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Abstract

We provide a direct proof for consistency and asymptotic normality of Gaussian maximum
likelihood estimators for causal and invertible ARMA time series models, which were initially
established by Hannan (1973) via the asymptotic properties of a Whittle’s estimator. This
also paves the way to establish a similar results for spatial processes presented in the follow-up

paper Yao and Brockwell (2001).
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1 Introduction

Hannan (1973) established the asymptotic theory for the maximum likelihood estimator based
on a Gaussian likelihood function for a general ARMA time series. The time series itself is not
necessarily Gaussian. Under the condition that the process is causal and invertible with finite sec-
ond moment, Hannan showed that the Gaussian maximum likelihood estimator is asymptotically
normal and unbiased with the covariance depending on the autocorrelation function only. In fact
the asymptotic variance of the estimated AR and MA coefficient vector can be nicely represented
in terms of the two AR models; see Theorem 2 in §4 below. This is one of the most influential
results in the classical time series. The result is simple and elegant. The imposed conditions
are minimal. However its proof is indirect and is based on delicate frequency-domain arguments;
see also §10.8 of Brockwell and Davis (1991). In fact, Hannan’s proof essentially consists of two
parts: a proof of asymptotic normality for Whittle’s estimator, and a proof of the asymptotic
equivalence of the Gaussian maximum likelihood estimator and Whittle’s estimator.

Since the Gaussian maximum likelihood estimator is based on simple and intuitive likelihood
argument, its asymptotic properties deserve a direct proof. This is the goal of our paper. We do
not attempt to reproduce Hannan’s result in the most general form. Instead we present the result
in its most practically relevant form. Our proof is directly within the time-domain, expressing the
likelihood function in terms of prewhitening. However this will not prevent us from using spectral
density function occasionally to simplify some technical details. The added incentive to produce
such a proof is to establish a similar result for spatial processes; see Yao and Brockwell (2001).

The paper is organised as follows. The model and estimators are defined in §2. §3 considers

the consistency and §4 deals with asymptotic normality.

2 Model and estimators

The autoregressive and moving average (ARMA) process {X;, t = 0,£1,+2,---} with orders

(p,q) (p,q >0, p+q > 0) is a stationary process defined by
Xt — let—l — = prt—p =& t+aige—1+---+ Ag€t—q, (21)

where {g;} ~ WN(0, 0?) is a sequence of uncorrelated random variables with mean 0 and variance

02 € (0,00), b = (b1, ,by)” € RP and a = (a1,--- ,a,)" € RY are real parameters. We write



{X:} ~ ARMA(p, q)-
It is convenient to represent model (2.1) in terms of the backshift operator B¥X; = X;_;, for

k=0,£1,£2,---. To this end, we define
b(z) =1—biz—---—bp2f, and a(z)=14+a1z+-- +age2’. (2.2)

Then model (2.1) can be equivalently expressed as b(B)X; = a(B)e;. We always assume that the
orders p and ¢ are genuine in the sense that polynomials b(z) and a(z) do not have common factors.
It is well-known that (2.1) defines a unique stationary process {X;} if and only if b(z) # 0 for all
complex z with |z| = 1. The process {X;} is causal if b(z) # 0 for all |z| < 1, and is invertible if
a(z) # 0 for all |z| < 1.

It is easy to see that a stationary process {X;} defined by (2.1) has mean 0. If b(z)a(z) # 0
for all |z| = 1, there are 2P stationary ARMA (p, q) models (with different b and a ) sharing the
same autocorrelation function (ACF). To avoid the ambiguity, it is common practice to assume
that b(z) # 0 for all |z| < 1, and a(z) # 0 for |z| < 1. This assumption guarantees that the
parameters b and a are identifiable in terms of the ACF, which is a necessary condition in the
context of Gaussian maximum likelihood estimation since the likelihood function depends on the
parameter (b,a) through the ACF only.

In the sequel we also assume that in model (2.1) (b,a) € B, where

B={(b,a) € RP xR? | b(z)a(z) # 0 for all complex |z| <1, b(-) and

a(-) do not have common factors}. (2.3)

It is easy to see that B is an open subset in RP x R?. Given the observations Xi,--- , X7, the

Gaussian likelihood function is of the form
1
L(b,a,0%) « o F|n|71/2 exp{_ﬁx;zfle}, (2.4)
where X = (X3,--- , X7)" and
1
¥ =3(b,a) = EVar(XT),

which is independent of 2. Note that for (b,a) € B, the autocovariance function (ACVF)
v(k) = Cov(Xy, Xi—k) — 0 at an exponential rate, and therefore the inverse of X(b,a) always

exists (Proposition 5.1.1 of Brockwell and Davis 1991). The estimators which maximise (2.4) can



be expressed as

(b,a) = arg (bn;i)relB (log{X5=(b,a) "' X7} + T~ log |E(b,a)|), 7> = X7 5(b,a) 'Xr/T.

