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Summary

This paper examines the Gaussian maximum likelihood estimator (GMLE) in the

context of a general form of spatial autoregressive and moving average (ARMA) pro-

cesses with finite second moment. The ARMA processes are supposed to be causal

and invertible under the half-plane unilateral order (Whittle 1954), but not necessarily

Gaussian. We show that the GMLE is consistent. Subject to a modification to confine

the edge effect, it is also asymptotically distribution-free in the sense that the limit

distribution is normal, unbiased and with a variance depending on the autocorrelation

function only. This is an analogue of Hannan’s classic result for time series in the

context of spatial processes; see Theorem 10.8.2 of Brockwell and Davis (1991).
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1. Introduction

Since Whittle’s pioneering work (Whittle 1954) on stationary spatial processes, the frequency-

domain methods which approximate a Gaussian likelihood by a function of a spectral density

became popular, while the Gaussian likelihood function itself was regarded intractable in both

theoretical exploration and practical implementation. Guyon (1982) and Dahlhaus and Künsch

(1987) established the asymptotic normality for the modified Whittle’s maximum likelihood esti-

mators for stationary spatial processes which are not necessarily Gaussian; the modifications were

adopted to control the edge effect. On the other hand, the development of time-domain methods

was dominated by the seminal work Besag (1974) who put forward an ingenious auto-normal

specification based on a conditional probability argument. Besag’s proposal effectively specifies

the inverse covariance matrix of a Gaussian process, in which the parameters are interpreted in

terms of conditional expectations.

In this paper we examine the estimator derived from maximising the Gaussian likelihood func-

tion for spatial processes, which we refer to as Gaussian maximum likelihood estimator (GMLE).

To study its asymptotic properties, we assume that the data are generated from a spatial autore-

gressive and moving average (ARMA) model defined on a lattice. Under the condition that the

process is causal and invertible according to the half-plane unilateral order (Whittle 1954), the

GMLE is consistent (Theorem 1 in §3 below). Subject to a modification to confine the edge effect,

it is also asymptotically normal and unbiased with a variance depending on the autocorrelation

function only. Thus our modified GMLE is asymptotically distribution-free. The asymptotic nor-

mality presented in Theorem 2 below may be viewed as an analogue of Hannan’s (1973) classic

result for time series in the context of spatial processes, which shows that the limit distribution

of the estimator for an ARMA process is determined by two AR models defined by the AR and

the MA forms in the original model; see Theorem 2 in §4 below and also §8.8 of Brockwell and

Davis (1991). Hannan’s proof was based on a frequency-domain argument. He proved the equiv-

alence of a Gaussian MLE and a Whittle’s estimator and established the asymptotic normality

for the latter; see also §10.8 of Brockwell and Davis (1991). Our proof largely follows the time-

domain approach of Yao and Brockwell (2005), although the proposed modified GMLE shares the

same asymptotic distribution as the modified Whittle’s estimator proposed by Guyon (1982) (see

Remark 3 below), which is also the asymptotic distribution of the modified Whittle’s estimator
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proposed by Dahlhaus and Künsch (1986) if the underlying process is Gaussian. For purely au-

toregressive processes, our asymptotic results are the same as those derived by Tjøstheim (1978,

1983).

For a sample from a spatial model, the number of boundary points typically increases to infinity

as the sample size goes to infinity. Therefore the edge effect causes problems. This is the feature

which distinguishes high-dimensionally indexed processes from one-dimensional time series. Vari-

ous modifications to reduce the edge effect have been proposed; see Guyon (1982), Dahlhaus and

Künsch (1987) and §2.4 below. Both Guyon (1982) and Dahlhaus and Künsch (1987) adopted

a frequency-domain approach, dealing with Whittle’s estimators for stationary processes defined

on a lattice. Our approach is within the time-domain, dealing with GMLE for the coefficients of

ARMA models. Our edge effect modification can be readily performed along with the prewhiten-

ing (§2.3 below). By exploring the explicit form of these models, we are able to establish a central

limit theorem (Lemma 9 in §4 below) based on an innate martingale structure. Therefore the

regularity conditions imposed by Theorem 2 are considerably weaker than those in Guyon (1982)

and Dahlhaus and Künsch (1987). For example, we only require the process to have finite second

moments, and we do not impose any explicit assumptions on ergodicity and mixing. However it

remains as an open problem whether the edge effect modification is essential for the asymptotic

normality or not. See §5.1.

Although we only deal with the processes defined in the half-plane order explicitly, the asymp-

totic results may be derived for any unilaterally-ordered processes in the same manner. For the

sake of simplicity, we only present the results for spatial processes with two-dimensional indices.

The approach may be readily extended to higher-dimensional cases. In fact, such an extension is

particularly appealing in the context of spatio-temporal modelling since a practically meaningful

ARMA form can be easily formulated in that context. This is in marked contrast to the case

of two-dimensional processes for which a unilateral ordering is often an artifact which limits the

potential application. See §5.2 below.

The rest of the paper is organised as follows. In §2 we introduce spatial ARMA models and

the conditions for causality and invertibility. The consistency and asymptotic normality will be

established respectively in §3 and §4. We conclude with miscellaneous remarks in §5.

