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Abstract

We consider the incidental parameters problem in this paper, i.e. the estimation for a small

number of parameters of interest in the presence of a large number nuisance parameters. By

assuming that the observations are taken from a multiple strictly stationary process, the two

estimation methods, namely the maximum composite quasi-likelihood estimation (MCQLE) and

the maximum plug-in quasi-likelihood estimation (MPQLE) are considered. For the MCQLE,

we profile out nuisance parameters based on lower-dimensional marginal likelihoods, while the

MPQLE is based on some initial estimators for nuisance parameters. The asymptotic normality

for both the MCQLE and the MPQLE is established under the assumption that the number of

nuisance parameters and the number of observations go to infinity together, and both the estima-

tors for the parameters of interest enjoy the standard root-n convergence rate. Simulation with a

spatial-temporal model illustrates the finite sample properties of the two estimation methods.

Key words: Composite likelihood, incidental parameters problem, nuisance parameter, panel data,

profile likelihood, quasi-likelihood, root-n convergence, spatial autoregressive model, stationary pro-

cess, time series, U -statistic.
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1 Introduction

Rapid developments in technology in this information age have lead to data collection in an un-

precedently large scale. This brings new opportunities with challenges to statistics. The availability

of large data sets enables statisticians to look into complex structures using sophisticated models.

In this paper we consider a class of models in which the number of parameters of interest is small

while the number of nuisance parameters is large or excessively large in relation to the sample size.

Those models arise in various statistical applications. For example, in a longitudinal or a panel

data model with a large number of sites the primary interest lies in a small number of parameters

representing the common effects while the individual levels of different sites are treated as nuisance

parameters (Baltagi 2005, Chapter 2). For a large panel of time series data, one is often interested in

a few common factors which drive the dynamics of all the component series and treat the parameters

representing each idiosyncratic components as nuisance parameters. In the attempt to model the

volatilities of a large number of financial securities, it is often assumed that the dynamic volatilities

are controlled by a small number of parameters in the presence of a large number of nuisance pa-

rameters for marginal covariance matrices (Engle et al. 2008). For a spatio-temporal study focussing

on the spatial correlation, the parameters determining the temporal dynamics at each location are

treated as nuisance parameters (see, for example, the example in section 4 below).

In this paper we consider two methods of estimating a small number of parameters of interest

in the presence of a large number of nuisance parameters, namely the maximum composite quasi-

likelihood estimation (MCQLE) and the maximum plug-in quasi-likelihood estimation (MPQLE).

The composite likelihood, the name coined by Lindsay (1988), is a function derived by multiplying

a collection of, typically two- or three-dimensional, marginal density functions. Its composition is

often dictated by, among other things, the computational feasibility. See a recent survey by Varin

et al. (2011). In our context, each low dimensional density function only depends on a small number

of nuisance parameters, hence can be easily profiled. The resulting composite profile likelihood

function depends on those parameters of interest only, can be solved to obtain the estimator without

running into a high-dimensional optimization problem. Because the marginal densities are multiplied

together, ignoring the original distribution structure, the MCQLE can be viewed as derived from a

(seriously) misspecified model. On the other hand, the MPQLE maximizes a quasi-likelihood function

with a plug-in estimator for the nuisance parameter vector. Therefore we avoid a maximization
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problem with a large number of variables. However it is intuitively clear that the quality of the

initial estimator impacts on the ultimate outcome of the procedure. When the number of nuisance

parameters is large, the estimation for all of them collectively is typically poor. A case in point is

the estimation for large covariance matrices; see, for example, Figure 1 of Tao et al. (2011).

The major contribution of this paper includes the asymptotic properties for both the MCQLE and

the MPQLE under the assumption which is relevant to the problem concerned. The conventional

asymptotic theory is typically under the assumption that the sample size goes to infinity while

everything else remains fixed. For our setting, the number of nuisance parameters is of a comparable

magnitude to the sample size. Hence it is more pertinent to consider the asymptotics when both the

sample size and the number of nuisance parameters go to infinity together. We adopt the setting

under which the observations are taken from a multiple strictly stationary process and the dimension

of the process may also go to infinity together with the sample size. The setting is generic and the

results are applicable to the relevant inference problems in, for example, multiple time series, panel

data and spatio-temporal models. Though bearing a similar banner, our theory is different from the

large body of literature on the so-called ‘large p and small n’ regression problem; see, among others,

Fan and Lv (2008), Zhang and Huang (2008), and Bickel et al. (2009).

The name of ‘composite likelihood’ was introduced by Lindsay (1988), although the idea of using

‘submodels’ or ‘marginal models’ had appeared before. As the full likelihood with complex models

are often computationally infeasible, the composite likelihood methods have been used in different

problems including, for example, regression with dependent errors (Eicker 1967), modeling for spatial

processes (Besag 1974), case control studies (Liang 1987), inference for nonlinear dynamic models

(Gallant and White 1988), correlated binary data (Kuk and Nott 2000), grouped data (deLeon

2005), longitudinal studies (Molenberghs and Verbeke 2005), multivariate volatility modeling (Engle

et al. 2008), bioinformatics (Larribe and Fearnhead 2011). The asymptotic theory under the as-

sumption that only sample size tends to infinity has been studies by, for example, Cox (1961), Eicker

(1967), White (1982), Gallant and White (1988), and Cox and Reid (2004). For more comprehensive

survey on the composite likelihood methodology, we refer to the first issue of Statistica Sinica (2011)

vol.21 which contains a collection of the papers on this topic.

The estimation problem concerned in this paper was initially termed as an incidental parameters

problem by Neyman and Scott (1948). See also the survey by Lancaster (2000). Parameters of interest

are ‘structural’ and nuisance parameters are ‘incidental’ in Neyman and Scott’s terminology. (The
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word ‘nuisance’ suggests that those parameters are burdensome or even annoying while ‘incidental’

is much milder. Barndorff-Nielsen (1978, p.33) prefers incidental to nuisance, finding the latter

‘somewhat emotional’.) One of the classical examples of the incidental parameters problem concerns

the estimation for the common variance parameter σ2 of n× r independent and normal observations

with n different mean values µ1, · · · , µn. Then when n → ∞ but r fixed, the maximum likelihood

estimator for the ‘structural’ parameter σ2 is not ever consistent due to the inconsistent estimators

for the incidental parameters µ1, · · · , µn, though a consistent and efficient estimator for σ2 exists.

See Example 7.9 on p.482 of Lehmann and Casella (1998). This is because that the information

on each incidental parameter µi does not increase when n increases. Neyman and Scott (1948)

labels the data in such a scenario as ‘partially consistent observations’, as one only can estimate

structural parameters consistently but not the incidental parameters. More traditional likelihood

approaches for incidental parameter problems include, for example, a conditional likelihood method

based on a conditional distribution which is free from incidental parameters (Basu 1977, Barndorff-

Nielsen 1978), a partial likelihood method based on a statistic of which the density function is free

from the incidental parameters (Cox 1975), and a profile likelihood obtained by replacing incidental

parameters by their maximum likelihood estimators (Cox and Reid 1987). On the other hand, a

Bayesian treatment may integrate the incidental parameters with respect to a prior distribution

(Berger et al. 1999). See also Reid (1996).

