AIC+J)

TMSFE | MSFE| GFESM TMSFE | MSFE| GFESM TMSFE | MSFE| GFESM
1 55.5 99.5 27.4 28.1 91.6 14.3 38.2 94.8 15.2
4 66.6 97.8 77.6 46.5 90.3 58.7 37.5 78.0 45.6
8 78.3 89.8 88.0 48.2 74.2 69.0 58.1 60.7 61.4
12 81.9 94.5 89.0 51.3 72.5 70.4 62.7 80.2 63.0
16 82.6 95.4 90.8 58.1 69.2 71.1 58.5 85.4 68.4

lag length selected by AIC. For each of the last 10% of data points, we fit the models using the
data upto its previous month and forecast the values using the three fitted models. Following
Athanasopoulos et al. (2011), we measure the forecast accuracy using traditional trace of the
mean-squared forecast error matrix (TMSFE) and the determinant of the mean-squared forecast
error matrix |[MSFE| at each forecast horizon h = 1,---,16. We also calculate the generalized
forecast error second moment (GFESM), i.e., the determinant of the expected value of the outer
product of the vector of stacked forecast errors of all future times up to the horizon of interest, of
Clements and Hendry (1993). GFESM is invariant to elementary operations that involve different
variables, and also to elementary operations that involve the same variable at different horizons.
The forecasting comparison results are presented in Table 4.

It is observed from Table 4 that both ECFM and VECM provide more accurate forecasts than
the VAR in level model. For example, for 12 month ahead forecast, ECFM achieves improvement
in TMSFE, [IMSFE| and GFESM by, respectively, 81.9%, 94.5%, 89.0%, compared to VAR in level
model. The improvement from using VECM over VAR is obvious though less substantial than
that of ECFM. The direct comparison between EDFM and VECM in the right panel of Table 4

shows superiority of EDFM in forecasting across all the forecasting horizons.

5 Conclusions

We conclude the paper with two open questions.

First, in order to apply the result of Zhang, Robinson and Yao (2015), the dimension p cannot
be too large (i.e. not greater than than O(n!/*)). It would be interesting and more challenging to
consider the cases with larger p. Note that the rank of the matrix C is . One possible solution is
to replace the first step in the procedure via sparse shrinkage technique by solving the following

optimal problem:

C = argmingeprer {Z IVy: — Cye1l* + AnIIICIIIsl} , (5.4)
t=1

where ||C||s, = 5»’:1 A;(C), and A (C), A2(C),---, A\, (C) denote the singular values of C.
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Secondly, since in this paper our purpose is in prediction and inference for the cofeatures, we
can impose the condition that Cy;_1 and f; are uncorrelated; see the beginning of Section 2.2.
However, for some applications the main concern may be on the original C and f;. Since Cy;_1
and f; may be correlated with each other, the inference method proposed in this paper will lead
to insistent estimators. It would be interesting to consider the inference based on some iterative
equations as in Bai (2009), i.e., estimate {C, F, B} via the least squares objective function defined

as

SSR(C,F,B) =Y (Vy; — Cy;—1 — Bf;)/(Vy; — Cy;_1 — Bfy) (5.5)
t=1

subject to the constraint B'B = I,,.

6 Appendix: Technical proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have

n—1

1 N N
- D (AbyiyiAs — AbyiyiAs) = 0,(1). (6.1)
t=1

Proof. We first show the case with fixed p. Since {x42, f;, e} is a mixing with mixing coefficients

Q. satisfying

> a7 < oo, (6.2)

m=1
it follows that {Vy;} is a a mixing process with mixing coefficients satisfying (6.2). Thus, by
Theorem 3.2.3 of Lin and Lu (1997), there exists a p-dimensional Gaussian process g(t) such that

Yini /v % g(t), on D0, 1]. (6.3)

