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Abstract

We propose a new unit-root test for a stationary null hypothesis Hy against a unit-root
alternative H;. Our approach is nonparametric as the null hypothesis only assumes that the
process concerned is I(0) without specifying any parametric forms. The new test is based on
the fact that the sample autocovariance function (ACF) converges to the finite population
ACF for an I(0) process while it diverges to infinity with probability approaching one for
a process with unit-roots. Therefore the new test rejects the null hypothesis for the large
values of the sample ACF. To address the technical challenge ‘how large is large’, we split
the sample and establish an appropriate normal approximation for the null-distribution of
the test statistic. The substantial discriminative power of the new test statistic is rooted
from the fact that it takes finite value under Hy and diverges to infinity almost surely under
H;. This allows us to truncate the critical values of the test to make it with the asymptotic
power one. It also alleviates the loss of power due to the sample-splitting. The finite sample
properties of the test are illustrated by simulation which shows its stable and more powerful
performance in comparison with the KPSS test (Kwiatkowski et al., 1992). The test is
implemented in a user-friendly R-function.

Keywords: Autocovariance; Integrated processes; Normal approximation; Power-one test; Sample-
splitting.

1 Introduction

Unit-root is one of the most frequently used settings for modeling nonstationary time series. Its
importance stems from the fact that many economic, financial, business and social-domain time
series data exhibit segmented trend-like or random wandering phenomena. While the random-
walk-like behavior of stock prices was notified and recorded much earlier by, for example, Jules
Regnault, a French broker, in 1863 and then by Louis Bachelier in his 1900 PhD thesis, the
development of statistical inference for unit-roots only started in late 1970s. Nevertheless the
literature on unit-root tests by now is immense and diverse. We only state a selection of some
important developments below, which naturally leads to a new test to be presented in this paper.

The Dickey-Fuller tests (Dickey and Fuller, 1979, 1981) dealt with Gaussian random walks
with independent error terms. Effort to relax the condition of independent Gaussian errors
leads to, among others, the augmented Dickey-Fuller (ADF) tests (Said and Dickey, 1984,
Elliott, Rothenberg and Stock, 1996; Xiao and Phillips, 1997) which replace the error term by
an autoregressive process, the Phillips-Perron test (Phillips, 1987; Phillips and Perron, 1988)
which estimates the long-run variance of the error process nonparametrically using the method



of Newey and West (1987) and Andrews (1991). The ADF tests are further extended for dealing
with structural breaks in trend (Zivot and Andrews, 1992), long memory processes (Robinson,
1994), seasonal unit roots (Hylleberg et al., 1990; Chan and Wei, 1988), bootstrap unit-root tests
(Paparoditis and Politis, 2005), nonstationary volatility (Cavaliere and Taylor, 2007), panel data
(Pesaran, 2007), and local stationary processes (Rho and Shao, 2019). We refer to survey papers
Stock (1994) and Phillips and Xiao (1998), and monographs Hatanaka (1996) and Maddala and
Kim (1998) for further information on the topic.

The Dickey-Fuller tests and their variants are based on the regression of a time series on
its first lag in which the existence of unit root is postulated as a null hypothesis in the form of
the regression coefficient being equal to one. This null hypothesis is tested against a stationary
alternative hypothesis that the regression coefficient concerned is smaller than one. This setting
leads to innate indecisive inference for ascertaining the existence of unit-roots, as a statistical
test is incapable in accepting a null hypothesis. To make the assertion of unit-roots on a
firmer ground, Kwiatkowski et al. (1992) adopted a different approach: the proposed KPSS test
considers a stationary null hypothesis against a unit-root alternative. It is based on a plausible
representation for possible nonstationary time series in which a unit-root is represented as an
additive random walk component. Then under the null hypothesis the variance of the random
walk component is zero. The KPSS test is the one-sided Lagrange multiplier test for testing the
variance to be zero against greater than zero.

In spite of the many exciting developments stated above, testing for the existence of unit
roots remains as a challenge in time series analysis, as most available methods suffer from the
lack of accurate size control and poor power. In this paper we propose a new test, based on a
radically different idea from the existing approaches. Our setting is similar in spirit to the KPSS
test as we test for stationary hull hypothesis Hy again a unit-root alternative H;. However our
approach is nonparametric as the null hypothesis only assumes that the process concerned is 1(0)
without specifying any parametric forms. The new test is based on the simple fact that under Hy
the sample autocovariance function (ACF) converges to the finite population ACF while under
Hy it diverges to infinity with probability approaching one. Therefore we can reject the null
hypothesis for large (absolute) values of the sample ACF. To address the technical challenge
‘how large is large’, we split the sample and establish an appropriate normal approximation
for the null-distribution of the test statistic. Note that our sample ACF based test statistic
offers substantial discriminative power as it takes finite value under Hy or diverges to infinity
almost surely under H. This allows us to truncate the critical values determined by the normal
approximation under Hy to make the test with the asymptotic power one. Furthermore, it
also alleviates the loss of power due to the sample-splitting as it outperforms the KPSS test
in the power comparison in simulation. Another advantage of the new method is that it has a
remarkable discriminate power to tell the difference between, for example, a random walk and
an AR(1) with the autoregressive coefficient close to (but still smaller than) one, for which most
the available unit-root tests, including the KPSS method, suffer from weak discriminate power.

Admittedly the newly proposed test is technically sophisticated. To make it user-friendly,
we have developed an R-function ur.test in the package HDTSA which implements the test in an



automatic manner. See Section 2.4 below for more details. Note that the strong discriminative
power of the test statistic also makes the choice of the two tuning parameters involved less sen-
sitive, function ur.test incorporates some well-tested default values for the tuning parameters.
Indeed the test performed competently and robustly on, for example, the 14 Nelson and Plosser
time series (Nelson and Plosser, 1982) which were often used for testing unit-roots.

The rest of the paper is organised as follows. The main results including the newly proposed
test, its asymptotic properties, and the implementation are presented in Section 2. The finite
sample properties of the test are investigated by simulation in Section 3 which also includes the
numerical comparison with the KPSS method. Technical proofs are collected in Section 4. The

supplementary material contains the proof of Lemma 1 and some additional numerical results.

2 Main results

2.1 A power-one test

A time series {Y;} is said to be I(0), denoted by Y; ~ I(0), if

E(Y;) =p, E(Y?) <oo, (k)= Cov(Yigs,Y;) for all ¢, and Z |v(k)| < o0. (1)
k=0

Let VY; = Y; — Y;_1, and V?Y; = V(V91Y;) for any integer d > 2. Time series {Y;} is said to
be I(d), denoted by Y; ~ I(d), if {V?Y;} is I(0) and {V9~'Y;} is not I(0). An I(d) process is
also called a unit-root process with the integration order d. With the observations Yi,...,Y,,
we are interested in testing the unit-root hypotheses

Hy:Y; ~1(0) versus H;j:Y; ~ I(d) for some integer d > 1. (2)

We propose a new test for (2) based on a simple fact that the sample autocovariances of a
unit-root process diverge to infinity with probability approaching one while those of an I(0)
process converge to the true and finite autocovariances; see (1). More precisely we denote the
sample ACF at lag k by

4B = = 3 (Ve — V)Y - V), )

which is a consistent estimate of (k) = Cov(Y; 1, Y;) under null hypothesis Hy, where ¥ =

n~t>% Y. However Proposition 1 below indicates that for I(d) processes, (k) is at least

2d—1)

as large as Op(n . See also Pena and Pocela (2006). Therefore we can reject Hy for large

values of |y(k)|.



To state Proposition 1, we assume Y; ~ I(d) and

VY, = pg + Z pi€rj (4)

J=0

where g = E(V9Y;) is a constant, 1)p = 1, and {¢;} are white noise innovations. Representation
(4) is the Wold’s decomposition for any purely non-deterministic (0) process. When {¢;} are
iid., {V9;} is a linear process.

Proposition 1. Let Y; be defined by (4) in which ¢ gk (0,02) and > o1 il <oo. Letk >0
be an integer.

(1) When pq = 0, it holds that n~4=D5(k) N 252 fo VZ (1) dt, where a = > 520 ¥is
Va1(t) = Fg_1( —fol Fd 1 (t)dt and Fd 1(t) is the scalar multi-fold integrated Brownian motion
defined recursively as Fj( fo i—1(z)dx for any j > 1 and Fy(t) = W (t) is the standard
Brownian motion.

(ii) When pq # 0, it holds that n=24% (k) L ¢d,kﬂ§a where ¢q 1, 15 a positive bounded constant
only depending on d and k.

Based on Proposition 1, we may reject Hy for the large values of, for example, the test
statistic Thaive = Zszoo |(k)|?, as under Hy the test statistic Thaive converges to Zszoo |v(k)|?
which is finite, where Ky > 0 is a prescribed integer. There are two obstacles preventing using
such a test statistic. First to determine the critical values one has to derive the asymptotic
distribution of a,{Thaive — sz:‘)O |v(k)[?} under Hy, where a,, is an appropriate normalized
constant. Secondly, one needs a consistent estimator for ZkK:Oo |7(k)[? under Hy, which is not
readily available as in practice we do not know if Hy holds or not.

To overcome these obstacles, we apply the idea of ‘data splitting’. Let N = |n/2], and

N Nk | 2Nk ) B
Yepr = Y)(Y; = Y) and Aa(k) = N Z Ve =YV)(Ye =Y),  (5)
=1 t=N+1

i.e. A1(k) and 42(k) are, respectively, the sample autocovariance at lag k of {Y;}Y, and
{v1}78y 1. The test statistic is defined as

T, =Y (k) (6)

where Ky > 0 is a prescribed integer which controls the amount of information from different
time lags to be used in the test. Although our theoretical analysis allows Ky to diverge with
sample size n, the simulation results reported in Section 3 below indicate that the finite sample
performance of the test is robust with respect to the different values of Ky. In fact the test
works well even with small values of K. We suggest in practice to set Ky € {0,1,2,3,4}.



Formally we reject the null hypothesis Hy at the significance level ¢ € (0,1) if
T, > CVg, (7)

where cvy, is the critical value satisfying P, (T}, > cvy) = ¢ as n — co. As we will see in (10)
below, {'?1(k)}kK:°0 are to be used to determine the critical value cvy,. One obvious concern for
splitting the sample into two halves is the loss in testing power. However the fact that T;, takes a
finite value under Hy and it diverges to oo (with probability approaching one) under H; implies
that T}, has a strong discriminant power to tell apart H; from H(, which is enough to sustain the
adequate power in comparison to that of, for example, the KPSS test. Our simulation results
indicate that the sample-splitting works well even for sample size n = 80 (i.e. N = 40).
For positive integers ¢ and k, let

ek = 2H{ (Y = ) (Yer — ) —y(K)ysgn(k + ¢t = N —1/2). (8)

Define & 1 = 2y 1v(k), Q¢ = Zf:oo &k, and BE = E{(Zle Q¢)?}. Some regularity conditions
are now in order.

Condition 1. Under the null hypothesis Hy, there exist uniform constants s; € (2,3] and
c1 > 0 such that maxj<i<, E(|Y;|*1) < 1.

Condition 2. Under the null hypothesis Hy, {Y;} is a-mixing in the sense that

a(T) = sup sup |P(AB) —P(A)P(B)] =0 as 7— o0,

t AeFt  BEF.

where F* and F7Y, denote the o-fields generated by {V,}u<; and {Y,}y>¢ir, respectively.
There exist uniform constants ca > 0 and 81 > 2(s1 — 1)s1/(s1 — 2)? with s; specified in
Condition 1 such that a(7) < cor Pt for any T > 1.

Condition 3. Under the null hypothesis Hy, there exists a uniform constant c3 > 0 such that
Bg > c3l for any £ > 1.

Condition 1 requires that Y; has more than four moments. The a-mixing assumption in
Condition 2 is mild. Causal ARMA processes with continuous innovation distributions are
a-mixing with exponentially decaying a-mixing coefficients. So are stationary Markov chains
satisfying certain conditions. See Section 2.6.1 of Fan and Yao (2003) and the references within.
In fact stationary GARCH models with finite second moments and continuous innovation distri-
butions are also a-mixing with exponentially decaying a-mixing coefficients; see Proposition 12
of Carrasco and Chen (2002). Condition 3 requires the long-run covariance of the newly defined
process {Q;} to be non-degenerated.

Theorem 1. Let the null hypothesis Hy hold with Conditions 1-3 being satisfied, and Ky =



o{nfBs)} with

9)

£(8,51) :min{sl —2 (B-1)(s —2)}’

4sq ’ (25 + 2)81

where s1 and By are specified, respectively, in Conditions 1 and 2, and 3 = By (s1—2)?/{2s1(s1 —
1)}. Then as n — oo, it holds that

sup
u>0

ING
P(VnT, >u)—1+&( ———— )| >0,
(VnT > w) (BQNKO\/E>‘

where & = u—+/n Zszoo 191(k)|?, and ®(-) is the cumulative distribution function of the standard
normal distribution.

By Theorem 1, one may select the critical value cvy of the test stated in (7) of the form
Zl—¢B2N—K0/(2N) + Zf:(’o |91 (K)|?, where z1_4 is the (1 — ¢)-quantile of the standard nor-
mal distribution A/(0,1), and BQN,KO is a consistent estimate of Bon_k, in the sense that
BQN,KO/BQN,KO E) 1, as then

21—¢BaN_K
]PHO{Tn>1¢2 0 Zm }

However a critical value specified in this manner is only valid under Hy, as Zfzoo |41 (k)|? diverges
to infinity with probability approaching one under H;. A non-trivial consequence of using this
critical value is that the test suffers from the substantial power loss, as under Hy the probability
of the event {7}, > Zl—¢B2N—K0/(2N) + Zf:oo |91(Kk)|?} is small. This is also confirmed in our
simulation in Section 3 below. To rectify this defect, we apply here a truncation idea as in

Section 2.3 of Chang et al. (2017). More precisely we set the critical value as

- Ko
_+Bon_
“1-¢D2N—Ko + E |41 (k)?, if event T occurs,

CV¢ == 2N k=0 (10)

K if event T° occurs,

where x,, > 0 is a constant satisfying condition x, = o(n“~2/logn), and the event 7 sat-
isfies conditions Py, (7) — 1 and Py, (7¢) — 1 as n — oo. We state in Section 2.2 be-
low how to specify 7. The intuition behind this truncation is as follows: Under Hy, cvg =
Zl—¢B2N—K0/(2N) + Zfzoo |41(k)|? with the probability approaching one, ensuring the correct
size of the test asymptotically. See Theorem 2 below. Under Hy, cvy = K, with probability ap-
proaching one. Proposition 1 implies that [42(0)| > n2¢=1/ log'/? n with probability approach-
ing one under H;. Consequently Tj, > [42(0)]? > n%=2/logn > Kk, = cvg with probability
approaching one under Hy, as &, = o(n*®2/logn). This entails that the test has the power
one asymptotically. See Theorem 3 below.



Theorem 2. Assume the conditions of Theorem 1 hold. Let BQN_KO/BQN_KO 3) 1 under Hy.
Then for cvy defined in (10), it holds that Py, (T, > cvy) — ¢ as n — oo.

An estimate BQN_ K, satisfying condition BQN_KO /Ban—k, 3) 1 under Hy will be con-

structed in Section 2.3 below.

Theorem 3. Consider the alternative hypothesis Hy under which Yy is defined by (4) with € gk
(0,02) and > i1 dlYjl < oo. Then for cvy defined in (10), it holds that Py, (Tn > cvg) — 1 as
n — o0.

2.2 Determining 7 and k,

The critical value cvy defined in (10) depends on event 7 and truncation parameter k,, critically.
As K, = o(n*2/logn) (see Section 2.1), we set ,, = 0.1xlog N with N = [n/2]. Let X; = VY;
fort=2,...,n, and

X - X) (11)
:2

for k > 0, where X = (n—1)"!>°1 , X;. Recall 4(k) is defined as (3). Under Hy, it holds that
7(0) +4(1)
Y2(0) + 42(1)

which implies that for any fixed constant C, > 0,

7(0) +4(1) 3/5
]P’HO{—%(O) oy <O } 1 (12)

as n — oo. It follows from Proposition 1 that

7(0) +4(1) 3/5
PH{%(O) e = N } B 13)

as n — 0o. Consequently we define 7 in (10) as follows:

_ [ 20 +4(1) 3/5
T_{%(O)Jr%(l) < CyN } (14)

While the asymptotic properties (12) and (13) holds for any positive constant C > 0, to use T

=0p(1),

with finite samples C, must be specified according to the underlying process. To specify such a

constant Cl, we first assume Y; ~ I(1) defined by (4) with ¢ o (0,02). Then the proposition
below holds.

Proposition 2. Let Y; ~ I(1) be defined by (4) in which € BN (0,02) and > e Jlj] < oo



(i) When py =0, it holds that
242 [} VR (t) dt

150)+5() b,
n Yz (0) +4z(1) Z]Oio ¢]2 + Z;io Vi ’

Wi(t) — fol W (t)dt with W (t) being the standard Brownian

where a = Y22, 1; and Vo(t)

motion.
(ii) When py # 0, it holds that
1400 b 5
n? 40 (0) +92(1)  602(32520 %7 + X720 i)
Proposition 2 shows that the ratio {4(0) + 4(1)}/{92(0) + 4.(1)} with p; # 0 diverges to
infinity faster than that with p; = 0. Thus for any given C, > 0 the requirement Py, (7€) — 1
is satisfied more readily with p; # 0 than that with p; = 0. Therefore below we focus on the

cases with p; = 0 only.
Recall X; = VY; = g + Z;io j€r—j. It holds that

L2 [y V() dt

242 [} V() dt
Do ¥ + 250 Vi A1 +p) 7
E{(Xt11 —p) (X =)} D oo Vit (15)
>0V

where
P = D)
E{(X; — p1)?}

is the first order autocorrelation coefficient, A = 0% / 0%, and 0% and O'% are, respectively, the
short-run variance and the long-run variance:

00 00 2
2 2 2 2 2
og =0, E ¢ and O'L:O'E<E Q,Z)j> .
j=0 =0

We estimate 0 = Var(X;) by 6% = 4,(0), and 02 = lim,,_,o, Var(n=1/23"7 , X;) by the kernel-
type method suggested in Section 2.3 based on the sequence {X; — X} ,. We denote by &%

the estimation of O'%. Then we estimate A\ by
~9
« 0
A= U_g . (16)
L
Finally we estimate p by
- 52(1)
p== 17
3200) o



As E{fol Vi (t)dt} = 1/6, we now specify the model-dependent constant Cy in (14) as

C*:L
M1+ p)

for some uniform constant ¢, greater than 1/6, where A and j are given in (16) and (17),
respectively. Consequently, the critical value cvy admits the following representation

A K ~ ~
21-¢Ban K, . ZO A2, i 4(0) +4(1) 2¢,N3/>
- 2N — T (0 +92(1) A1 +p) as)
d) p—
i y(1 26, N3/°
0.1 % log N, if O+ 2N
Y2(0) +42(1) — A(1 4+ p)

Our extensive simulation results indicate that this specification of cvy4 with ¢, between 0.45 and
0.65 works well across a variety of models. See Table 1 in Section 2.4, Tables 2 and 3 in Section
3 and also the supplementary material for details.

Though the above specification was derived for Y; ~ I(1), our simulation results indicate
that it also works fine for I(2) processes; see Table 3 in Section 3 and Tables S5-S8 and S14-S18
in the supplementary material. Note that testing I(0) against I(d) with d > 1 is easier than that
with d = 1, as the autocovariances are of the order at least n2?~! for I(d) processes. Therefore
the difference between the values of test statistic T}, under H; and those under Hj increases as
d increases.

2.3 Estimation of BSNfKO

Let m = 2N — Kj. Recall that

1 m
B22N—Ko = mVar(\/—m Z Qt> =:mV,,
t=1

where V,,, is the long-run variance of {Q;}{";. We only need to estimate the long-run variance
Vin. There exist various estimation methods for long-run variances, including the kernel-type
estimators (Andrews, 1991) and the estimators utilizing moving block bootstraps (Lahiri, 2003).
See also Den Haan and Levin (1997) and Kiefer, Vogelsang and Bunzel (2000).

Recall Q; = Zf:(’o &k with &, = 2y, 1 y(k) and y ;, defined in (8). Let
{ e = 2{(Ye = YV) (Ve = V) = 4(k)}sgn(k +t — N — 1/2), (19)
§uk = 2007 (k)

and Q; = Zf:(’o &, where Y = n~1 37" | V; and 4(k) is defined in (3). We adopt the following



kernel-type estimator for V,, based on {Qt}?llz
~ m—1 j _
j=—m+1

where C(+) is a symmetric kernel function that is continuous at 0 with IC(0) = 1, by, is the
bandwidth, G; = m ™! z;”:jﬂ QiQ;—j if >0 and G; = m™! Z?lfjﬂ Qi+;Qq otherwise. Let

Bon_x, = (mVp,)'/2. (21)

Andrews (1991) systematically investigated the theoretical properties of this estimation method.
It shows that the Quadratic Spectral kernel

Kos(u) = 25 {sin(qu/S)

= — cos(6mu/5
12m2u? 6mu/5 cos(6mu/ )}

is optimal in the sense of minimizing the asymptotic truncated mean square error of the esti-
mator. In our numerical work reported in both Section 3 and the supplementary material, we
always use this kernel function by calling function lrvar from the R-package sandwich with
the default bandwidth specified in the function.