We denote by |A| the determinant of a square matrix A, and by ||a|| the Euclidean norm of

a vector a.
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2. Models and estimators

2.1. Stationary spatial ARMA processes

Let Z,R,C be the integer, the real number and the complex number spaces respectively. We

always write s = (u, v) ∈ Z2 and i = (j, k) ∈ Z2. We define s > 0 if either u > 0 or u = 0 and

v > 0, and s = 0 if and only if both u and v are 0. A unilateral order on a two-dimensional

plane is defined as s > (or ≥) i if and only if s − i > (or ≥) 0; see Whittle (1954). This order is

often refereed as half plane order, or lexicographic order. Another popular unilateral ordering on

a two-dimensional plane is the quarter plane order. Under the quarter plane order, s ≥ 0 if and

only if both u and v are non-negative; see Guyon (1995). Although we do not discuss explicitly

the models defined in terms of the quarter plane order in this paper, we will comment on its

properties when appropriate.

We define a spatial ARMA model as

X(s) =
∑

i∈I1

biX(s − i) + ε(s) +
∑

i∈I2

aiε(s − i), (2.1)

where {ε(s)} is a white noise process in the sense that they are uncorrelated with constant first

two moments 0 and σ2 respectively, {bi} and {ai} are AR and MA coefficients, and both index

sets I1 and I2 contain finite number of elements in the set {s > 0}. In this paper, we consider

real-valued processes only. Since we only require index sets I1 and I2 to be subsets of {s > 0},

specification (2.1) includes both half-plane and quarter-plane ARMA models (Tjøstheim, 1978,

1983) as its special cases.

We introduce the back shift operator B ≡ (B1, B2) as follows:

BiX(s) ≡ Bj
1B

k
2X(u, v) = X(u− j, v − k) = X(s − i), i = (j, k) ∈ Z

2.

For z ≡ (z1, z2), write zi = zj1z
k
2 . We define

b(z) = 1 −
∑

i∈I1

biz
i and a(z) = 1 +

∑

i∈I2

aiz
i. (2.2)

Then model (2.1) can be written as

b(B)X(s) = a(B)ε(s). (2.3)

It is well known that a bivariable polynomial can be factored into irreducible factors which

are themselves bivariable polynomials but which cannot be further factored, and these irreducible
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polynomials are unique up to multiplicative constants. To avoid the ambiguity on the form of the

model, we always assume that b(z) and a(z) are mutually prime in the sense that they do not

have common irreducible factors although they may still have common roots (Goodman 1977,

Huang and Anh 1992).

The process {X(s)} defined in (2.1) is causal if it admits a purely MA representation

X(s) = ε(s) +
∑

i>0

ψiε(s − i) = ε(s) +

∞∑

k=1

ψ0kε(u, v − k) +

∞∑

j=1

∞∑

k=−∞

ψjkε(u− j, v − k), (2.4)

where
∑

i>0 |ψi| <∞. It is easy to see that a causal {Xt} is always weakly stationary with mean

0 and the autocovariance function

γ(i) = E{X(s + i)X(s)} = σ2
∞∑

l=0

∞∑

m=−∞

ψlmψl+j,m+k

= σ2{ψjk +

∞∑

m=1

ψ0mψj,m+k +

∞∑

l=1

∞∑

m=−∞

ψlmψl+j,m+k} (2.5)

for i = (j, k) with j ≥ 1, and γ(−i) = γ(i). In the above expression, ψ00 = 1 and ψ0m = 0 for

all m < 0. Furthermore, a causal process {X(s)} is strictly stationary if {ε(s)} are independent

and identically distributed; see (2.4). The lemma below presents a sufficient condition for the

causality.

Lemma 1. The process {Xt} is causal if

b(z) 6= 0 for all |z1| ≤ 1 and |z2| = 1, and 1 −
∑

(0,k)∈I1

b0kz
k
2 6= 0 for all |z2| ≤ 1, (2.6)

where z1, z2 ∈ C. Furthermore, condition (2.6) implies that the coefficients {ψjk} defined in (2.4)

decay at an exponential rate, and in particular

|ψjk| ≤ Cαj+|k| for all j ≥ 0 and k, (2.7)

for some constants α ∈ (0, 1) and C > 0.

Note (2.7) improves Goodman (1977) which showed ψjk = O(αj). Condition (2.6) is not

symmetric in (z1, z2). This is due to the asymmetric nature of the half-plane order under which

the causality is defined; see (2.4). The proof for the validity of (2.4) under condition (2.6)

was given in Huang and Anh (1992); see also Justice and Shanks (1973), Strintzis(1977) and

the references within. The inequality (2.7) follows from the simple argument as follows. Let

ψ(z) = 1+
∑

i>0 ψiz
i, where ψ′

is are given in (2.4). Then ψ(z) = a(z)/b(z). Due to the continuity
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of b(·), b(z) 6= 0 for all z ∈ Aǫ ≡ {(z1, z2) : 1 − ǫ < |zj | < 1 + ǫ, j = 1, 2} under condition (2.6),

where ǫ > 0 is a constant. Thus ψ(·) is bounded on Aǫ, i.e. |∑i>0 ψiz
i| <∞ for any z ∈ Aǫ. Thus

ψjkα
−jα−|k| → 0 as at least one of j and |k| → ∞.

Remark 1. (i) Under condition (2.6), inequality (2.7) also holds if we replace ψjk by the derivative

of ψjk with respect to bi or ai. This can be justified by taking derivatives on both sides of equation

ψ(z) = a(z)/b(z), followed by the same argument as above.

