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The goal of the paper is two-fold. We first survey the available methods for mod-
elling multivariate volatility processes. We then propose a new and simple method
with numerical illustration.

1 Introduction

Volatility plays an important role in controlling and forecasting risks in var-
ious financial operations. For a univariate return series, volatility is often
represented in terms of conditional variances or conditional standard devi-
ations. Many statistical models have been developed for modelling univari-
ate conditional variance processes. While univariate descriptions are useful
and important, problems of risk assessment, asset allocation, hedging in fu-
tures markets and options pricing require a multivariate framework, since high
volatilities are often observed in the same time periods across different assets.
Statistically this boils down to model time-varying conditional variance and
covariance matrices of a vector-valued time series. Section 2 below lists some
existing statistical models for multivariate volatility processes. We refer to
Bauwens, Laurent and Rombouts (2005) for a more detailed survey on this
topic. We propose a new and ad hoc method with numerical illustration in
section 3. We concludes in section 4 with a brief summary.

2 Existing methods

Let xt = (x1,t, · · · , xd,t)
τ be a d × 1 return series of d assets. Let Ft be the

σ-algebra generated by {xk, k ≤ t}, which represents the information set at
time t. We assume

E(xt|Ft−1) = 0, Var(xt|Ft−1) = Σt =
(

σij,t

)

. (1)
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The goal is to model the conditional variance-covariance matrix Σt which
is a d × d non-negative definite matrix. Different models for Σt have been
proposed over the last two decades. We review some of the models drawing
major attraction in the literatures below, and refer to Bauwens, Laurent and
Rombouts (2005) for a more extensive survey.

2.1 The BEKK GARCH models

One of the most general forms, proposed by Engle and Kroner (1995), is the
BEKK representation of a multivariate GARCH(p, q) process

Σt = C′

0
C0 +

K
∑

k=1

q
∑

i=1

Aikxt−ix
′

t−iA
′

ik +
K

∑

k=1

p
∑

j=1

BjkΣt−jB
′

jk, (2)

where C0,Aik ,Bjk are d × d matrices and C0 is upper triangular.
Although the form of the above model is quite general especially when K

is reasonably large, it suffers from the problems due to overparametrization.
See Engle and Kroner (1995) for more discuss on the identification problem
of this model.

Similar to univariate GARCH models, the standard estimation method
for the BEKK model (2) is the quasi-maximum likelihood estimation (qMLE)
facilitated by assuming xt|Ft−1 ∼ N(0,Σt). The consistency and the asymp-
totic normality of the qMLE have been established by Comte and Lieber-
man (2003). Note that even for moderately large d, the qMLE is a solution
of a high-dimensional nonlinear optimization problem. Therefore in practice
some approximate and iterative estimation methods are often more efficient.

2.2 Factor and orthogonal models

In order to reduce the number of parameters in modelling multivariate volatil-
ities, different types of decompositions for Σt are often employed in model-
specifications. For instance, writing Σt as the sum of a time-varying part
(usually with reduced rank) and a homoscedastic part, Engle, Ng and Roth-
schild (1990) proposed a factor multivariate GARCH model as follows:

Σt = Ω +

K
∑

k=1

gkg
′

k(

q
∑

i=1

αikf
′

kxt−ix
′

t−ifk +

p
∑

j=1

βjkf
′

kΣt−jfk). (3)

where αik , βjk are non-negative constants, Ω is a time-invariant non-negative
definite constant matrix, and gk, fk are d × 1 constant vectors satisfying the
constraints

∑d
`=1

fk` = 1 for k = 1, · · · , K and f ′kgi = 0 for k 6= i, and 1 for
k = i.
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Model (3) is called a Factor-GARCH(p, q; k) model. The K linear com-
binations θk,t = f ′kxt, k = 1, 2, · · · , K, represent K common factors of which
the conditional variances are specified as K different univariate GARCH(p, q)
models. It is easy to see that (3) is a special case of the BEKK model if we
put Aik =

√
αikfkg

′

k and Bjk =
√

βjkfkg
′

k.
Factor-GARCH models can be estimated with qMLE method. In prac-

tice, the factor representation portfolios θk,t are usually set as known and a
two-stage estimation scheme can then be invoked. See Lin (1992) for other
estimation procedures.