To state the required asymptotic property for Bon_ Ko, We introduce some regularity condi-
tions first.

Condition 4. The kernel function () : R — [—1,1] is continuously differentiable on R and
satisfies (1) K(0) = 1, (ii) K(z) = K(—z) for any # € R, and (iii) [*_|K(z)|dz < co. Let
K, = 1+ K, satisfying K®log K, = 0(n1*2/32). The bandwidth b,, — oo satisfies b, =
o{n!/>=1/52(K51og K,)~'/?} and K2 = o(by,).

Condition 5. Under the null hypothesis Hy, there exist uniform constants so > 4, ¢4 > 0,
c5 > 0 and Py > max{2s9/(s2 — 2),52/(s2 — 4)} such that maxj<;<, E(|Y;|*?) < ¢4, and the
a-mixing coefficients {a(7)},>1 satisfy a(7) < c57772, where a(7) is defined in Condition 2.

Theorem 4. Let Conditions 4 and 5 hold. Then as n — oo, it holds under the null hypothesis
A P
H(] that BQN,KO/BQN,KO — 1.

2.4 Implementation of the test

Based on Sections 2.2 and 2.3 above, Algorithm 1 outlines the steps to be taken in order to
perform the proposed test. The algorithm is implemented in an R-function ur.test contained
in the package HDTSA which is available via ‘github’:
devtoolsi::install_github(’ghghgh2020/HDTSA/HDTSA)

To perform the test using function ur.test, one merely needs to input time series {Y;}}"; and
significance level ¢. The package sets the default value ¢, = 0.55 and returns the five testing
results for Ko = 0,1,...,4 respectively. One can also set the values of ¢, and K, subjectively.
We recommend to use ¢, € [0.45,0.65] and K € {0,1,2,3,4}.
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Algorithm 1 Sample ACF-based unit-root test

1: Given {Y;}; and Ky, compute J(k) defined as in (3) for k = 0, 1, and also 41 (k) and A2 (k)
defined as in (5) for £ =0,1,..., K.

2: Let Xy = VY,. Compute 9, (k) defined as (11) for £k =0, 1, and put p = 5,(1)/5.(0).

3: Call function lrvar from the R-package sandwich (with the default value of the bandwidth
specified in the function) to compute the long-run covariances of {Q;} and {X;}, denoted
by Van_ K, and &%, respectively, where Q; is defined immediately below (19).

4: Given significant level ¢ € (0,1), calculate the test statistic 7,, = Zf:(’o |42(k)|? and the
critical value

A K N N
acolaviy | §5 5 g, i 2O HID). 26N
2N B T 500 + 4 (1) T A1+ p)]
CVg = k=0
5 (1 2¢,. N3/5
0.1 x log NV, if AV(O) +:Y( ) > ACH ;
Y2(0) +%(1) — A(1+ p)

where ¢, € (0.45,0.65) is a prescribed constant, zj_4 is the (1 — ¢)-quantile of N'(0,1),
EQN_KO = (2N — K0)1/2V21]\/[27K0 and A = "3%(0)/6’%
5: Reject null hypothesis Hy if T}, > cvg.

To illustrate the robustness of the test with respect to the values of ¢, and K, we applied
the test to the 14 US annual economic time serie initially analyzed by Nelson and Plosser (1982),
and subsequently by many others including Perron (1988); DeJong et al. (1989); Kwiatkowski
et al. (1992). The length n for those 14 series varies between 62 and 111. The conventional
wisdom is that a unit root is present in most of the Nelson-Plosser series. The analysis from the
aforementioned papers indicates that the unit-root hypothesis cannot be validated for only one
or two series such as unemployment rates. The results from the proposed new test corroborates
those findings; see Table 1. The new test rejects the null hypothesis Y; ~ I(0) in favour of
Hy :Y; ~ I(d) at the 5% significance level for the 12 out of the 14 series. The two series for
which Hy cannot be rejected are the unemployment rate series and the velocity series. Note
that the new test is robust in the sense that taking ¢, = 0.45,0.55 or 0.65, and Ky =0,1,2,3
or 4 leads to exactly the same results.

3 Simulation study

We illustrate the finite sample properties of the proposed test T}, by simulation. Various versions
of the proposed test with Ky € {0,1,2,3,4} and ¢, € {0.45,0.55,0.65} are considered; see
(18). We also consider the proposed test with untruncated critical value, i.e. ¢, = oo in (18).
For the comparison purpose, we also include the KPSS test (Kwiatkowski et al., 1992) in our
experiments. We set n = 80,140,200 (i.e. N = 40,70,100) and repeat each setting 2000 times.

Unless specified otherwise, we always assume that e N (0,02) with 02 = 1 or 2. To

examine the sizes of the tests, we consider the following four models.
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Table 1: Testing results for the 14 Nelson-Plosser time series by the proposed new test at the 5%
significance level with ¢, = 0.45,0.55 and 0.65 respectively: ”+” indicates the stationary null
hypothesis is rejected in favour of a unit-root alternative, while ”—” indicates the null hypothesis
cannot be rejected. The results are unchanged with Kg =0,1,2,3 or 4.

o
N
I
o
o
at
o
=
jan)
ot
ot
o
=
I
(e}
(@)}
(@)}

+ 4+t

Real GNP

Nominal GNP

Real per capital GNP
Industrial production
Employment
Unemployment rate
GNP deflator
Consumer prices
Wages

Real wages

Money stock
Velocity

Bond yield

S&P500 stock prices

+ 4+t

+ o+t
+ o+t

++ 1+ 4+ ++ 4+

+ +
+ +

e Model 1: Yy =pY; 1 + €.

e Model 2: Y} = & + ¢p164-1 + Poes_a .

e Model 3: Yy — p1Y;1 — p2Yio =€ + 0.56,1 + 0.3€61—2 .
e Model 4: Y; = ¢; + Z?Zl o€r_; .

We set the nominal size of the tests at ¢ = 5%. The KPSS test is implemented by calling
function kpss.test in R-package tseries. The results with Ky = 0 are listed in Table 2, and
the results with Ky € {1,2,3,4} are reported in Tables S1-S4 in the supplementary material.
Note that the results with different ¢, and Ky are similar; indicating once again that the test T,
is robust with respect to the choice of tuning parameters ¢, and Ky. We also consider the cases
that ¢ "~ t(2) and ¢ b t(5) and report the results in Tables S9-S13 in the supplementary
material.

Overall the proposed test provides reasonable approximations for the size of the test es-
pecially with large n (eg. N = 100), and truncation (10) has little impact on the achieved
significance levels, as indicated in Theorem 2. The performance of the new test is stable across
different models with different parameters, different Ky and different innovation distributions,
while that of the KPSS test varies and is adequate only for some settings.

Table 2 indicates that for Model 1 the new test controls the size well for both positive and
negative p, while the KPSS test performs poorly when p < 0, and even worse when p > 0. In
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fact the KPSS test completely fails when p = 0.9, as the empirical sizes are at least 46.7%. This
is due to the fact that when p is close to 1, the KPSS test has difficulties in distinguishing it
from 1 which is unit-root. See also Table 3 of Kwiatkowski et al. (1992). Our new method does
not suffer from this closeness to 1, as for which the order of the magnitude of ACF matters.
Table 2 also shows that for Model 2 both the new test and the KPSS test provide comparable
approximations for the size of the test. For Models 3 and 4, the new test provides adequate
approximations for the size of the test. Unfortunately the KPSS test does not work for Models
3 and 4 as the empirical sizes range from 15.4% to 26.2% for Model 3, and 13.8% to 20.4% for
Model 4.

The performance of empirical powers is based on the following models.
e Model 5: VY, = Z;, Z;, = pZi—1 + ¢ .

e Model 6: VY; = Z;, Zy = €1 + P16 + doep_1 .

e Model 7: VY =24, Zy — p1 7241 — paZii—o = € + 0.5¢; + 0.3¢4_1 .

e Model 8: V2Y; = Z;, Z; = €; + 16 + doei_1 -

The corresponding results are reported in Table 3 for Ky = 0 with normal distributed
innovations, and in Tables S5-S8 in the supplementary material for Ky € {1,2,3,4}. The KPSS
test shows impressive power under the models above. Note that the KPSS test has a tendency
to overestimate test levels, leading to inflated power. Nevertheless the new test displays greater
power in most cases. Noticeably the power one property of the new test, presented in Theorem 3,
is observable in the simulation as the empirical power tends to 1 when N increases. Comparing
the results of Models 6 and 8, we found that the proposed new tests show off the asymptotic
power one property more distinctly as the test statistic T;, has more discriminate power between
I(2) and I(0) than that between I(1) and I(0). We also simulated the power of the tests with
t(2) and ¢(5) innovations in Models 5-8. The results are presented in Tables S14-S18 in the
supplementary material; showing similar profiles as those in Tables 3 and S5-S8.

4 Technical proofs

4.1 Proof of Proposition 1

For any 0 < j < d, we write Yt(d_j) = V’Y;. Assume Y_(4-1) = -+ =Yy = 0. Let {Fy()} be
the multi-fold integrated Brownian motion considered in Chan and Wei (1988), which is defined
recursively as Fy(t) = fot Fy_i(z)dx for any g > 1 and Fy(t) = W(t) is the scalar Brownian
motion.

We first consider the case with g = 0 and k£ > 1. Due to Y; ~ I(d), we can reformulate Y;

13



Table 2: Empirical sizes (x102) of the proposed test T}, defined as (6) for Ky = 0 with the
untruncated critical value (¢, = oo) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations €; R (0,02).
The nominal size of the tests is 5%.

Setting N
Model 1 0.5 40
70
100
0.9 40
70
100
—0.5 40
70
100

Model 2 (0.8, 0.3) 40
70

100

(0.9,0.5) 40

70

100

(0.95,0.9) 40

70

100

Model 3 (0.4, 0.2) 40
70

100

(0.5,0.1) 40

70

100

(0.6,0.1) 40

70

100

Model 4 0.4 40
70
100
0.5 40
70
100
0.6 40
70
100

00
6.0
6.9
6.1
7.2
7.8
8.5
7.4
6.9
6.4

6.2
6.4
7.2
6.7
6.5
5.6
7.2
7.1
5.5

7.2
7.7
7.2
8.5
8.0
6.3
8.5
7.3
7.6

9.7
7.5
7.6
8.2
8.3
7.8
8.5
8.9
7.2

0.45
6.0
6.9
6.1

41.9

23.7

12.7
7.4
6.9
6.4

6.2
6.4
7.2
6.7
6.5
5.6
7.2
7.1
5.5

8.2
7.7
7.2
8.9
8.0
6.3
12.7
7.3
7.6

10.3
7.5
7.6
9.2
8.3
7.8

10.2
8.9
7.2

0.55 0.65 KPSS

o2 =1

6.0 6.0
69 6.9
6.1 6.1
30.0  20.3
14.6  10.4
94 86
74 74
69 6.9
64 64
6.2 6.2
64 64
72 7.2
6.7 6.7
6.5 6.5
56 5.6
72 7.2
71 7.1
55 5.5
74 7.3
T
72 7.2
85 85
80 8.0
6.3 6.3
9.6 8.7
73 7.3
76 7.6
9.8 9.7
75 7.5
7.6 7.6
83 82
83 83
7.8 78
88 85
89 89
72 7.2

10.4
10.1
10.2
51.2
46.7
49.2
1.8
2.5
1.8

7.6
6.2
7.0
8.5
8.1
7.4
9.0
7.3
8.1

22.5
17.3
18.0
19.6
16.6
174
26.2
224
20.3

20.4
15.7
15.0
20.2
15.4
15.8
19.6
13.8
15.9

00
6.5
0.8
5.6
8.8
8.0
8.6
7.5
7.2
7.0

6.8
6.7
6.0
7.5
6.9
6.6
7.1
6.9
5.9

6.9
7.3
6.0
7.1
6.2
6.3
8.8
9.1
7.0

8.9
8.8
8.8
8.6
8.5
6.8
7.3
9.2
8.1

0.45
6.5
0.8
5.6

40.8

23.4

14.3
7.5
7.2
7.0

6.8
6.7
6.0
7.5
6.9
6.6
7.1
6.9
5.9

8.0
7.3
6.0
7.5
6.2
6.3
11.7
9.2
7.0

9.6
8.8
8.8
9.9
8.5
6.8
8.9
9.2
8.1

02 =2

0.55 0.65 KPSS
6.5 6.5 108
5.8 5.8 10.7
5.6 5.6 8.5

274 193  50.5
13.9 105  49.5
101 8.9 493
75 7.5 1.8

72 7.2 2.0

7.0 7.0 2.6

6.8 6.8 7.7
6.7 6.7 7.0
6.0 6.0 7.0
7.5 7.5 7.8
6.9 6.9 7.1
6.6 6.6 8.2
7.1 7.1 8.3
6.9 6.9 7.3
5.9 5.9 8.2

7.0 6.9 20.8
7.3 7.3 17.5
6.0 6.0 17.4
7.1 7.1 19.6
6.2 6.2 17.4
6.3 6.3 15.4
9.5 8.9 24.2
9.1 9.1 22.5
7.0 7.0 23.6

8.9 8.9 17.7
8.8 8.8 15.2
8.8 8.8 15.3
8.9 8.8 19.1
8.5 8.5 16.9
6.8 6.8 15.8
7.8 7.3 20.0
9.2 9.2 16.2
8.1 8.1 15.8
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Table 3: Empirical powers (x10%) of the proposed test T, defined as (6) for Ky = 0 with
the untruncated critical value (¢, = o0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations €; R (0,02).
The nominal size of the tests is 5%.

o2 =1 02 =2
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 5 0.5 40 117 942 884 84.0 842 124 938 895 845 832
70 11.7 965 929 84 909 126 971 938 903  91.0
100 11.3 98.0 955 922 955 11.8 981 955 925 955
0.9 40 13.1 992 973 946 91.1 141 994 982 96.2 928
70 148 998 99.1 979 953 145 999 997 99.1  95.0
100 164 999 995 99.1 97.2 154 100.0 999 99.6 974
—0.5 40 56 822 751 676 815 62 842 756 682 818
0 63 921 8.1 8.0 9.1 65 908 8.7 795  89.2
100 5.8 942 895 8.2 945 59 945 906 86.0 94.2
Model 6 (0.8,0.3) 40 11.8 943 888 823 820 124 93.0 871 812 813
70 11.8 96.6 92.7 83 90.1 11.2 965 92.6 8.1  89.9
100 121 984 954 91.8 953 10.8 98.0 95.8 921  95.0
(09,05) 40 11.8 953 900 842 8.5 122 953 888 833 826
70 122 972 93.8 898 89.2 113 973 938 90.0 90.6
100 11.6 986 964 927 948 11.2 978 952 91.2 938
(0.95,09) 40 131 950 90.0 839 830 120 954 90.7 858 845
0 11.6 973 93.8 897 90.2 128 975 944 898  90.1
100 13.7 99.0 964 923 952 11.6 982 957 925 948
Model 7 (0.4,0.2) 40 148 980 952 906 8.9 148 983 954 91.1 858
70 154 991 970 938 920 141 993 972 943  91.6
100 16.6 99.6 988 96.5 96.5 15.7 99.6 985 96.3  96.0
(0.5,0.1) 40 142 991 959 91.3 847 158 987 959 912 853
70 148 994 972 940 91.2 143 994 97.7 948 913
100 150 99.6 985 96.2 955 153 99.3 982 96.5  95.0
(0.6,0.1) 40 145 992 971 933 872 153 989 96.7 932 868
70 157 99.7 985 962 935 176 99.7 987 97.0  92.0
100 164 998 99.1  97.7  95.7 159 100.0 99.5 98.6  96.0
Model 8 (0.8,0.3) 40 6.7 100.0 100.0 999 985 6.2 100.0 100.0 100.0 98.2
70 6.3 100.0 100.0 100.0 99.7 6.0 100.0 100.0 100.0  99.2
100 7.0 100.0 100.0 100.0 99.8 6.1 100.0 100.0 100.0  99.9
(09,05) 40 7.0 100.0 100.0 100.0 984 7.0 100.0 100.0 100.0 98.5
70 5.5 100.0 100.0 100.0 99.5 6.0 100.0 100.0 100.0  99.3
100 5.9 100.0 100.0 100.0 99.9 6.2 100.0 100.0 100.0 99.8
(0.95,0.9) 40 80 100.0 100.0 100.0 985 6.8 100.0 100.0 100.0 98.6
70 73 100.0 100.0 100.0 99.2 6.3 100.0 100.0 100.0  99.7
100 6.1 100.0 100.0 100.0 99.9 5.3 100.0 100.0 100.0 100.0
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as Y, = Yt(d) = Y;(fq + y;(d’” =.. Zk ! Y(d for any k£ > 1, which implies that

y(k) 1 ¢ d @
3T = 3 D v -V HY -7}

t=k+1

1 d - 1 d _ g1 i
= > WYY ST VY )
t=k+1 v
Meanwhile, for each 0 <14 < k — 1, it holds that
Z Yd 1Y(d) Z Yd 1) dz Y, (:ii_l)+"'+Y}(d_1)} (23)
t=k+1 t=k+1
and
d 1) (d = d—1)+(d = d d d
IRl TENED DER LI FC B DR ABR LN
f=h J=kt1—i j=kt1—i
1, 1 - J 4
= SR SR -5 > -y

j=k+1—i

where n; = n —i. Note that Y, —v¥ = vV 1fa > 2 by (2 87), (2.142) and Theo-

rem 2.17 in Tanaka (2017), we have (n?d_z)_l Z?iﬂYj(d) ]_ }2 = a’o? fo F? ,(s)ds and

(n?dil)_l{yﬁ)}z Do O'QFC% 1(1) as n; = co. Due to Yk@i = Op(1), then we have

a2o?
@1y D, a0
T2d—1 E: A AT 26F§71(1)- (24)
t=ht1

For any 0 < j <14, by the Cauchy-Schwarz inequality, it holds that

. d—1),(d—1)
PR Aeab e

<
t=k+1 t=k+1 t=k+1
@) @ & @ 2
:[Z{Y;e Y 1}] {Z{Y tjl}:|
t=k+1 t=k+1
= 0p(n*7?).