(ii) Condition (2.6) also ensures that the autocovariance function γ(·) decays at an exponential

rate, i.e. γ(j, k) = O(α|j|+|k|) as at least one of |j| and |k| → ∞, where α ∈ (0, 1) is a constant.

To show this, note that for (j, k) with both j and k non-negative (other cases are similar), (2.5)

can be written as

γ(j, k)/σ2 = ψjk +

∞∑

m=1

ψ0mψj,m+k

+

∞∑

l=1

{
∞∑

m=0

ψlmψl+j,m+k +

∞∑

m=0

ψl,−k−mψl+j,−m +

k−1∑

m=1

ψl,−mψl+j,k−m}.

By (2.7), all the sums on the RHS of the above expression are of the order αj+k.

(iii) A partial derivative of γ(·) with respect to bi or ai also decays at an exponentially rate.

This may be seen through combining (i) and the argument in (ii) together.

(iv) Condition (2.6) is not necessary for the causality, which is characteristically different from

the case for one-dimensional time series; see Goodman (1977). On the other hand, a spatial

ARMA process defined in term of the quarter plane order is causal if b(z) 6= 0 for all |z1| ≤ 1

and |z2| ≤ 1 (Justice and Shanks 1973). Under this condition, the autocovariance function, the

coefficients in an MA(∞) representation, and their derivatives decay exponentially fast.

(v) The process {Xt} is invertible if it admits a purely AR representation

X(s) = ε(s) +
∑

i>0

ϕiX(s − i) = ε(s) +
∞∑

k=1

ϕ0kX(u, v − k) +
∞∑

j=1

∞∑

k=−∞

ϕjkX(u− j, v − k), (2.8)

where
∑

i>0 |ϕi| < ∞. It is easy to see from Lemma 1 that the invertibility is implied by the

condition

a(z) 6= 0 for all |z1| ≤ 1 and |z2| = 1, and 1 +
∑

(0,k)∈I2

a0kz
k
2 6= 0 for all |z2| ≤ 1. (2.9)

Furthermore, under this condition the coefficients {ϕjk} and their partial derivatives (with respect

to bi or ai) decay at an exponential rate.
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(vi) The spectral density function of {X(s)} is of the form

g(ω) =
σ2

4π2

∣∣∣∣
a(eiω)

b(eiω)

∣∣∣∣
2

, ω ∈ [−π, π]2, (2.10)

where i =
√
−1, ω = (ω1, ω2) and eiω = (eiω1 , eiω2). Under conditions (2.6) and (2.9), g(ω)

is bounded away from both 0 and ∞, which is the condition used in Guyon (1982). Note the

condition that g(ω) is bounded away from both 0 and ∞ is equivalent to the condition that

a(z)b(z) 6= 0 for all |z1| = |z2| = 1 and (z1, z2) ∈ C2. Under this condition equation (2.1)

defines a weakly stationary process which, however, is not necessarily causal or invertible (Justice

and Shanks 1973). Helson and Lowdenslager (1958) shows that the necessary and sufficient

condition for a weakly stationary (but not necessarily ARMA) process {X(s)} admitting the MA

representation (2.4) with squared-summable coefficients ϕjk is that its spectral density g(·) fulfils

the condition ∫

[−π,π]2
log g(ω)dω > −∞. (2.11)

Note that for ARMA processes, (2.11) is implied by (2.6).

2.2. Gaussian MLEs

We denote the elements of I1 and I2 in the ascending order respectively as

j1 < j2 < · · · < jp and i1 < i2 < · · · < iq.

Let θ ≡ (θ1, · · · , θp+q)τ = (bj1 , · · · , bjp , ai1, · · · , aiq)τ . We assume θ ∈ Θ, where Θ ⊂ Rp+q is the

parameter space. To avoid some delicate technical arguments, we assume the condition below

holds.

(C1) The parameter space Θ is a compact set containing the true value θ0 as an

interior point. Further, for any θ ∈ Θ, conditions (2.6) and (2.9) holds.

Given observations {X(u, v), u = 1, · · · ,N1, v = 1, · · · ,N2} from model (2.1), the Gaussian

likelihood function is of the form

L(θ, σ2) ∝ σ−N |Σ(θ)|−1/2 exp{− 1

2σ2
XτΣ(θ)−1X}, (2.12)

where N = N1N2, X is an N × 1 vector consisting of the N observations in ascending order, and

Σ(θ) =
1

σ2
Var(X),
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which is independent of σ2. The estimators which maximise (2.12) can be expressed as

θ̂ = arg min
θ∈Θ

[
log{XτΣ(θ)−1X/N} +N−1 log |Σ(θ)|

]
, σ̂2 = XτΣ(θ̂)−1X/N. (2.13)

Since we do not assume a special form for the distribution of ε(s) and the Gaussian likelihood

is used only as a contrast function, the derived estimators could be referred to as quasi-MLEs.