Orthogonal GARCH (hereafter “O-GARCH”) model, which is based on
the principal components of xt, can virtually be viewed as a special case
of Factor-GARCH model (Alexander and Chibumba 1997). Let the uncon-
ditional covariance matrix of xt be Σ. Based on the eigen-decomposition
Σ = WΛW′, where W′W = Id and Λ is a diagonal matrix. O-GARCH
specification first fits the conditional variance of each principal component
ζt ≡ (ζ1,t, · · · , ζd,t)

′ = W′xt with a univariate GARCH model:

ζi,t|Ft−1 ∼ N(0, λi,t),

λi,t = ωi +

qi
∑

u=1

αiuζ2

i,t−u +

pi
∑

v=1

βivλi,t−v ,

and then take Σt = WΛtW
′ as the conditional variance matrix of xt, where

Λt = diag(λ1,t, · · · , λd,t). This effectively assumes that the principal compo-
nents are also conditionally uncorrelated.

Obviously O-GARCH model is easy to fit in practice even when d is
large or very large. However, it treats unconditionally uncorrelated principal
components as conditionally correlated as well, which is typically untrue. This
may lead to nonsensical or even wrong results. See Fan, Wang and Yao (2004).

Recently, Fan, Wang and Yao (2004) proposed to model multivariate
volatilities in terms of a decomposition based on the so-called conditionally un-
correlated components (CUC) of xt. It overcomes the aforementioned short-
coming of the O-GARCH models.

2.3 Conditional correlation models

It always holds that

Σt = DtΓtDt, (4)

where Dt = diag(
√

σ11,t, · · · ,
√

σdd,t), and Γt is the conditional correlation
matrix xt.
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Assuming that Γt does not change over time t and modelling each xj,t with
a univariate GARCH model, Bollerslev (1990) proposed a constant conditional
correlation (CCC) framework which simplified the estimation and inference
procedures substantially. However, it is questionable if the time-invariant
conditional correlation is a realistic assumption in practice.

The dynamic conditional correlation (DCC) model of Engle (2002) com-
putes the time changing conditional correlation matrix from the standardized
residuals series

Γt = diag{Qt}−1/2Qtdiag{Qt}−1/2, (5)

where

Qt = S(1 − θ1 − θ2) + θ1(ξt−1
ξ′

t−1
) + θ2Qt−1, (6)

and ξk,t are the standardized residuals obtained from the raw residuals
xk,t/{σ̂kk,t}1/2, and S is the sample covariance matrix of {ξt}n

t=1
.

A slightly different formulation was suggested by Tse and Tsui (2002):

Γt = Γ(1 − θ1 − θ2) + θ1Γt−1 + θ2Ψt−1 (7)

to fit the correlation process. Here Γ = {ρij} is a time-invariant d × d
positive definite parametric matrix with unit diagonal elements and Ψt−1

is, for example, the sample correlation matrix of {ξt}t−1

t−M . This specifica-
tion is called varying correlation multivariate GARCH model or simply VC-
MGARCH model.

Although qMLE method is available in principle for all these conditional
correlation models, some two-stage estimation schemes have been developed
to increase the computational efficiency, and have apparently been used more
often in practice.

3 A new ad hoc method

3.1 Method

Note in (1), σii,t = Var(xi,t|Ft−1). We may model σ2

i,t ≡ σii,t using any
appropriate univariate volatility models based on univariate time series {xti}.

To model the off-diagonal elements σij,t with i < j, put

yij,t = (xi,t + xj,t)/2. (8)

We may model its conditional variance ωij,t = Var(yij,t|Ft−1) again by a
simple univariate model. Note that for 1 ≤ i < j ≤ d,

σij,t = 2ωij,t −
σ2

i,t + σ2

j,t

2
. (9)
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Hence once we have derived univariate volatility models for each component
xi,t and the combined series yij,t, the models for the conditional covariances
is implied by (9) above.

In practice, we may use simple GARCH(1,1) models for modelling both
σ2

i,t and ωij,t, namely

σ2

i,t = αi + βix
2

i,t−1
+ γiσ

2

i,t−1
, (10)

ωij,t = αij + βijy
2

ij,t−1
+ γijωij,t−1. (11)

It is clear that the above proposal overcomes the difficulties due to over-
parametrization, and can be implemented in a computationally efficient man-
ner since all the components of Σt are practically fitted separately. Further-
more, we have the flexibility in choosing appropriate univariate models for σ2

i,t

and ωij,t, which may be GARCH, stochastic volatility models, semiparametric
or nonparametric volatililty models, or some empirical methods such as rolling
exponential smoothing. However the simplicity in both the structure and the
feasibility does come with a price unfortunately. First the implied estimator
for the conditional variance Σt may not necessarily be a non-negative definite
matrix. (A quick remedy may be to shrink the negative eigenvalues of the
estimated Σt to 0). Furthermore, the approach suffers from a kind of innate
inconsistency in model specification. For example, under the GARCH(1,1)
specification of (10) and (11), the conditional variance of a portfolio a′xt is
not necessarily GARCH(1,1). Also note that we may define yij,t differently
from the form (8), still σij,t may be uniquely determined by σ2

i,t, σ
2

j,t and ωij,t.
However the estimator for σij,t implied may be different.