When d > 2, together with (24), (23) leads to

S VIV~ 0, i-1), (25)
t=k+1
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for any 0 <4 < k—1. Since n= 'Y, 1y Yt( ZYt(lZ , =nt Z?Z k+1 Z{Y‘(l) - Yj(i)l}yj(i)l, b
— 1 D .
(2.89) in Tanaka (2017), n= '3, YO0 By a262{ (1 W () dW(t) + (1 — A)/2} with
A =a? > 720 1[)?, which implies that 3", Y(O)Y(l) 1 = Op(n ) Hence, (25) holds for any
d>land 0<i<k-—1.
Sj —d—1/2 \n (d) D 1 (d Dy _
ince n S Y = aoe [y Fy—i(s)ds for any d > 1, then >0, VY =

Op(n?@71) for any d > 1 and 0 <4 < k — 1. Hence, (22) leads to

v(k) 1 ¢ d o _
D DR L AR SR N (O

t=k+1
1 «— d ) —k
N e e )
t=k+1 t=k+1

Also notice that n~—2? Z?:l{Yt(d)}Q Dy 252 fo F? 1 (s)ds. For any k > 1, it follows from
the continuous mapping theorem that n=2%+15(k) Doa 252 fo V2 (s)ds, where Vy_i(s) =
Fy1( fo Fy 1 (s)ds. For k = 0, since n=29+14(0) = n=2¢ ztzl{Y;(d) — Y}2, we then also
have n 2d“'y(O) = a’0? fo V2 (s)ds. We complete the proof of part (i) of Proposition 1.
We now consider the case with pg # 0. Let Ut(o) = > 2o ¥jer—j with {¢;} and {e} specified
in (4). Recall V; = Y(d + Zk IY(d Y for any k > 1. Then Y; = Yo(d) + St VAR

J1=0 "t—j1
Recursively, we have

Y, = +ZY

Jj1=0
W t—1 t—j1—1 g
d (d—1) d—2)
I IR ICAERED DRt
J1=0 J2=0
d=h) t—j1——Jjh-1—1 t—1 t—=j1——Jja—1—1
GRS SR S ED S S
J1=0 Jjh=0 J1=0 Ja=0
— t—ji——Jja—1—1 ©
0
+Z Z e N—
J1=0 Ja=0
Define wy = 25 Ly - 520 2y amd = S50 S 2 Y, Notiee
that Y_3_) ==Yy =0. Then Y; = Yt(d) = lq - wt +ry. For any k > 1, we have
Ak 1§ > >
2d — padil Y Vi -Y)¥%-Y)
t=k+1
,UfQ n 1 n
— B > k= @) @)+ ey D (=) 1)
t=k+1 t=k+1
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n n
Hd - = Hd _ _
+ PO Sy (Wi — @) (ry — F) + TSy Z (re—p — 7)(wy — ),

t=k+1 t=k+1
where @ =n~1 Y} | wy and 7 =n~1 Y} | ry. Notice that

t—1 t—jo—1 t—jo—-—Jg—1—1

V=32 3 > U,

J2=0 j3=0 Ja=0

we have 1 ~ I(d) without the drift term uy. Applying the result of part (i), we know that
n=CHD ST (e = P) (e =) = op(1), nm GV, (Wi — @)(re — T) = 0p(1) and
n~(2d+1) St (ri—k — F)(wy — @) = 0p(1). Notice that wy = O(t%). Thus n~244(k) L Ga 113,
where ¢g = limy, o p~(2d+1) Y otp1(Wi—p — @)(wy — ). Similarly, for & = 0, we also have
Y = wy + 7y, then n=299(0) = p2n 247130 (wr — @) (wp — @) + 240 24710 (wp — @) (e —
7) +n 271N (ry — 7) (14 — T), we therefore conclude n~24%/(0) LN Gaopi. We complete the
proof of part (ii). O

4.2 Proof of Proposition 2
Since X; = p1 + 72 Yjer—j and € bk (0,02), then we have 4, (0) L 72(0) = o2 >0 % and

~ P e
Y(1) = 72(1) = 7? ijo ViPjt1-
We first consider the case u; = 0. Recall that we have shown in the proof of Proposition 1
that .
1 2 — _
HAO) +3D) = 5 Y= TP+ Opln) B 26202 [ Vi) ds.
n n — 0

It follows from the Slutsky’s Theorem that

A0) +4(1) b, 2 Vi)t
F(0) +92(1) 7207 + 22520t

We complete the proof of part (i).
We begin to consider the case with 1 # 0. As we have shown in the proof of Proposition
that n=24(1) L $1.1143 and n=24(0) L $1,014%, it then holds that

1., . P
E{W(O) +5(1)} = (¢1.0 + d11)11
which implies that

1 500 +4(1) @ (¢1,0 + Pr.1)?
n? 45(0) +92(1) o2(30520¥E + 2520 Yitit1)

Notice that ¢1 = lim, oo 3 Y 1 (wr — @)? and ¢y 1 = limy, oo n 3> 1 o (w1 — @) (wr — @)
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with w; = Zj ,01 =tand @ =n"1t>1 w = (n+1)/2. Then ¢ = ¢ = 47! 01 s2(2 —
5)2ds = 1/12. We complete the proof of part (ii). O

4.3 A useful proposition

Define P
Ty = 2{4a(k) — A1 (k)}y(k) . (26)
k=0
Notice that
| 2Nk
Folk) =An(k) = 5 D A0G =) Vipk — ) —7(k)}
t=N+1
1 N—k
-~ > AW = ) Yigr — ) —v(k)}

2N k N
> o-y- Yy Jo-
N—k+1 1

t=1 t=N—k+

N+k
+(Y ( >+

t=N+1 t=2
(e 3 i

where N = [n/2]. Recall that y; , = 2{(Y; — pt)(Yeyr — 1) — (k) }sgn(k +t — N — 1/2) for each
t and k. Then

2N—k
Y2(k) = A1 (k 2Nzytk 2N Z Ytk
t=N— k+1
N+k k N
NUSIETS SR S DRI D [
N—k+1

t=N+1 t=2N—-k+1 t=1 t=

Ry,
9 N 2N
remeg (- Y o
t=1 t=N+1
Rz,k
2N—k
2N Z Ytk — 2N Z Yek + (Y — p) Ry
t=N—-k+1
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with R, = Ry ;,+ Ry . Notice that Q; = Zf:(’o E i With & = 2y py(k) foreach t =1,...,2N —
K. It holds that

Ko 2N—k
ZZM——Z Z i +2(Y — MZRW (27)
k 0 t=1 k=0t=N—Fk+1
T
where
2N—Ko Ko Ko 2Nk N
EEE IR N (IS VICTEED DI IS
t=1 k=0 k=0 “Mt=2N-—Ko+1 t=N—k+1
| 2N-Ko 1 Ko 2Nk
= 5N Z Qt‘i‘ﬁZ( Z Stk — Z ftk)-
t=1 ) k=0 “t=2N-Ko+1 t=N—k+1
I it

In the sequel, we use C' to denote a generic positive finite constant that may be different in
different uses. For two sequences of positive numbers {a,} and {b,}, we write a, < b, or by 2 aq
if there exists a positive uniform constant ¢ such that aq/b; < c for any q. We write a, < b, if
and only if a; < b, and by S a4 hold simultaneously. We first present the following result.

Proposition 3. Let K, = 1+ Ky. Under the null hypothesis Hy with Conditions 1-3 being
satisfied, if Ky = o{nsB=1} with £(B,s1) defined as (9), then it holds that

2N
dy, := sup |P(v/nT}* < u) — @<7uﬁ>‘ —0

ueR Ban—k,
as n — oo, where ®(-) is the cumulative distribution function of the standard normal distribu-
tion.
4.3.1 Two auxiliary lemmas

To construct Proposition 3, we need to analyze the two terms I and II in (28), respectively.
Recall E(Q¢) = 0 and E(& ) = 0 under Hy. Lemma 1 gives the Berry-Esseen bound for

P(B—Zi@ < u> — o (u)

with B2 = E{(3>_}%, Q¢)?}, and Lemma 2 gives an upper bound for the tail probability of the
term II in (28). Notice that II = 0 when Ky = 0. Our Lemma 2 focuses on the non-trivial case
with Koy > 1.

A, = sup
u€ER

(29)

Lemma 1. Let K, = 1+ K. Under the null hypothesis Hy with Conditions 1-3 being satisfied,
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then it holds that
A, < [{381—1771—(&‘1—2)/2 + Kflm—(ﬁ—l)(81—2)/(25+2)

for any m > 1, provided that K1m~B-D1-2)/(2642) — (1), where 8 = B1(s1 — 2)%/{2s1(s1 —
1)}.

For each ¢ and 7 > 0, denote by F' . and F°. the o-fields generated by {Qy}u<; and
{Qu}ust+r, respectively. Recall L and FpP. be the o-fields generated by {Y,}.<¢ and
{Yu}u>t+r, respectively. It follows from the definition of the new process {Q;} that Ft . C
FHEo and FRe C Fg°.. For each 7> 0, it holds that

a@(T) := sup sup |P(AB) —P(A)P(B)|

t AeFt ,BEFX.

< sup sup |P(AB) — P(A)P(B)| (30)
baertlo e,
= Oé(|’T - K0|+) )

where |- |4 denotes the positive part of -. Since a(7) — 0 as 7 — oo, then ag(7) — 0 as 7 — oo,
which indicates that the new process {Q:} is also a-mixing with a-mixing coefficients ag(-).
By Condition 1 and Cauchy-Schwarz inequality, we have E(|(Y; — u)(Yirr — 1)|**) < ¢;. When
K is finite, Theorem 2 of Sunklodas (1984) shows that A, < m~(F=1D1-2)/(28+2)  Since the
tuning parameter Ky may diverge with n, Theorem 2 of Sunklodas (1984) cannot be applied
directly. Lemma 1 here extends Theorem 2 of Sunklodas (1984) to the more general triangular

array case. The proof of Lemma 1 is given in the supplementary material.

Lemma 2. Let K, = 1+ Ky. Under the null hypothesis Hy with Conditions 1 and 2 being
satisfied, then
> }

| Ko 2N—k N
P{‘ﬁ > ( Yoo bw— Y, &,k)
< K, exp{—CK;*(en)?} + K*n(en)™*

k=0 “t=2N-Ky+1 t=N—k+1
+ K£51+1)31/(51+31)+1n(€n)7([31+1)81/(51+81)

for any € > 0 such that en/K, — oo.

Proof. By the triangular inequality, it holds that

| ko IN—k N
P{‘WZ( S bk— Y, §t,k>

k=0 “t=2N-Kop+1 t=N—k+1

> <

2N—k

Ko eN Ko N eN
S| X al)eir(| X owR) @
k=0 t=2N—-Kop+1 k=0 t=N—-k+1
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for any € > 0. We will use the Fuk-Nagaev inequality to bound the terms on the right-hand
side of (31). For each fixed k = 0,..., Ky, similar to (30), we know {& 1} is also an a-mixing
process with a-mixing coefficients ay(7) < a(|7 — k|4) for all 7 > 0. It follows from Condition
1 and Lemma 2 of Chang, Tang and Wu (2013) that P(|§; x| > ) < Ca™*! for any « > 0. By
Theorem 6.2 of Rio (2017), we have

eN (en)? /2 Rg2si-lpsi-ly
P > <1 o 0 0 C
< K*> ~ { + CTK,‘&} + (en)s1

2N—k

Z ik

t=2N—Kp+1

Kiﬁl"'l)sl/(ﬁl"'sl)rﬁl(81*1)/(51+31)n
(gn)(51+1)51/(51+81)

and

Z S| >

4 S
T CrK} (en)s
K£51+1)31/(51+31)T51(81—1)/(514‘81)”

(en) B+ D1 /(Br+s1)

“

+

for any 7 > 1 and ¢ > 0 satisfying en/(rK,) > c., where ¢, is a uniform positive constant.
Therefore, (31) leads to

1 Ko 2N—k N
P{'ﬁ Z ( Z §tk — Z ft,k> 5}
k=0 N t=2N—Ko+1 t=N—k+1
- (€n)2 —r/2 Kfsl,rsl—ln K£ﬁ1+1)s1/(51+S1)+1T51(51_1)/(61+81)n
~ K*{l " Cr K4} (en)st * (en)(Brt1)s1/(Bi+s1) :

Notice that (1 +271)™® — e~ as 2 — co. With a sufficiently large but fixed r, we have

1 Ko 2N—k N
v (X ae ¥ )l
k=0 “t=2N-Kop+1 t=N—-k+1

< K, exp{—CK,*(en)?} + K2 1n(en) ™
4 K£51+1)51/(51+51)+1n(€n)7(51+1)81/(51+S1)

for any ¢ > 0 such that en/K, — co. We complete the proof of Lemma 2. O

4.3.2 Proof of Proposition 3

Now we begin to prove Proposition 3. By (28), Lemmas 1 and 2 imply that

IN— Ko
P(v/nT* > u) <IP’< Z Qi > u—e>
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ES (S a3 )

t=2N—-Ko+1 t=N—k+1

2N (u —¢)
<1—-P ————~ Aon_
< {B2NKO\/5} + AoN_K,

+ CK, exp(—~CK4e?n) + CK 2 p(e2n) /2
n CK£51+1)81/(51+81)+1n(azn)_(61+1)81/(261+281)

2Nu
<1—-®( ——— C Aon_
> <BQNKO\/H> + Ce + Agn Ko

+ CK* eXp(—CK;452n) + CKESln(€2n)fsl/2
+ O PrDs/Brts) ), (2 )= (Bi+1)s1/(2B1428)

for any £ > 0 such that ey/n/K, — 0o. On the other hand, analogous to (33), we have

2Nu
P T >]1 - ————— | —Ce— Aon_
(VnT;y" > u) > (BQN—KO\/E> € IN— Ko

— CK, exp(—CK*?n) — CK2*'n(e?n)~1/?
_ CK£51+1)81/(51+81)+1n(€2n)7(51+1)sl/(261+2sl)

for any & > 0 such that e/n/K, — oo. Therefore,

2Nu
d = Su P TLT** <u)— O ——mm—
" ueg (\/_ " ) <B2NK0\/E>‘

Se+Aon_k, + Ky eXp(—CK;4g2n) + KESIn(€2n)781/2

+ K£61+1)51/(51+51)+1n(€2n)*(ﬁ1+1)81/(261+251)

for any € > 0 such that ey/n/K, — oo. Since K, = o{n¢3=1)} with £(8, s,) defined as (9), there
exists suitable selection of ¢ = o(1) such that d,, = o(1). We complete the proof of Proposition

3.

4.4 Proof of Theorem 1
4.4.1 An auxiliary lemma

To prove Theorem 1, we need the following lemma.

(]

Lemma 3. Let K, = 1+ Ky. Under the null hypothesis Hy with Conditions 1 and 2 being

satisfied, then

~ _ < _ —1 2 s1—1 —351
Jmax P{u(k) = 5(k)| > ¢} S exp(~CK'ne?) + K2 nfen)

+ n(en) " BrtDst/(Bits)
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and

~ B < . —1 2 s1—1 —51
o P{[Az(k) —v(k)| > e} S exp(=CK, 'ne") + K3 In(en)

+ n(gn)—(51+1)81/(ﬁ1+81)

for any € = o(K,) such that en — oo and € = o(nf1/*1).

Proof. Recall that

1N*k
1(8) = 1) = = 3 (Vess = )Y = ) = 7(F)
t=1
N—k N—k
- D0+ G- |+ - 2
t=1 t=1

Same as (32), it holds that

N—k
1
oéﬁiﬁop{‘ﬁ ;(K&Jrk — ) (Yo —p) — ’Y(k)‘ > 6}
(€n)2 —r/2 Ks1717,,81*1n nrﬁl(slfl)/(ﬁlJrsl)

CrKyn (en)st (en)Brt1)s1/(Bits1)

~

for any » > 1 and € > 0 satisfying en/r > c,, where ¢, is a uniform positive constant. With

sufficiently large r, we have

N—k
1
oé%%’%op{‘ﬁ ;(Ym — ) (Ve — p) —v(k‘)‘ > 6}

< exp(—CK;lnesQ) + K,flfln(fm)*s1 + n(an)*(ﬁlﬂ)sl/(ﬁﬁsl) .

Applying Theorem 6.2 of Rio (2017) again, we have

n€2>—7’/2 nrB1(2s1-1)/(B1+2s1)
(

- _ ne’
P(JY —ul>¢) S <1 T en) 2oL B/ (Bi+251)

for any r > 1 and € > 0. With sufficiently large r, we have
P(IY — l > &) S exp(—Cne?) + n(en) 211D/ (Gr+21) (34)

for any ¢ > 0. Analogously, we have

N—k
1
— — > < _ 2 —2s1(B1+1)/(B1+2s1)
P{‘N ;:1 (Y, ,u)‘ > 6} < exp(—Cne”) + n(en)
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and

N—k
1 3 2 s
P{'ﬁ = (Ve — /‘)‘ = 8} < exp(—Cne®) + n(en) 251 O1HD/(G14251)

for any € > 0. Therefore, it holds that

N _ < _ —1 2 s1—1 —S1
oZax P{n(k) (k)| > e} S exp(=CK, 'ne”) + K n(en)

+ n(en)”BrtDst/(Bitsi)

for any ¢ = o(K,) such that en — oo and € = o(n/*1). Similarly, we can prove the other
result. We complete the proof of Lemma 3. U

4.4.2 Proof of Theorem 1

Now, we begin to show Theorem 1. Recall T}, = ZkK:(’O |42(k)|?. For each u € R, we have
Ko
P(VAT, > ) = B[Va Y (12 - [ () > i
k=0
with @ = u — \/ﬁsz:‘)o |91 (k)|?. Notice that
Ko Ko Ko
D e ®)P = 3 k)Y =T + > {Ae(k) = v(k)}* = > (k) — v (k)}?,
k=0 k=0 k=0
where T is defined as (26). It follows from (27) that
Ko
P(v/nT, > u) < P(V/nTF > i —6) + P[Z{%(k) —y(k)}? > 5]
k=0

B Ko S
(v~ ) ZRmm\ >3} (35)

< P(VnT >a—26)+ IP{
k=0

Ko
T P[me R > 6}
k=0

for any § > 0. Write § = maxo<i<x, |7(k)|. Same as (34), we have

i

Ko KO
ZRW(IC)‘ > K*He} < ) P(|Rk| > ¢)
k=0 k=0

< K, exp(—CneQ) + K*n(en)*Qsl(51+1)/(61+281)
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for any € > 0. Let § = K.f0e with

max[n_1/2 log1/2 K*7K£ﬁ1+251)/{281(51+1)}n—51(251—1)/{251(61+1)}] = o(e).

Then we have

P{'(Y —M)iRm(k)‘ > g} =o(1).

k=0

Since K, = o{néB=1)} with (3, s1) defined as (9), there exists € = o(1) satisfying § = o(1) and
max[n~1/2log!/? K*,K,EBNL?SI)H?SI(61+1)}n_61(251_1)/{251(51“)}] = o(e). Hence,

Ko
P(VAT, > u) < P(VAT™ > i — 26) + P[Z{%(k) ()} > 8| +o(1) (36)
k=0

for some § = o(1). On the other hand, by Lemma 3, we also have

Ko
P> (at) 20 > 8] = o)
k=0

with such suitable selection of . From (36) and Proposition 3, we have

P(\/nTy, > u) < P(v/nTr* >4 — 25) + o(1)

zN(a_za)}
<1-@d 2T Lo
B {B2NK0\/5 @
2Nu
<1—0 ———— ) +C6+dy+0(1
(BQN—KO\/E> D

for d,, defined in Proposition 3. Letting § — 0, we have

2N
P(v/nT, >u)<1—-—® ———— | +d,, +0o(1).
(Vs > w) <B2N—Ko\/ﬁ> »toll)
Analogously, we can show
2N
P(v/nT), > u Zl—tﬁ(i)—d —o(1).
(VAT > u) B ) ol
We complete the proof of Theorem 1. O
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4.5 Proof of Theorem 4

4.5.1 An auxiliary lemma

Lemma 4. Under the null hypothesis Hy with Conditions 4 and 5 being satisfied, then

ml Npq m b K2/
Z K(i) [E Z {QiQi—j — E(QtQtj)}] ‘ = Op(W) )
=0 t=j+1

Proof. Let (;; = Qi+;Q¢ — E(Qt+;Q¢). It follows from the Markov inequality that

E(|¢41%27%)
sup sup  P(|¢G ] > ) < 7;/2
0<j<m—11<t<m—j o2

for any x > 0. By the Jensen’s inequality and the Cauchy-Schwarz inequality, Condition 1
leads to E(|¢;,51°2/%) S E(1QuQ:l*>?) < {E(1Qu5]7) 1 {E(|Q:[*2)}1/? < K32, By the triangle

inequality and the Davydov’s inequality, we have

1 1 ' HH
Var<a Z Ct,j) S W Z |COV(Ct1,j7Ct27j)|
=1 t1=1ta=1
1 e 2 1
S o 26 + 1y 2 [Cov(Gin )]
t=1 t1<t2
K 1
,S W* + W Z ‘COV(CthjaCt%j)‘

1<tg—t1<j
1<ty,tp<m—j

1(7)
1
=D DI (RN

JHl<tg—ty<m—j—1
1<ty,tg<m—j

~~

11(7)

Here we adopt the convention II(j) =0if j+1>m —j — 1. If 1 <t9 —t; < j, by the triangle

inequality, it holds that

|Cov(Cy s Cto) | < |E(Qty Qb4 Qt, Qtnrs) — B(Qr, Qo )E(Qty 15 Qur45) |
+ |E(Q1, Q) E(Qry 45 Qty15) — B(Qr, Qty 45)E(Qry Qr 1) |
< B(Qn Qiy 45 Q1 Qo t) — B(Qr Qi )E(Qry 15 Qua15)|
)

+ |E(Qt Q) E(Qt 45 Quo )| + [E(Qr, Q1 +5)E(Q1, Qo) | -

It follows from the Davydov’s inequality that [E(Q, Q)| < K2{ag(|ka — k1|)}' %2 and
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|E(Qt1 Qt1+th2 Qt2+j) - E(Qm QtQ)E(Qt1+th2+j)| 5 K:}{O‘Q (tl + .] - t2)}1_4/82a ThUS,

LK ‘ ‘ s
1) 5 WZ’W—J—TH{O‘Q(J—T)}I 4o
T=1

K

4 7
5 2 lm = =l {ag(r) e
T=1

4
+ [TZ*; (m — j)min(j,m — j){ag(j)

}2(32—2)/52
K "
S EZ{QQ(T)}I o2
7=0

where the last inequality is based on the facts ag(j) < ag(7) for any 7 < j and (m—j) min(j, m—
J) <X m.