First we establish the consistency of the estimators under the less restrictive assumptions

about {&;} in next section. The asymptotic normality will be proved in Section 4.

3 Consistency

The model (2.1) can be reparametrised in terms of reciprocals of the roots of equations b(z) = 0

and a(z) = 0, which form the parameter space ©. Since B is open, O is an open subset of

{0= (B, - ,Bp, 1, ,aq)T€€p+q | 0<|Bj] <1, 0< |ag| <1,and B; # oy

forall1 <j<pand1l<k<gqg},

where € denotes the complex number space. Thus the closure © is compact.
Let By € © be the true value of model (2.1); corresponding to (bg, ag) € B. Let 0 € O be the

estimator which maximises (2.4) with ¥ = X(8), namely

22— _ : l l T -1
0 =6 =arg ggg[T log |2(0)| + log{TXTE(O) Xr}- (3.1)

a.S.

It is easy to see that (B, a) — (bg,ap) if and only if 9 %% 9,.
We denote by(-) and ag(-) the polynomials defined as in (2.2) with the coefficients corresponding

to the true value 6y, and b(-) and a(-) the polynomials corresponding to 6.

Theorem 1. Let {X;} be the stationary process defined by (2.1) in which {&;} ~ IID(0, 0?) with

o2 > 0, and the true value (bg,ag) € B. As T — oo, 0 %% @, and 52 % 2.

Proof. The condition (by,ag) € B implies that 6y € ©. From (3.1) and Lemmas 1 and 2 below,

it holds almost surely that

1 ~ 1
lim sup Txgz(eT)—le < lim Txgz(eo)—le = o2 (3.2)

T—o0
Define B = {liminfr_, \ET — 6o| > 0}. For any w € B, there exists a subsequence of {T'},
which we still denote as {T'}, for which O7(w) — 0 € © and 0 # ;. Lemma 4 below and (3.2)

ensure that @ € ©. By Lemma 3(i) below, we have that for any € > 0,
1 ~ _ _ ~
7X3B(0r(w) Xy — X72(60) ' Xr| < €5(0)
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for all sufficiently large T"s, where 7(0) = Z?:l X?/T. Thus

: 1 T ) -1 . E 1 T —1
Jim —XPR(@r()) Xr = lm ZX7E(0) Xy, (3.3)

provided one of the above two limits exist. Now Lemma 2 and (3.2) imply that P(B) = 0,

ie. 8 % 0. It follows from Lemmas 3(i) and 2 that 52 = X7.5(8) Xy /T <% o2. |
In the sequel we always assume that the condition of Theorem 1 holds.

Lemma 1. log|X(0)| > 0 for any @ € ©, and T~ 'log |%(8)| — 0 for any 6 € ©.

Proof. First we assume 8 € O. Let {Y;} be the stationary process defined by b(B)Y; =
a(B)e; with {e;} ~ IID(0,1). It is easy to see from (2.4) that Var(Yr) = 3(@), where Yr =
(Y, ,Yr). Fork=2,--- T, let

Virr = @r1Yi + -+ + oV (3.4)
be the best linear predictor for Yy from Y, -+ ,Y] in the sense that
k
E(Yit1 — Yiq1)® = n:pinE{YkH - Z¢ij*j+1}2- (3.5)
J ]:1

Note that {Y;} is invertible, i.e. ;i1 = e;r1 — {1 — a(B)7'6(B)}Yi1 = er1 + > @i Y14
with 371 <0 5] < 00. Since ey41 is uncorrelated with {Y;41—;,7 > 1}, it is easy to see that

oo oo
Var(ers1) = B{Yir1 — ) ¢ Yie1-5) = min B{Yps1 — Y 9%51-5)%, (3.6)
7j=1 7j=1

where the minimum is taken over all {1;} such that }>, ;. || < oo. Therefore, it holds for
all1 <k<T,
r = Var(Yyy1 — ?k+1) > Var(eg,1) = 1. (3.7)
Let ?1 = 0, then (3.4) can be equivalently represented in the form ?k+1 = Z?:l hij (Yig1—j —
?]C+1_j) for 1 < k < T. This implies that