The proposed methods in this paper are designed for complex applications with large and high-

dimensional data when incidental-parameter-free conditional or partial likelihoods do not exist, pro-

filing a likelihood directly leads to a high-dimensional optimization problem which is computationally

infeasible. On the other hand, the information on incidental parameters also increases in our asymp-

totic framework in the sense that each of those incidental parameters can be estimated consistently

at least in principle. Hence our setting is different from the setting with ‘partially consistent obser-

vations’ in Neyman and Scott’s terminology.

The rest of the paper is organized as follows. Section 2 deals with the MCQLE and section 3 is on

MPQLE. We outline the estimation methods and state the asymptotic normality results. In section

4 the finite sample properties of both the methods are illustrated in a small scale simulation with

a simple spatio-temporal model. It reveals the advantages of using the MCQLE when the number

of nuisance parameters is large in relation to the sample size, the phenomenon observed in Engle

et al. (2008) with a high-dimensional volatility model. All technical proofs are given in sections 5 and
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6. An extension on the U -statistic, which plays a key role in establishing the asymptotic normality,

is presented in the Appendix.

2 Composite-likelihood estimation

Let {X1, · · · ,Xn} be p × 1 observations from a strictly stationary process with the underlying

distribution depending on parameter (θ,ω) ∈ Θ × Ω ⊂ R
d+q, where θ is a d × 1 parameter of

interest, and ω is a q × 1 nuisance parameter. Our goal is to estimate θ. We consider now an

maximum composite quasi-likelihood estimation method for θ. We will show that such an estimator

is asymptotically normal with the standard root-n convergence rate as n, q → ∞ together while d is

fixed, and p may also diverge to infinity.

Let Xt1, · · · ,Xtr be r subvectors of Xt. The lengths of those r subvectors may be different from

each other, some of those subvectors may share common components of Xt. With the observations

Xtj , t = 1, · · · , n, the log marginal quasi-likelihood function is defined as

lj(θ,ωj) =
n∑

t=1

log fj(Xtj ;θ,ωj),

which depends on the parameter of interest θ, and a subset of nuisance parameters denoted by ωj .

Let

ω̃j(θ) = argmax
ωj

lj(θ,ωj). (2.1)

We define a composite quasi-likelihood function for θ as

l(θ) =
r∑

j=1

lj
(
θ, ω̃j(θ)

)
. (2.2)

The maximum composite quasi-likelihood estimator (MCQLE) for θ is defined as

θ̂ = argmax
θ

l(θ). (2.3)

We assume that r = r(q) → ∞ as q → ∞, while all the lengths of Xtj and ωj are fixed.

One implicit condition for the MCQLE defined as in (2.3) being reasonable is that the nuisance

parameters ω1, · · · ,ωr are distinct from each other such that the maximization (2.1) may be carried

out independently for each j without confounding constraints from each other. This is a strong

requirement, and may only be facilitated by selecting subvectors Xt1, · · · ,Xtr in a restrictive manner.

It may make this approach infeasible or lead to a heavy loss of information. One alternative is to
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adopt the so-called ‘variation-free’ condition imposed by Engle, Hendry and Richard (1983), which

treats ω1, · · · ,ωr as different and unconnected nuisance parameters. See also Engle, Shephard

and Sheppard (2008). Of course there will be some efficiency loss in estimation for θ resulted

from neglecting the links among different ωj . The trade-off is that we will be able to reduce a

high-dimensional optimization problem to many low-dimensional problems, which is the essential

motivation of using the composite-likelihood approach. Note that this variation-free condition also

implies that θ̂ is the global maximizer in the sense that

(θ̂, ω̂1, · · · , ω̂r) = arg max
θ,ω1,··· ,ωr

r∑

j=1

lj(θ,ωj),

where we treat ω1, · · · ,ωr as different and independent parameters. In the rest of this section, we

always adopt this assumption.

Let β = (θ′,ω′
1, · · · ,ω′

r)
′, and l(β) =

∑r
j=1 lj(θ,ωj). We take β̂ = (θ̂

′
, ω̂′

1, · · · , ω̂′
r)

′ as a solution

of the likelihood equation

l̇(β̂) ≡ ∂

∂β
l(β)

∣∣∣
β=β̂

= 0. (2.4)

Let

βo ≡ (θ′
o,ω

′
1o, · · · ,ω′

ro)
′ = arg max

θ,ω1,··· ,ωr

E{
r∑

j=1

log f(Xtj ;θ,ωj)} (2.5)

be the true value of the parameter, which is assumed to be an inner point of the (expanded) parameter

space. Put

atj(θ,ωj) =
∂

∂θ
log fj(Xtj ;θ,ωj), btj(θ,ωj) =

∂

∂ωj
log fj(Xtj ;θ,ωj),

Atj(θ,ωj) =
∂2

∂θ∂θ′ log fj(Xtj ;θ,ωj), Btj(θ,ωj) =
∂2

∂θ∂ω′
j

log fj(Xtj ;θ,ωj),

Ctj(θ,ωj) =
∂2

∂ωj∂ω′
j

log fj(Xtj ;θ,ωj).

We simply write atj = atj(βo,ωjo), and btj ,Atj ,Btj and Ctj in the same manner. Put

M1 = −




∑r
j=1EAtj EBt1 · · · EBtr

EB′
t1 ECt1

...
. . .

EB′
tr ECtr




, (2.6)
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M2 = −




1
r

∑r
j=1EAtj

1√
r
EBt1 · · · 1√

r
EBtr

1√
r
EB′

t1 ECt1

...
. . .

1√
r
EB′

tr ECtr




, (2.7)

and the elements at the blank places in the above matrices are 0.

We introduce some regularity conditions first.

A1 {Xt} is α-mixing and satisfies the mixing condition in C3 in the Appendix.

A2 fj are smooth enough such that all the required derivatives exist and are continuous and inte-

grable whenever necessary.

A3 Denote by ξtj any component of atj , and ηtj any component of btj . For ν > 2 given in A1 above,

it holds that

lim
r→∞

E
{∣∣1
r

r∑

j=1

ξtj
∣∣ν} <∞, (2.8)

lim
r→∞

1

r

r∑

j=1

[E(η2tj) + {E(|ηtj |ν)}2/ν ] <∞. (2.9)

A4 Denote by ηtj any element of Atj − E(Atj), Btj − E(Btj) or Ctj − E(Ctj). Then (2.9) holds.

A5 The matrix M1 is positive-definite. Furthermore all the eigenvalues of the matrix M2 are

bounded above from ∞ and below from 0, as r → ∞.

A6 There exist a constant c1 > 0 and positive functions λj(·) such that | ∂3

∂βℓ∂βi∂βk
log fj(xj ;θ,ωj)| ≤

λj(xj) for any ||θ−θo|| ≤ c1 and ||ωj−ωjo|| ≤ c1. Furthermore limr→∞ sup1≤j≤r E{λj(Xtj)} <

∞, and (2.9) holds with ηtj = λj(Xtj)− E{λj(Xtj)}.

A7 (2.9) holds with ηtj being any component of ζtj ≡ atj − E(B1j)(EC1j)
−1btj . Furthermore the

limits

Wk = lim
r→∞

1

r2
( r∑

j=1

ζ1j ,
r∑

j=1

ζk+1,j

)
, k = 0, 1, · · · , n.

exist.

Remark 1. (i) Note that M1 = −E
{

∂2

∂β∂β′

∑r
j=1 log fj(Xtj ;θ,ωj)

}
. The condition that M1 > 0 in

A5 implies that βo, defined in (2.5), is an isolated maximizer. It also implies M2 is positive-definite

as M2 = ΛM1Λ, where Λ is a full-ranked diagonal matrix.
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(ii) If X1, · · · ,Xn are independent observations, conditions A3, A4 and A6 may be reduced to

those with ν = 2 only.