If j+1 <ty —t; <m—j—1, by the Davydov’s inequality, we have |Cov((, j, (i i) S
KHag(ty —t; — j)} =42 which implies that

KA ot 2
HG) S —5 > Im=2j =7l {agm} ™2 < == 3 {ag(n)}==.
m m
T=1 T=1

Recall that ag(7) < a(|T — Kol|4+) and >2°%  {a(r)}' /2 < co. Then I(j) +11(j) < K2m™L.
Together with (37), we have Var(m™' Y777 ¢ ;) < K2m~!. Notice that

S(m) = j;:“(i) B tél{@@u ~EQQr-)]
-EH@)GE)-EH )

; j=

<

It follows from the Jensen’s inequality that
m—1

E{|S(m)[?} < { > K(i)‘}{mzé

Jj=0 Jj=

b2 KD
m

J
o =
(&)
where the last step is based on the fact ZT;OI I(j/bm)| < bm. By the Markov inequality, we
have

Var(a) |

S AV b K2/
ZK<%> [R Z {QiQi—j — E(Qt@t—j)}} ‘ = Op (W) :
7=0 t=j+1
We complete the proof of Lemma 4. O
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4.5.2 Proof of Theorem 4

Let m = 2N — Kj. Define

with G; = m™! doiei1 E(QQi—j) if j > 0 and G = m~! >oie i1 E(Qt4;Q) otherwise. Our
proof includes two steps: (i) to show V,, — Vi, = 0,(1), and (ii) to show Vi, — Vi, = o(1). It
follows from these two results that V,, — V,, = op(1). Due to Bl? = (V, and Bf > col for all
¢ > 1 with some uniform positive constant c¢g, we know V, is uniformly bounded away from
zero. Thus V,, — Vi, = op(1) implies f/m/Vm Lo

Notice that

m—1 . —1 .

~ A j ~ ] ~

Vi = Vi = E ’C<b—>(GJ—GJ)+ E /C(b—>(G]—GJ) .
=0 m j=—m+1 m

I II

To show V;, — Vi = 0,(1), it suffices to show T = 0,(1) and IT = o, (1), respectively. Recall that
Gj=m™! PRI QiQ;—j if >0 and G; = m™! D1 Q1+;Qq otherwise. For any j > 0, it
holds that

G = % > Qi+ % D> (Qr— Q)i

t=j+1 t=j+1
+ % > Q@ — Qi)+ % D (Q = Q) @y — Qiy),
t=j+1 t=j+1

which implies that

j=0 t=j+1
m—1 . m
+ Z K(i) {% ‘ Qi - Qt)Qt—j} (38)
7=0 t=j+1
m—1 . m
+ Z IC(%) {% Z Qt(@t—j - Qt—j)}
j=0 m t=j+1
m—1 . m
+ (D)L Y @@ -a)
j=0 t=j+1



Notice that

|Qr — Q| S ZI (Ve = 1) Yeqr — w15 (k) — (k)|

Ko Ko

+ [V = pl > Yirk — pl AR + Y = ullYe = pl Y 1A(K)] (39)
k:}?o . k=0

HY = uPY AR+ D AR = v()IF (k) +(K)] .-
k=0 k=0

Define
e0) = { g B9 =20 <.

0<k<Kp

Restricted on £(¢), it holds that

max |Q; — Q| < Kye max 1Y — pl? + Y — p ax |Y;: — pf

1<t<m
+ Kol — g max |Vi—pl + |V = pf* + KoV —pf?
+ K.’ +¢.
Same as Lemma 3, we have
P{E(e)°} < ZP{\’Y (k)| > e}

S K* exp(—C’K* ne?) + K22n(en) ™% 4+ K,n(en)~Pet2)s2/(Bats2)

If we select ¢ = C.(n 'K, log K*)l/ 2 for some sufficiently large C, > 0, we then have that

K, exp(—CK'ne?) < KO 1k, = o(n'=2/*2) it holds that K5*n(en) =52+ K,n(en)~ (B2+2)s2/(Bats2) _y
0 which implies P{€(e)°} = o(1). Same as (34), under Condition 5, it holds that |Y — u| =

Op [n—(252=1)B2/{252(B241)}] | By the Markov inequality, Condition 5 implies that maxj<¢<n | Yz —

| = Op{n'/2s2)} Tt follows from (40) that

K2?10g'? K,
max \Qt Q| = OP<W> ’

1<t<m

which implies that

S 5 e
ASRNGESe) oo

J=
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(b KP10g P K,
=0p nl/2—1/s2 )

Similarly, we have

i1 « - b K2/ 1og!/? K,
a> {E Z Qi(Qr—j — Qtj)} = Op( nl/2—1/s ’

j t:j 1
m—1 . 1 m ) me?’l K*
K<b]m> {m > (@ —Q)( @iy — Qtj)} _ Op(ﬁiz?i) ‘
i=0 t=j+1

Due to b2, K?log K, = o(n'=%/%2), by (38), we have
m—1 j Lo
= JZ::O K(a) [E t;rl{QtQt—j - E(Qt@t—j)}] +0p(1).
As we will show in Lemma 4, if b2, K2 = o(m), it holds that
m—1 ‘ m 5/2

Thus, T = 0,(1). Similarly, we have IT = 0,(1), which implies V,,, — V;,, = op(1). We construct
the result (i).
We begin to construct result (ii). Notice that

1 m 9 m—1 m
Vin=—> E(Q}) +— > E(QyQw)
t=1 t1=1to=t1+1
1 m 9 m—1m—ty
= ZE(Q?) +— E(Qt, Q1 +5)
t=1 t1=1 j=1
m—1
=Go+2) Gj.
j=1

Recall K(-) is symmetric with £(0) = 1, and G_; = G; for any j > 0. It follows from the
Davydov’s inequality that |G;| < m™!(m —]')K*Q{on(j)}l_Q/S2 for any j > 1. Thus, by the
triangle inequality,

m—1 .
’Am_VmISQ ,C<bi>—1“Gj’
j=1 "
m—1 Jom—j
S K2y L ag(y-e



m—1

K2 [ &8
i X el - Ky
m =1

Jj=Ko+1

*

N

Kt K2
< ko T § i1=B2(s2—2)/s2 _ (1

J

provided that K?/b,, — 0 and 32 > 2s2/(s2 — 2). We construct result (ii). Therefore, we have

Vin /Vin L 1, which completes the proof of Theorem 4. O
More technical proofs and simulation results are provided in the supplementary material.
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SUPPLEMENTARY MATERIAL S1

Supplementary Material for “A Power One Test for Unit Roots
Based on Sample Autocovariances” by Chang, Cheng and Yao.

A  Proof of Lemma 1

Without loss of generality, we assume p = 0. Let 7 = {1,...,m — 1}. Select h € T and
g € T\{1} satisfying 2¢h < m + 1. We will specify h and ¢ later. For any ¢t = 1,...,m,
let Ay = Qi/By,. Write Z,, = Y ;" A;. For any j = 1,...,q, let W;; = Z;gﬁ;}l“ A,
Zij = Zy — Wy ;. Here we adopt the convention A, = 0if p <0 or p > m + 1. We also write

Zt,0 = Zm. Denote by i = y/—1 the unit imaginary number. For any r = 2,...,q, let

r—1
Ptr—1 = E<At H ¢t,l> and 7, = e uWer _q
=1

with ¢y ; = e?(Zei-1=%00) 1. Define f,,(u) = E(e’™#m). Notice that f/ (u) =i > 7" E(Apeie0).
Then it holds that

m
f&(u) _ ’L'ZE(AtBWZt’O o Atei“Zt’I + Atemzt’l)
t=1
S E[A (e E0 ) 1)e ] 10y B (A7)
t=1 t=1
m - m q r—1 A -
— i3 B4 P) 40 ZE(At { T feivtZea-r=2e — 1}] Z) (B.1)
t=1 t=1 r=2 =1
m q
Ny, Z E <At [H{eiu(zt,l—l—zz,z) _ 1}] eiuZt,q>
t=1 =
m ‘ m  q q
_ Z-ZE(AtezuZt,l) +ZZZE<A etudt,r H¢tl> +ZZE< et Zt,q H%,l) .
t=1 t=1 r=2 =1
On the other hand, we know E(e®?tr) = f,.(W)E(n, + 1) + E[{ne,r — E(ner) }e™Zm] for any
r=2,...,q. Therefore, by (E.1), we can reformulate f; (u) as follows:
m.  q
(Z@tl)fm {Z%lEﬁtz +Zzﬁﬁtr 1E77tr+1)}fm( )
t=1 r=3
m q ‘ m ‘
+iD0 S G 1B (i — E(p )} 5] +0 Y E(Ael%) (B2)
t=1 r=2 t=1

q

U r—1 r—1
+1 Z; Z {E<At6iuzt,r H ¢t7l> — E(At H wt,l>E(emZt,r)}
t=1r =1 =1

=2
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m q
+i ZE<At€mZt’q H%,z) :
t=1 =1
Recall K, =1+ Kj. Let

a= ao(T)YE1=2D/51 and d = 451, K5 E.3
> {aq(n)} 2
T=1

where ¢ is specified in Condition 1. Since ag(7) < a(|7 — Ky|4), it follows from Condition 2
that & < K. To construct Lemma 1, we need Lemmas L1-L5 as follows.

Lemma L1. Under the null hypothesis Hy with Conditions 1 and 2 being satisfied, it holds that

i pra = —u+01(u)

t=1
for any u € R, where

|u|81—1

5 mdh*
m

101 (u)] < %m?’”d?/slf(,}/?{a@(h)}(sl2)/(2s1) n

with d specified in (E.3).

Proof. Notice that e’ —1 —iv = ifov(eit —1)dt for any v € R. By the mean value theorem, we
have € — 1 —iv = i{e’1(") — 1}v for some ¢;(v) € (0,v) if v > 0 and ¢ (v) € (v,0) if v < 0. On
the other hand, it follows from the Taylor expansion that e’ — 1 —iv = —27 1242 for some
C2(v) € (0,v) if v > 0 and (2(v) € (v,0) if v < 0. Thus,

2

B 1.3731 {eigl(v) o 1}3781 ei(8172)42(v) ‘ vsl—l . 19(1)) . ,081—1
B (—1)s1-2251-2 B |

A A i(2(v) 2 ) 512
e’ —1—iv= [i{ezgl(”) —1}v] 381{ - v }

where |0(v)| < 257251 for any v € R, which implies that e — 1 = iv +9(v) - v ! for any v € R.
Recall ¢y 1 = E(Aphy 1) with o g = eZe0=2e1) — 1 and Wiy = Zig — Zi1. Then

zz P11 = Z'Z}E[At{eiu(Zt,O—Zt’l) _ 1}}
- - (E.4)

=—u) E(AWi)+i> E{AWA 0uWy)u "
t=1 t=1
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Notice that Wy = Z;J;]Z:}L 41 Ap. Tt follows from the Jensen’s inequality that

t+h—1
B(Wial™) < Gh— 1" Y E(4,f") < 25— 1) max B(A[).
p=t—h+1

Applying the Holder’s inequality, we have

D OE{JAWT W)} < 2570y {B(J AT M H{E(W ) He D
t=1 t=1

< 257%1(2h — 1)1y max. E(]A¢*) .

Write Z;1 = Zt,l + Zt,l with Zt,l = Zpgt—h A, and Zt,l = sztJrh A,. Tt follows from the
Davydov’s inequality that

E(AiZi1)| < 6{ag(h)} 122 E(| A1)}/ HE(ZE )}
Using the Davydov’s inequality again, we have

B(ZE) <6 3 {B(Ap ") H E( Ay )} ag(lor — pal) 12/

p1,p2<t—h

2/s1
<ot = Al 1+ 28] mox BAFD ]

Notice that A; = Qt/B with Q; = Zk o &k where & . =y, psgn{y(k)} and y, . = 2{Y; Yy —
~v(k)}sgn(k+t— N —1/2). It follows from the Jensen’s inequality, the Cauchy-Schwarz inequality

and Condition 1 that

251K31 1 Ko
E(A™) £ —pe— ZE{mmk —(k)|*}
g1 g1 KO L 4nKSe  d
=T E E(|Y;:Yix]®t) < B = B (E.5)
k=0

which implies

m o 24—51h51—1md
S E{AWHT (W)} €

B
t=1 m
and
5 6\/6d2/81 ~ 81— s
E(AZe)| < gt = Wl (1 + 26)2{ag(h)} 172/ =)

B,
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2/s1
< Tm 2K g () 2 e

for any t = 1,...,m. Analogously, we have

- 2/s1
|E(AtZt,1)| 5 dB—le/QKi/Q{OéQ(h)}(slf2)/(231)

m
for any t =1,...,m. Thus,

m 2/s1
Z (AcZ1) +E(AtZt1)}‘ d32 m?2 KL {ag(h)} 1 =D/,

— m

Since 7" | B(AZp) = 1, then S0 E(AW;1) =1 — 37 {E(A;Zy1) +E(AiZ;1)}. Together
with (E.4), it holds that

ZZ Pt,1 = —U +u Z{E(Atzt,l) + E(AtZt,l)} +1 Z E{Atwsiilﬁ(thJ)}usl_l

t=1 t=1 t=1
= —u+61(u),
where
m 3 m s1—1 3
101 (u)| < g—!mg’/QdZ/lei/Q{aQ(h)}(sl 2/@s1) 4 ’Tnlmdhs1 !
m
for any u € R. We complete the proof of Lemma L1. O

Lemma L2. Let U, = B,,/(32hd"/*\). Under the null hypothesis Hy with Conditions 1 and 2
being satisfied, if |u| < U, and
21{agm <1, (E.6)

then it holds that

dl/sl d2/51h2u2 r s _9)/s
prral 5 B,, | 16" B2 +2_r{0éQ(h)}( A (r=3,0 )

and

o] < 2|u|hd?/*!
Pt1] > B%z

for anyt =1,...,m, where d is specified in (E.3).

T +lh—1 7 . t—(l-1)h
Proof. Let 1y = exp{iu Zp t(—1)h Apt — 1 and ;= exp{iu)_ _ g 1 Apt — 1. Recall
Py = etu(Zei-1=Ze1) _ 1. Notice that Zyj1 — Zyy = Z;J;ltf:(ll_l)h Ay + Zp:tl_ﬁﬂ_l A,. By the
inequality [e%t? — 1| < [e?||e? — 1| + [¢® — 1| for any a,b € C, we have |1b;;] < |th1| + |¢hr 4], which
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implies that

r—1 r—1
er] < E(!At\ 11 \wt,lr) < ¥ E(!At\ I \wt,lwt,m”). (E7)
=1 T1,...,Tr_1€{0,1} =1
For given (7i,...,7,—1), define £ := L(7y,...,7p—1) ={1 <1 <r—1:7=1}. Then
r—1 ~ . _ .
(14 T] e 161 ) =14 T] 90l T 1)
=1 leL leLe

Pick 0 = s1/(s1 — 1). It follows from the Hélder’s inequality that

E(IAAHWM 11 Wul) < {E<|At|6 M Wl I |7,Z)t,l|6>}1/6

lel leLe leL, leven leLe, leven
(6-1)/6
T 16/(0—1 o8/(6—1
S T T
leL,lodd leLe,lodd

Due to Mt,l\ < 2 and ]1[11571] < 2forany l = 1,...,r — 1, by the Davydov’s inequality and the
Hoélder’s inequality, we have

E(’At‘(s I 19’ II Wt,l’é)

leL,leven leLe, leven
<e(af)E( T] 1ol I tut)
leL,leven leLe,leven

+6 x 200TDZIR(| A1)} {ag (h) o1 0/
<{E(ALY T E(ul’) JI E(ul)

leL,leven leLe,leven
480 5 2O D/2E( A1)}/ {ag ()} 1O

and

E{ H CEFIRA H \Qﬁt,l‘é/(é_l)}

leL, lodd leLe,lodd

< H E{\lﬁt,z\é/(é_l)} H E{wt’lyé/(é—l)}Jrgrx257"/{2(5—1)}@Q(h)_
leL,lodd leLe,lodd
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By (E.5) and the inequality (z +y)? < 27 4+ y? for any =,y > 0 if v € (0, 1), we have

(14 IT el T 1

lec lece
d1/31 ~ N
<G| I ®Eary” T (Eh)”
m leLl,leven leLe,leven
+ (3T)1/62r/2{04Q(h)}(sl_é)/(slé)] (E8)
><< H [E{mt’”a/(a—n}](6—1)/6 H [E{mma/(a—n}](6—1)/6
leL,lodd leLe,lodd

+ (37“)(6_1)/62T/2{04Q(h)}(é_l)/6> )

On the other hand, by the Taylor expansion, it holds that

~ t+lh—1 t+lh—1
P = iexp {icu Z Ap}{u Z Ap}
h

p=t+(1—1) p=t+(l—1)h

for some ¢ € (0,1). Recall 6 = s1/(s; — 1), then §/(6 — 1) = s;. It follows from the Holder in-
equality that {E(|sl?)}5 < {E(|gal)}/*1 and {E(Jual®)}5 < {E(|a])}/*1. Together
with the Jensen’s inequality and (E.5), we have

t+lh—1 t4+lh—1

- o ) oo Jultheid
B <l E(| S 4 ) shpnet Y B4l < MEEL @)
p=t+(I—1)h p=t+(I—1)h m

which implies {E([¢)y|*)}/*1 < |uhd/*1 B;,'. Analogously, we have {E (|t [*1)}'/* < |u|hd'/*' B;1.
Notice that s; € (2,3] and 0 < ag(h) < 1/4 for any h > 0, then (s1—2)/s1 < 1/s1 < (s1—1)/s1
and {ag(h)}/* < {ag(h)}*172/51. Hence, if |u| < U,, (E.8) implies that

_ R dl/s1 wlhdl/si\ (r—1/2 B B
E<|At| H |¢t,l| H |7/)t,l|> < |:<‘ ’ > + (37“)(81 1)/812r/2{aQ(h)}(81 2)/51:|

B, B,
lel leLe
hdl/si\ (r=1)/2
« |:<|U|B ) _|_(3T)1/312r/2{aQ(h)}1/31:|
d'1 T [ Ju|hd'/*
<
<5 ("5

r—1
) T (3112 {ag ()} e/

1/s1\ (r—1)/2
+ (@)D g2 <%> (a2
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Since there are 21 different selections of (71,...,7,._1), then (E.7) implies that

d'/s1 [ ( 2|ulhdt/
r (s1—1)/s1
el 5 G| (P ) i aan)

1/s1\ (r=1)/2
n <2|U|;Ld ) T‘(sl1)/812T{C¥Q(h)}(812)/81:|

for any |u| < U,. Thus, if |u| < U,, we have

d1/31 |:d2/slh2u2 7,,(3171)/31

"Ptr 1’ ~ B 1632 —+ or {aQ(h)}(Sl—Q)/Sl +7“4r{04Q(h)}(51_1)/81]

for any r = 3,...,q. Moreover, it follows from (E.6) that rd" {ag(h)}*1~1/51 < 27" {ag(h)}5172)/=
for any r = 3,...,q. Thus, it holds that

dl/sl d2/81h2u2 r
. - BV (s1—2)/s1

for any r = 3,...,q. We have the first result of Lemma L2.
Recall ;1 = E(Awe 1) and |91 < |1Zt,1| + |1/A)t,1|. By the Holder’s inequality, (E.5) and
(E.9), we have

lpe1] < E(|Aebea|) + E(| A1)
< {E(| A |2V 4 (B (| Ay |7/2) V!

7 S1 7 s S1 2 th/sl
< AE(AP ) [{E (e )} + {E (1)} < < 2ufhd ™

B2
We have the second result of Lemma L2. O

Lemma L3. Let U, = B,,/(32hd"/*\). Under the null hypothesis Hy with Conditions 1 and 2
being satisfied, if |u| < U,, 169 > mY? and (E.6) is satisfied, then it holds that

m g 1/s1 2/s112,,2
md d*/ 31 h=u
(s1—2)/s
1 E(ne,2) —l—tElrngtr 1Emr—|—1)‘ B [ B + {ag(h)}* 1}’
q

Z

m
(Ptr 1E {ntr - (nt,r)}ewzm]
t=1

d1/51m1/2 ~ d2/51h2u2 2 /s
S T (7 )T g

and

>

1/2d1/51 |:d2/slh2u2
t=1

BE,

E( et ta H%&l)

g 2.

m
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where & and d are specified in (E.3).

Proof. Recall that n; , = e~ Wer _ 1 with Wiy = Z;Jrgh Nll 41 Ap. By the triangle inequality, we

have

m q m m q
zw 2) + 303 @ 1 E(nr + 1) \ | <3 I Emah + 35 ol
t=1 r=3 t=1 t=1 r=3

By the Taylor expansion, it holds that 7,2 = —iexp(—icu Z;f%h o 11 Ap)(u zggﬁ o 41 Ap) for

some ¢ € (0,1). Then (E.5) implies that

t+2h—1
4hju|d"/
E(lneal) < lul > E(l4p) = — 55—

p=t—2h+1

It follows from Lemma L2 that

R

t=1 r=3

mh2d3/slu md1/51 d2/31h2u2 o1_2)/s
S [ o+ lag) 2|

1/s 2/s112,,2
T |+ faamye

We have the first result of Lemma L3.