From (6.3) and the continuous mapping theorem, it follows that
1 & ;y d ! /
LS v [ e (6.4
t=1 0
Further, by E||x||*” < oo for some v > 1, we have
1 n
10ax |[xi2 — Exeoll/v/n = 0p(1), and — ; [xr2 — Exial| = Op(1). (6.5)
Combining (6.3) and (6.5) (see Lemma 7 of ZRY) yields
1 n
WH ZYtX22H2 = 0p(1). (6.6)
t=1
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On the other hand, by Vx; = A Vy;, we know (Vxy1,X2) is also o mixing with mixing coeffi-
cients satisfying (6.2). As a result, by the proof of Theorem 1 in ZRY,

|A2 = Aslla = Op(1/n). (6.7)
By (6.4), (6.6) and (6.7), we have
1 n—1 R R
1= D (AbyiyiAs — AbyiyiAs)l2
t=1

n—1 / / n—1 / /
~ A A ~ ~
_ ||(A2 _ A2)/Zt:1 y;;( 2yt) + t=1 (n 2yt)Yt (A2 _ Az) + (A2 _ )lzt 1 Ytyt (A A2)||2

n—1 /
> — X X —~
H(AZ i AQ)/ Ztlnyt 12 Zt 1n t2yt (A AQ) (A2 . )Zt 1 ytyt (A AQ)

= o,(1). (6.8)

|2

Next, consider the case p = o(n¢). Let ¢; be a k-dimensional (1) process such that V¢; = vy.
By Remark 2 of ZRY, we know that Condition 3 (i) and Remark 3 of ZRY hold for ¢;. Let
M;,M; be k x (p —r) and k x r matrices such that M given in (i) of Condition 3 satisfying
M’ = (M;,M,). Let F(t) = (F'(t),-- ,F*(t)) be defined as in ZRY and ¢ = £ }"I' | ¢;, then

n

1 1
Iz > =)o = 50)' =M [ PP @i

t=1

n 1
= g (ni St =95~ [ FOF(@) dt) Milz = 0,(1). (6.9)
t=1

By Remark 3 of ZRY, we have Apin (fol F(t)F'(t) dt) > 1/k in probability. Since ¢; < Apin(M) <
Amax(M) < co, it follows Apin (M/l fol F(t)F'(t) dtM’l) > 1/k in probability. Further, for any

given j > 0,
n—j
- D (Xyj2 — Ra)(Xe2 — Ra) — Cov(xeyj2, Xs2)|l2
t:11 .
= IIMb (= Y o[(vies = 9)(vi = 9) = Covl(vij, vi)] ) Mall2 = 0p(1), and  (6.10)

t=1

R - B
3/2 Z (Xt4j1 — X2) (X2 — %2)/|l2 = [[M] (W Z(<t+j —S)(vi — V)/> Mol
t=1
= O,(k/n'?), (6.11)

where v, is given in (i) of Condition 3.
By (6.9)—(6.11), similar to the proof of Theorem 3 in ZRY, it can be shown that when k =
onl/2-1/m),

1A; — As|ly = Op(p'/?k/n). (6.12)
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Similar to (6.9), there exists a k-dimensional Gaussian process w(t) such that

1= Zytyt A1M1/ w(t)w'(t) dtM Al |2 = 0,(1)

(6.13)

and similar to (6.11), we can show (6.6) holds provided k/n'/? — 0 as n — co. Thus, by (6.12)

and (6.13), we also have (6.8) and complete the proof of Lemma 5.

Lemma 6. Under Condition 1,
1 o ~
H\/_ﬁ D Vyiyioi(Az — As)ll2 = 0,(1),
t=1
and under the conditions of Theorem 3,

\/—ZVytyt (Ao — Ao)|ls = O, (pV/2K2 /1),

Proof. When p is fixed, similar to (6.6), we have

1 n
511> Vil = oD
t=1

As a result, it follows from (6.7) that

1 < ~
— S Vyiy, (Ay— A = 0,(1).
IIﬁ; ytyi—1(Az 2)|[2 = 0p(1)

O

(6.14)

(6.15)

When p tends to infinity as n — oo, using the same idea as in (6.11), we can show

1 n
WH Z Vyiyi_ille = Op(k‘/nl/Q).
t=1
Thus, by (6.12) and p < k = o(n'/?), it follows that

1 — N
t=1

Thus, we have Lemma 6.