Theorem 1. Let conditions A1 – A6 hold. Then there exists a solution of the likelihood equation

(2.4) for which

m
{
||θ̂ − θo||2 +

1

r

r∑

j=1

||ω̂j − ωjo||2
} P−→ 0

for any m→ ∞, r/m→ 0 and r2m/n→ 0.

Remark 2. The convergence rates in Theorem 1 are not optimal; see, for example, Theorem 2

below which indicates that the convergence rate for θ̂ is root-n. The important message here is the

difference in the convergence rates between θ̂ and {ω̂j , j = 1, · · · , r}. As r → ∞ together with n,

the rate for the uniform convergence of ω̂1, · · · , ω̂r is slower. It also imposes some restriction on the

number of the (nuisance) the parameters which can be consistently estimated, although the implied

rates such as r = o(n1/3) is presumably too restrictive.

Theorem 2. Let conditions A1 – A7 hold, matrices E(C1j), j = 1, · · · , r, be invertible, and the

limit of M2, defined in (2.7), exist (as r → ∞). Furthermore, let r/n → 0. For any consistent

solution of the likelihood equation (2.4) in the sense that

||θ̂ − θo||2 +
r∑

j=1

||ω̂j − ωjo||2 P−→ 0, (2.10)

it holds that
√
n(θ̂ − θo)

D−→ N
(
0, L−1

(
W0 + 2

∞∑

k=1

Wk

)
L−1

)
,

where Wk are defined in A7, and L = limr→∞ r−1
∑r

j=1{E(A1j)− E(B1j)(EC1j)
−1E(B′

1j)}.

Remark 3. (i) The consistence condition (2.10) is weaker than that identified in Theorem 1,

as m/r → ∞.

(ii) The limit which defines the matrix L exists. This is implied by the existence of the limit of

M2.

3 Plug-in quasi-likelihood estimation

We consider now the asymptotic properties of a plug-in qMLE for θ, obtained based on a reasonable

initial estimator for the nuisance parameter ω. We will show that the qMLE is asymptotically normal

with the standard root-n convergence rate in spite that the number of nuisance parameters q goes

to ∞.
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We use a log quasi-likelihood function function

l(θ, ω) =
n∑

t=1

log f(Xt; θ, ω), (3.1)

where f is a density function defined on R
p. With an initial estimator ω̂ for the nuisance parameter

ω, a plug-in quasi-likelihood function for θ is defined as

l(θ) =
n∑

t=1

log f(Xt; θ, ω̂),

and the maximum plug-in quasi-likelihood estimator (MPQLE) is defined as

θ̃ = argmax
θ

l(θ) = argmax
θ

n∑

t=1

log f(Xt; θ, ω̂).

Let (θo,ωo) = argmaxθ,ω E{log f(Xt;θ,ω)} be the true parameter values. Since l̇(θ̃) = 0, it follows

from a Taylor expansion that

√
n(θ̃ − θo) = −

{ 1

nm
l̈(θ⋆)

}−1 1

m
√
n
l̇(θo), (3.2)

where θ⋆ is between θ̃ and θo, l̇ and l̈ are defined in (3.3) below, and m is a normalized constant

depending on q and determined by conditions B3 and B4 below.

We introduce regularity conditions first. Let

l̇(θ) =
∂l(θ)

∂θ
, l̈(θ) =

∂2l(θ)

∂θ∂θ′ , a(x;θ,ω) =
∂

∂θ
log f(x;θ,ω), (3.3)

B(x;θ,ω) =
∂2

∂θ∂θ′ log f(x;θ,ω), C(x;θ,ω) =
∂2

∂θ∂ω′ log f(x;θ,ω),

and D(θ,ω) = E{C(Xt;θ,ω)}.

B1 The initial estimator ω̂ = (ω̂1, · · · , ω̂q)
′ is asymptotically linear in the sense that for each 1 ≤

j ≤ q, ω̂j − ωjo = 1
n

∑n
t=1 gj(Xt) + oP (n

−1/2), where E{gj(Xt)} = 0, Var{gj(Xt)} ≤ c < ∞,

and c > 0 is a constant independent of j. Furthermore ||ω̂ − ωo||2 = OP (τn,q), where τn,q → 0

and τn,q
√
n/m→ 0.

B2 f(x;θ,ω) is smooth such that all the required partial derivatives exist and are continuous.

Denoted by aj the j-th component of a. There exist a positive number c1 and a positive

function λ1(·) such that

∣∣∣u′∂
2aj(x;θo,ω)

∂ω∂ω′ u

∣∣∣ ≤ λ1(x)||u||2 for any ||ω − ωo|| ≤ c1, u ∈ R
q and 1 ≤ j ≤ q,

and E{λ1(Xt)} is bounded as q → ∞.
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B3 {Xt} is β-mixing and satisfies condition C1 in the Appendix, and

ψn(Xt,Xs) = {C(Xt;θo,ωo)g(Xs) +C(Xs;θo,ωo)g(Xt)}/m

satisfies condition C2.

B4 For some γ > 2 and γ > δ′ given in C1, limq→∞E{||a(Xt;θo,ωo) + 2D(θo,ωo)g(Xt)||γ}/mγ <

∞. Furthermore

Σj ≡ lim
q→∞

1

m2
Cov{a(X1;θo,ωo) + 2D(θo,ωo)g(X1), a(X1+j ;θo,ωo) + 2D(θo,ωo)g(X1+j)}

exists for all j ≥ 0.

B5 Let bij(x;θ,ω) be the (i, j)-th element of B(x;θ,ω). There exist a positive number c2 and a

positive function λ2(·) such that || ∂
∂θ bij(x;θ,ω)||+|| ∂

∂ω bij(x;θ,ω)|| ≤ λ2(x) for any ||θ−θo|| ≤

c2, ||ω − ωo|| ≤ c2 and 1 ≤ i, j ≤ d, the limit of E{bij(Xt;θo,ωo)}/m exists, and both

E{λ2(Xt;θo,ωo)
ν}/mν and E{bij(Xt; θo,ωo)

ν}/mν are bounded (as q → ∞), where ν > 2 is

given as in C3. Furthermore, θ̃
P−→ θ0.

Theorem 3. Under condition B1-B5,
√
n(θ̃−θo) is asymptotically normal with mean 0 and covari-

ance matrix M−1(Σ0 + 2
∑∞

j=1Σj)M
−1, where M = limq→∞E{B(Xt;θo,ωo)}/m > 0, and Σj is

defined in B4.

Remark 4. The collective quality of the estimation for all nuisance parameters is reflected by

the condition ||ω̂ − ωo||2 = OP (τn,q) in B1. With n observations and q (nuisance) parameters in

total, the average number of observations available for estimating each parameter may be regarded

as in the order of n/q. This suggests |ω̂j − ωjo|2 = OP (q/n) for all 1 ≤ j ≤ q and, consequently,

q/n ≤ τn,q ≤ q2/n. In the case m = q, B1 implies q = o(
√
n) if τn,q = q2/n, and q = o(n) if

τn,q = q/n. Hence the maximum number of nuisance parameters allowed in Theorem 3 depends on

the quality of the initial plug-in estimator ω̂: the faster τn,q → 0, the larger q can be.