Y, =H(Yr - Y7), (3.8)

where H is a T' X T' lower triangular matrix

(1 0 0 0
h11 1 0 0
H=| hyp ho1 1 0 (3.9)
0
hr 1711 hryr 2 hrar3 --- 1

4



Note that the least square property implies that the residual Yy, — ?k+1 is uncorrelated with

{Y;,1 <t <k}, and therefore is also uncorrelated with {¥; — ¥;,1 < ¢ < k}. Hence,

T
|2(0)| = |Var(Y:)| = [HVar(Yr — Yp)HT| = |Var(Yr — Y7)| = H Tp—1 > 1.
k=1

The inequality in the above expression follows from (3.7) and the fact that ro = Var(Y; — ¥;) =
Var(Y1) > Var(e;) =1 (as p+ ¢ > 1). Thus log|3(8)| > 0 for any € € ©. From (3.5) and (3.6)

we may see that rp, — 1 as kK — oco. Thus

T
1 1
flog|2(0)| = Tkz_:llogrk_l — 0.

For @ € © — O, there exists a sequence {8} C © and 6; — 6. Thus it follows an obvious

asymptotic argument that |3(80)|/Var(Y1) > 1. Since Var(Y1) > 1, we have log |[2(0)| >0. H
Lemma 2. For any 6 € ©,
X73(0) 1 X7 /T %% Var{a(B) 'b(B)X;} > Var(e;) = 0,

and the equality holds if and only if 8 = 6.

Proof. Let {Y;} be the same process as defined in the proof of Lemma 1, and {¢;} and {¢;} be
the same as in (3.4) and (3.6). Define X; =0, Xj41 = @1 Xk + -+ + @pp X1 for k> 1 and Xp =
(X1,---, Xr)7. It follows from (3.8) that X7 = H(X7—Xr). Since () = H Var(Yr—Y7)H",
we have

T
1o 1 < - 1

?XTE(G) Xr = T(XT — X)) {Var(Yr - Yr)}~ (XT — XT Z Xy — Xk /Tk 1
=

where 1, = Var(Yiy 1 — ?k+1). For any € > 0, choose K > 1 such that

o0

E( ) leiXi)? <e (3.10)

j=K+1

Write for £ > K

K k
Xp—Xpg = (Xp— Z @i Xk—j) + Z( — i) Xk—j — Z ©j Xk—j
j=1 j=1 j=K+1
= k1t k2 + k3, Say. (3.11)
It follows from the ergodic theorem that 7! DK <k<T n, =% E(n?)- By (3.10),

|E(n}) — E{p(B)X:}?| < € + 2{e Enj, }/%.



Thus

| Jim — Z no — B{p(B)X,}’| < e+ 2{e Enji }'/* ass.. (3.12)

Again by the ergodic theorem and (3.10), we have that

2
T 00 [es)
Jim \an3| < Jim — Z S leiXe—sl | BB leiXi )’ <e  (3.13)

Let Pr — ((10/61’ T a(Pkk)Ta [pt = (‘pla v a‘)Dk)Ta and Ek = V&I‘(Xk). Then

E(npy) = (@ — @) Sk (@1 — 1) < Amax| @1 — @1l

where Apax is the maximal eigenvalue of X; which is finite; see Proposition 4.5.3 of Brockwell
and Davis (1991). By (10.8.50) of Brockwell and Davis (1991)*, ||@r — k|| = 0 as & — oo. Thus
E(n?,) — 0. Based on the MA(co) representation of {X;}, it holds that mge = Z;’;l dyj€k—;j
with . [dy;| < oo. By the Loéve Theorem (Corollary 3, p.117 of Chow and Teicher 1997), n2
converges almost surely as k — oco. Since 7o i 0, it holds that n — 0. Consequently it also

holds that,

7 2 M2 — 0. (3.14)

Note that
LT 1/2
33 o< (33 o)
=K
It follows from (3.11) to (3.14) that

T

LS (X - X)? 25 B{p(B)X,} = Var{a(B)"b(B)X,}
T k=1

= Var{a(B) 'b(B)by(B) tag(B)e;} > Var(e;). (3.15)

The required result now follows from the fact that r, — Var(eg+1) = 1, which is guaranteed by

(3.5) and (3.6). n

Lemma 3. Let 0 € © and 0, — 0 as k — 0o. Let € > 0 be an arbitrary constant.