Lemma 7. Let X = B{[(f_1), -, (E—s)V[(£—1), -+ , (Fr_s)']} + diag(BE. B, - -

3. is the variance of ;. Under Condition 1 , for any given positive integer s,

n

SN Ea) s G VIR B L S

t=s

and under the condition of Theorem 3, in probability

- Z i) B ) (Be)) 2 B,

where A > B means that A — B is a nonnegative definition matriz.
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,BX.B), where

(6.17)

(6.18)



Proof. By some elementary computation, we have
fi = [f; + B'e,] + [(B — B) (Bf; + &,)] + [B'(D — D)x¢z] + [D(As — Ay)'y; 1] Z Cri- (6.19)

Next, we first show (6.17) holds for fixed p. By (6.33) (see below), we have
IB = Blz = Op(n/?), (6.20)

which gives

1 - / /! / / /
||E Z(thl,% T aths,2) (<t71,2a e ’ths,2)||2 = Op(l)' (621)

t=s

Similarly, by (6.29) (see below) and (6.7), we have

4 1 n
Z HE Z(C:ﬁ—l,zﬁ e 7(2—8,1’)%(2—1,1‘7 T 7C£—s,i)”2 - Op(l)' (622)
=3 t=s

On the other hand, by large number law for a-mixing process, we get

1
E Z(C;—l,l’ T ’Cg—s,l),(cg—l,la e ’42—571) L 3. (6'23)
t=s

Combining (6.21)—(6.23) yields that

—Z ft 1 ft s)],[(?t—l)/v"' 7(?75—8),]

4 4 4
- % Z(Z Cg—lﬂ’ o ’Z Cg—s,i)/(z C;—l,i’ e ’Z Cg—g,i)
i=1 i=1 i—1

t=s i=1

1 — »
= Z(Céfl,p e 7(275,1)/(C271,17 T 7C:€fs,1) +op(1) — X
t=s

and (6.17) follows.

Now, we turn to show the case with p varying with n. Since p = o(n!/?), (6.23) still holds.
Note that %Z?:S(Cg—l,i"” 1 Ctosi) (Cio1ir - »Ciosy) = 0 for i = 1,--- ;4. For the proof of
(6.18), it is enough to show for all 1 <7 # j < 4,

1 ¢ / / iy / _ 1 24
t—1,2 ' St—s,1 t—1,5 ' St—s,7 - vp . .
1= (Chrin G (Chorg o i)l = 0p(1) (6.24)
t=s
We only give ¢ = 1, j = 4 in details, other cases can be shown similarly. Since y; = Ax, it follows

from (2.1) that

Ct,l = B/(vyt — DXt_LQ) = B/Aet — B/(D + A.Q)Xt_LQ = B/AMVt — B/(D + AQ)MéVt_l.
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Thus, by the fact that for any —s —1<j<s+1,
n t
1D vevirjlle = Op(kn) (6.25)
t=1 s=1

and (6.12), we have the left-hand side of (6.24) is of order O,(p'/2k?/n) = 0,(1), where (6.25)
holds because the components of v; are independent. Thus, we have (6.18) and complete the

proof of Lemma 7. U

Proof of Theorem 1. Let b;,i = 1,--- ,p be the rows of B. Lemmas 5 and 6 implies that for
any 1 <1 <p,

1
\/ﬁ(&i_di) = (\/—Z bif; + })y;_ 1A2> <%Z ALy 1)(Apys— 1)) + 0p(1)

—1
= ( Z (bif; + b)x} 12) ( th2xt2> + 0p(1). (6.26)

Since {x2} is @ mixing with mixing coefficients satisfying (6.2), it follows that
1 i ! p !
- Z X12Xpy — E(Xp2X)e) =: I1. (6.27)
=0
On the other hand, by central limit theory (CLT) for a-mixing process {(bif; +&})x; ; 5, 1 <i <

p}, there exists a pr x pr matrix A such that

1 n n d
NG (Z(blft e )Xt 19, Y (bpfi +e€)x;_172> —= N(0,A). (6.28)
t=1 t=1
Thus, by (6.27) and (6.28), we have
Jn(vech(D) — vech(D)) % N(0, T 'AITY). (6.29)
Further, by (6.29) and (6.7), it is easy to show that
IC —Cll2 = [|(D = D)Aj + D(A) — Aj)[l2 = Op(n~"/?).