For any complex number a € C, we denote by a the complex conjugate of a. Notice that
|er| <2forany t =1,...,mand r =2,...,¢q. For any r = 3,...,¢, by the Cauchy-Schwarz
inequality, we have

2
r = E(ner) e

m 2 m
<o |-+
t=1 t=1

m
Z thl,rflsbtz,T*lE[{ntl,T - E(ntl,r)}{ﬁtm?’ - E(ﬁtz,r)}]

t1,t2=1

}eiuZm

— E(ner) o~ E(mer)}

|

m

< Z |90t1,T*1||90t2,T*1|{E[{ntl,r - E(ntl,r)}{ﬁtz,r - E(ﬁtQJ‘)}H

tl,tg_l

S Z’(Ptr 1‘ + Z ‘()Otl,T' 1”‘:0152,7" 1HE {77151, (ntw")}{ﬁtmr_E(ﬁtmr)}”'

t1<to
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It follows from the Davydov’s inequality that

‘E[{nm,r - E(ntl,r)}{f]tg,r — E('F/tz,r)}”
< LE (e o)} By 1))V g (2 — 1 — 2rh 4 21)} 12/
<{ag(ta — t — 2rh + 2|4)} 51 -2/

for any t; < to, which implies that

Z "Phﬂ’—lutpmﬂ’—l"E[{nhﬂ’ B E(Wn,r)}{ﬁtz,r - E(ﬁmﬂ”)}]‘

t1<to

S ot {aqlts — 1 — 20k +2]4)} 172/
t1<ta

S < Z “Ptl,r—lem,r—l‘) |: Z {aQ(’tQ —t1—2rh + 2’_,_)}(3172)/31

t1<to t1<to

S ( Z |80t1,r1||80t2,r1|>m(rh+d).

t1<tg

Therefore, we have that

S etotE [ — E(me)}e2n] | < mU 202002 4 612 S oy,
t=1 t=1

It follows from Lemma L2 that

q

2.

r=3

m

Z otr—1E[{ner — E(ner) e

t=1

d1/31m1/2

d2/31 h2u2

o T {ag()} 72 (E.10)

(h1/2 + d1/2)|:

For r = 2, applying the facts {E(|n;,|>)}"/2 < {E(|n..[)**}/*1 < 4h|u|d/*1 B! and |pp1]| <
2|ulhd?/*1 B;,? as stated in Lemma 1.2, we have

2

m
> euiE[{m2 — E(n2)te™4m]
t=1

4,4 36/s
<hud/ﬂ

m+ > {aq(ts — tr — 4h + 2|3 )} 172/
t1<to
4,4 6/s
< W dTm

S s m(h+ &) .
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Hence, together with (E.10), it holds that

>

r=2

m

Z Spt,r—lE [{7715,7" - E(nt,r)}ewzm]

t=1

dl/s1m1/2

2/s17,2, 2
< (h1/2+d1/z)[w+{aQ(h)}<512)/51].

B,

We have the second result of Lemma L3.

Notice that . .
‘E<At€iuzt’q H%J) < IE<|At| H |¢t,l|> .
=1 =1

Applying the technique to bound E(|A¢| [[/=} [+.4]), the upper bound of |g;,_1|, stated in (E.7),
with the restrictions (E.6) and 167 > m!/2 it holds that

~ B, | 161B2

- d1/31 d2/31h2u2
~ B, [ml/QB?n

q 1/s1 2/511,2,,2
; d d*/* hou _9)/s
‘E(AteZUZt’q | |wt,l>‘ < [ + %{QQ(h)}(Sl 2)/ 1]
=1

+ {ag(h) /]

for any |u| < Uy, which implies that

q
E (Atemzt’q H T,Z)t,l>
=1

Then we have the third result of Lemma L3. |

m

2

t=1

S

m/2q1/s1 [ q2/51 p24,2
ol

2 ag(n) 2.

Lemma L4. Let U, = B,,/(32hd"/*V). Under the null hypothesis Hy with Conditions 1 and 2
being satisfied, if lu| < U, and (E.6) is satisfied, then it holds that

m A 1/s
Z {}E(At@zuzt’l)‘ 5 mg ! {aQ(h)}(s1—1)/81
t=1 m

and

md/s1

m

S {ag()}yer=2/F.

S

r=2 t=1

r—1 r—1
E (AteiuZt,r H 1/1257[) _E (At H wt,l>E(eiUZt’r)
=1 =1

Proof. Recall that Zyy = Z1 + Zpy with Zyy = S0t Ay and Zy1 = Y0, Ap. Tt follows
from the Davydov’s inequality that

IE(Ae?1)| S {B(| AP0t 1)V ag ()} o1 D/
= {E(‘At’m)}l/sl{aQ(h)}(slfl)/sl )
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By (E.5), we have the first result of Lemma L4.
Let Zt,r = Zpgtfrh A, and Zt,r = sztJrTh A,. Then Z;, = Zt,r + Zt,r. Without loss of
generality we assume that Z; , # 0 and Z;, # 0. It follows from the triangle inequality that

r—1 r—1
‘E <At6iu2t,»« H ¢t,l> _ E(At H ¢t7l>E(eiuZt,r)
=1 =1
r—1 oor—1 ~
< ‘E<Atemzt’r H ¢t,l> - E<At€iuzt’r H wt,l>E(ei”Zf”)
=1 =1
L r—1 r—1 o
+ ‘E(Ateluzt’r H Ibt,l) — E(At H ¢t7l>E(eZUZt,r)
=1
‘ (At H e z)
) r—1 o r—1 )
< ‘E(AtGWZt’r H wt,l> _ E<At6w2t,r H 1/Jt7l>E(€iuzt’”")
=1 =1
o r—1 r—1 o
+ 'E(Atewzt’r H T/Jt,l> - E(At H T/)t,l>E(ewZ“)
=1 =1

+ {}E(eiuztw) _ E(eiuzt’r)E(eiUZt’r)

[B(e"7)

+ UE(GZ'UZW«) _ E(eiuzt,r) ( zuZt r

|80t,r71| .

By the Davydov’s inequality, it holds that |[E(e®%tr) — E(eiuzﬁ,r)E(ei“Zt’r)| S ag(2rh),
r—1 or—l -
‘E(Ateiuzt’r H wt,l> o E(Ateiuzt’r H w“) E(eiuZt’r)
=1 =1
r—1 1/s1
< ooy fe (g Tt ) |
=1

and

=1 r—1 o
E (AteiuZt,r H wt,l> _ E(At H 'L/}t,l> E(ezuZt,r)
=1
1/s1
< fagmper /e {5 (L H wm)} .

Recall ¢y ; = e™(Zti-1=Z11) — 1. Then (E.5) yields that

r—1
251(r—1)d
s s srl s
(1 T ) <20 s < 25,
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which implies that

r—141/s
L 2d™

r—1 r—1 B
‘E(AteiUZt’r l]:Il 'L/}t,l> o E(Atei“Z“ ;l:[l wt,l>E(eiuZt’r)‘ < Tm{aQ(h)}(slfl)/sl
and
- r—1 r—1 » 2r—1d1/51
(e 11 o) (4 11 v ()| £ T gy e

On the other hand, it follows from Lemma L2 that

d1/31 |:d2/sl h2u2

T S1— S
ool $ 5 | S+ laa®H 2] (=3, g)

and
2|u| hd?/1

loe1]| <
B2,

for any t =1,...,m. Thus,

‘ r—1 r—1 ‘ qudl/sl
E <Atewz” 1T z) -E (At 1T l) E(e4tr) ‘ < S {ag(h)}sr b/
I I Bm
=1 =1
By (E.6), we have 27{ag(h)}/** <2724 < 1, which implies
- r—1 r—1 -
E <At€th”" H ¢t,l> —E <At H ¢t,l> E(ewzt”")
=1 =1
We complete the proof of Lemma L4. O

o fr2c o \THETD
U**—mln{<BS%mdh > ,%,a—l

for some sufficiently large C' > 0, where ay,as, a3, aq,b1 and by will be defined in the proof below.
Under the null hypothesis Ho with Conditions 1 and 2 being satisfied, if 169 > m'/?| K, = O(h),
and (E.6) is satisfied, then it holds that

md/s1
By,

S {ag(h)yr=2/sr

Lemma L5. Let

AmSa1—|—a2+a3+a4—|—b1+bgU**—|—U*;1

provided that B;L2m3/2d2/31Ki/Q{aQ(h)}(SI*Q)/(QSI) is sufficiently small, where d is specified in
(E.3).
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Proof. Let

0s(u) = { S B + 33 g1 By + 1)} |
t=1

t=1 r=3

It follows from Lemma L3 that

[02(u)] S

dl/slm |:d2/81h2u2

| T+ lagmye ]

Based on (E.2), it follows from Lemmas L3 and L4 that
it = {13 s+ 020 bt + Rl
t=1

for any |u| < U,, where

|R(u)| < %W(hm +a'?) + dlg;m{%(h)}(mz)/m
for any |u| < U,. Together with Lemma L1, we have
Fr(w) = {—u+ 01(w) + 02(w)} fn(u) + R(u) (E.11)
with
01(w)] S %m?’/?d?/ﬂKi/Z{aQ(h)}@l—%/@sn n %mdhﬂ_l.

Let 6(u) = 01(u) + 02(u). By solving the linear differential equation (E.11), we have that

fm(u):exp{—u;—i—/ouﬁ(w)dw}. [1+/OUR(w)eXp{w72—/Owﬁ(v)dv}dw]

for any |u| < U,, which implies

| fin(u) — /2| <

for any |u| < U,. We will bound the two terms on the right-hand side of above inequality,
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respectively.
Clearly, if |u| < Uy, it holds that

[ ol < [ '; 6()|dw

Cylul®

Cat® 30 0/, -1/2 (s1-2)/(251) s1—1
C*mdl/sl d2/s1 213 o _9V/s
B [ B2| | +{ag(h)} /5y

= a1|u| + asu® + az|ul® + aglul™

for some sufficiently large C, > 0. Since Bn_fm?’/QdQ/slKi/2{aQ(h)}(51_2)/(281) is sufficiently
small, we can have

Cx 1

as = B_2m3/2d2/s1Ki/2{aQ(h)}(sl—2)/(251) < T (E.12)
Let
12C “Ue=2) g
< U, = mi dh®1~t ,— E.1
lu| <U. min {(Bﬁf% m > ' Toa al} (E.13)
for some sufficiently large C' > 0. By the Davydov’s inequality,
1 m m
B = mvar( =30 Q) = L B(Q) + X B4 Q)
\/m t=1 t=1 t1#£t
SO CE(QP) + D AE(IQn ™Y HE(Qu )Y {ag(lts — t2)} 200
t=1 t1#ts

Recall Q¢ = B, Ay and d = 4% ¢; K31, Tt follows from (E.5) that

By, S md** + &y {ag(lty — o)}
t1#t2
m—1
= md?/* 4+ 2d*° Y " (m — 7){ag(r)}

T=1

< md?* 4 2md** a < mK?3 .

Recall U, = Bm/(32hd1/sl) and K, = O(h). Then U,, < U, for sufficiently large C' > 0 specified
in (E.13). Under (E.12) and (E.13), we have that | [’ 6(w)dw| < u?/4 + 1 for any |u| < Us,.
More generally, we have | [ (w) dw| < (u* — w?)/4 + 1 for any |u| < U,.. Therefore,

‘fm(u) — 67“2/2| < (ar|u| + agu® + az|ul® + a4]u\sl)e’“2/4
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u 2 2
+ ‘ |R(w)| exp <— Ly w_> dw‘ (E.14)
0 1

for any |u| < U,.. It follows from the facts & < K, and K, = O(h) that

3/810,1/27,5/2,,2 1/s1
R(w)] £ ST St g oA

=:b —|—b2u2

for any |u| < U,, where Cy, > 0 is a sufficiently large constant. According to integration by

parts, it holds that

Jul Jul
/ w?e”’ /Mt dw < 2|u|e”2/4, / e’/ dw < min(2)u| ™, |ul) - e °/
0 0

and
0 0
/ w?e” * dw < 2]u\e“2/4, / e’/ dw < min(2fu| !, Jul) - e %

—|ul Jul

which implies that
/ |R(w)| exp (— uz + %) dw‘ < by min(2]u| L, [u|) + 2bs|ul

for any |u| < U,,. Therefore, (E.14) leads to
— e‘“Q/Q‘ < (a1]u| + agu® + ag|ul® + aglul*)e /4
(E.15)

+ by min(2u| ™, |u]) 4 202 |ul

for any |u| < Uss.
Denote by F,(x) the distribution function of B,,! 3" | Q;. By the Essen’s inequality [The-

orem 1.5.2 of Ibragimov and Linik (1971)], we have
U**

du + ¢

fm(u) — e/
Uss

u

Am= sup |Fn(z) - 8(x)| < = /U

—oo<r<oo

It follows from (E.15) that

1 U**
Bm < _/ (a1 + aslu| + aglul® + aglul e "*/1d
7U>k*

T
1 (U C
+—/ {by min(2|u|"2,1) + 2by} du +

T J—Us.s Ui

ga1+a2+a3+a4+bl+b2U**—|—U*;1,

We complete the proof.
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Now, we begin to simplify the upper bound for A,, specified in Lemma L5. Recall that a; =<
nglmdl/sl{aQ(h)}(sld)/sl’ ay = Ba2m3/2d2/31Ki/Q{aQ(h)}(31*2)/(251), a3 = B;L?’md?’/slhz,
ay =< B 5'mdh®' ', by =< a; and by =< B 3d%*1m!/2h%/? with d specified in (E.3). Notice
that B2, > com, d = 4°1c; K3t and ag(r) < o]t — Ko|+) with a(r) < e, then a3 <
m1/2K*’h _ KOL—LBl(Sl—Z)/Sl’ as < m1/2Kf/2]h _ KOI:LBI(SI_Q)/(QSI), az < m2K3h2, ay <
m~ =22 g1 and by < mU2EK,|h— Kol /% Recall 2gh < m+1 and g > 2. Thus,

Am S m1/2K::)/2|h _ K0|;61(8172)/(281) _|_ m71/2K3h2 + m7(8172)/2K:1h8171 + bQU** + U,,:kl .

To make A,, — 0, it suffices to require h — Ky — oo and m~(1=2/2#1ps1=1 = o(1). Due to
K.h =o(m"?) and s; € (2,3], we know (m~/2K3h?)/{m~(1=2/251p51-1} < 1. Then,

A, S ml/QKf/zlh . Ko‘;ﬁl(sl_Q)/(Qsl) + mf(slfQ)/2Kj1hslfl 4 byl + U*;l ) (E.lﬁ)

Notice that

12C V=2
o = i dhsr—! —_—, —
v — { < Bﬁf% mn > ’ 12&3 ai }

for some sufficiently large C' > 0, a; =< B;'md"*'{ag(h)}*1=2/51 and a3 < B;3md>/*1h2.
Recall U, = Bm/(32hd1/51). As we have shown in the proof of Lemma L5 that U,, < U,, we
have

1/2p5/243/s1 By, Bs1 —1/(s1-2)
bQU**-i-U;kl < m . ( n > + a1 + a3

~ T B hd/st  \mdhsi 1
ml/2p3/2 2/ Bs1 —1/(s1-2)
= B2 (mdh511> +ap +as

1/23/2 12 B e
— m
<m h“Kg + (me1h81—1> + a1 + as

The last step is based on the facts B2, > com and d < K?'. Since B2, > com, it holds that
B, imK2 h* = O{m~ 1722 K51 5171 Due to sy € (2,3] and m~ (122 K5ip5-1 = (1),
then B;le/(sl*2)m1/(81‘2)Kfl/(51*2)h(sl—l)/(sl—Q) < BosimKS bl < mmm22gsipsi—,
Since h — Ko — oo and (m~/2K3h2)/{m~(1=2/2K51p51=1} < 1, it holds that m~Y/2h3/2 K2 =
o{m~(1=2/2s1ps1-11 Together with (E.16), we have

A < m1/2Kf/2|h _ KO|;61(31—2)/(251) + m—(sl—z)/2Kjl psi—1 (E.17)

We set h = K + |m¢] for some ¢ > 0. Then (E.17) implies that

A < ml/QKf/meﬁlC(ﬂ*2)/(281) + m*(81*2)/2[(381*1 + m*(81*2)/2[(:1m(81*1)< )
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Write £; = 28(s1 — 1)s1/(s1 — 2)? for some > 1. Then

Ap < ml/QKf/Qm*BC(Srl)/(SI*2) + m*(31*2)/2K381*1 + m*(81*2)/2K:1m(81*1)C )

Choosing ¢ = (s1 —2)/{(8 + 1)(s1 — 1)}, we have

A < K= (B=D/@8+2) 4 g2a1-1p,=(51-2)/2 | prsiyy, —(8-1)(s1-2)/(26+2)

To make A,, — 0, we need to require K51m~(B-1(1-2)/(26+2) — (1), Together with the fact
s1 € (2,3], we know KS/2m_(5_1)/(26+2) < K5im~(B=D(1-2)/(2842)  Therefore,

Ay S K207 = 0172)/2 4 sy =(B-1)(51-2)/(26+2) (E.18)

Recall Lemma L5 requires 169 > m!/2, 23¢{ag(h)}!/*1 <1, and B,;zmg/QdQ/lei/Q{aQ(h)}(sl_Q)/(Qsl)

is sufficiently small. Notice that B;L2m3/2d2/31Ki/Q{aQ(h)}(SVQ)/(QSI) S K= (8-1/(25+2)

Thus Bn_fmg/de/SlKi/z{aQ(h)}(sl_2)/(281) is sufficiently small provided that K51m~(8=1(s1-2)/(26+2) —
o(1). Select ¢ = (logym)/8. Then 169 > m!'/? holds automatically, and 23%{ag(h)}"/* <
m3/8=CA1/s1 Due to 3/8—(B1/s1 = 3/8—2B/{(B+1)(s1 —2)} < 0, we know 239 {ag(h)}/51 <1

also holds for such selected ¢ and h. Hence, (E.18) holds provided that K51m~(8=1(s1-2)/(26+2) —

o(1). We complete the proof of Lemma 1. O
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Table S1: Empirical sizes (x102) of the proposed test T, defined as (6) for Ko = 1 with the
untruncated critical value (¢, = oo0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2 =1 02 =2
Setting N oo 045 055 0.65 KPSS oo 045 0.55 0.65 KPSS
Model 1 0.5 40 69 69 69 69 102 60 60 60 6.0 115

70 6.1 6.1 6.1 6.1 10.0 6.5 6.5 6.5 6.5 9.8
100 6.7 6.7 6.7 6.7 9.5 4.5 4.5 4.5 4.5 9.0
0.9 40 93 424 296 21.3 HL.7T 89 399 273 191 50.0
70 9.2 244 152 11.6 48.6 9.8 226 143 114 470
100 84 131 96 8.8 51.5 8.9 142 101 9.1 52.8
—0.5 40 73 7.3 7.3 7.3 1.8 75 7.5 7.5 7.5 1.9
70 6.2 6.2 6.2 6.2 2.1 70 7.0 7.0 7.0 1.8
100 6.6 6.6 6.6 6.6 2.0 6.5 6.5 6.5 6.5 1.8

Model 2 (0.8,0.3) 40 6.9 6.9 6.9 6.9 6.9 75 75 7.5 7.5 7.8
70 6.3 6.3 6.3 6.3 6.6 5.8 5.8 5.8 5.8 7.9

100 6.8 6.8 6.8 6.8 6.2 7171 7.1 7.1 6.6

(0.9,0.5) 40 6.5 6.5 6.5 6.5 7.6 70 7.0 7.0 7.0 8.4

70 6.8 6.8 6.8 6.8 8.2 6.3 6.3 6.3 6.3 7.3

100 6.0 6.0 6.0 6.0 7.5 6.1 6.1 6.1 6.1 7.9

(0.95,0.9) 40 7.8 7.8 7.8 7.8 9.8 6.6 6.6 6.6 6.6 7.8

70 6.5 6.5 6.5 6.5 7.0 6.8 6.8 6.8 6.8 7.1

100 6.8 6.8 6.8 6.8 7.1 6.6 6.6 6.6 6.6 7.4

Model 3 (0.4,0.2) 40 83 9.2 8.6 84 208 88 99 8.9 8.8 20.8
0 70 70 7.0 7.0 17.1 73 73 7.3 7.3 18.3