(i) If @ € ©, it holds for all ' > 1 and all sufficiently large k's that

IX"2(0;) 'x —x"2(0) x| <e, xecRTand|x||=1.

*There are typos in Brockwell and Davis’ book: s~* on p.395-6 should be s'.



(i) If @ € © — O and b(z) # 0 for all |z| < 1, there exists a 6, € © and |0, — || arbitrarily

small for which it holds for all T > 1 and all sufficiently large k's that

x"2(0;) x> x"2(0,) 'x —¢, xeRT and |x|| = 1.

2

Zé;: )) |2, the spectral density of the process defined by (2.1). Then

Proof. (i) Let g(w,0) = £|
g(w,-) is continuous and bounded away from both 0 and oo on any compact sets contained in ©.
Hence for any ¢ > 0, it holds for all large k's that
sup |g(w, 0k) — g(w,0)] < €.
we[—m,m)

Therefore, it holds that for any x = (z1,+++ ,2z7)7,y = (y1,++ ,yr)” € RT and ||x|| = ||y|| = 1,

X200 - DOyl = | [ Ymie Y e #o(w,00) - g(w,0)}dw
T j=1 k=1

;o T T
< %/ﬂ(\ jz_:lxje”‘”P + | ;yke’kw\Q)dw = 27é.

When 6 € O, the minimum eigenvalue of (@) (for all 7' > 1) is bounded from below by a

constant K~ > 0; see Proposition 4.5.3 of Brockwell and Davis (1991). Hence,

X" {2007 - S(O) x| = [x"2(8)7'{2(6) - £(6)}E(8)) x|

IA

2 {|x"2(0) 2x| |x"2(0),) 2x[}/2 < 2r K2 (3.16)

Now (i) holds by choosing €' = ¢/(2nK?).
(ii) When 8 € © — O, let 0, = 0y, € O for a fixed large ko. Then for all T and large k,

[x"{X(6k) — 2(6.)}y| < [x"{2(0) — B(0)}y| + [x"{Z(0) — Z(6k,) }y| < 2¢"
By using the same argument as (3.16) twice, we have for any 1 > 0 that

X"2(0;) 7 'x > xT{Z(0) + nIr} x> x"{2(0.) + nIr} 'x — 2 /n?

> x"%(0,) 'x —2nK? - 2 /n?,

where It denotes the T' x T' identity matrix, and K| 1> 0 is a lower bound of the eigenvalues for

3(0.). The proof of (ii) is completed by choosing n = ¢/(4K?) and ¢ = n?¢/4. [ |
Lemma 4. Let 7 € © and 87 — @' € © — ©. Then it holds almost surely that
liminf X732 (07) X1 > o2
T—o0
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Proof. First we assume that b/(z) # 0 for all |z| < 1, where b(-) and a/(-) are polynomials defined
as in (2.2) corresponding to 8 = 6'.

It follows from Lemma, 2 that for any @ € © and 6 # 6,
Var{a(B)~'b(B)X;} = Var{a(B)~'b(B)by(B) ' ao(B)es} > Var(e;) = o°.
Note that
o
a(B)~'b(B)bo(B) 'ao(B)ey = e + Y _ cjE1,
j=1
which is equal to ¢; if and only if a(z)71b(2)bo(2) lag(z) = 1, i.e. @ = By. Let O(8y,6) = {0 €

©]||@ — 6¢|| > 6}. Then for any § > 0, there exists an € > 0 such that

. -1 2
06@_1r(.1)f(0076) Var{a(B) ' b(B)X:} >0 +e.

(Otherwise, 8y must be in the closure of O(8y,d).) By Lemmas 3(ii) and 2, there exists a
0. € © —0(8y,6) such that

1 1 1
liminf =X7-2(07) X7y > lim {=X7X2(0,) Xy — ———¢7
iminf ~X73(07)" ' Xy > lim {ZX75(6.)" Xy 2Var(Xt)€7(0)}

= Var{a,(B)"'0.(B)X;} —€/2 > o> +¢/2 > o2, as. (3.17)

In the above expression, 7(0) = X7.X;/T.
Now consider the case when b (z) = 0 has unit roots. To avoid cumbersome notation, we
assume that there is only one unit root 1/0]. (The cases with multiple unit roots can be dealt

with in the same manner.) Define U; = X; — 01 X; 1 and Ugp = (Uz,--- ,Ur)". Then

X72(0) 'Xr = U 73(0) 'Usr + &4, (3.18)

where 2(6,) = Var(Us7), ¥(8) = Cov(Uar, X1), 7(80) = Var(X1), and

& = (X1 —v(0)"(0) 'Usr)?/{7(8) — () =(8) 1~ (9)}.