Next, we show (b) of Theorem 1. Observe that

Vi = Vy; — DALy, 1 = (Vy; — Dx;_12) — (D —D)[(Ay — Ay)'y: 1 + Xt—12] — D(Ay — Ay)y;i 1,
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which means that

1
- VitV — B(Vyiyj — Dxepjo1)(Vyy — Dx1)']
=1
1
= - [(Vyir; — Dxeqj—1)(Vyr — Dxy—1) — E(Vyiy; — Dxypj—1)(Vyr — Dxy1)’]

o+
Il

1

~

. 1" ~
(D-D) (ﬁ Z (A2 = A2)'yitj—1+Xej-12][(A2 — A2)'yi1 + th,2]'> (D -D)
=1

17L
A2—A2 <E

t

+

M

Yt+j1y1/51> (112 — Ay)D'
1

1 — J ~ ~ ~
= 2 (V¥ = Dx¢1j-12){[yi—1(A2 — Az) + x;_1 5](D — D) +y;_1(A2 — A)D'}
t=1
1 ot N A / A / /
- D {(D-D)[(Ay — Ag)'yerj1+Xerj-12] + D(Az — Ag)yiyj 1 HVy: — Dxy_12)
t=1
1 ~
1 D [(Ag = Ag)'yiyj1yio1 +Xegj12Yi1) (A2 — Ag)D’
t=1
1 noJ ~ ~ ~
+- 2 D(Az - Ao) [Yirj-15i—1(A2 — Ag) + yiij1%i_15|(D — D). (6.30)

1

~+~
I

By (6.7), (6.29) and the large lumber law, we have that the spectral norm of the last six terms of
the right-hand side in (6.30) is Op(n~1). And by CLT of « mixing process, for any given j, the
first term of the right-hand side of (6.30) is O,(n~'/2). Similarly, we can show

n—j
1 Z ey
n

t=1

, = O,(n™h). (6.31)

Thus,
120(7) = Bo(h)ll2 = Op(n™?), (6.32)

where 3,(j) = E(Vy+j — Dx¢1j-1)(Vy: — Dx;—1)’. Since jo is fixed, it follows from (6.32) that
W - ZE Mz = Op(n™"7%). (6.33)

Note that D(M(B), M(B)) = Op(||w - 2;011 3,(5)25(5)]]2) (see for example, Chang, Guo and
Yao (2015)), we have (b) of Theorem 1 as desired.
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Now, we turn to show (c). By (6.19), we get

S~ Y BEE) e ()]

t=s

n
= Y elfr) el B, (fy) +eiB]
t=s
n
+ Zet[xé,l,Q(D -D)'B,--- ,x;_,,(D—D)'B]
t=s

~ A~

+ Zn:et[(Bft—l +ei-1)(B-B),-,(Bfi—s + &) (B - B)]

t=s
n A L 4
+ eyl o(As—Ag)D' - Ly (Ay— Ag)D] = ) A, (6.34)
t=s =1

By (6.7), (6.20) and (6.29), we can show that for any given positive integer s,
[1An2[l2 + [|An3]l2 + [|Anall2 = Op(1). (6.35)

On the other hand, since vech{e; [(f;—1)' +¢&}_B, -+, (fi_s)' + &;_,B]} is a @ mixing process with
finite 2y-moment and mixing coefficients satisfying (6.2), it follows that there exists a positive

matrix I' such that

1 n
vech <% Z e [(f—1) + 1B, -, (f—s) + EQSB]> BN N(0,T'). (6.36)
t=s
Note that
El n -1 Z?:s/f\tfleg
= (Z[(fu)’,---  (fems) T [(fe-1)', - ,(fts)/]> . (6.37)
B, 7 S b
Thus, by (6.34)—(6.36) and Lemma 7, we have (c) and complete the proof of Theorem 1. O

Next, we first develop bounds for the estimated eigenvalues /)\\j, 7=12---p.

Lemma 8. Let \;, j = 1,---,p be the eigenvalues of W,. Under Condition 1 or conditions of
Theorem 3,

A = Aml| = Op(pn™%) and  [Amia| = Op(pn™'72). (6.38)
Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any 1 <i < p,
A=Al < |Wo = Wo|l2 = 0,(pn~ %) and Apyr=-- =\, = 0.
This gives Lemma 8 as desired. O
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Proof of Theorem 2. It is enough to show that

lim P{im <m} = 0. (6.39)

n—oo

Suppose m < m is true, then by Lemma 8, there exists a positive constant ¢; such that
lim P{/)\\m+1/}:m >c}b=1, and lim P{/)\\erl//):m <c/2}=1.
n—00 n—oo
This implies that
lim P{Xerl//):m > Xerl//):m} =1,
n—o0
which contradicts the definition of m. Thus, (6.39) holds. O