4 Numerical properties

We consider a simple spatio-temporal model

Yt = AYt−1 + Zt, Zt = ρHZt + εt, (4.1)
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where Yt is a p×1 vector, representing the values at time t over p locations, A = diag(ω1, · · · , ωp) is a

diagonal coefficient matrix, the innovation Zt in the AR equation is unobservable and its components

are correlated with each other. The correlation structure is defined by the second equation above,

in which H is a known p × p matrix with the main diagonal elements equal to 0 and all the other

elements equal to 1, ρ is an unknown parameter, and εt are independent N(0, σ2Ip) random vectors,

where Ip denotes the p × p identity matrix. The second equation in (4.1) is a simple example of

spatial autoregressive models in spatial econometrics literature; see, e.g. LeSage and Pace (2009).

Under the above setting, each component of Yt follows an AR(1) model. However those com-

ponents are correlated due to the spatial dependence in Zt. Based on observations Y1, · · · ,Yn, we

are interested in estimating the parameter θ = (ρ, σ2)′ which determines the spatial correlations

among different locations, treating the temporal autoregressive parameters ω1, · · · , ωp as nuisance

parameters. We conduct a simulation to compare the performance of the MPQLE and MCQLE for

θ. Note for this example, there are q = p nuisance parameters ω = (ω1, · · · , ωp)
′.

For the MPQLE, we estimate nuisance parameter ωj by the ordinary least squares estimation

using the j-th component series of Yt = (Yt1, · · · , Ytp)′ only, i.e.

ω̂j =
n∑

t=2

YtjYt−1,j

/ n∑

t=2

Y 2
t−1,j , j = 1, · · · , p. (4.2)

Let Â = diag(ω̂1, · · · , ω̂p). This leads to the residuals Z̃t = Yt − ÂYt−1. It follows from the second

equation in (4.1) that

Zt ∼ N
(
0, σ2(Ip − ρH)−2

)
. (4.3)

Hence the MPQLE is defined as

(ρ̃, σ̃2) = argmin
ρ,σ2

{
p log(σ2)− log(|Ip − ρH|2) + 1

σ2(n− 1)

n∑

t=2

Z̃′
t(Ip − ρH)2Z̃t

}
. (4.4)

Note that the determinant |Ip − ρH| admits an explicit formula:

|Ip − ρH| = (1 + ρ)p−1{1− (p− 1)ρ}, p = 1, 2, · · · .

To construct an MCQLE, we first calculate the profile likelihood for (ρ, σ2) by maximizing the

likelihood based on the component observations {(Yt,j−1, Ytj)} over (ωj−1, ωj), for j = 2, · · · , p. This

leads to

{ωj−1(ρ), ωj(ρ)} = arg min
ωi, ωj

n∑

t=2

{
τ(Yt,j−1 − ωj−1Yt−1,j−1)

2 + τ(Ytj − ωjYt−1,j)
2 (4.5)

− 2ν(Yt,j−1 − ωj−1Yt−1,j−1)(Ytj − ωjYt−1,j)
}
,
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where τ ≡ τ(ρ) = Var(Ztj)/σ
2 and ν = ν(ρ) = Cov(Ztj , Zt,j−1)/σ

2. Note that ωj(ρ) obtained from

the pairing with ωj−1(ρ) above differs from that obtained from the pairing with ωj+1(ρ), as we adhere

the ‘variation-free’ condition discussed in section 2 above. Now let

Ẑt,j−1 ≡ Ẑt,j−1(ρ) = Yt,j−1 − ωj−1(ρ)Yt−1,j−1, Ẑt,j ≡ Ẑt,j(ρ) = Yt,j − ωj(ρ)Yt−1,j .

Our MCQLE is defined as

(ρ̂, σ̂2) = argmin
ρ,σ2

{
log(σ2) +

1

2
log(τ2 − ν2) (4.6)

+
1

2(n− 1)(p− 1)(τ2 − ν2)

p∑

j=2

n∑

t=2

(τẐ2
t,j + τẐ2

t,j−1 − 2νẐt,jẐt,j−1)
}
.

Note that both τ and ν in (4.6) and (4.5) can be explicitly expressed as functions of ρ. To this end,

let G ≡ (gij) = (Ip − ρH)−1. Then

gii =
1− (p− 2)ρ

{1− (p− 1)ρ}(1 + ρ)
, gij =

ρ

{1− (p− 1)ρ}(1 + ρ)
(i 6= j).

It follows from (4.3) that τ is the main-diagonal element ofG2, and ν is the off-main-diagonal element

of G2. Hence

τ =
{1− (p− 2)ρ}2 + (p− 1)ρ2

{1− (p− 1)ρ}2(1 + ρ)2
, ν =

2ρ{1− (p− 2)ρ}+ (p− 2)ρ2

{1− (p− 1)ρ}2(1 + ρ)2
.

We conducted a simulation to compare the performance of the MPQLE (4.4) and the MCQLE

(4.6). We set the sample size n = 100 or 300, the parameter ρ = 0.1, 0.5 or 0.9 and σ2 = 1. For

n = 100, we set the number of locations p = 10, 50 or 100. For n = 300, we set p = 30, 150 or

300. For each setting, we drew 200 samples. For each sample, nuisance parameters ωj were drawn

independent from the uniform distribution on the interval [−0.9, 0.9]. Table 1 lists the mean absolute

estimation errors (i.e. in the form 0.5(|ρ̂−ρ|+|σ̂2−σ2|)) over the 200 samples for all different settings.

Since the composite likelihood is a wrong likelihood, it is not surprising to see that the MPQLE,

which was calculated based on the correct likelihood or marginal likelihood functions, outperforms

the MCQLE under the ‘normal’ circumstances (i.e. when p is relatively small with respect to n).

However when p is large in relation to n, the MPQLE suffers from too many initial estimates ω̂j

defined in (4.2); some of them are bound to be poor or very poor. In contrast, the MCQLE profiles

out the nuisance parameters ωj in (4.5), which makes the use of the pairwise correlations. Although

the form of likelihood function in (4.6) is wrong, it does not involve any initial estimates. Table 1

indicates that the MCQLE provides more accurate estimates than the MPQLE when, for example,
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Table 1: The mean absolute errors of the MCQLE and the MPQLE over 200 replications.
ρ = 0.1 ρ = 0.5 ρ = 0.9

n p MCQLE MPQLE MCQLE MPQLE MCQLE MPQLE

100 10 0.031 0.029 0.412 0.082 0.482 0.106
50 0.355 0.017 0.485 0.370 0.532 0.596
100 0.372 0.187 0.442 0.449 0.599 0.729

300 30 0.226 0.038 0.398 0.081 0.399 0.641
150 0.408 0.219 0.407 0.902 0.436 0.703
300 0.442 0.880 0.479 0.960 0.596 0.981

p = n = 300, and also p = n = 100 and ρ ≥ 0.5. This is also the cases when the spatial correlation is

strong (e.g. ρ = 0.9 or 0.5) and p is moderately large (e.g. p = 150 and n = 300). Note that for the

MPQLE the spatial correlations were completely ignored in estimating nuisance parameters ωj (see

(4.2)). In contrast the pairwise correlation structure was utilized in (4.5) in deriving the MCQLE.

5 Proofs of Theorems 1 and 2

We use the same notation as in section 2.

5.1 Proof of Theorem 1

The basic idea in the proof of Theorem 1 is the same as that of Theorem 6.5.1 of Lehmann and Casella

(1998), although it becomes technically more involved in order to handle the increasing number of

parameters as n→ ∞.