Let ,(z) = b'(u)/(1 — 6.,). Note that the limiting point @' defines a causal process b, (B)U; =

a'(B)ey with b,(z) # 0 for all |z| < 1. Replacing {X;} in (3.17) by {U;}, we have that

1 ~
liminf —UT,2(0) ' Uyt > 02, as..
T—oo 1T © ’

It follows from (3.18) now that lim infy X7.3(8) X1 /T > o2 almost surely. ]



4 Asymptotic normality

To state the asymptotic normality of the estimator (S, a), we introduce some notation. Let

{W;} ~ WN(0,1) be a white noise process with mean 0 and variance 1. Define
b(B)¢ = Wy and a(B)( = Wy (4.1)
Let 6 = (5*17 tee ’E*pa C*la e ,giq)’r’ and

W(b,a) = {Var(¢)} . (4.2)

Theorem 2. Let {X;} be the stationary process defined by (2.1) in which {g;} ~ IID(0, 0%) with

0% > 0, and the true value (bg,ag) € B. Then as T — oo,

1 E - bO D
T2 — N(O,W(bo,ao)).
a— ag
Before we present the proof, we introduce some notation. Let 8 = (81, -+, Bp+q)” = (b7,a")7,

B = (ET,ﬁT)T and By = (bj,a))”. Denote by T'y the k£ x k matrix with the (7, j)-th element
v(j — i) = Cov(X;, X;) and -y, the vector (y(1),---,v(k))”. We also write Ty = I'y(8), v, =

~,(B) and etc. to indicate the dependence on the value of parameter 3. For ¢t > 1 let
)?t—l—l = ppnXi+ -+ Xy
be the best linear predictor for X;,; based on Xy,--- , X; under model (2.1) and fl = (. Then

Yy = (‘Ptl: e 7‘Ptt)7 = I‘t_l'Yta (43)

and the variance of X;,1 — X;41 under model (2.1) is o2r; = o2ry(8) = 7(0) — ¢T~,. Let X_;, =0
and Z_; =0 for all k¥ > 0, and define fort =1,---, T

Zt = Z(IB) = Xt — let—l — = prt—p - aIZt_l — = (J,th_q. (44)

We write for 1 <j<pand1<i<q

Z Z
G Vi = 0%

Vi = b, "o

(4.5)

Write Y = (X1,---,X7)" and Z = (Z1(By), -+, Zr(By))". Let X = (X,Z) and U = (U, V),

where X and U are the T'xp matrices with X;_; and U;;(8,) as their (4, j)-th elements respectively,



and Z and V are T x ¢ matrices with Z;_;(8y) and V;;(B8,) as their (¢, j)-th elements respectively.
Denote by R the diagonal matrix diag(ro(B8g), -+ ,m7—-1(B0))-

We split the proof into several lemmas. In the sequel we always assume that the condition of

Theorem 2 holds.

Lemma 5. For k=1,--- ,p+g,

T—w{ } 2o
B=B

Proof. It follows the argument in p.394-6 of Brockwell and Davis (1991) that for 8 € B and

T o~
(Xt — X1)? Oriy
[y G on

t=1 t—1

9 T
— Zlog T 1
0Pr 1=

1<k<p+yq,
0r4(B)/0B| < C(B){s(B)}, t>1,

where C(-) > 0 and s(-) € (0,1) are continuous By Theorem 1, B &2 Bo € B. Hence for any
e > 0, there exists a sub-sample space A with P(A) > 1 — e and ||B — B,|| < € on A for all large
T's. Therefore, we may choose C; € (0,00) and s; € (0,1) for which |87‘t(ﬁ)/3,8k|ﬁ:3 < Cyst on
A. Since r4(8) > 1 for all B € B, it holds on the set A that

T T
1 _
72| O S g | <7 Z il <arY s o
Pr 1= p=p = i1 | OBk =1
_ T P
Thus T-1/2 ‘% D oi—q logri_q ‘ﬁza — 0.
On the other hand,
T 2 9r d
T '?E }: L I(4) | <coT Py st o,
=1 i 9P B=B t=1