100 73 7.3 7.3 7.3 158 6.9 6.9 6.9 6.9 18.5

(0.5,0.1) 40 79 8.2 8.0 7.9 18.5 9.2 9.5 9.2 9.2 19.9

0 75 75 7.5 7.5 17.8 76 7.6 7.6 7.6 15.8

100 6.3 6.3 6.3 6.3 17.1 83 83 8.3 8.3 14.6

(0.6,0.1) 40 9.8 130 102 10.0 279 115 154 126 11.8 243

70 89 89 8.9 8.9 23.5 8.8 89 8.8 8.8 20.1

100 7.8 7.8 7.8 7.8 21.1 71 71 7.1 7.1 20.2

Model 4 0.4 40 7.8 8.2 7.9 7.8 199 85 88 8.5 8.5 18.3
0 78 7.8 7.8 7.8 157 74 74 7.4 7.4 15.2

100 8.0 8.0 8.0 8.0 14.0 65 6.5 6.5 6.5 15.8

0.5 40 83 96 8.5 8.3 19.9 75 85 7.6 7.5 17.5

70 6.7 67 67 67 146 64 64 64 64 15.7

100 7.5 7.5 7.5 7.5 15.2 70 7.0 7.0 7.0 16.1

0.6 40 82 96 8.6 8.2 19.2 8.0 9.2 8.1 8.0 20.4

0 71 71 7.1 7.1 14.1 (A O Y OV Y OV 16.0

100 7.7 7.7 70T 144 6.0 6.0 6.0 6.0 16.2




SUPPLEMENTARY MATERIAL S19

Table S2: Empirical sizes (x102) of the proposed test T, defined as (6) for Ky = 2 with the
untruncated critical value (¢, = oo0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2=1 02 =2
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65 KPSS
Model 1 0.5 40 69 69 69 69 103 59 59 59 59 111

70 6.2 6.2 6.2 6.2 10.3 5.9 59 5.9 5.9 9.0
100 64 64 6.4 6.4 9.6 5.7 5.7 5.7 5.7 8.5
0.9 40 95 396 282 203 476 11.1 420 298 221 51.0
70 9.7 246 16.1 11.7 485 94 26.1 158 11.8 49.6
100 89 145 102 9.3 50.2 8.8 14.7 102 9.1 50.3
—0.5 40 76 7.6 7.6 7.6 1.8 8.2 8.2 8.2 8.2 1.8
70 65 6.5 6.5 6.5 2.2 6.4 64 6.4 6.4 2.4
100 7.0 7.0 7.0 7.0 2.8 6.6 6.6 6.6 6.6 1.7

Model 2 (0.8,0.3) 40 64 64 64 6.4 7.9 6.3 63 63 6.3 6.3
70 62 6.2 6.2 6.2 7.8 6.0 60 60 6.0 7.1

100 59 59 59 59 7.0 6.6 66 66 6.6 6.2

(09,05 40 71 7.1 7.1 7.1 7.0 6.6 66 66 6.6 7.7

70 58 58 58 5.8 7.1 70 7.0 7.0 7.0 6.6

100 59 59 59 59 7.0 5.7 57 57 5.7 7.1

(0.95,09) 40 83 83 83 83 8.3 6.6 66 66 6.6 9.8

0 68 68 68 6.8 8.8 78 78 7.8 7.8 8.0

100 66 6.6 6.6 6.6 7.7 5.7 5.7 57 BT 6.0

Model 3 (0.4,0.2) 40 10.2 10.8 10.3 10.2 20.9 9.1 102 9.3 9.2 20.1
70 6.7 6.7 6.7 6.7 19.7 70 7.0 7.0 7.0 18.6

100 6.7 6.7 6.7 6.7 18.6 7171 7.1 7.1 174

(0.5,0.1) 40 87 93 8.8 8.7 18.6 9.0 9.3 9.0 9.0 20.8

70 83 83 8.3 8.3 17.1 74 74 7.4 7.4 16.2

100 7.5 75 7.5 7.5 17.0 6.8 6.8 6.8 6.8 17.0

(0.6,0.1) 40 11.1 147 11.8 11.1 26,6 10.3 13.7 11.3 105 259

70 92 93 9.2 9.2 21.1 9.0 9.1 9.0 9.0 21.0

100 74 74 7.4 7.4 20.8 9.5 9.5 9.5 9.5 23.2

Model 4 0.4 40 80 85 8.0 8.0 19.4 79 8.6 8.1 8.0 18.2
70 69 69 6.9 6.9 14.9 76 7.6 7.6 7.6 15.3

100 6.7 6.7 6.7 6.7 14.4 75 7.5 7.5 7.5 15.2

0.5 40 76 85 7.8 7.6 20.1 72 8.6 7.4 7.2 19.1

0 70 7.0 7.0 7.0 15.3 72 7.2 7.2 7.2 14.8

100 6.6 6.6 6.6 6.6 16.2 6.8 6.8 6.8 6.8 16.9

0.6 40 82 98 8.5 8.2 20.2 8.2 9.5 8.5 8.3 18.3

70 80 80 8.0 8.0 15.6 72 7.2 7.2 7.2 15.0

100 7.0 7.0 7.0 7.0 14.1 6.9 6.9 6.9 6.9 15.6
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Table S3: Empirical sizes (x102) of the proposed test T, defined as (6) for Ky = 3 with the
untruncated critical value (¢, = oo0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2=1 02 =2
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65 KPSS
Model 1 0.5 40 65 65 65 65 11.7 62 62 6.2 6.2 9.8

70 54 54 5.4 5.4 9.5 5.3 5.3 5.3 5.3 9.0
100 5.3 5.3 5.3 5.3 10.0 5.8 5.8 5.8 5.8 10.1
0.9 40 9.6 417 298 213 528 11.2 424 305 219 50.5
70 102 270 169 12.1 475 10.6 25.7 16.1 12,7 488
100 9.8 145 108 10.0 49.6 10 154 115 10.2  50.7
—0.5 40 75 75 7.5 7.5 1.5 72 7.2 7.2 7.2 1.4
70 59 59 5.9 5.9 2.4 5.3 5.3 5.3 5.3 2.1
100 6.3 6.3 6.3 6.3 2.1 6.8 6.8 6.8 6.8 2.2

Model 2 (0.8,0.3) 40 7.6 7.6 7.6 7.6 6.3 6.5 6.5 6.5 6.5 8.4
70 58 5.8 5.8 5.8 6.3 6.2 6.2 6.2 6.2 6.3

100 6.0 6.0 6.0 6.0 7.2 2.9 59 5.9 5.9 6.7

(0.9,0.5) 40 74 74 7.4 7.4 7.0 6.4 64 6.4 64 8.3

70 6.8 6.8 6.8 6.8 7.3 70 7.0 7.0 7.0 7.9

100 5.7 57 57 5.7 7.0 6.2 6.2 6.2 6.2 8.0

(0.95,0.9) 40 7.8 7.8 7.8 7.8 9.2 75 7.5 7.5 7.5 8.5

70 66 6.6 6.6 6.6 7.8 6.2 6.2 6.2 6.2 8.7

100 6.0 6.0 6.0 6.0 7.8 6.2 6.2 6.2 6.2 7.5

Model 3 (0.4,0.2) 40 9.2 9.8 9.2 9.2 22.1 88 9.9 9.2 8.9 21.4
70 8.0 81 8.0 8.0 16.9 75 7.5 7.5 7.5 18.1

100 7.1 7.1 7.1 7.1 18.7 75 7.5 7.5 7.5 17.5

(0.5,0.1) 40 10.1 104 10.2 10.1 20.9 9.2 938 9.2 9.2 18.9

70 86 86 8.6 8.6 15.3 72 7.2 7.2 7.2 16.1

100 7777 7.7 7.7 15.6 8.2 8.2 8.2 8.2 17.4

(0.6,0.1) 40 11.5 153 124 11.8 25.6 9.6 124 102 9.8 24.0

70 87 87 8.7 8.7 21.9 9.4 9.5 9.4 9.4 20.6

100 85 8.5 8.5 8.5 21.9 83 83 8.3 8.3 22.7

Model 4 0.4 40 86 9.1 8.6 8.6 17.8 76 8.1 77 7.6 18.1
0 76 7.6 7.6 7.6 14.5 8.0 81 8.0 8.0 16.1

100 6.9 6.9 6.9 6.9 14.3 5.2 5.2 5.2 5.2 16.0

0.5 40 81 9.6 8.3 8.2 20.3 75 83 7.8 7.6 19.1

70 81 81 8.1 8.1 147 70 7.0 7.0 7.0 15.3

100 6.2 6.2 6.2 6.2 14.2 6.0 6.0 6.0 6.0 15.6

0.6 40 80 95 8.1 8.0 189 80 99 8.6 8.1 19.2

70 6.2 6.2 6.2 6.2 14.6 7.8 7.8 7.8 7.8 13.8

100 76 7.6 7.6 7.6 13.2 6.7 6.7 6.7 6.7 16.0
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Table S4: Empirical sizes (x10%) of the proposed test T, defined as (6) for Ky = 4 with the
untruncated critical value (¢, = oo0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2=1 02 =2
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65 KPSS
Model 1 0.5 40 64 64 64 64 9.7 171 71 71 120

70 68 6.8 6.8 6.8 8.1 70 7.0 7.0 7.0 10.0
100 5.5 5.5 5.5 5.5 8.1 5.6 5.6 5.6 5.6 9.7
0.9 40 98 442 302 21.6 527 11.3 419 287 220 479
70 104 25.1 16.1 12.8 484 103 26.0 16.0 12,5 478
100 86 144 101 9.0 494 9.1 147 104 94 50.8
-0.5 40 88 88 8.8 8.8 1.8 74 74 7.4 7.4 1.3
70 6.8 6.8 6.8 6.8 1.8 T4 74 7.4 7.4 2.5
100 6.2 6.2 6.2 6.2 2.1 7.0 7.0 7.0 7.0 2.5

Model 2 (0.8,0.3) 40 7.6 7.6 7.6 7.6 8.2 78 78 7.8 7.8 7.6
70 58 5.8 5.8 5.8 6.7 5.7 5.7 5.7 5.7 7.6

100 59 5.9 5.9 5.9 7.1 9.7 5.7 5.7 5.7 6.4

(0.9,05) 40 74 74 7.4 7.4 8.2 73 7.3 7.3 7.3 7.4

70 59 59 5.9 5.9 7.1 6.1 6.1 6.1 6.1 7.5

100 5.5 5.5 5.5 5.5 7.0 9.5 5.5 9.5 9.5 7.3

(0.95,0.9) 40 69 6.9 6.9 6.9 8.0 70 7.0 7.0 7.0 8.8

0 72 7.2 7.2 7.2 7.8 6.8 6.8 6.8 6.8 7.5

100 64 64 6.4 6.4 8.6 54 54 5.4 5.4 7.8

Model 3 (0.4,0.2) 40 88 9.6 8.9 8.8 22.9 94 104 9.6 9.4 21.8
0 70 7.0 7.0 7.0 18.4 75 7.5 7.5 7.5 18.0

100 8.2 8.2 8.2 8.2 20.2 6.6 6.6 6.6 6.6 18.1

(0.5,0.1) 40 9.7 102 9.8 9.7 17.5 85 9.2 8.5 8.5 20.3

70 89 89 8.9 8.9 15.8 8.2 8.2 8.2 8.2 16.5

100 76 7.6 7.6 7.6 17.8 6.8 6.8 6.8 6.8 17.2

(0.6,0.1) 40 115 153 127 11.8 26.1 109 149 115 11.1  26.2

70 89 9.1 8.9 8.9 21.7 80 8.1 8.0 8.0 21.1

100 7.0 7.0 7.0 7.0 23.0 71 71 7.1 7.1 22.7

Model 4 0.4 40 82 89 8.2 8.2 19.2 73 7.8 7.4 7.3 20.8
70 66 6.6 6.6 6.6 15.8 72 7.2 7.2 7.2 14.0

100 6.7 6.7 6.7 6.7 16.0 64 64 6.4 6.4 14.2

0.5 40 79 8.6 8.1 7.9 19.4 7.8 8.8 8.0 7.9 19.8

0 72 72 7.2 7.2 146 6.2 6.3 6.2 6.2 15.6

100 6.8 6.8 6.8 6.8 143 65 6.5 6.5 6.5 15.2

0.6 40 9.2 10.7 9.6 9.3 19.7 88 103 89 8.8 20.0

0 72 72 7.2 7.2 14.1 6.7 6.7 6.7 6.7 174

100 76 7.6 7.6 7.6 149 6.5 6.5 6.5 6.5 16.2
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Table S5: Empirical powers (x10%) of the proposed test T}, defined as (6) for Ky = 1 with
the untruncated critical value (¢, = o0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2 =1 o2 =2
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 5 0.5 40 140 940 89.0 84.0 837 128 938 89.0 834 844
70 14.0 969 93.8 894 895 141 965 935 8.2  90.0
100 153 982 959 93.0 952 140 979 95.0 920 95.1
0.9 40 141 99.1 979 955  92.7 145 99.6 987 96.7  92.6
70 162 99.7 99.1 985 955 17.0 998 99.6 993 943
100 175 100.0 99.7 99.2 97.7 19.0 100.0 999 99.8  96.9
-0.5 40 6.0 838 758 685 88 59 845 768 69.0 818
0 73 922 8.4 8.0 8.8 71 907 847 780 89.8
100 6.4 9.1 90.8 8.8 946 64 95.0 90.6 8.5 94.7
Model 6  (0.8,0.3) 40 120 942 89.1 833 827 11.8 934 831 822 831
70 123 975 933 888 902 128 97.0 938 8.9  90.0
100 122 98.0 955 919 950 127 98.6 96.0 92.2 958
(0.9,05) 40 144 956 904 8.0 823 138 956 90.6 84.1 823
70 134 978 935 8.5 90.0 128 974 933 882 89.1
100 123 98.6 964 925 955 122 98.0 954 91.2 943
(0.95,0.9) 40 142 96.0 91.5 8.8 831 138 953 89.8 832 829
70 136 975 93.8 895 907 119 973 93.6 838  90.1
100 127 988 96,5 940 953 128 98.0 953 926  95.0
Model 7 (0.4,0.2) 40 146 982 949 91.2 8.2 150 983 954 91.1 86.7
70 157 99.0 970 935 911 17.0 994 979 95.7  92.2
100 16.0 99.6 982 953 950 175 99.6 989 97.8 956
(0.5,0.1) 40 159 986 96.3 925 849 141 988 958 922 858
70 176 99.2 975 948 90.8 157 994 979 962 91.8
100 181 996 984 96.1 963 174 99.7 99.2 979  95.1
(0.6,0.1) 40 156 99.1 970 937 877 159 99.5 978 947  88.0
70 16.8 99.6 985 96.7 920 172 998 99.6 983  92.0
100 175 99.6 99.2 98.0 96.2 177 1000 99.6 99.1  95.3
Model 8 (0.8,0.3) 40 55 100.0 100.0 100.0 99.2 6.9 100.0 100.0 100.0 98.3
70 6.1 100.0 100.0 100.0 99.6 6.3 100.0 100.0 100.0 99.1
100 6.0 100.0 100.0 1000 999 59 100.0 100.0 100.0 100.0
(0.9,0.5) 40 59 100.0 100.0 100.0 99.9 6.2 100.0 100.0 100.0 99.8
70 5.5 100.0 100.0 100.0 984 6.8 100.0 100.0 100.0 98.8
100 6.9 100.0 100.0 100.0 99.2 59 100.0 100.0 100.0 99.2
(0.95,0.9) 40 7.5 100.0 100.0 100.0 98.0 7.0 100.0 100.0 100.0 98.2
70 5.8 100.0 100.0 100.0 993 5.9 100.0 100.0 100.0 99.4
100 6.9 100.0 100.0 1000 999 6.1 100.0 100.0 100.0 99.7
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Table S6: Empirical powers (x10%) of the proposed test T}, defined as (6) for Ky = 2 with
the untruncated critical value (¢, = o0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2 =1 o2 =2
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 5 0.5 40 13.7 944 895 8.7 844 141 946 904 847 849
70 144 971 941 905 908 142 975 948 909  90.5
100 15.0 98.6 96.7 93.8 952 143 983 954 921 952
0.9 40 144 99.1 976 953 925 162 99.6 982 97.0 934
70 182 999 994 984 955 189 100.0 998 99.2  95.2
100 178 100.0 99.7 99.6 979 17.6 100.0 100.0 99.9  97.8
-0.5 40 69 829 753 682 815 6.8 824 755 689 810
0 73 917 849 788 90.1 74 908 8.0 79.2 898
100 6.7 955 90.8 86.1 94.1 7.8 95.0 908 86.7 943
Model 6 (0.8,0.3) 40 152 952 89.8 8.0 829 148 935 877 815 828
70 132 970 936 8.0 903 148 974 933 8.1 90.8
100 13.3 98.7 96.2 935 956 128 98.0 953 923 948
(0.9,05) 40 143 959 90.7 847 838 146 958 90.3 842 835
70 144 973 941 900 91.0 141 977 941 89.2  89.7
100 14.2 98.0 952 915 944 129 985 954 91.8 94.0
(0.95,0.9) 40 16.3 962 91.3 86.7 835 141 96.0 91.3 858 839
70 139 977 943 908 905 145 978 93.8 898  90.2
100 13.5 985 963 932 953 135 982 955 923 954
Model 7 (0.4,0.2) 40 179 988 950 909 8.3 155 980 955 91.3  86.1
70 172 991 971 938 905 162 995 982 96.0  92.0
100 186 99.6 985 969 959 171 99.7 989 97.6 948
(0.5,0.1) 40 16,5 986 962 91.2 8.7 16.6 99.0 97.0 933  86.6
70 170 995 975 942 91.0 166 999 985 964  90.7
100 16.7 998 982 964  96.2 17.8 99.8 99.1 985  95.2
(0.6,0.1) 40 172 992 973 939 875 184 99.2 972 948 87.2
70 171 998 986 966 915 164 995 99.0 975  92.2
100 19.2 99.7 99.0 972 955 189 100 99.7 99.5 959
Model 8 (0.8,0.3) 40 6.8 100.0 100.0 100.0 97.7 6.7 100.0 100.0 100.0 98.9
70 6.3 100.0 100.0 100.0 994 5.3 100.0 100.0 100.0  99.2
100 6.2 100.0 100.0 100.0 998 5.8 100.0 100.0 100.0 99.8
(0.9,05) 40 6.3 100.0 100.0 100.0 98.2 6.4 100.0 100.0 100.0 98.3
70 6.7 100.0 100.0 100.0 99.2 6.9 100.0 100.0 100.0 99.4
100 5.9 100.0 100.0 100.0 999 6.2 100.0 100.0 100.0 99.9
(0.95,0.9) 40 82 100.0 100.0 100.0 98.0 6.4 100.0 100.0 100.0 98.6
70 6.0 100.0 100.0 100.0 994 6.8 100.0 100.0 100.0  99.5
100 5.7 100.0 100.0 100.0 99.7 6.9 100.0 100.0 100.0 99.8
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Table S7: Empirical powers (x10?) of the proposed test T}, defined as (6) for Ky = 3 with
the untruncated critical value (¢, = o0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).
The nominal size of the tests is 5%.

o2 =1 o2 =2
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 5 0.5 40 158 946 895 8.0 832 147 944 90.0 849  83.7
70 137 973 941 909 908 159 972 941 90.2  89.8
100 158 983 955 931 950 149 987 96 93.6 953
0.9 40 138 99.1 975 955 922 143 99.6 985 969 922
70 179 100.0 99.6 989 948 164 999 997 994  95.0
100 186 999 99.7 99.2 974 19.8 100.0 100.0 99.9 974
-0.5 40 79 835 79 689 815 80 834 758 683 825
0 6.7 920 8.7 798 8.7 7.8 913 848 795 893
100 82 9.0 90.0 8.2 939 7.8 948 902 8.2 945
Model 6 (0.8,0.3) 40 149 947 89.6 827 824 140 945 8.4 830 839
70 153 972 939 892 898 152 968 935 8.5  90.0
100 158 978 949 914 945 150 98.0 951 90.9  94.7
(0.9,05) 40 140 950 902 8.0 8.0 145 96.0 90.5 842 826
70 142 972 942 901 915 141 974 935 88.6  89.5
100 154 984 96.0 929 942 159 982 963 92.8 948
(0.95,0.9) 40 129 96.5 91.2 848 8.0 160 955 91.3 858  83.7
70 16.0 972 940 90.1 892 178 979 939 908  90.2
100 153 986 96.0 928 948 168 983 95.8 932 950
Model 7 (0.4,0.2) 40 172 988 9.8 91.2 8.2 179 986 963 928 854
70 188 992 971 937 905 176 991 97.7  96.0 90.4
100 169 99.6 982 962 950 184 99.7 99.2 982 953
(0.5,0.1) 40 158 989 9.7 915 8.2 17.6 988 96.0 923  86.2
70 176 995 978 943 91.0 179 994 987 974 911
100 185 998 99.0 973 96.2 194 99.7 99.0 985  95.1
(0.6,0.1) 40 162 991 972 930 8.4 159 992 972 945  86.8
70 19.1 998 988 972 918 182 999 995 987  92.6
100 199 999 992 979 968 184 1000 99.8 99.5 952
Model 8 (0.8,0.3) 40 6.2 100.0 100.0 100.0 98.2 55 100.0 100.0 100.0 98.6
70 6.9 100.0 100.0 100.0 99.5 6.2 100.0 100.0 100.0 99.4
100 6.2 100.0 100.0 100.0 99.7 6.1 100.0 100.0 100.0 99.9
(0.9,05) 40 6.2 100.0 100.0 100.0 98.2 6.8 100.0 100.0 100.0 98.6
70 6.7 100.0 100.0 100.0 99.2 64 100.0 100.0 100.0 98.9
100 5.8 100.0 100.0 100.0 100.0 6.3 100.0 100.0 100.0 99.9
(0.95,0.9) 40 7.3 100.0 100.0 100.0 98.6 6.9 100.0 100.0 100.0 98.3
70 6.1 100.0 100.0 100.0 996 6.6 100.0 100.0 100.0  99.5
100 5.8 100.0 100.0 1000 999 6.6 100.0 100.0 100.0 99.7
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Table S8: Empirical powers (x10?) of the proposed test T}, defined as (6) for Ky = 4 with
the untruncated critical value (¢, = o0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,

determines the level of truncation for the critical values of 7;,. The innovations ¢ Y (0,02).