Let

Qδ =
{
(θ,ω1, · · · ,ωr)

∣∣ ||θ − θo||2 +
1

r

r∑

j=1

||ωj − ωjo||2 = δ2/m
}
.

We will show that for any δ > 0 fixed, l(β) < l(βo), for all β ∈ Qδ, with probability converging to 1.

Therefore with probability arbitrarily close to 1 l(β) attains a local maximum in the interior of Qδ

for all sufficiently large n. Let β̂ be the local maximum closest to β0. By the above argument, β̂

must lie in the interior of Qδ for any δ > 0. This entails the required assertion.

To establish the required fact concerning the behaviour of l(β) on Qδ, we evoke a Taylor expan-

13



sion:

1

nr
{l(β)− l(βo)} =

1

nr
(β − βo)

′ l̇(βo) +
1

2nr
(β − βo)

′ l̈(βo)(β − βo)

+
1

6nr

∑

ℓ,i,k

(βℓ − βℓo)(βi − βio)(βk − βko)
∂3

∂βℓ∂βi∂βk
l(β⋆) ≡ S1 + S2 + S3, (5.1)

where β⋆ lies between β and βo.

For β ∈ Qδ, write θ − θo = δ√
m
γ and ωj − ωjo = δ

√
r
mγj . Then all the elements of γ and γj

are between −1 and 1. Furthermore,

S1 =
δγ ′

n
√
m

n∑

t=1

1

r

r∑

j=1

atj +
δ
√
r

n
√
m

n∑

t=1

1

r

r∑

j=1

γ ′
jbtj . (5.2)

Let ξtj denote any component of atj . Since E(
∑

j atj) = 0, it holds for any ǫ > 0 that

P
(√m
n

n∑

t=1

∣∣1
r

r∑

j=1

ξtj
∣∣ > ǫ

)
≤ m

nǫ2
{
Var(ζtr) + 2

n−1∑

t=1

(1− t

n
)Cov(ζ1r, ζ1+t,r)

}

≤ m

nǫ2
{
Var(ζtr) + 2E(|ζtr|ν)2/ν

∞∑

t=1

α(t)1−2/ν
}
→ 0. (5.3)

where ζtr = r−1
∑

1≤j≤r ξtj . The last inequality follows from Proposition 2.5 of Fan and Yao (2003);

see also conditions A1 and A3. Hence the first sum on the RHS of (5.2) is of the order oP (m
−1),

and the convergence is uniform for γ in any compact subset of Rd.

To estimate the second term on the RHS of (5.2), let dj denotes the length of btj ≡ (btj1, · · · , btjdj )′.

Then max1≤j≤r dj are bounded (as r → ∞). Note

sup
{γj}

∣∣
n∑

t=1

r∑

j=1

γ ′
jbtj

∣∣ = sup
{γj}

∣∣
r∑

j=1

γ ′
j

n∑

t=1

btj

∣∣ ≤
r∑

j=1

dj∑

i=1

∣∣
n∑

t=1

btji
∣∣.

Hence

P
{
sup
{γj}

√
rm

n

∣∣
n∑

t=1

1

r

r∑

j=1

γ ′
jbtj

∣∣ > ǫ
}

≤ P
{√rm

n

r∑

j=1

dj∑

i=1

∣∣
n∑

t=1

btji
∣∣ > ǫr

}

≤
r∑

j=1

P
{√rm

n

dj∑

i=1

∣∣
n∑

t=1

btji
∣∣ > ǫ} ≤

r∑

j=1

dj∑

i=1

P
{√rm

n

∣∣
n∑

t=1

btji
∣∣ > ǫ/dj}

≤ rm(maxj dj)
2

nǫ2

r∑

j=1

dj∑

i=1

{Var(btji) + 2(E|btji|ν)2/ν
∞∑

t=1

α(t)1−2/ν} → 0, (5.4)

as r2m/n → 0 and condition A3. The last inequality in the above expression follows the same

argument as for (5.3). This shows that the second sum on the RHS of (5.2) is also oP (m
−1).

Therefore S1 = oP (m
−1), and the convergence is uniform for β ∈ Qδ.
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To calculate S2, we first note that similar to (5.4), condition A4 implies that

1

nr

n∑

t=1

r∑

j=1

(θ − θo)
′Atj(θ − θo)−

1

r

r∑

j=1

(θ − θo)
′E(A1j)(θ − θo)

=
1

n

n∑

t=1

1

r

r∑

j=1

(θ − θo)
′(Atj − EAtj)(θ − θo) = oP (m

−1),

1

nr

n∑

t=1

r∑

j=1

(θ − θo)
′Btj(ωj − ωtj)−

1

r

r∑

j=1

(θ − θo)
′E(B1j)(ωj − ωtj) = oP (m

−1),

1

nr

n∑

t=1

r∑

j=1

(ωj − ωtj)
′Ctj(ωj − ωtj)−

1

r

r∑

j=1

(ωj − ωtj)
′E(C1j)(ωj − ωtj) = oP (m

−1).

Furthermore, all the convergences above are uniform for β ∈ Qδ, as the sizes of all the matrices on

the LHS in the above expressions are fixed, and the uniform convergence may be established in the

same manner as in (5.4). Now

S2 =
1

2nr

n∑

t=1

r∑

j=1

{(θ − θo)
′Atj(θ − θo) + 2(θ − θo)

′Btj(ωj − ωjo) + (ωj − ωjo)
′Ctj(ωj − ωjo)}

=
1 + oP (1)

2r

r∑

j=1

{(θ − θo)
′EAtj(θ − θo) + 2(θ − θo)

′EBtj(ωj − ωjo) + (ωj − ωjo)
′ECtj(ωj − ωjo)}

= − 1

2r
(β − βo)

′M1(β − βo){1 + oP (1)} = − 1

2
β′
rM2βr{1 + oP (1)},

where M1, M2 are defined in (2.6) and (2.7), and

βr = ((θ − θo)
′, (ω1 − ω1o)

′/
√
r, · · · , (ωr − ωro)

′/
√
r)′.

For β ∈ Qδ, ||βr||2 = δ2/m. Since all the eigenvalues of M2 are bounded between 0 and ∞ (see

condition A5), β′
rM2βr = 2c||βr||2 = 2cδ2/m, where c > 0 is a constant. Hence S2 = −cδ2/m{1 +

oP (1)} uniformly for all β ∈ Qδ.