(X¢—X4)2 Orp—1
T 0 g

where I(-) is the indicator function and C' > 0 is a constant. Thus, 7~/ ‘Zthl

0. u

Lemma 6. For k=1,--- ,p+ g,

Xy — Xy — 20Xy — Z)
Ti-1 0Pk

T-1/2 ET: X, — X+ 20X, + %)
Ti—1 9Bk

} o
=1 B=B

—> 0, since the other half of the

Proof. We only prove that T~ 1/2 Zthl \Xt_rffzf A )gtg]—th |B -3

result may be proved in a simpler manner.
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For any B € B, let ¢(z) = a(z)71b(z) =1 — Z;’il ¢iz'. Then
BQOZ ’L 8@1 ’L
Z Bbk Z Bak

It may be proved from the above two equations that there exist constants C' > 0 and s € (0, 1)

such that

00 /08K < Cs?, §>1,1<k<p+q. (4.6)

On the other hand, it follows from the identity y(j) = Y .2, 7(j — )p; that

NG G0 XNpi .
9Bk =2 9Bk %+Z;&%ﬂ32% j>1

=1

From (4.3) we have for K =1,--- ,p + ¢ that,

v(j) t ov(j —1) ooy . . .
_ . _ < i<t
95, E ¢m+§ v —i), 1<j<t

o P i=1 0P i>t 0P " 08
Consequently,
Ao P o (G- ) + ik (@.7)
where @; = (¢1,+++ , )7, and d¢ is a ¢ x 1 vector with Y, {e; a%%;i) + gTLf’iV(j —1i)} as its j-th

component. It follows from (4.4) that under the assumption Z_; = X_; =0 for all ¢ > 0,

t

Zip1 = a(B) b(B)Xip1 = 9(B)Xy11 = Xpy1 — Y 0iXpg1 i, 120, (4.8)
i=1

Now it follows from (4.7) that

a(ftﬂ + Zi41)

" 8(pij — ©;) 8(B; — @)+, NP, — 1)
2 _ N2 t t t t
B 0Bk Fs E(j; 5ﬂk TXig)” = Bk Te Bk
15) - 0 -

- {6—;‘;«% )+ dt}frgl{a—z«ot ) +dy}

2 0
< e @ el + )

2 max{a, (0 )}

op;
@ — @)l 2+ LD (il + 152 DY < st

o Amin(rt) it

where Amin(T;) > 0 denotes the minimum eigenvalue of T'; (see Proposition 4.5.3 of Brockwell

and Davis 1991), a = | [" %de > |6gT§Z)| (j>1and 1<k <p+gq),and C; >0 and
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s1 € (0,1) are some constants (which depend on 8 € B continuously). In the above expression,
the first inequality makes use of (10.8.50) of Brockwell and Davis (1991) and (4.6).
Now using the similar argument as in the proof of Lemma 5, we may show that

2

I(A) ] <Cosh, t>1,1<k<p+yqg,
B=B

a()?t-}—l + Z41)
0Bk

E

where A is an event with the probability arbitrarily close to 1 and on which || B— Bol| arbitrarily

small for all large T"s, and Cy > 0 and so € (0,1) are some constants. Hence

T ~ ~
7172 Z Xy — Xy + 7, 0( Xy + Zy) 1(4)
=1 Tt—1 6ﬂk A
= B=pB
, N 1/2
_ % O(Xyy1 + Zyy1)
< TS| BUCG - KB) + ABPIA BT EE 1)y
= g =B
< cr'”? ngﬂ 0,
t=1
where C' > 0 is a constant. Thus 71/2 th t_rftfzf a()((;g;zt) 6.5 0. u

Lemma 7. T-U™R™U L5 0>W (b, a0)~" and T-2U™R~12 25 N(0,0*W (bg, a9)?).
Proof. In this proof, all Uy, V4, Z; and 7, are defined at 8 = 3. If we adopt the notation that

Bk Uij = Up—i,; and Bk Vij = Vi—k,j, it follows from (4.4) that
Uy = aO(B)’lXt_j, and V= ao(B)flzt—j = GO(B)i bo(B) X—j,

and these expressions are valid under the assumption that X ; = Z ; = 0 for all £ > 0. Let

1= Y51 %27 = 1/ag(2) and 1= 37,1 127 = bo(2)/ao(2)?. Then

t—j—1
Uij=Xej— Y $iXeje=bo(B)erj+ Y veXejk = Uy +uy, (4.9)
k=1 k>t—j
t—j—1 B
Vij=Xij— > mXe jk=00B) e+ Y, mXp ik = Vij +vie (4.10)
k=1 k>t—j
Note that
o0
Buf; = Y y(k = Dthr—jyntbe—j <M2¢t R SCsTI t>1,1<j<p, (4.11)
k=1 k=1
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where C, M > 0 and s € (0,1) are some constants. The first inequality in the above expression
follows from Proposition 4.5.3 of Brockwell and Davis (1991) and an obvious asymptotic argument.