3.2 Numerical illustration

We illustrate the new method with two real data sets. The first one consists of
the daily log returns (in percentages) of two exchange rate series, namely, the
Deutsche mark (D) and the Japanese yen (J) versus U.S. dollar. It covers the
period of 3 January 1990 — 23 June 1998, for a total of 2131 observations. The
data was downloaded from the website of the Federal Reserve Bank of New
York and has been analyzed by Tse and Tsui (2002) using the VC-MGARCH
model. See Figures 1(a) & (b) for the time series plots of these two series.
The second data set contains the four indices from Asian stock markets, i.e.
the Hang Seng index of Hong Kong (HS), the Japan Nikkei 225 index (JN),
the Shanghai Composite index (SH) and the Taiwan Weighted index (TW).
Daily close prices adjusted for dividends and splits are obtained directly from
the website of Yahoo!Finance. We applied log-difference transformation to
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Table 1. Summary Statistics of the Two Data Sets

D J HS JN SH TW

Mean 0.0025 -0.0023 -0.0193 -0.0388 0.0101 -0.0411
Stdev 0.6746 0.6750 2.0974 1.6868 1.5109 1.9432
Min -2.8963 -4.5228 -14.7346 -9.0145 -8.7277 -9.9360
Max 3.1030 3.2269 20.2083 8.8876 8.8491 9.7871
Skewness 0.0197 -0.5065 0.6226 0.0107 0.1881 -0.0199
Kurtosis 4.7731 6.5508 14.9947 5.2678 8.2629 5.2284
J-B 279.29 1210.62 9131.42 322.97 1748.09 311.91
Q1(10) 13.9104 16.0221 14.8263 6.5265 8.2794 20.9968
Q1(20) 21.8039 27.4127 30.1055 10.7677 16.9162 38.4476
Q2(10) 287.0760 83.8406 226.8334 74.5163 131.2148 88.4256
Q2(20) 460.5919 111.9082 242.1270 100.1453 192.3026 103.3381

Note: J-B stands for the Jarque-Bera statistics. Q1(k) and Q2(k) represents the

Ljung-Box portmanteau statistics of the original and squared return series, respec-

tively.

convert them into continuously compounded returns. Adjustment was also
made to account for the effect of different holidays of these four markets. The
data consist of 1507 observations covering the period of 1 August 1997 — 31
July 2004. The time series plots for the second data set are omitted to save
the space.

Descriptive statistics for all the six series are reported in Table 1. All the
series are leptokurtic and the nulls of normal distribution can be rejected based
on the Jarque-Bera test for all series. The Ljung-Box portmanteau statistics of
the two exchange rates series suggest that there exists no significant evidence
for the autocorrelation structures in both the series. We extract the mean
values from these two series and focus our attention to their covariance matrix
modelling. For the Asian market data, the portmanteau statistics reveal some
autocorrelation structure in HS and TW series. Accordingly we fit an AR(5)
model for each of these four series first. The analysis reported below was
conducted with the filtered series.

For the first data set, a univariate GARCH(1,1) model is fitted to D and
J, respectively, using qMLE method subject to the ”variance targeting” con-
straint in the sense that the long run variance is just the sample variance
(see Engle (2002)). In order to obtain an estimator for conditional correlation
between D and J, another univariate GARCH(1,1) model is fitted to (D+J)/2
using the same method. Table 2 presents the estimated parameters. Stan-
dard errors are omitted to save space. See Figure 1(c) and (d) for the fitted
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Figure 1. Time series plot of daily log-return (in percentage) of (a) Deutsche mark (D)
and (b) Japanese yen (J) versus US dollar; the fitted volatility of the return series of
(c) Deutsche mark and (d)Japanese yen; and the fitted (e) conditional covariance and (f)
conditional correlation between D and J using the ad hoc method.

volatility for these two return series and (e) and (f) for the fitted covariance
and correlation between D and J, respectively. A horizontal line in Figure
1(f) is drawn to show the level of unconditional correlation between these two
series.