2.3. Prewhitening and the innovation algorithm

Gaussian maximum likelihood estimation has been hampered by the computational burden in

calculating both the inverse and the determinant of N×N matrix Σ(θ). To overcome the burden,

some approximation methods have been developed by, for example, Besag (1975), and Wood and

Chan (1994). See also §7.2 of Cressie (1993). The computational difficulty has been gradually

eased by the increase of computer power. It is now feasible to compute the genuine Gaussian

likelihood functions with N in the order of thousands. As an example, we state below how the

idea of prewhitening via the innovation algorithm can be used to facilitate the computation for

Gaussian likelihood regardless whether the underlying process is stationary or not, or whether

the data are collected on a regular grid or not. Prewhitening is an old and very useful idea in

time series analysis. Effectively it is a version of the Cholesky decomposition, and it computes

the quadratic form XτΣ(θ)−1X and the determinant |Σ(θ)| simultaneously. Our edge-effect

correction method, presented in §2.4 below, is based on a representation of the likelihood in terms

of prewhitening.

Denote by X(s1), · · · ,X(sN ) the N observations with the indices sj in ascending order. (The

order is not important as far as the algorithm presented below is concerned.) Let X̂(s1) ≡ 0. For

1 ≤ k < N , let

X̂(sk+1) = ϕ
(k)
1 X(sk) + · · · + ϕ

(k)
k X(s1) (2.14)

be the best linear predictor for X(sk+1) based on X(sk), · · · ,X(s1) in the sense that

E{X(sk+1) − X̂(sk+1)}2 = min
{ψj}

E{X(sk+1) −
k∑

j=1

ψjX(sk−j+1)}2. (2.15)

It can be shown that the coefficients ϕ
(k)
j are the solutions of equations

γ(sl) =

k∑

j=1

ϕ
(k)
j γ(sl − sj), l = 1, · · · , k,
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and further

r(sk+1) ≡ r(sk+1,θ) ≡ 1

σ2
E{X(sk+1) − X̂(sk+1)}2 =

1

σ2
{γ(0) −

k∑

j=1

ϕ
(k)
j γ(sj)}. (2.16)

In the above expressions, γ(i) ≡ γ(i;θ) = E{X(s + i)X(s)}, and 0 = (0, 0). It can also be shown

that the least square property (2.15) implies that

Cov[{X(sk+1) − X̂(sk+1)}X(sj)] = 0, 1 ≤ j ≤ k.

Note that X(sk+1)− X̂(sk+1) is a linear combination of X(sk), · · · ,X(s1). Thus X(s1)− X̂(s1),

· · · ,X(sN ) − X̂(sN ) are N uncorrelated random variables. Further it is easy to see from (2.14)

that X̂(sk) can be written as a linear combination of X(sk)−X̂(sk), · · · ,X(s1)−X̂(s1). We write

X̂(sk+1) =

k∑

j=1

βkj{X(sk+1−j) − X̂(sk+1−j)}, k = 1, · · · ,N − 1. (2.17)

Let X̂ = (X̂(s1), · · · , X̂(sN ))τ . Then X̂ = A(X − X̂), where

A =




0 0 0 · · · 0 0

β11 0 0 · · · 0 0

β22 β21 0 · · · 0 0

...
...

... · · · 0 0

βN−1,N−1 βN−1,N−2 βN−1,N−3 · · · βN−1,1 0




.

Put X = C(X − X̂), where C = A + IN is a lower-triangular matrix with all main diagonal

elements 1, and IN is the N ×N identity matrix. Let D = diag{r(s1), · · · , r(sN )}. Then

Σ(θ) =
1

σ2
Var(X) = CDCτ , and |Σ(θ)| = |D| =

N∏

j=1

r(sj). (2.18)

Hence the likelihood function defined in (2.12) can be written as

L(θ, σ2) ∝ σ−N{r(s1) · · · r(sN )}−1/2 exp[− 1

2σ2

N∑

j=1

{X(sj) − X̂(sj)}2/r(sj)]. (2.19)

The calculation of the inverse and the determinant of Σ(θ) is reduced to the calculation of

the coefficients βkj and r(sk+1) defined in (2.17) and (2.16) respectively, which can be easily

done recursively using the innovation algorithm below; see Proposition 5.2.2 of Brockwell and

Davis (1991). We present the algorithm in the form applicable to any (non-stationary) series

{X(sj)} with common mean 0 and auto-covariance γ(sk, sj) = E{X(sk)X(sj)}, which reduces
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to γ(sk − sj ;θ) for the stationary spatial ARMA process concerned in this paper. Note that the

algorithm is a version of Cholesky decomposition.

Innovation algorithm: Set r(s1) = γ(s1, s1)/σ
2. Based on the cross-recursion equations

βk,k−j = {γ(sk+1, sj+1)/σ
2 −

j−1∑

i=0

βj,j−iβk,k−i r(si+1)}/r(sj+1),

r(sk+1) = γ(sk+1, sk+1)/σ
2 −

k−1∑

j=0

β2
k,k−jr(sj+1),

compute the values of {βij} and {r(sj)} in the order β11, r(s2), β22, β21, r(s3), β33, β32, β31, r(s4), · · ·

βN−1,N−1, βN−1,N−2, · · · , βN−1,1, r(sN ).

2.4. A modified estimator

In order to establish the asymptotic normality, we propose a modified maximum likelihood esti-

mator which may be viewed as a counterpart of conditional maximum likelihood estimators for

(one-dimensional) time series processes. Our edge correction scheme depends on the way in which

the sample size tends to infinity. Condition (C2) specifies that N = N1N2 → ∞ in one of three

ways.