In the same vein, we have

Evi; <Cst9, t>1,1<j<q. (4.12)

The (i, j)-th element of U"R~U/T is
1 £l 1 r _ B
T ; UiUrj/re-1 = T ;{UtiUtj + Ugiugj + wiUsj + wgiug; /-1, (4.13)

see (4.9) and (4.10). By the ergodic theorem, 377 ﬁtiﬁtj/T 2% 02Cov(€1—i, &1—j), where {&} is
the stationary process defined as in (4.1). Since ry — 1, we have

T

1 ~ 5,

T > Ul /re 1 =% 0*Cov(&r i & j)-
t=1

By the Cauchy-Schwarz inequality and (4.11),
1 & 1 & 1 & C &
- e 2 2 11/2 2 (i+j
T ;—1 Elugug|/ri—1 < T t; Elugug| < T tél {Buy; Bug; } 1?2 < T ;:1 §2t=(i+9) 5 (4.14)

which implies 7! Zthl UgiUtj[Te—1 P4 0. In the same vein, the two other terms on the RHS of
(4.13) also converge to 0 in probability. Hence we have shown that
1 & P
T > UilUjfri1 — 0°Cov(&—i,&—j), 1<4,j <p. (4.15)
t=1
We may prove in a similar manner that

T

1 P . .

T Y UuVij/ri-1 — 0*Cov(é—i,G—j), 1<i<p, 1<j<q,
t=1

T

1 P .

f E :‘/tiv;gj/’l"t_l — UQCOV(Ct—iaCt—j)’ 1<4,5 <q,
t=1

where {(;} is defined as in (4.1). Combining the above three expressions together, we have
UTR™UIT L5 0> W (B,) .

To establish the required CLT, we define U, = (ﬁtl, el ﬁtp, 17}1, e ‘7}(1)7 and uy = (ug, -, Utp,
V1, ,Vgq)", where ﬁtj, 17}]-, uy; and vy are defined in (4.9) and (4.10). From (4.8), we may write

Zy = & + z; with z; = ijt ©;oX¢—j, where 1 — ijl pjo = ao(z) " tbo(z). Now

1 Tp—1 1 o
il RTZ = TT/QZ(Ut + uy) = (4.16)

t=1

T T = ayd
gt + 2t 1 Z UtEt + UtZt + wer + ugzg
& t=1 Tt-1 .

13



Similar to (4.11) and (4.12), we may show that Ez? < Cs’ for allt > 1, where C > 0 and s € (0,1)
are some constants. Consequently based on the same argument as (4.14), we may show that

T
T_1/2 Z(ﬁtZt + wEr + utzt)/rt,l i> 0. (4.17)
t=1

Let F; be the o-algebra generated by {e;_,k > 0}. Then {a"Ue;/r,_1} are martingale-
differences with respect to {F;} for any a € RPT? in the sense that o Ue, /rt—1 is Fi-measurable

and E{a"Ue;/re_1|Fi_1} = o™ U;/r,_1 Be; = 0; see (4.9) and (4.10). Further for any € > 0,

1 r aTINJtst 2 ~ 1/2
EZE{(T) 1(|a™Usey/ri-1| > TV%€)| Fis}
=1 -

IA

T
1 ~ ~ ~ ~
T Z E[(a™Ue)?I(|a " Uey| > T2 {I(|a"Uy| > log T) + I(|a”Uy| < log T)} Fi—1]

IN

Z[a (@ T)?I(ja"Ty| > logT) + (" U2 B{eX (|e1] > T'/?¢/ log T)}]

~ UQE'{(aTUl) I(|a™Uy| > log T)} + E(a" U1 )2E{31(|e1| > T*¢/1og T)} — 0.