It is interesting to compare the fitted conditional correlation in Figure 1(f)
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Table 2. Estimation and Diagnostic Checking Results

α β γ Q(10) Q(20)

D 0.0061 0.0509 0.9357 11.5085 15.9470
J 0.0108 0.0439 0.9325 3.6654 10.7579
(D,J) 0.0066 0.0432 0.9376 15.8036 23.5034

HS 0.0731 0.0946 0.8887 7.9466 14.3098
JN 0.2203 0.0777 0.8447 5.0772 9.1901
SH 0.1056 0.1322 0.8214 7.3288 20.1829
TW 0.3347 0.0862 0.8242 5.8506 15.4980
(HS,JN) 0.1228 0.0860 0.8674 5.0718 16.5563
(HS,SH) 0.0562 0.0956 0.8737 12.4900 23.6990
(HS,TW) 0.1952 0.0902 0.8385 7.0120 13.5878
(JN,SH) 0.0916 0.0673 0.8655 9.1555 12.9979
(JN,TW) 0.2163 0.0559 0.8423 2.1990 4.5946
(SH,TW) 0.1785 0.1015 0.7867 7.4842 19.4355

with those in Figure 4 of Tse and Tsui (2002). The later was obtained using
BEKK model and VC-MGARCH model, both of them needed an intensive
searching method to maximize the corresponding likelihood functions. The
magnitudes and the time-varying patterns in these two figures are very similar.
This suggests that our ad hoc method is as capable as those more sophisticated
models in representing dynamic correlation structure at least for this data set.
Furthermore, the fitted conditional correlation process always stays between
-1 and 1. Hence the corresponding conditional covariance is automatically a
non-negative definite matrix.

To further check the possible misspecification of the fitted model, we use
the Ljung-Box Q portmanteau statistics of the cross-product of the standard-
ized error series.

More specifically, we use the Q(k) statistics of û2

i,t − 1, t = 1, 2, · · · , T
to check adequacy of the volatility model for the i-th series and the Q(k)
statistics of ûi,tûj,t − ρ̂ij,t, t = 1, 2, · · · , T to check the correlation modelling
between i-th and j-th series, where ûi,t = xi,t/σ̂i,t is the standardized resid-
uals. χ2

k is selected as a null reference distributiona. The two columns on
the right in Table 2 list the values of Q(10) and Q(20). Apparently, at any
conventional level of significance, there is no evidence to indicate the remnant
autocorrelation structure in the residuals. This confirms quantitatively that

aAlthough there is no rigorous theory for such a test so far, the simulation study in Tse and
Tsui (1999) suggests that it indeed provides a reasonable test with good size and power.
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Figure 2. The fitted conditional correlations between (a) HS and JN, (b) HS and SH, (c)
HS and Tw, (d) JN and SH, (e) JN and TW, (f) SH and TW for the Asian Stock Market
data using the ad hoc method.

the new method works well for such a data set.
The intractability of estimating a high-dimensional volatility model is a

notorious fact in modelling multivariate volatility processes. For instance, for
a four-dimension BEKK model it requires to solve an optimization problem
with at least 42(=10+16+16) parameters. However, our ad hoc method can
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handle such a situation in a pretty easy manner. As a matter of fact, we
need to estimate 10 univariate GARCH(1,1) models only, and the six condi-
tional covariance can be derived according to (9). Table 2 lists the estimated
coefficients for the Asian market data set. The six fitted conditional corre-
lation series are plotted in Figure 2, where the horizontal line in each panel
is the corresponding unconditional correlation. Furthermore, the values of
the Q portmanteau statistic in the two very-right columns of Table 2 sug-
gest the adequacy of the fitting. Note the (global) unconditional correlations
are pretty close to 0 in Figures 2(b), (d) and (f), it seems reasonable to ob-
serve some negative conditional correlations in those plots. Note that the
estimated conditional variances are not guaranteed to be non-negative defi-
nite. We calculate the eigenvalues for each fitted covariance matrix and the
negative values only occur at the smallest eigenvalues of 23 points over the
whole 1502(=1507-5) observations.

4 Conclusion

After reviewing some of the major multivariate volatility models, we put for-
ward a new ad hoc method to model the conditional covariance process. Nu-
merical results based on two real data sets suggest that a practically mean-
ingful fitting may be obtained in a computationally efficient manner from
applying the proposed new method. Therefore it might be worthwhile to in-
vestigate the theoretically properties of this ad hoc method more thoroughly.
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