The nominal size of the tests is 5%.

o2 =1 o2 =2
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 5 0.5 40 158 935 901 8.0 8.7 146 948 90.7 8.9 849
70 151 97.0 940 898 902 166 965 93.8 90.0 90.0
100 153 982 96.0 934 954 168 984 96.0 92.8 945
0.9 40 158 995 980 96.0 928 14.0 995 981 96.7 915
70 161 99.8 99.2 984 947 164 999 997 995  95.0
100 189 100.0 99.7 99,5 972 17.8 99.9 999 998 975
-0.5 40 73 833 7.0 677 87 69 840 760 676 815
0 88 918 8.1 797 8.6 7.8 930 874 80.8 90.6
100 6.6 945 89.7 8.3 942 82 944 89.6 8.6 941
Model 6 (0.8,0.3) 40 142 945 89.1 828 831 142 950 888 830 828
70 151 968 932 900 8.0 152 971 93.0 8.5 90.0
100 14.1 984 954 913 947 151 984  95.7 92.0  95.2
(0.9,05) 40 150 950 895 8.7 829 165 955 91.0 843 840
70 138 975 939 89.2 895 164 977 947 903  90.0
100 149 987 964 93.8 952 16.8 987 965 935 950
(0.95,0.9) 40 139 94.8 89.8 83.7 832 171 952 90.1 850  83.0
70 16.0 978 93.5 888 839 149 965 93.0 8.6 904
100 164 984 952 915 943 162 985 96.0 93.0 953
Model 7 (0.4,0.2) 40 179 985 950 90.5 8.9 17.1 987 96.0 92.0 864
70 172 992 975 951 913 181 995 979 959 914
100 17.5 998 984 965 963 175 99.7 99.0 983 955
(0.5,0.1) 40 179 987 962 923 8.0 164 988 963 932  86.0
70 182 99.0 96.8 945 91.3 20.8 994 985 969 91.1
100 172 996 98.7 96.3 948 185 99.8 994 988 954
(0.6,0.1) 40 150 99.2 973 940 877 183 99.5 98.0 95.8  86.8
70 192 998 988 975 926 193 998 994 988 925
100 188 999 995 985 955 189 100.0 99.7 99.5  95.7
Model 8 (0.8,0.3) 40 7.8 100.0 100.0 100.0 98.8 6.8 100.0 100.0 100.0 98.0
70 5.7 100.0 100.0 100.0 99.2 7.3 100.0 100.0 100.0 99.6
100 6.5 100.0 100.0 100.0 999 5.5 100.0 100.0 100.0 99.9
(0.9,05) 40 6.7 100.0 100.0 100.0 98.0 7.1 100.0 100.0 100.0 97.9
70 6.3 100.0 100.0 100.0 99.1 5.9 100.0 100.0 100.0 99.6
100 6.7 100.0 100.0 100.0 99.9 6.5 100.0 100.0 100.0 99.9
(0.95,09) 40 7.3 100.0 100.0 100.0 98.2 6.8 100.0 100.0 100.0 98.1
70 59 100.0 100.0 100.0 99.5 6.9 100.0 100.0 100.0 99.2
100 5.2 100.0 100.0 100.0 999 59 100.0 100.0 100.0 99.9
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Table S9: Empirical sizes (x10%) of the proposed test T, defined as (6) for Ky = 0 with the
untruncated critical value (¢, = oo0) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T),. The innovations e <" t(df).
The nominal size of the tests is 5%.

af = 2 af =5
Setting N oo 045 055 065 KPSS oo 045 0.55 0.65 KPSS
Model 1 0.5 40 53 56 56 56 97 62 62 62 62 109

70 49 5.1 5.1 5.1 8.6 6.2 6.2 6.2 6.2 9.7
100 3.8 4.1 4.1 4.1 9.7 55 5.5 5.5 5.5 9.2
0.9 40 9.2 440 305 232 551 82 41.1 282 19.1 51.0
70 6.6 226 14.0 102 509 &1 232 141 10.6 47.2
100 6.2 12.0 8.9 8.1 52.0 80 13.7 96 8.3 49.9
—-0.5 40 59 6.6 6.6 6.6 1.5 75 7.5 7.5 7.5 1.7
70 55 6.1 6.1 6.1 1.5 5.8 5.8 5.8 5.8 1.9
100 4.5 438 4.8 4.8 2.0 6.5 6.5 6.5 6.5 2.5

Model 2 (0.8,0.3) 40 6.5 7.1 7.1 7.1 77 6.2 6.2 6.2 6.2 7.0
70 4.2 48 4.8 4.8 6.5 5.8 5.8 5.8 5.8 7.5

100 4.1 4.3 4.3 4.3 7.1 6.6 6.6 6.6 6.6 6.9

(0.9,05) 40 6.2 6.8 6.8 6.8 6.9 71 7.1 7.1 7.1 7.8

70 40 49 4.9 4.9 6.7 6.5 6.5 6.5 6.5 7.0

100 4.6 5.2 5.2 5.2 7.5 5.5 5.5 5.5 9.5 8.8

(0.95,0.9) 40 6.0 6.8 6.8 6.8 7.6 74 74 7.4 7.4 9.6

0 63 7.6 7.6 7.6 73 6.2 6.2 6.2 6.2 7.1

100 5.7 6.7 6.7 6.7 80 64 64 6.4 6.4 7.3

Model 3 (0.4,0.2) 40 6.9 85 7.8 77201 7.2 83 7.5 7.3 22.1
70 53 6.3 6.3 6.3 172 79 79 7.9 7.9 15.2

100 4.3 5.2 5.2 5.2 181 76 7.6 7.6 7.6 18.2

(0.5,0.1) 40 82 93 9.0 8.9 201 84 94 8.5 8.4 19.7

70 62 73 7.3 7.3 164 7.8 7.8 7.8 7.8 15.5

100 5.6 6.2 6.2 6.2 170 6.2 6.2 6.2 6.2 15.7

(0.6,0.1) 40 81 121 101 97 259 9.2 128 101 94 254

70 70 81 8.1 8.1 221 72 7.2 7.2 7.2 20.8

100 7.0 8.2 8.2 8.2 219 6.6 6.6 6.6 6.6 20.6

Model 4 0.4 40 108 116 11.5 11.3 206 88 9.2 8.8 8.8 20.9
70 9.6 102 102 102 162 93 9.3 9.3 9.3 16.2

100 9.5 101 101 101 141 9.0 9.0 9.0 9.0 16.0

0.5 40 109 125 119 11.8 208 98 10.8 100 9.8 21.2

70 86 94 94 9.4 152 88 88 8.8 8.8 15.5

100 6.8 79 7.9 7.9 16.0 7.0 7.0 7.0 7.0 15.1

0.6 40 9.8 11.8 106 105 203 93 108 94 9.3 19.7

70 69 8.1 8.1 8.1 156 7.6 7.6 7.6 7.6 15.5

100 6.2 7.0 7.0 7.0 149 6.6 6.6 6.6 6.6 15.6
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Table S10: Empirical sizes (x10%) of the proposed test T, defined as (6) for Ky = 1 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations ¢ <" t(df).
The nominal size of the tests is 5%.

af = 2 df =5
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 1 0.5 40 57 62 62 62 110 69 69 69 69 105

70 4.0 4.3 4.3 4.3 9.4 5.7 b7 5.7 5.7 11.0
100 4.2 4.5 4.5 4.5 9.9 5.8 5.8 5.8 5.8 10.5
0.9 40 86 422 296 215 521 102 414 283 21.3 51.7
70 75 251 154 12.0 484 9.3 256 158 120 50.0
100 72 144 108 10.0 53.5 82 134 93 8.6 49.3
—-0.5 40 6.5 7.5 7.5 7.5 1.4 6.8 6.9 6.9 6.9 2.0
70 50 59 5.9 5.9 1.9 6.9 6.9 6.9 6.9 1.5
100 4.5 5.1 5.1 5.1 1.3 5.9 59 5.9 5.9 2.5

Model 2 (0.8,0.3) 40 57 61 61 61 79 71 71 71 71 68
70 47 51 51 51 60 64 64 64 64 6.8

100 3.8 47 47 47 63 52 52 52 52 7.3

(09,05 40 68 78 78 78 62 61 61 61 61 81

70 49 59 59 59 60 57 57 57 57 71

100 45 52 52 52 73 61 61 61 61 65

(0.95,09) 40 65 75 75 75 71 68 68 68 68 7.4

70 51 61 61 61 69 67 67 67 67 80

100 48 59 59 59 76 58 58 58 58 74

Model 3 (0.4,0.2) 40 76 9.7 88 8.6 21.6 8.0 9.0 8.2 8.0 21.7
70 59 638 6.8 6.8 16.8 74 74 7.4 7.4 18.0

100 5.1 6.5 6.5 6.5 19.0 6.5 6.5 6.5 6.5 174

(0.5,0.1) 40 79 9.7 9.2 9.1 17.5 8.2 8.8 8.3 8.2 20.0

70 51 67 6.7 6.7 15.4 8.2 82 8.2 8.2 14.1

100 49 6.2 6.2 6.2 157 6.6 6.6 6.6 6.6 17.4

(0.6,0.1) 40 7.8 11.8 10.0 9.5 276 102 145 113 106  26.8

70 68 88 8.7 8.7 234 8.2 82 8.2 8.2 21.0

100 5.7 7.6 7.6 7.6 21.6 75 75 7.5 7.5 21.0

Model 4 0.4 40 101 10.8 10.5 105  20.2 8.7 9.2 8.7 8.7 19.5
70 92 96 9.6 9.6 14.8 72 7.2 7.2 7.2 14.5

100 79 87 87 8.7 15.4 8.6 8.6 8.6 8.6 15.6

0.5 40 88 103 9.6 9.5 20 85 89 8.6 8.5 18.9

70 74 84 8.4 8.4 14.8 6.9 6.9 6.9 6.9 13.4

100 6.5 7.2 7.2 7.2 15.8 72 7.2 7.2 7.2 15.5

0.6 40 9.2 119 106 104 20.2 8.3 10.1 8.8 8.3 18.9

70 74 84 8.4 8.4 14.6 76 7.6 7.6 7.6 15.2

100 6.5 7.6 7.6 7.6 15.2 6.5 6.5 6.5 6.5 15.0
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Table S11: Empirical sizes (x10%) of the proposed test T}, defined as (6) for Ky = 2 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations ¢ <" t(df).
The nominal size of the tests is 5%.

af = 2 df =5
Setting N oo 045 055 065 KPSS oo 045 055 0.65 KPSS
Model 1 0.5 40 55 60 60 60 104 55 55 55 55 105

70 55 59 5.9 5.9 9.2 5.8 5.8 5.8 5.8 9.2
100 46 5.1 5.1 5.1 10.3 5.0 5.0 5.0 5.0 10.3
0.9 40 10.0 444 31.1 238 534 109 424 296 21.1 495
70 70 244 146 119 485 9.6 239 152 119 484
100 6.3 126 9.7 9.0 51.3 8.4 126 94 8.6 50.3
—-0.5 40 7.2 8.1 8.1 8.1 1.5 75 75 7.5 7.5 1.8
70 43 48 4.8 4.8 1.5 6.2 6.2 6.2 6.2 2.1
100 4.2 4.5 4.5 4.5 1.6 6.6 6.6 6.6 6.6 24

Model 2 (0.8,0.3) 40 6.6 7.4 7.4 7.4 6.5 5.9 5.9 5.9 5.9 7.2
70 49 53 5.3 5.3 5.9 6.6 6.6 6.6 6.6 6.9

100 4.5 5.1 5.1 5.1 7.3 6.3 6.3 6.3 6.3 7.2

(0.9,05) 40 58 6.6 6.6 6.6 7.4 85 8.5 8.5 8.5 7.4

70 47 5.9 5.9 5.9 6.9 5.9 5.9 5.9 5.9 7.0

100 5.5 6.2 6.2 6.2 6.8 5.9 5.9 5.9 5.9 7.4

(0.95,0.9) 40 6.6 7.6 7.6 7.6 7.8 8.1 8.1 8.1 8.1 8.2

70 60 7.2 7.2 7.2 7.3 6.1 6.1 6.1 6.1 8.0

100 5.2 6.0 6.0 6.0 7.6 6.1 6.1 6.1 6.1 7.9

Model 3 (0.4,0.2) 40 6.7 85 7.8 7.8 21.3 8.7 9.6 8.9 8.7 20.5
70 65 7.8 7.8 7.8 18.9 75 7.6 7.5 7.5 17.0

100 5.1 6.5 6.5 6.5 18.3 74 74 7.4 7.4 19.0

(0.5,0.1) 40 82 105 10.0 10.0 20.6 9.7 102 98 9.8 20.2

0 63 79 7.9 7.9 16.7 86 8.6 8.6 8.6 16.4

100 53 7.1 7.1 7.1 16.6 6.9 6.9 6.9 6.9 16.9

(0.6,0.1) 40 9.7 149 123 11.9 26.0 9.8 13.8 10.v 10.2 259

70 68 89 8.8 8.8 21.9 8.2 82 8.2 8.2 21.3

100 6.0 8.6 8.6 8.6 214 73 7.3 7.3 7.3 22.9

Model 4 0.4 40 88 9.6 9.4 9.4 18.9 8.3 8.8 8.4 8.3 21.1
70 89 98 9.8 9.8 15.2 75 7.5 7.5 7.5 14.2

100 7.7 85 8.5 8.5 16.2 72 7.2 7.2 7.2 14.1

0.5 40 9.2 11.2 101 101 21.3 7.7 9.2 7.8 7.8 20.4

70 81 9.2 9.2 9.2 15.8 76 7.7 7.6 7.6 16.6

100 6.5 7.8 7.8 7.8 14.6 6.8 6.8 6.8 6.8 15.0

0.6 40 80 99 8.9 8.7 20 85 94 8.6 8.5 19.8

70 85 96 9.6 9.6 15.2 71 71 7.1 7.1 14.5

100 53 6.7 6.7 6.7 15.5 75 75 7.5 7.5 14.3
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Table S12: Empirical sizes (x10%) of the proposed test T) defined as (6) for Ky = 3 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations ¢ <" t(df).
The nominal size of the tests is 5%.

Setting N

Model 1 0.5 40
70

100

0.9 40

70

100

—-0.5 40

70

100

(0.8,0.3) 40
70
100
(0.9,0.5) 40
70
100
(0.95,0.9) 40
70
100

(0.4,0.2) 40
70
100
(0.5,0.1) 40
70
100
(0.6,0.1) 40
70
100

Model 4 0.4 40
70
100

0.5 40

70
100

0.6 40

70
100

Model 2

Model 3

00
6.0
4.8
5.0
9.8
7.4
8.5
7.1
5.3
4.8

6.5
5.4
4.1
6.8
4.7
4.8
7.7
6.1
0.8

8.4
6.1
6.2
7.4
7.0
6.2
8.2
7.5
6.6

9.8
8.1
5.9
9.0
6.0
5.2
8.5
6.2
5.1

0.45
6.6
5.4
5.3

43.9

22.6

15.2
7.6
6.0
0.8

7.2
6.2
4.5
7.3
2.7
5.4
8.6
7.3
7.0

10.2
8.0
7.4
9.2
8.8
7.4

13.4
9.5
8.9

11.0
8.6
7.0

10.7
7.0
6.5

10.3
7.4
6.2

0.55 0.65 KPSS

af =2
6.6 6.6
54 5.4
53 5.3
321 23.6
144 114
120 111
7.6 7.6
60 6.0
58 5.8
72 72
62 6.2
45 45
73 7.3
57 5.7
54 5.4
8.6 8.6
73 7.3
70 7.0
98 9.7
80 8.0
74 74
88 8.7
88 8.8
74 T4
10.8 105
95 9.5
89 8.8
107 10.7
8.6 8.6
70 7.0
10.0  10.0
70 7.0
65 6.5
9.3 9.2
74 T4
62 6.2

10.2
8.8
10.1
04.3
49.8
54.9
2.0
1.6
1.7

7.2
6.1
6.3
8.0
6.7
7.4
8.5
8.7
7.4

21.3
17.6
19.5
20.5
16.1
17.3
26.0
22.4
23.0

20.2
12.8
16.1
19.6
14.8
16.4
20.2
14.6
14.2

6.7
6.8
2.7
11.0
9.0
8.6
7.0
5.8
6.6

7.2
6.8
6.1
7.3
6.2
5.7
7.0
6.2
6.5

7.8
6.7
7.4
8.7
9.2
7.1
10.9
9.2
6.8

7.9
7.2
6.5
9.0
7.8
6.3
7.8
7.7
6.7

0.45
6.7
6.8
5.7

424

23.9

14.1
7.0
5.8
6.6

7.2
6.8
6.1
7.3
6.2
5.7
7.0
6.2
6.5

8.8

6.7

7.4

9.3

9.2

7.1
13.9
9.2

6.8

8.3
7.2
6.5
10.1
7.8
6.3
9.2
7.7
6.7

af =5
0.55
6.7
6.8
5.7
29.2
14.4
9.5
7.0
5.8
6.6

7.2
6.8
6.1
7.3
6.2
5.7
7.0
6.2
6.5

8.1
6.7
7.4
8.9
9.2
7.1
11.7
9.2
6.8

8.0
7.2
6.5
9.0
7.8
6.3
8.3
7.7
6.7

0.65
6.7
6.8
2.7

20.9

10.9
8.9
7.0
5.8
6.6

7.2
6.8
6.1
7.3
6.2
5.7
7.0
6.2
6.5

7.8
6.7
7.4
8.7
9.2
7.1
10.9
9.2
6.8

7.9
7.2
6.5
9.0
7.8
6.3
7.9
7.7
6.7

KPSS
9.8
9.7
9.4

494

49.6

51.3
1.4
1.8
2.1

9.2
6.8
7.1
8.2
8.6
6.5
8.9
8.9
7.6

20.8
18.8
174
19.0
15.7
15.7
244
19.9
214

20.6
16.3
15.8
18.9
14.9
15.1
20.3
15.8
14.7
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Table S13: Empirical sizes (x10%) of the proposed test T, defined as (6) for Ky = 4 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T},. The innovations ¢ <" t(df).
The nominal size of the tests is 5%.