Finally we deal with S3. Note that ∂2

∂ωi∂ω′

j
l(β) = 0 for any i 6= j. Similar to the above, it may

be proved using condition A6 that

|S3| ≤ 1 + oP (1)

6r

( ∣∣∑

ℓ,i,k

(θℓ − θℓo)(θi − θio)(θk − θko)
∣∣

r∑

j=1

E{λj(Xtj)}

+
∣∣∑

i,k

(θi − θio)(θk − θko)
∣∣

r∑

j=1

∣∣∑

ℓ

(ωjℓ − ωjℓo)
∣∣E{λj(Xtj)}

+
∣∣∑

k

(θk − θko)
∣∣

r∑

j=1

∣∣∑

ℓ,i

(ωjℓ − ωjℓo)(ωji − ωjio)
∣∣E{λj(Xtj)}

+
r∑

j=1

∣∣∑

ℓ,i,k

(ωjℓ − ωjℓo)(ωji − ωjio)(ωjk − ωjko)
∣∣E{λj(Xtj)}

)

≡ (S31 + S32 + S33 + S34){1 + oP (1)}.
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Note that E{λj(Xtj)} is bounded by a constant for 1 ≤ j ≤ r, |θi − θio| ≤ δ/
√
m and |ωjk − ωjko| ≤

δ
√
r/m for all β ∈ Qδ, and all the lengths of ωj are bounded. It is easy to see S31 = O(m−3/2) =

o(m−1) and S32 = O(m−3/2r1/2) = o(m−1). On the other hand,

S33 ≤ c2
r
√
m

r∑

j=1

∣∣∑

ℓ,i

(ωjℓ − ωjℓo)(ωji − ωjio)
∣∣ =

c2
r
√
m

r∑

j=1

∣∣∑

i

(ωji − ωjio)
∣∣2

≤ c3
r
√
m

r∑

j=1

||ωj − ωjo||2 ≤ c3

m3/2
= o(m−1),

S34 ≤
c4√
mr

r∑

j=1

∣∣∑

i

(ωji − ωjio)
∣∣2 ≤ c5r

1/2

m3/2
= o(m−1).

This concludes that S3 = oP (m
−1).

Combining the above asymptotic approximations for S1, S2 and S3 together, we have shown that

uniformly for β ∈ Qδ

1

nr
{l(β)− l(βo)} = −c δ2/m+ oP (m

−1),

where c > 0 is a constant. This completes the proof.

5.2 Proof of Theorem 2

Since l̇(β̂) = 0, it follows a simple Taylor expansion that

β̂ − βo = −{l̈(β⋆)}−1 l̇(βo), (5.5)

where l̈ = ∂2l
∂β∂β′ , and β⋆ lies on the line between β̂ and βo. Note

l̈(β) =
n∑

t=1




∑r
j=1Atj(θ,ωj) Btj(θ,ω1) · · · Btr(θ,ωr)

Bt1(θ,ω1)
′ Ct1(θ,ω1)

...
. . .

Btr(θ,ωr)
′ Ctr(θ,ωr)




,

where the entries at the blank places are all 0. We partition the above matrix into 2× 2 blocks with
∑

t

∑
j Atj(θ,ωj) as the (1, 1)-th block. By taking the inverse of this partitioned matrix, the first d

components of (5.5) may now be expressed as

√
n(θ̂ − θo)

= −
{ 1

nr

r∑

j=1

( n∑

t=1

Atj(θ
⋆,ω⋆

j )−
n∑

t=1

Btj(θ
⋆,ω⋆

j )
{ n∑

t=1

Ctj(θ
⋆,ω⋆

j )
}−1

n∑

t=1

Btj(θ
⋆,ω⋆

j )
′
)}−1

× 1√
n r

r∑

j=1

( n∑

t=1

atj −
n∑

t=1

Btj(θ
⋆,ω⋆

j )
{ n∑

t=1

Ctj(θ
⋆,ω⋆

j )
}−1

n∑

t=1

btj

)
. (5.6)
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For any matrix B, denote by |B|a the sum of the absolute values of all the elements of B. Note

that all the sizes of the matrices Atj , Btj and Ctj are bounded. It follows from condition A6 that

max
1≤j≤r

∣∣ 1
n

n∑

t=1

Atj(θ
⋆,ω⋆

j )− E(A1j)
∣∣
a

(5.7)

≤ max
1≤j≤r

1

n

∣∣
n∑

t=1

{Atj(θ
⋆,ω⋆

j )−Atj}
∣∣
a
+ max

1≤j≤r

∣∣ 1
n

n∑

t=1

Atj − E(A1j)
∣∣
a

≤ {|θ⋆ − θo|a + max
1≤j≤r

|ω⋆
j − ωjo|a} max

1≤j≤r

1

n

n∑

t=1

λj(Xtj) + max
1≤j≤r

∣∣ 1
n

n∑

t=1

Atj − E(A1j)
∣∣
a
.

For any ǫ > 0,

P
{
max
1≤j≤r

∣∣ 1
n

n∑

t=1

Atj − E(A1j)
∣∣
a
> ǫ

}
≤

r∑

j=1

P
{∣∣ 1
n

n∑

t=1

Atj − E(A1j)
∣∣
a
> ǫ

}
(5.8)

≤ c

n

∑

ηtj

r∑

j=1

[
Var(ηtj) + 2{E(|ηtj |ν)}2/ν

∞∑

k=1

α(k)1−2/ν
]
→ 0.

The limit above is guaranteed by condition A4 and the fact that r/n→ 0. In the above expression,

ηtj denotes a generic element of Atj , and the sum
∑

ηtj
is taken over all the elements of Atj .

The last inequality follows the same argument as in (5.3). In the same way we may show that

maxj | 1n
∑n

t=1[λj(Xtj)− E{λj(Xtj)}]| P−→ 0, and therefore

max
1≤j≤r

1

n

n∑

t=1

λj(Xtj) = OP (1). (5.9)

Now we show that

max
1≤j≤r

|ω⋆
j − ωjo|a P−→ 0. (5.10)

It follows from (2.10) that for any ǫ > 0, it holds for all sufficiently large n that

P
{ r∑

j=1

||ω̂j − ωjo||2 ≤ ǫ2/k20
}
> 1− ǫ,

where k0 is the maximum length of the vectors ω1, · · · ,ωr, which is fixed. Since ω⋆
j lies between ω̂j

and ωjo, |ω⋆
j − ωjo|a ≤ |ω̂j − ωjo|a. Hence

P{max
1≤j≤r

|ω⋆
j − ωjo|a ≤ ǫ} ≥ P{max

1≤j≤r
|ω̂j − ωjo|a ≤ ǫ}

≥ P
{ r∑

j=1

||ω̂j − ωjo||2 ≤ ǫ2/k20
}
> 1− ǫ.

Therefore (5.10) holds. Combining (5.7) – (5.10), we conclude

max
1≤j≤r

∣∣ 1
n

n∑

t=1

Atj(θ
⋆,ω⋆

j )− E(A1j)
∣∣
a

P−→ 0. (5.11)
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It may be established in the same manner that

max
1≤j≤r

∣∣ 1
n

n∑

t=1

Btj(θ
⋆,ω⋆

j )− E(B1j)
∣∣
a

P−→ 0, max
1≤j≤r

∣∣ 1
n

n∑

t=1

Ctj(θ
⋆,ω⋆

j )− E(C1j)
∣∣
a

P−→ 0,

which implies that

max
1≤j≤r

∣∣∣ 1
n

n∑

t=1

Btj(θ
⋆,ω⋆

j ){
n∑

t=1

Ctj(θ
⋆,ω⋆

j )}−1
n∑

t=1

Btj(θ
⋆,ω⋆

j )
′ − E(B1j)(EC1j)

−1E(B′
1j)

∣∣∣
a

P−→ 0.

Combining this with (5.11), we obtain that

1

nr

r∑

j=1

( n∑

t=1

Atj(θ
⋆,ω⋆

j )−
n∑

t=1

Btj(θ
⋆,ω⋆

j )
{ n∑

t=1

Ctj(θ
⋆,ω⋆

j )
}−1

n∑

t=1

Btj(θ
⋆,ω⋆

j )
′
)

=
1

r

r∑

j=1

{E(A1j)− E(B1j)(EC1j)
−1E(B′

1j)}+ oP (1) → L.