Proof of Theorem 3. Since p = o(n'/?) and {x} is a a mixing process with mixing coefficients
satisfying (3.2), it follows that (6.27) also holds for this case. Further, note that for any 1 <i <p
and 1 < j < r, applying CLT of mixing process to {(b;f; + 5%)36{_172}, which is a @ mixing process

with coefficients satisfying (3.2), we get

‘ Z(bift + Eé)x{—m‘ = Op(v/'n),

t=1
which implies
1 — _
1= S (B + €0)x)_1 5lls = Op(n2(pr)/?). (6.40)
n t=1

Thus, by Lemmas 5 and 6,

—1
~ 1 < ~ 1=~ ~
ID-Dljl; = (5 ZVyty£_1A2> <EZA/2}’151Y;,5_1A2> -D
t=1 =1

2

n n—1 -1
1 1
= (E tz; VYtX:em) (E ;Xt—l,ZX:tlQ) -D|| + Op(Pl/zkz/n)

2
1 i 1 n—1 -1
= <_ Z(Bft + Et)Xz/£172> <E Z Xt1,2X£1,2> + Op(p1/2k2/n)
=1 i=0 )

= Op(n~Y2(pr)Y2 4 p'/2k2 /n), (6.41)

3

this combining with (6.12) yields
IC — Cllz = [|(D — D)A) + D'(Ay — Ap)llo = Op(n™/*(pr)'/? + p!/k? /). (6.42)

Thus, (a) of Theorem 3 follows from (6.41) and (6.42).
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Next, we show (b). It is easy to see that

1 (K[
=5 > _yt-1¥i-1ll2 = Oplp). (6.43)
t=1

Thus, by (6.12), (6.41) and (iii) of Condition 3, it can be shown that || - ||2 norm of the last
six terms of the right-hand side in (6.30) are of order o(pn~'/2), provided k = o(n'/?) and
p = O(n1/4). On the other hand, applying CLT of « mixing process to the first term of the
right-hand side of (6.30), we get for any given j, this term is of order Op(pn_l/ 2). Similarly, we

can show n~! Z?;lj vV, = O,(n~2p). Thus,
10(7) = Zo(h)ll2 = Op(n~?p). (6.44)

Since jo is fixed, it follows from (6.44) that
__Jo
W = S0()Z()l2 = Op(n~"?p). (6.45)
j=1

Note that D(M(B), M(B)) = Op(HW — ;(’:1 3,()X0(5)]]2) (see for example, Chang, Guo and
Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c). Let A,;, i = 1,2,3,4 be defined as in (6.34). Since
{ed(Bfi—1 +e1-1)",%;_1 5]} is @ mixing with mixing coefficients satisfying (3.2), it follows from

conclusion (a) and (b) of Theorem 3 that
1802 + Anslla = Op (n/2(pr) 210~ 2(pr) /2 4 pH/282 /4 pn =17 (6.46)
By (6.12) and a similar argument as in (6.24), we have
[Anall2 = Op(p'2k?). (6.47)
Applying CLT of a mixing to the elements of A,1, we get
1An11l2 = Op((pmn)'/?). (6.48)
Combining equations (6.46)(6.48) with Lemma 7 and p = o(n'/?) yield
|(B1,--- Eg)lla = O(p"?k*n~" 4 pm!/2n=1/2), (6.49)
this gives (¢) and completes the proof of Theorem 3. O

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly as for Theorem 2. There-

fore, we omit the detailed proofs. O
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Proof of Remark 1. Since the proofs are similar, we only show the case with fixed p in details.

It follows from the definition of m that
P P
SN+ fwn < Aprij + muwn. (6.50)

Suppose that m > m, it follows from (6.50) that
(M — m)w, < Xj < (M —m) A1 (6.51)
+1

j=m

Since wy,/n~1/? = oo, it follows from Lemma 8 that equation (6.51) holds with probability zero.
This gives that
lim P{m >m} =0. (6.52)

n—oo

On the other hand, if m < m, equation (6.50) yields
~ m ~
(m=M)Am < D X < (m — M)wy. (6.53)

Lemma 8 implies Am > Ap/2 > 0. Thus, by (6.53) and w, — 0 as n — 0o, we have

lim P{f < m} = 0. (6.54)
n—oo
Equation (6.52) together with (6.54) give the consistency of m as desired. O
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Figure 1: Boxplot of D(M(A3), M(As)) (left panel) and D(M(B), M(B)) (right panel), 400 <

n < 3200
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