Setting N

Model 1 0.5 40
70

100

0.9 40

70

100

—-0.5 40

70

100

(0.8,0.3) 40
70
100
(0.9,0.5) 40
70
100
(0.95,0.9) 40
70
100

(0.4,0.2) 40
70
100
(0.5,0.1) 40
70
100
(0.6,0.1) 40
70
100

Model 4 0.4 40
70
100
0.5 40
70
100
0.6 40
70
100

Model 2

Model 3

00
7.3
4.5
5.9
9.6
8.8
7.5
7.5
7.2
5.3

6.8
5.1
3.9
7.8
5.4
4.7
7.1
5.0
4.7

7.7
5.8
7.0
9.4
2.7
5.1
8.9
7.0
6.2

8.6
7.5
5.9
8.8
7.9
6.3
9.8
6.7
5.1

0.45
7.5
5.0
6.2

44.9

25.3

14.4
8.5
7.8
0.8

7.1
5.7
4.7
8.6
5.9
9.5
8.2
6.3
9.5

9.8
7.0
8.6
11.5
6.8
6.5
13.4
9.3
8.8

9.4
8.2
6.6
10.5
8.8
7.4
11.5
8.0
6.3

0.55 0.65 KPSS

df =2
75 715
5.0 5.0
62 6.2
3.9 238
172 138
112 102
85 85
78 78
58 5.8
7171
5.7 5.7
AT AT
8.6 86
59 5.9
55 5.5
82 82
63 6.3
55 5.5
89 85
7.0 7.0
86 86
11.0 1038
6.8 6.8
6.5 6.5
114 108
9.3 9.2
88 88
9.3 93
82 82
6.6 6.6
101 10.1
88 88
74 T4
109 10.7
80 80
62 6.2

10.6
9.3
10.2
51.9
49.9
51.0
1.2
1.3
2.1

6.9
6.2
7.1
7.3
7.0
6.2
8.1
6.8
7.2

20.9
17.1
19.4
19.7
17.5
15.6
26.7
21.6
21.9

20.1
14.1
15.2
19.5
14.8
15.0
19.0
14.2
13.9

00
6.5
5.9
5.3

10.8
9.8
10.5

7.9
7.1
6.2

7.0
5.8
6.3
8.0
0.6
5.7
6.9
6.2
6.7

8.8
8.1
7.0
8.8
7.0
6.6
9.8
8.3
8.2

8.4
5.7
6.9
8.2
6.8
5.7
9.2
6.4
6.5

0.45
6.5
5.9
5.3
44

24.9

15.2
7.9
7.1
6.2

7.0
5.8
6.3
8.0
5.6
5.7
6.9
6.2
6.7

9.8
8.1
7.0
9.2
7.0
6.6
13.7
8.3
8.2

8.9
5.7
6.9
9.4
6.8
5.7
10.4
6.4
6.5

af =5
0.55
6.5
5.9
5.3
31.4
15.2
12.0
7.9
7.1
6.2

7.0
5.8
6.3
8.0
5.6
5.7
6.9
6.2
6.7

8.9
8.1
7.0
8.8
7.0
6.6
10.5
8.3
8.2

8.5
5.7
6.9
8.5
6.8
5.7
9.3
6.4
6.5

0.65
6.5
5.9
9.3

23.2

11.6

11.1
7.9
7.1
6.2

7.0
5.8
6.3
8.0
0.6
5.7
6.9
6.2
6.7

8.8
8.1
7.0
8.8
7.0
6.6
10.0
8.3
8.2

8.4
5.7
6.9
8.3
6.8
5.7
9.2
6.4
6.5

KPSS
10.4
8.5
10.1
51.7
47.9
50.2
2.1
1.8
2.2

7.8
7.1
7.4
8.6
7.5
6.8
8.5
7.8
9.2

21.3
17.7
174
18.5
16.2
15.4
26.3
23.3
214

19.6
16.1
15.4
18.9
15.2
15.2
20.5
15.6
13.6
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Table S14: Empirical powers (x102) of the proposed test T}, defined as (6) for Ky = 0 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,

determines the level of truncation for the critical values of T),. The innovations e <" t(df).

The nominal size of the tests is 5%.

Setting N
Model 5 0.5 40
70
100
0.9 40
70
100
—-0.5 40
70
100

Model 6 (0.8, 0.3) 40
70

100

(0.9,0.5) 40

70

100

(0.95, 0.9) 40

70

100

Model 7 (0.4, 0.2) 40
70

100

(0.5,0.1) 40

70

100

(0.6,0.1) 40

70

100

Model 8 (0.8, 0.3) 40
70

100

(0.9,0.5) 40

70

100

(0.95, 0.9) 40

70

100

00
16.8
15.4
15.4
14.5
18.4
17.6

9.7

9.1

7.2

14.0
14.1
14.2
15.0
15.3
15.1
15.1
15.5
13.8

16.9
16.4
17.2
16.6
18.0
16.2
17.0
16.2
18.8

6.7
6.4
5.1
8.2
6.8
5.1
6.9
6.2
6.5

0.45
95.0
96.9
98.1
99.4
99.9
100.0
84.6
92.8
94.7

94.0
97.7
98.2
95.3
97.2
98.6
95.5
97.9
98.8

98.5
99.3
99.9
98.3
99.6
99.8
99.2
99.8
100

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

af =2

0.55
91.5
94.8
96.4
98.7
99.7
100.0
78.3
88.1
90.5

90.4
94.7
96.2
91.1
94.5
96.4
90.8
95.0
97.0

96.0
98.7
99.6
95.3
98.7
99.3
98.0
99.6
99.9

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.65
87.8
91.0
93.8
97.8
99.5
99.9
72.2
82.5
86.2

84.9
91.2
93.5
86.1
91.0
93.6
85.8
92.2
94.8

93.2
97.4
98.9
91.8
97.9
98.9
96.8
99.2
99.7

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

KPSS
85.4
91.0
95.3
93.0
95.4
98.0
84.0
91.0
95.2

84.3
90.7
94.7
83.2
91.5
94.6
83.0
90.8
94.9

86.6
92.0
95.2
86.0
92.0
95.8
87.9
93.4
96.8

98.6
99.4
100.0
97.9
99.5
99.9
98.4
99.4
99.7

00
13.7
11.7
13.4
12.8
15.3
17.5

7.6

6.2

5.3

12.3
11.2
11.3
11.4
12.8
12.7
12.7
11.5
11.6

15.0
14.8
16.6
14.4
16.7
15.0
14.6
15.2
16.4

7.1
6.4
5.5
8.1
6.9
6.5
6.9
7.1
5.9

0.45
93.5
97.0
97.9
99.2
99.9
99.9
84.0
91.1
95.3

95.0
97.2
97.5
95.5
97.3
98.3
95.2
97.4
98.6

98.0
99.1
99.4
98.4
99.2
99.8
99.2
99.8
99.9

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

af =5
0.55
89.4
93.7
96.4
97.4
99.5
99.7
76.6
85.9
91.3

90.0
93.0
94.9
90.1
93.7
95.8
90.3
94.2
96.2

94.9
97.0
97.8
95.1
97.1
98.4
97.7
98.5
99.4

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

0.65
84.4
89.6
92.8
95.2
98.4
99.5
69.1
79.2
86.6

83.2
88.2
91.8
83.9
88.4
92.5
84.0
90.8
92.7

91.0
94.0
95.5
91.7
93.3
96.4
94.7
96.9
98.4

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

KPSS
83.9
90.3
95.0
92.7
95.2
97.7
80.7
89.7
94.9

82.2
90.5
94.5
83.2
89.5
94.5
83.3
91.5
94.5

87.7
92.2
95.0
86.8
90.8
95.3
87.4
91.6
95.0

97.7
99.7
99.8
98.4
99.4
99.8
98.6
99.4
99.7
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Table S15: Empirical powers (x102) of the proposed test T}, defined as (6) for Ky = 1 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T),. The innovations e <" t(df).
The nominal size of the tests is 5%.

af = 2 af =5
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65
Model 5 0.5 40 167 943 898 855 842 13.6 940 90.0 83.7

0 173 975 948 914 911 13,6 96.5 933 89.1
100 156 979 96.1 935 959 127 979 950 923
0.9 40 158 99.7 989 982 933 141 991 97.8 96.4
70 18.6 100.0 100.0 100.0 96.1 184 999 994  99.2
100 19.5 100.0 100.0 100.0 983 20.0 100.0 100.0 99.8
—0.5 40 97 848 784 71.8  83.8 70 834 758 68.6
0 78 919 872 816 916 65 91.8 8.7 80.3
100 82 949 905 8.5 943 69 947 898 8.2

Model 6 (0.8,0.3) 40 169 94.8 90.5 845 824 140 950 881 828
70 164 970 940 91.1 90.2 135 96.7 932 88.6

100 16.6 985 96.9 94.6 949 113 984 958 925

(0.9,0.5) 40 175 956 91.5 86.5 83.7 132 947 89.6 83.7

70 166 977 949 914 905 148 98.0 945 90.8

100 157 98.8 97.0 958 95.5 13.0 98.6 958 93.0

(0.95,0.9) 40 13.8 957 922 &7.1 839 151 958 91.8 85.0

70 152 982 96.0 94.0 92.0 157 982 946 90.6

100 153 99.1  98.0 96.9 947 135 983 96.2 922

Model 7 (0.4,0.2) 40 19.6 98.7 97.3 953 87.8 16.6 985 950 90.6
70 174 995 99.0 98.2 91.8 164 99.0 971 944

100 17.6 100.0 99.9  99.6 959 164 99.6 984  96.9

(0.5,0.1) 40 199 988 972 95.2 85.8 149 989 96.6 919

70 169 995 99.1  98.5 920 164 992 978 95.3

100 19.8 99.9  99.7  99.5 96.2 171 99.6 982 96.6

(0.6,0.1) 40 172 99.2 982 97.3 88.6 158 994 984 95.6

70 185 100.0 99.8  99.6 925 176 997 988 975

100 204 100.0 99.9 99.8 96.0 16.6 100.0 99.7 99.0

Model 8 (0.8,0.3) 40 7.6 100.0 100.0 100.0 98.5 5.5 100.0 100.0 100.0
70 7.2 100.0 100.0 100.0 99.2 5.1 100.0 100.0 100.0

100 6.7 100.0 100.0 100.0 99.8 6.0 100.0 100.0 100.0

(0.9,0.5) 40 82 100.0 100.0 100.0 98.0 6.0 100.0 100.0 100.0

70 6.6 100.0 100.0 100.0 99.2 6.5 100.0 100.0 100.0

100 6.3 100.0 100.0 100.0 100.0 6.3 100.0 100.0 100.0

(0.95,0.9) 40 7.6 100.0 100.0 100.0 98.2 7.4 100.0 100.0 100.0

70 6.2 100.0 100.0 100.0 99.5 5.9 100.0 100.0 100.0

100 6.0 100.0 100.0 100.0 99.8 6.6 100.0 100.0 100.0

KPSS
83.0
89.8
94.9
92.3
94.9
97.9
82.8
89.3
93.5

81.8
89.0
95.3
82.8
89.8
95.4
84.9
90.3
94.3

85.5
91.3
95.2
85.4
91.9
95.2
87.4
91.3
95.2

98.9
99.5
99.9
98.8
99.6
99.8
98.5
99.5
100.0
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Table S16: Empirical powers (x102) of the proposed test T}, defined as (6) for Ky = 2 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T),. The innovations e <" t(df).
The nominal size of the tests is 5%.

af = 2 af =5
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65
Model 5 0.5 40 171 952 908 858 85.0 160 946 89.7  84.2

70 168 979 957 927  90.8 164 970 944 911
100 17.0 982 96.7 947 947 149 983 96.2 927
0.9 40 16.0 99.7 99.2 985 93.3 149 99.0 978 96.1
70 175 100.0 99.8 99.8 95.0 161 999 995 99.2
100 184 100.0 100.0 100.0 975 16.7 100.0 99.9  99.9
—0.5 40 89 8.4 785 723 83.3 75 837 753 682
70 88 93.0 883 822 91.3 6.5 918 86.2 804
100 75 959 928 88.2 95.2 73 950 904 856

Model 6 (0.8,0.3) 40 183 952 91.0 87.2 8.1 136 939 832 828
0 172 977 949 917  91.0 138 963 93.0 893

100 16.5 988 973 954 953 13.7 982  95.7 926

(09,05 40 176 953 91.2 872 8.0 13.7 958 90.6 85.4

70 166 974 950 919 904 132 979 939 89.8

100 19.2 992 97.8 962 955 155 985 97.0 934

(0.95,0.9) 40 16.6 96.1 924 88.0 8.2 152 952 90.3 84.8

70 154 985 96.7 944  91.6 155 97.7 942 898

100 176 989 981 974 953 151 989 96.8 935

Model 7 (0.4,0.2) 40 176 988 970 950 870 163 982 955 91.6
70 200 998 99.1 984 920 17.7 993 972 945

100 19.8 998 99.7 994  96.0 182 99.5 98.6 96.7

(0.5,0.1) 40 191 986 96.8 947 8.9 155 99.0 958 90.8

70 192 996 992 986 915 172 996 984  96.8

100 20.5 100.0 999 99.7 950 173 995 988 97.0

(0.6,0.1) 40 179 99.6 99.0 98.1 88.5 182 99.6 971  95.0

70 181 100.0 99.8 995 932 187 99.7 99.1 977

100 21.3 100.0 100.0 100.0 96.5 17.0 99.9 995 99.1

Model 8 (0.8,0.3) 40 7.1 100.0 100.0 100.0 98.2 7.0 100.0 100.0 100.0
70 74 100.0 100.0 100.0 99.5 5.7 100.0 100.0 100.0

100 6.9 100.0 100.0 100.0 100.0 6.0 100.0 100.0 100.0

(0.9,0.5) 40 6.8 100.0 100.0 100.0 98.9 6.6 100.0 100.0 100.0

70 6.2 100.0 100.0 100.0 99.5 5.5 100.0 100.0 100.0

100 7.6 100.0 100.0 100.0 99.8 5.2 100.0 100.0 100.0

(0.95,0.9) 40 7.2 100.0 100.0 100.0 983 5.7 100.0 100.0 100.0

70 7.2 100.0 100.0 100.0 99.6 5.8 100.0 100.0 100.0

100 6.2 100.0 100.0 100.0 100.0 6.5 100.0 100.0 100.0

KPSS
83.0
91.1
94.3
92.2
95.5
97.5
82.2
91.0
95.2

81.6
91.1
95.9
83.4
90.1
95.0
82.7
90.1
95.2

85.7
92.1
94.9
85.3
91.5
95.0
87.7
91.6
95.5

98.0
99.5
99.9
98.6
99.2
99.9
98.0
99.4
99.9
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Table S17: Empirical powers (x102) of the proposed test T}, defined as (6) for Ky = 3 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T),. The innovations e <" t(df).
The nominal size of the tests is 5%.

af = 2 af =5
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65
Model 5 0.5 40 184 938 893 855 847 160 940 895 852

70 180 974 950 925 916 172 971 941  90.0
100 17.8 988 975 955 952 162 982 96.0 93.0
0.9 40 16.0 998 994 987 925 127 994 979 96.0
70 184 100.0 100.0 100.0 95.8 17.8 100.0 99.8  99.3
100 20.8 100.0 100.0 100.0 978 19.1 100.0 100.0 100.0
—0.5 40 9.2 8.5 779 708 @ 821 74 834 752 68.8
7 80 923 878 818 914 72 921 87.0 809
100 83 955 919 875 94 75 9.0 906 86.6

Model 6  (0.8,0.3) 40 180 955 90.8 86.6 849 136 940 89.0 834
0 179 976 945 919 90.7 152 973 935 89.2

100 185 99.2 972 954 958 148 984 96.0 928

(0.9,05) 40 189 955 91.8 87.2 834 165 95.8 90.8 85.5

70 170 984 958 935 918 150 980 945 91.0

100 19.1 98.8 98.0 964 960 153 984 96.0 92.7

(0.95,0.9) 40 172 962 925 89.1 84.1 163 947 89.5 84.0

70 165 989 971 948  91.7 151 975 93.6 899

100 188 99.2 98.0 97.0 950 156 985 96.1 928

Model 7 (0.4,0.2) 40 194 982 96.8 95.1 87.3 165 987 952 909
70 20.7 99.8 99.6 99.2 92.7 182 99.1 973 95.1

100 20.2 100.0 99.9 99.8 96.2 19.0 99.8 989 97.7

(0.5,0.1) 40 186 989 974 955 85.8 176 983 953 915

70 209 99.7 995 98.9 923 16.0 993 98.0 964

100 21.1 99.8 99.6  99.5 955 184 99.7 99.2 979

(0.6,0.1) 40 192 995 99.0 984 8.5 172 996 982 96.3

70 191 999 99.7  99.5 914 153 99.7 99.0 98.1

100 22.1 100.0 100.0 100.0 96.3 193 999 999 99.6

Model 8 (0.8,0.3) 40 7.4 100.0 100.0 100.0 98.,5 6.0 100.0 100.0 100.0
40 6.5 100.0 100.0 100.0 99.2 5.7 100.0 100.0 100.0

100 6.6 100.0 100.0 100.0 999 6.9 100.0 100.0 100.0

(0.9,0.5) 40 82 100.0 100.0 100.0 98.7 6.6 100.0 100.0 100.0

70 7.5 100.0 100.0 100.0 99.2 6.6 100.0 100.0 100.0

100 6.8 100.0 100.0 100.0 99.7 7.6 100.0 100.0 100.0

(0.95,0.9) 40 7.4 100.0 100.0 100.0 98.6 7.6 100.0 100.0 100.0

70 6.6 100.0 100.0 100.0 99.3 6.0 100.0 100.0 100.0

100 7.2 100.0 100.0 100.0 99.8 6.3 100.0 100.0 100.0

KPSS
83.8
90.8
95.2
92.2
95.0
97.4
81.8
89.2
94.8

82.8
89.8
95.4
83.0
90.4
94.7
81.1
89.9
94.7

85.3
91.3
95.8
84.2
91.0
95.9
89.0
91.9
95.3

98.8
99.6
99.9
98.0
99.5
99.7
98.3
99.5
99.7
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Table S18: Empirical powers (x102) of the proposed test T}, defined as (6) for Ky = 4 with
the untruncated critical value (¢, = 00) and the truncated critical values defined as (18) with
¢, = 0.45,0.55,0.65, and the KPSS test in a simulation with 2000 replications. Constant c,
determines the level of truncation for the critical values of T),. The innovations e <" t(df).
The nominal size of the tests is 5%.

af = 2 af =5
Setting N oo 045 055 0.65 KPSS oo 045 055 0.65
Model 5 0.5 40 179 952 912 871 842 168 941 90.3  86.0

70 191 977 953 928 91.6 142 972 93.7 90.0
100 178 986 97.0 955 948 156 987 96.0 928
0.9 40 145 997 994 989 938 147 995 984 97.0
70 20.0 100.0 100.0 99.9 959 186 999 99.6 99.4
100 19.6 100.0 100.0 100.0 973 179 100.0 100.0 100.0
—0.5 40 10.0 86.0 785 725  81.9 70 836 76.3 69.5
M 78 903 8.7 799 904 69 916 8.6 79.1
100 94 953 916 875 955 88 947 89.8 8.1

Model 6  (0.8,0.3) 40 19.1 953 90.8 859 834 170 946 893 838
70 175 971 943 913  90.6 148 972 940 90.0

100 186 986 971 953 951 161 983 95.7 920

(09,05 40 176 95.7 914 876 8.2 159 952 90.1 83.7

70 184 982 963 930 90.2 150 976 93.8 89.6

100 183 99.0 979 969 940 166 98.8 96.2 92.6

(0.95,0.9) 40 181 968 922 8.2 830 161 962 91.0 85.2

70 178 988 975 960 91.6 17.3 97.7 935 898

100 181 994 984 978 964 16,5 986 96.1  93.3

Model 7 (0.4,0.2) 40 20.1 984 96.5 94.3 86.4 17.1 988 955  92.0
70 222 997 992 987 922 177 992 974 954

100 20.8 999 999 99.8 95.8 186 995 989 979

(0.5,0.1) 40 19.7 987 972 954 8.9 184 99.1 962 924

70 200 999 99.6 99.2 920 179 994 98.0 96.2

100 21.0 100.0 100.0 99.9 96.0 19.1 99.1 984  96.9

(0.6,0.1) 40 200 99.2 986 97.5 874 181 99.6 975  95.2

70 194 100.0 99.8 994  92.0 183 99.7 992 985

100 20.3 100.0 100.0 100.0 96.5 181 100.0 99.9 994

Model 8 (0.8,0.3) 40 80 100.0 100.0 100.0 97.9 7.0 100.0 100.0 100.0
70 6.8 100.0 100.0 100.0 99.6 7.2 100.0 100.0 100.0

100 6.8 100.0 100.0 100.0 99.9 5.5 100.0 100.0 100.0

(0.9,0.5) 40 80 100.0 100.0 100.0 984 7.8 100.0 100.0 100.0

70 7.0 100.0 100.0 100.0 99.3 7.0 100.0 100.0 100.0

100 7.3 100.0 100.0 100.0 100.0 6.8 100.0 100.0 100.0

(0.95,0.9) 40 80 100.0 100.0 100.0 98.2 7.3 100.0 100.0 100.0

70 74 100.0 100.0 100.0  99.2 7.0 100.0 100.0 100.0

100 6.7 100.0 100.0 100.0 99.7 59 100.0 100.0 100.0

KPSS
83.8
90.0
94.7
93.2
94.9
97.5
82.0
88.6
94.9

82.7
90.5
94.3
82.0
90.1
95.5
83.3
89.5
95.2

85.2
91.6
95.0
86.6
90.6
95.5
87.4
93.0
95.2

98.0
99.6
99.7
98.2
99.3
99.8
98.7
99.4
99.9