Using the similar arguments, we may show that

1√
n r

r∑

j=1

n∑

t=1

Btj(θ
⋆,ω⋆

j )
{ n∑

t=1

Ctj(θ
⋆,ω⋆

j )
}−1

n∑

t=1

btj −
1√
n r

r∑

j=1

E(B1j)(EC1j)
−1

n∑

t=1

btj
P−→ 0.

Now it follows from (5.6) that

√
n(θ̂ − θo) = L−1 1√

n

n∑

t=1

1

r

y∑

j=1

{atj − E(B1j)(EC1j)
−1btj}{1 + oP (1)}.

The required asymptotic normality follows from Proposition 2 in the Appendix now; see condition

A7. This concludes the proof.

6 Proof of Theorem 3

Due to the plug-in of the nuisance parameter estimator ω̂ in the likelihood function, the proof of

Theorem 3 relies on the asymptotic properties of a generalized U -statistic presented in the Appendix.

Using the notation in section 3, we have

1

m
√
n
l̇(θo)−

1

m
√
n

n∑

t=1

a(Xt;θo,ωo) =
1

m
√
n

n∑

t=1

{
a(Xt;θo, ω̂)− a(Xt;θo,ωo)} (6.1)

=
1

m
√
n

n∑

t=1

C(Xt;θo,ωo)(ω̂ − ωo) +
1

m
√
n

n∑

t=1




(ω̂ − ωo)
′ ∂2a1(Xt;θo,ω⋆)

∂ω∂ω′ (ω̂ − ωo)

...

(ω̂ − ωo)
′ ∂2ad(Xt;θo,ω⋆)

∂ω∂ω′ (ω̂ − ωo)




=
1

n3/2m

n∑

t,s=1

C(Xt;θo,ωo)g(Xs) +OP

(τn,q
√
n

m

)
,
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where ω⋆ is between ω̂ and ωo, and g = (g1, · · · , gq)′. The last equality in the above expression

follows from conditions B1 and B2. Note that

n∑

t,s=1

C(Xt;θo,ωo)g(Xs) = 2
∑

1≤t<s≤n

{C(Xt;θo,ωo)g(Xs) (6.2)

+ C(Xs;θo,ωo)g(Xt)} +
n∑

t=1

C(Xt;θo,ωo)g(Xt).

By applying the Hoeffding decomposition (A.1) (with m = 2) to the first sum on the RHS of (6.2),

it follows from (6.1) and (6.2) that

1

m
√
n
l̇(θ) =

1

m
√
n

n∑

t=1

a(Xt;θo,ωo) +
2(n− 1)

n3/2m

n∑

t=1

D(θo,ωo)g(Xt) (6.3)

+ Ln +
1

n3/2m

n∑

t=1

C(Xt;θo,ωo)g(Xt) + OP

(τn,q
√
n

m

)
,

where

Ln =
2

n3/2m

∑

1≤t<s≤n

[
C(Xt;θo,ωo)g(Xs) +C(Xs;θo,ωo)g(Xt)−D(θo,ωo){g(Xt) + g(Xs)}

]
.

By Proposition 1 in the Appendix, E{(n−1/2Ln)
2} = O(n−1−γ). Hence it holds for any constant c,

P (|Ln| ≥ c) = P
{
n(n−1/2Ln)

2 > c
}
= n ·O(n−1−γ) = O(n−γ) → 0;

see condition B3. We may also show in the similar (but simpler) manner that

1

n3/2m

n∑

t=1

C(Xt;θo,ωo)g(Xt) = OP (n
−1/2).

Therefore it follows from (6.3) that

1

m
√
n
l̇(θo) =

1

m
√
n

n∑

t=1

{a(Xt;θo,ωo) + 2D(θo,ωo)g(Xt)}+ oP (1).

Note conditions B4 and B3 imply conditions C3 and C4. By Proposition 2,

1

m
√
n
l̇(θo)

D−→ N(0, Σ0 + 2
∞∑

j=1

Σj). (6.4)

Furthermore, the convergence of the sum
∑

j≥1Σj is guaranteed by condition B4.

On the other hand,

1

nm
l̈(θ⋆) =

1

nm

n∑

t=1

B(Xt;θo,ωo) +
1

nm

n∑

t=1

G(Xt;θ
⋆⋆,ω⋆,θ⋆ − θo, ω̂ − ωo), (6.5)
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where (θ⋆⋆,ω⋆) lies between (θ⋆, ω̂) and (θo,ωo), and G is a d× d matrix with the (i, j)-th element

(θ⋆ − θo)
′ ∂
∂θ
bij(Xt;θ

⋆⋆,ω⋆) + (ω̂ − ωo)
′ ∂
∂ω

bij(Xt;θ
⋆⋆,ω⋆), (6.6)

and bij denotes the (i, j)-th element of B. Write µij,m = E{bij(Xt;θo,ωo)}/m. Then for any ǫ > 0,

P
{∣∣ 1

nm

n∑

t=1

bij(Xt;θo,ωo)− µij,m(θo,ωo)
∣∣ > ǫ

}
≤ 1

ǫ2n2
Var

{ 1

m

n∑

t=1

bij(Xt;θo,ωo)
}
→ 0.

The limit is guaranteed by B5 and the mixing condition on Xt; see Proposition 2.5 of Fan and Yao

(2003). Hence

1

nm

n∑

t=1

B(Xt;θo,ωo)
P−→ M,

where M is a d × d matrix with the limit of µij,m as its (i, j)-th element. Note that the absolute

value of the expression in (6.6) is bounded from the above by

λ2(Xt;θo,ωo){||θ⋆ − θo||+ ||ω̂ − ωo||}.

Condition B5 implies that there exists a positive and finite constant c for which

P
{ 1

nm

n∑

t=1

λ2(Xt;θo,ωo) ≤ c
}
→ 1.

Since ||θ⋆−θo||+ ||ω̂−ωo|| P−→ 0, the second term on the RHS of (6.5) converges to 0 in probability.

Therefore 1
nm l̈(θ

⋆)
P−→ M. This, together with (6.4), concludes the theorem.

7 Conclusion

In this paper we have established the asymptotic normality for the two estimation methods, namely

the MCQLE and the MPQLE, for the parameter of interest in the presence of q nuisance parameters,

under the assumption that q goes to infinity together with the sample size n. When q is small in

relation to n, the MPQLE performs well and is typically better than the MCQLE. However when

q and n are about the same (hence condition B1 no longer holds), the MPQLE suffers from the

collectively poor estimation for too many nuisance parameters. Then the MCQLE provides a better

alternative as it is still root-n consistent. An interesting and practical relevant question is when to

use what for a given n and q. The asymptotic results provided in this paper are too complicated to

give any clear indication. How to develop an effective inference method to choose between the two

methods in practice remains as an unsolved challenge.
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Appendix: U-statistics

Let ξt is a p × 1 strictly stationary process, ξt is Ft-measurable, and F1 ⊂ F2 ⊂ · · · is a sequence

of σ-algebra. Let ψn(x1, · · · ,xm) be a real-valued function defined on (Rp)m, and it is symmetric in

its m(≥ 2) arguments. A U -statistic based on n observations ξ1, · · · , ξn is defined as

Un =
m!(n−m)!

n!

∑

1≤i1<···<im≤n

ψn(ξi1 , · · · , ξim).