(C2) One of the following three conditions holds,

(i) N1 → ∞, and N1/N2 has a limit d ∈ (0,∞),

(ii) N2 → ∞ and N1/N2 → ∞,

(iii) N1 → ∞ and N1/N2 → 0.

For, n1, n2 → ∞ and n1/N1, n2/N2 → 0, define

I∗ =





{(u, v) : n1 ≤ u ≤ N1, n2 ≤ v ≤ N2 − n2} if N1/N2 → d ∈ (0,∞),

{(u, v) : 1 ≤ u ≤ N1, n2 ≤ v ≤ N2 − n2} if N1/N2 → ∞,

{(u, v) : n1 ≤ u ≤ N1, 1 ≤ v ≤ N2} if N1/N2 → 0.

Write I∗ = {t1, · · · , tN∗} with t1 < · · · < tN∗ . Then N∗/N → 1 under (C2). Based on (2.19),

the modified likelihood function is defined as

L∗(θ, σ2) ∝ σ−N
∗{r(t1) · · · r(tN∗)}−1/2 exp[− 1

2σ2

N∗∑

j=1

{X(tj) − X̂(tj)}2/r(tj)]. (2.20)

The modified estimators, obtained from maximising the above, are denoted as θ̃ and σ̃2.
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3. Consistency

Theorem 1. Let {ε(s)} ∼ IID(0, σ2) and condition (C1) hold. Then as both N1 and N2 → ∞,

θ̂
P−→ θ0 and σ̂2 P−→ σ2. Furthermore, θ̃

P−→ θ0 and σ̃2 P−→ σ2 provided condition (C2) also

holds.

Proof. We only prove the consistency for θ̂ and σ̂2 below. The proof for the consistency of θ̃ and

σ̃2 is similar and therefore omitted.

Note that θ̂ does not depend on σ2; see (2.13). It follows from (2.12) and Lemma 2 below

that

1

N
XτΣ(θ̂)−1X ≤ 1

N
XτΣ(θ0)

−1X +
σ2

N
log |Σ(θ0)|.

By Lemmas 2 & 3 below, it holds that

lim sup
N→∞

1

N
XτΣ(θ̂)−1X ≤ lim

N→∞

1

N
XτΣ(θ0)

−1X = σ2. (3.1)

For any ǫ > 0, define BN1,N2
= {|θ̂ − θ0| > ǫ} and B = ∪k1≥1,k2≥1{∩N1≥k1,N2≥k2BN1,N2

}. For

any ω ∈ B, there exists a subsequence of {N1,N2}, which we still denote as {N1,N2}, for which

θ̂(ω) ≡ θ̂N1,N2
(ω) → θ ∈ Θ and θ 6= θ0. By Lemma 4 below, we have for any ǫ > 0,

1

N
|XτΣ{θ̂(ω)}−1X − XτΣ(θ)−1X| ≤ ǫγ̂(0),

where γ̂(0) = N−1
∑N

j=1X
2
sj

. Thus

lim sup
N→∞

1

N
XτΣ{θ̂(ω)}−1X = lim sup

N→∞

1

N
XτΣ(θ)−1X

provided one of the above two limits exist. Now Lemma 3 and (3.1) imply P (B) = 0. Thus

θ̂
P−→ θ0. By Lemma 4 and (3.1) again, σ̂2 = XτΣ(θ̂)−1X/N

P−→ σ2. �

In this paper, we assume that the observations are taken from a rectangle. Theorem 1 requires

that the two sides of the rectangle increase to infinity. In fact this assumption can be relaxed.

Theorem 1 still holds if the observations were taken over a connected region in Z2, and both

minimal length of side of the squares containing the region N1 and the maximal length of side of

the squares contained in the region N2 converge to ∞. For general discussion on the condition of

sampling sets, we refer to Perera (2001).

We denote by b0(·) and a0(·) the polynomials defined as in (2.2) with coefficients corresponding

to the true parameter vector θ0, and b(·) and a(·) the polynomials corresponding to θ. For
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s = (u, v) with u ≥ 1 and 1 ≤ v < N2, define

As = {(0, k) : k ≥ v} ∪ {(j, k) : j ≥ u, −∞ < k <∞} (3.2)

∪ {(j, k) : 1 ≤ j < u, k ≥ v or k < −(N2 − v)},

and

ϕ̃s = (ϕ01, ϕ02, · · · , ϕ0,v−1, ϕ1,−(N2−v), ϕ1,−(N2−v)+1, · · · , (3.3)

ϕ1,v−1, ϕ2,−(N2−v), · · · , ϕu−1,v−1)
τ ,

ϕs = (ϕ
(u,v)
01 , ϕ

(u,v)
02 , · · · , ϕ(u,v)

0,v−1, ϕ
(u,v)
1,−(N2−v)

, ϕ
(u,v)
1,−(N2−v)+1, · · · , (3.4)

ϕ
(u,v)
1,v−1, ϕ

(u,v)
2,−(N2−v)

, · · · , ϕ(u,v)
u−1,v−1)

τ .

We use C,C1, C2, · · · to denote positive generic constants, which may be different in different

places. In the remainder of this section, we always assume that the condition of Theorem 1 holds,

i.e. {ε(s)} ∼ IID(0, σ2) and that condition (C1) holds.

Lemma 2. For any θ ∈ Θ, log |Σ(θ)| > 0 and 1
N log |Σ(θ)| → 0.

For its proof, see Lemma 1 of Yao and Brockwell (2005).