The last limit follows from the fact that both ¢; and anJl have finite second moments. Note

that

1 < a’Use 1 d T U
» U2 2 S @ Tier)? “5 Bla™Uie)? = 02B(a7T)? = o' a™W(By) e,
t:l Tt—1 t=1

'ﬂ

it follows from Theorem 4 on p.511 of Shiryayev (1984) that

T1/2 Za User/re 1 N N(0,0*a™W(By) 'a), forany a € RPT,

Now the limit 7~1/2 Zthl Ur-'z 2 N(0,0*W(B,)~!) follows from the above, (4.16) and
(4.17) immediately. [ |

Proof of Theorem 2. Let iT = ()?1, .- ,)?T)T. Then X = H(Xp — XT), where H is given as
n (3.9). Thus 2(8) = ¢c?HRH" for {X; — )?t} are uncorrelated. Consequently X7.3%(8) !Xy =
o2 Ele(Xt — )?t)z/rt_1 and |2(8)| = 0?7 Hthl r¢—1. Now it follows from (2.4) that

T T
—202log L(B,0?%) = To?logo? + o Z logri—1 + Z(Xt — X,)?/riq
t=1 t=1

T T T ~

X, — X 2 _ ZZ

- T0210g02+0221087”t—1+sz/rt_1-I-Z( ! Tt) L
t=1 t=1 t=1 t—1

M(B)
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Note that B is the solution of the equation %M(,B) = 0, and for 1 < k < p, the equality

a(ZkM(ﬂ” =B — 0 leads to

0 = ZZt Wik (B)/r1-1(B) + 6

= Z{Xt Zb Xi—j ZGZZt i(B0) Yk (Bo) /r1(Bo) +mi(B — Bo) + 0k, (4.18)

t=1 j=1
where X_; = Z_; =0 for all j > 0, and
T T N
o® 0 1 (Xt —Xt)2 (9th1
o = —— 1 1= =
k <2abkzog”1 32 by

t=1 t=1 t—1

5 —1 Tt+—1 8bk Tt—1 8bk ’

12T: X, - X, +2,0X, + 7,) +Xt—)?t—zta()?t—zt)})
B=P
L Un(Br) <& U
ne = ZLT)Za,Ut i(Br) -|—Z{Xt Zb X, j Za,zt (Br)} 35 (Tttkl)ﬁ ﬁ
= =Pr

1

T q
Z Ui (Bo) Z ai0U1—i(Bo) +ZZt B,) 3 <Utk> . + 0,(T|B — Byl])- (4.19)

= r1-1(Bo) 4 ri-1/ p=p,

In the above expression, Uy = (U, -+, Usp, Vi1, -+, Vig)", aio is the i-th component of ag, and

B is always between B and 3. Similarly the equation %M(ﬁﬂﬂzg =0 (1 <k <q) leads to

T P
0="{X; =Y bXi Zazzt i(B0)Vak(Bo) /re-1(Bo) + my k(B — Bo) + Op,  (4.20)
t= j=1

=1

where
O’2 0 d 1 d (Xt - )?t)Q Brt_l
) = | == ) logr; 1 — =
ptk ( 2 Qf tz:; 8Tt-1 2 tz:; ’r‘?fl Bak
I~ X~ X+ 20X+ 2) X,—X,— 20X, — Z1)
2 Z{ T da + T da } ’
— -1 k t—1 k 6.3
T U (By) < o [V
tk(Bo th =
Myrp = ———= a; U i(Bo) + Y Zi(By)=— (—) + O,(T||B — Byl])-  (4.21)
pt+k t:Zl Tt—l(,B()) P 10 Y i—i\Fo Z t\M0o 9B \ri_; b=, p || OH
It follows from (4.18) and (4.20) that
URTIXB=UR'Y+A™(B- B+, (4.22)
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where § = (01, ,0p+q)7, and A is the (p+ ¢) X (p+ ¢) matrix with i, as its k-th column. Note
that Y — X8, = £ and
. U1-i(Bo)"
U=X - ai
- Ur—i(Bo)"
By (4.22), (4.18) and (4.20), we have

URTUB — By) =URT'Z + BT (B — B,) + 6,

where B is the (p + q) X (p + ¢) matrix with the sum of the last two terms on the RHS of (4.19)
as its k-th column for k = 1,--- ,p, and the sum of the last two terms on the RHS of (4.21) as its

(p + k)-th term for £k =1,--- ,q. Hence
T'2(B-B,) = {UR™U/T-BT )T} ' T~ PURZ-6) = {UR™U/T} " T VUR ™ Z+0,(1).

The last equality follows from Lemmas 5 and 6, and the fact that B/T N 0, which may be

shown in the similar manner as (4.14). Now the theorem follows from Lemma 7 immediately. B
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