For k = 1, · · · ,m− 1, let

ψn,k(x1, · · · ,xk) =

∫
ψn(x1, · · · ,xk,xk+1, · · · ,xm)

n∏

j=k+1

F (dxj),

where F (·) denotes the marginal distribution of ξt. For the simplicity in presentation, we assume

that E{ψn,1(ξt)} = 0. (Otherwise we replace ψn by ψn − E{ψn,1(ξt)}.) Put

hn,1(x1) = ψn,1(x1),

hn,2(x1,x2) = ψn,2(x1,x2)− hn,1(x1)− hn,1(x2),

hn,3(x1,x2,x3) = ψn,3(x1,x2,x3)−
3∑

j=1

hn,1(xj)−
∑

1≤i<j≤3

hn,2(xi,xj),

· · · · · ·

hn,m(x1, · · · ,xk) = ψn(x1, · · · ,xk)−
m∑

j=1

hn,1(xj)−
∑

1≤i<j≤m

hn,2(xi,xj)− · · ·

−
∑

1≤i1<···im−1≤m

hn,m−1(xi1 , · · · ,xik).

The Hoeffding decomposition (Lemma A, pp. 178 in Serfling 1980) is of the form

Un =
m

n

n∑

j=1

ψn,1(ξj) +
m∑

k=2

m!

(m− k)!
Sn,k, (A.1)

where

Sn,k =
(n− k)!

n!

∑

1≤i1<···<ik≤n

hn,k(ξi1 , · · · , ξik). (A.2)

As long as the variance of ψn,1(ξj) does not diminish to 0, the asymptotic property of Un is determined

by that of the first sum on the RHS of (A.1). The lemma below shows indeed that the remainder term

(i.e. the other sum) is asymptotically negligible. Different from conventional setting, we allow the

kernel function ψn to vary with respect to the sample size n. Furthermore, we allow the dimension

p of ξj to diverge to ∞ together with n. We first introduce some regularity conditions.
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C1 {ξt} is a strictly stationary and β-mixing (i.e. absolutely regular) process with the β-mixing

coefficients satisfying the condition β(n) = O(n−(2+δ′)/δ′), where δ′ ∈ (0, δ) is a constant.

C2 It holds for all n, p and 1 ≤ i1 < · · · < im ≤ n that E{|ψn(ξi1 , · · · , ξim)|2+δ} ≤M , and

∫ ∣∣ψn(x1, · · · ,xm)
∣∣2+δ

m∏

j=1

F (dxj) ≤M,

where δ > 0, M > 0 are fixed constants.

Proposition 1. Under conditions C1 and C2, it holds that E(S2
n,k) = O(n−1−γ) for k = 2, · · · ,m,

where Sn,k is defined as in (A.2) and γ = min{1, 2(δ−δ′)
δ′(2+δ)}.

Proposition 1 is essentially Lemma 2 of Yoshihara (1976). Only difference here is to allow ψn to

vary with n and the dimension p to grow. Nevertheless the original proof is still applicable. However

it was an error to define γ = 2(δ−δ′)
δ′(2+δ) in Yoshihara (1976), as the optimal rate for E(S2

n,k) is n−2.

Therefore it must hold that γ ≤ 1. Note that this optimal rate is attainable when, for example, {ξt}

is a sequence of independent r.v.s, or the rate of the mixing coefficients is strengthened to satisfy the

condition
∞∑

k=1

kβ(k)δ/(2+δ) <∞.

Now we turn to the asymptotic normality of the first term on the RHS of (A.1). We state the

required regularity conditions separately below, as only the α-mixing is required now, which is weaker

than the β-mixing. See section 2.6 of Fan and Yao (2003).

C3 {ξt} is a strictly stationary and α-mixing (i.e. strong mixing) process with α-mixing coefficients

satisfying the condition
∑

k≥1 α(k)
1−2/ν <∞, where ν > 2 is a constant.

C4 For ν > 2 given in C3 above, limn→∞E{|ψn,1(ξ1)|ν} <∞. Furthermore, the limit of Cov{ψn,1(ξ1),

ψn,1(ξj)} exists for any 1 ≤ j ≤ n.

Put

B2
n =

1

n
Var

{ n∑

t=1

ψn,1(ξt)
}

= Var{ψn,1(ξ1)}+ 2
n−1∑

j=1

(
1− j

n

)
Cov{ψn,1(ξ1), ψn,1(ξ1+j)}.

Proposition 2. Under conditions C3 and C4, it holds that

1√
nBn

n∑

t=1

ψn,1(ξt)
D−→ N(0, 1).
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Proof. By Proposition 2.5 of Fan and Yao (2003) with p = q = ν,

|Cov{ψn,1(ξ1), ψn,1(ξ1+j)}| ≤ 8α(j)1−
2

ν {E|ψn,1(ξ1)|ν}2/ν ,

see condition C4. Hence it follows from condition C3 that

lim
n→∞

n−1∑

j=1

|Cov{ψn,1(ξ1), ψn,1(ξ1+j)}| ≤ 8 lim
n→∞

{E|ψn,1(ξ1)|ν}2/ν
∞∑

j=1

α(j)1−2/ν <∞.

Now by the Lebesgue dominated convergence theorem, it holds that

lim
n→∞

B2
n = lim

n→∞
1

n
Var

{ n∑

t=1

ψn,1(ξt)
}
= σ2 ∈ (0,∞), (A.3)

where σ2 is a constant.

Now we partition the set {1, · · · , n} into 2kn+1 subsets with large blocks of size ln, small blocks

of size sn and the last remaining set of size n− kn(ln + sn), where ln and sn are selected such that

sn → ∞, sn/ln → 0, ln/n→ 0, and kn = [n/(ln + sn)] = O(sn).

For example, we may choose ln = O(n
a−1

a ) and sn = O(n1/a) for any a > 2. Then kn = O(n1/a) too.

For j = 1, · · · , kn, define

ηj =

jln+(j−1)sn∑

i=(j−1)(ln+sn)+1

ψn,1(ξi), ζj =

j(ln+sn)∑

i=jln+(j−1)sn+1

ψn,1(ξi), χ =

n∑

i=kn(ln+sn)+1

ψn,1(ξi).

Similar to (A.3), it may be proved that

lim
n→∞

1

n
Var

( kn∑

j=1

ζj
)
= lim

n→∞
knsn
n

1

knsn
Var

( kn∑

j=1

ζj
)
= 0,

and n−1Var(χ) → 0. Hence

1√
nBn

n∑

t=1

ψn,1(ξt) =
1√
nBn

{ kn∑

j=1

ηj +

kn∑

j=1

ζj + χ} =
1√
nBn

kn∑

j=1

ηj + oP (1). (A.4)

By Proposition 2.6 of Fan and Yao (2003),

∣∣∣E
{
exp

( it√
nBn

kn∑

j=1

ηj
)}

−
kn∏

j=1

E{exp
( itηj√

nBn

)}∣∣∣ ≤ 16(kn − 1)α(sn) → 0, (A.5)

see condition C3. Again similar to (A.3), it holds that Var(
∑

1≤j≤kn
ηj)/Bn → 1. It follows from

condition C4 that

lim sup
n
E
[
|ψn,1(ξ1)|2I{|ψn,1(ξ1)| ≥ ε

√
n}

]
≤ 1

εν−2nν/2−1
lim
n
E{|ψn,1(ξ1)|ν} → 0,
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for any ε > 0. Noticing (A.3), it follows from the theorem on page 31 of Serfling (1980) that

kn∏

j=1

E{exp
( itηj√

nBn

)}
→ e−t2/2.

This together with (A.5) and (A.4) entail the required result. �
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