Lemma 3. For any θ ∈ Θ,

XΣ(θ)−1X/N
P−→ Var{a(B)−1b(B)X(s)} ≥ Var{ε(s)} = σ2,

and the equality holds if and only if θ = θ0.

Proof. Let {Y (s)} be the process defined by b(B)Y (s) = a(B)e(s) with {e(s)} ∼ IID(0, 1). Let

Y = {Y (s1), · · · , Y (sN )}τ . Then Var(Y) = Σ(θ). Let Ŷ (1, 1) ≡ 0, and for (u, v) > (1, 1) let

Ŷ (u, v) ≡
v−1∑

k=1

ϕ
(u,v)
0k Y (u, v − k) +

u−1∑

j=1

v−1∑

k=−(N2−v)

ϕ
(u,v)
jk Y (u− j, v − k) (3.5)

be the best linear predictor of Y (u, v) based on its lagged values occurring on the RHS of the above

equation. Then it may be shown that the coefficients {ϕ(u,v)
jk } are determined by the equations

γ(l,m) =
v−1∑

k=1

ϕ
(u,v)
0k γ(l,m− k) +

u−1∑

j=1

v−1∑

k=−(N2−v)

ϕ
(u,v)
jk γ(l − j,m− k), (3.6)

l = 0 and 1 ≤ m < v, or 1 ≤ l < u and − (N2 − v) ≤ m < v.

Let Ŷ = {Ŷ (s1), · · · , Ŷ (sN )}τ . It follows from the same argument as in §2.3 that Y = C(Y− Ŷ)

where C is a N × N lower-triangular matrix with all the main diagonal elements 1 (hence its
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inverse exists), and Σ(θ) = CDCτ and |Σ(θ)| = |D|, where D = diag{r(s1), · · · , r(sN )}, and

r(s) ≡ r(s,θ) ≡ E{Ŷ (u, v) − Y (u, v)}2 (3.7)

= γ(0, 0) −
v−1∑

k=1

ϕ
(u,v)
0k γ(0, k) −

u−1∑

j=1

v−1∑

k=−(N2−v)

ϕ
(u,v)
jk γ(j, k).

Since {Y (s)} is invertible, i.e.

Y (u, v) = e(u, v) +

∞∑

k=1

ϕ0kY (u, v − k) +

∞∑

j=1

∞∑

k=−∞

ϕjkY (u− j, v − k), (3.8)

it may be shown that

1 = Var{e(u, v)} ≤ r(u, v) → 1, as min{u, v,N2 − v} → ∞, (3.9)

where r is defined in (3.7).

It follows from (3.5) and (3.8) that

M ≡ E{e(s) +
∑

i∈As

ϕiY (s − i) − Y (s) + Ŷ (s)}2 (3.10)

= E{
v−1∑

k=1

(ϕ
(u,v)
0k − ϕ0k)Y (u, v − k) +

u−1∑

j=1

v−1∑

k=−(N2−v)

(ϕ
(u,v)
jk − ϕjk)Y (u− j, v − k)}2,

where s = (u, v), i = (j, k). Let Ys be defined as in (3.18) below. It is easy to see from the second

equation in (3.10) that

M = (ϕs − ϕ̃s)
τΣs(θ)(ϕs − ϕ̃s) ≥ λmin||ϕs − ϕ̃s||2, (3.11)

where λmin is the minimum eigenvalue of Σs(θ) ≡ Var(Ys). By Lemma 5 below and condition

(2.9), λmin is uniformly (in N) bounded away from 0 (see also (2.10)). On the other hand, the

first equation in (3.10) implies that

M ≤ 2E{
∑

i∈As

ϕiY (s − i)}2 + 2E{e(s) − Y (s) + Ŷ (s)}2

≤ 2γ(0)
( ∑

i∈As

|ϕi|
)2

+ 2{r(s) − 1} ≤ 4γ(0)
( ∑

i∈As

|ϕi|
)2
.

Recalling that s = (u, v), it follows from (3.11) and Lemma 1 that

||ϕs − ϕ̃s||2 ≤M/λmin ≤ 4γ(0)

λmin

∑

i∈As

ϕ2
i ≤ C(αu + αv + αN2−v), (3.12)

which converges to 0 as min(u, v,N2 − v) → ∞, where α ∈ (0, 1) is a constant.
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Now define

X̃(u, v) =
v−1∑

k=1

ϕ
(u,v)
0k X(u, v − k) +

u−1∑

j=1

v−1∑

k=−(N2−v)

ϕ
(u,v)
jk X(u− j, v − k),

where the coefficients ϕjk are defined as in (3.5). Let X̃ = {X̃(s1), · · · , X̃(sN )}τ , then X =

C(X− X̃), and

1

N
XτΣ(θ)−1X =

1

N
(X − X̃)τD−1(X − X̃) =

1

N

N∑

m=1

{X(sm) − X̃(sm)}2/r(sm). (3.13)

It follows from Lemma 1 that for any ǫ > 0, we may choose K > 0 such that

E



∑

k>K

|ϕ0kX(0,−k)| +
∑

j>K, or

j≤K & |k|>K

|ϕjkX(−j,−k)|




2

< ǫ. (3.14)

For s = (u, v) with u > K and K < v < N2 −K, let X(s) − X̃(s) = η1(s) + η2(s) + η3(s), where

η1(s) = X(u, v) −
K∑

k=1

ϕ0kX(u, v − k) −
K∑

j=1

K∑

k=−K

ϕjkX(u− j, v − k),

η2(s) =

v−1∑

k=1

(ϕ0k − ϕ
(u,v)
0k )X(u, v − k) +

u−1∑

j=1

v−1∑

k=−(N2−v)

(ϕjk − ϕ
(u,v)
jk )X(u − j, v − k),

and η3(s) = −∑i∈A ϕiX(s − i) with

A = {(0, k) : K < k < v} ∪ {(j, k) : K < j < u, −(N2 − v) ≤ k < v}

∪{(j, k) : 1 ≤ j ≤ K, −(N2 − v) ≤ k < −K or K < k < v}.

By (3.14),

E{η3(u, v)
2} ≤ E{

∑

i∈A

|ϕiX(s − i)|}2 < ǫ. (3.15)

On the other hand, it is easy to see from (3.10) — (3.12) that

E{η2(s)
2} = σ2(ϕs − ϕ̃s)

τΣs(θ0)(ϕs − ϕ̃s) ≤ σ2λmax||ϕs − ϕ̃s||2 → 0, (3.16)

where λmax is the maximum eigenvalue of Σs(θ0). By Lemma 5 and (2.6), λmax is uniformly (in N)

bounded from the above by a finite constant. Based on (2.4) and the fact that {e(s)} ∼ IID(0, σ2),

we can show that for any fixed K,

1

N

N1∑

u=K+1

N2−K−1∑

v=K+1

η1(u, v)
2 a.s.−→ E{η1(s)}2. (3.17)
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Note that for any fixed K, it holds almost surely that

1

N

N∑

m=1

{X(sm) − X̃(sm)}2 =
1

N

N1∑

u=K+1

N2−K−1∑

v=K+1

{X(u, v) − X̃(u, v)}2 +O(
N1 +N2

N
).

It follows from (3.15) — (3.17) and the Cauchy-Schwarz inequality that

1

N

N∑

m=1

{X(sm) − X̃(sm)}2 P−→ E{η1(s)}2.

From (3.14),

|E{η1(s)}2 − E{a(B)−1b(B)X(s)}2| < ǫ+ 2[ǫE{η1(s)}2]1/2.

Letting K → ∞, we find that

E{η1(s)}2 → E{a(B)−1b(B)X(s)}2 = E{a(B)−1b(B)b0(B)−1a0(B)ε(s)} ≥ Var{ε(s)}.

The required result now follows from (3.13) and (3.9). �

Lemma 4. Let θk ∈ Θ and θk → θ ∈ Θ as k → ∞. Let ǫ > 0 be any constant (independent of

N). Then there exists M(ǫ) > 0 such that for all N ≥ 1 and k > M(ǫ),

|xτΣ(θ)−1x− xτΣ(θk)
−1x| ≤ ǫ, x ∈ R

N and ||x|| = 1.

Proof. Let g(ω,θ) be the the spectral density function defined in (2.10). Condition (C1) ensures

that g(ω, ·) is continuous and bounded away from both 0 and ∞ on Θ. Hence for any ǫ′ > 0, it

holds for all sufficiently large k that

sup
ω∈[−π,π)2

∣∣g(ω,θ) − g(ω,θk)| < ǫ′.

Note that γ(j, k) =
∫
[−π,π)2 e

i(jω1+kω2)g(ω1, ω2,θ)dω1dω2, where i =
√
−1. Hence

xτΣ(θ)y =

N1∑

j,u=1

N2∑

k,v=1

xjkyuvγ(j − u, k − v)

=

∫

[−π,π)2
g(ω,θ)

N1∑

j,u=1

N2∑

k,v=1

xjke
i(jω1+kω2)yuve

−i(uω1+vω2)dω1dω2.

where

x = (x11, x12, x1,N2
, x21, · · · , xN1,N2

)τ and y = (y11, y12, y1,N2
, y21, · · · , yN1,N2

)τ .
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Under the additional condition ||x|| = ||y|| = 1, it holds now that

∣∣xτ
{
Σ(θ) − Σ(θk)

}
y
∣∣

=
∣∣∣
∫

[−π,π)2

{
g(ω,θ) − g(ω,θk)

} N1∑

j,u=1

N2∑

k,v=1

xjke
i(jω1+kω2)yuve

−i(uω1+vω2)dω1dω2

∣∣∣

≤ ǫ′

2

∫

[−π,π)2

(∣∣∣
N1∑

j=1

N2∑

k=1

xjke
i(jω1+kω2)

∣∣∣
2
+
∣∣∣
N1∑

u=1

N2∑

v=1

yuve
−i(uω1+vω2)

∣∣∣
2)
dω1dω2

=
ǫ′

2

∫

[−π,π)2

( N1∑

j=1

N2∑

k=1

x2
jk +

N1∑

u=1

N2∑

v=1

y2
uv

)
dω1dω2 = 4π2ǫ′.

Lemma 5 below and condition (C1) ensure that for all θ ∈ Θ and N , the minimum eigenvalue of

Σ(θ) is bounded from below by a constant K−1 > 0, where K is independent of θ and N . Hence

∣∣xτ{Σ(θ)−1 − Σ(θk)
−1}x

∣∣ =
∣∣xτΣ(θ)−1{Σ(θ) − Σ(θk)

}
Σ(θk)

−1x
∣∣

≤ 4π2ǫ′
{∣∣xτΣ(θ)−2x

∣∣ ∣∣xτΣ(θk)
−2x

∣∣}1/2 ≤ 4π2ǫ′K2.

Now the lemma holds by putting ǫ′ = ǫ/(4π2K2). �

Lemma 5. Let {Y (s)} be a weakly stationary spatial process with spectral density g(ω). Let

N2 be a positive integer. For s = (u, v) with u ≥ 1 and 1 ≤ v ≤ N2, define

Ys = {Y (u, v − 1), Y (u, v − 2), · · · , Y (u, 1), Y (u− 1,N2), Y (u− 1,N2 − 1),

· · · , Y (u− 1, 1), Y (u− 2,N2), · · · , Y (1, 1)}τ , (3.18)

and Σs = Var(Ys). It holds that for any eigenvalue λ of Σs,

inf
ω∈[−π,π)2

g(ω) ≤ λ

4π2
≤ sup

ω∈[−π,π)2
g(ω). (3.19)

Proof. Let

x = (x01, x02, · · · , x0,v−1, x1,−(N2−v), x1,−(N2−v)+1, · · · , x1,v−1, x2,−(N2−v), · · · , xu−1,v−1)
τ

be an eigenvector of Σs corresponding to the eigenvalue λ and ||x|| = 1. Let m = infω g(ω) and

M = supω g(ω). Since Cov{Y (u+ j, v + k), Y (u, v)} =
∫
[−π,π)2 e

i(jω1+kω2)g(ω1, ω2)dω1dω2, where
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i =
√
−1, it holds that

λ = xτΣsx =

∫

[−π,π)2

∣∣∣∣∣∣

v−1∑

k=1

x0ke
ikω2 +

u−1∑

j=1

v−1∑

k=−(N2−v)

xjke
i(jω1+kω2)

∣∣∣∣∣∣

2

g(ω1, ω2)dω1dω2

∈ [m, M ] ×
∫

[−π,π)2

∣∣∣∣∣∣

v−1∑

k=1

x0ke
ikω2 +

u−1∑

j=1

v−1∑

k=−(N2−v)

xjke
i(jω1+kω2)

∣∣∣∣∣∣

2

dω1dω2

= [m, M ] × 4π2(
v−1∑

k=1

x2
0k +

u−1∑

j=1

v−1∑

k=−(N2−v)

x2
jk) = [4π2m, 4π2M ].

�

Remark 2. (i) Expression (3.19) still holds if we replace (λ, g) by (λ̇, ġ), where ġ and Σ̇s are

derivatives of g and Σs with respect to a parameter, and λ̇ is an eigenvalue of Σ̇s.

(ii) For an ARMA process, condition (2.6) implies supω g(ω) < ∞ and supω ġ(ω) < ∞, and

condition (2.9) implies that infω g(ω) > 0.

4. Asymptotic normality

To state the asymptotic normality of the estimator θ̃ obtained from maximising (2.20), we let

{W (s)} be a spatial white noise process with mean 0 and variance 1. Define

b(B)ξ(s) = W (s) and a(B)η(s) = W (s). (4.1)

Let ξ = {ξ(−j1), ξ(−j2), · · · , ξ(−jp), η(−i1), η(−i2), · · · , η(−iq)}τ , and put

W(θ) = {Var(ξ)}−1. (4.2)

Theorem 2. Let {ε(s)} ∼ IID(0, σ2) and conditions (C1) and (C2) hold. Then N1/2(θ̃−θ0)
D−→

N{0, W(θ0)}.

Remark 3. In the context of estimating the coefficients of ARMA models, the modified Whittle

estimator proposed by Guyon (1982) shares the same asymptotic distribution as the modified

GMLE θ̃, which may be seen via a similar argument as in p.386-7 of Brockwell and Davis (1991).

In the remainder of this section, we always assume that the condition of Theorem 2 holds.

Further, we only consider the case of condition (C2)(i) in the derivation below. The two other

cases can be dealt with in a similar manner. We introduce some notation first. For s 6∈ SN1,N2
≡
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{(u, v) : 1 ≤ u ≤ N1, 1 ≤ v ≤ N2}, let X̌(s) ≡ Z(s) ≡ 0. For s ∈ SN1,N2
, let X̌(s) = X(s), and

Z(s) ≡ Z(s,θ) = X̌(s) −
∑

i∈I1

biX̌(s − i) −
∑

i∈I2

aiZ(s− i) (4.3)

= X̌(s) −
p∑

l=1

bjlX̌(s − jl) −
q∑

m=1

aimZ(s − im).

Let Y = {X(t1), · · · ,X(tN∗)}τ and Z = {Z(t1,θ0), · · · , Z(tN∗ ,θ0)}τ . We write for 1 ≤ l ≤ p

and 1 ≤ m ≤ q

Ul(s) ≡ Ul(s,θ) = −∂Z(s)

∂bjl
and Vm(s) ≡ Vm(s,θ) = −∂Z(s)

∂aim
. (4.4)

It is easy to see from (4.3) that

Ul(s) = a(B)−1X̌(s − jl), and Vm(s) = a(B)−1Z(s− im) = a(B)−2b(B)X̌(s − im). (4.5)

Let X1 and U1 be N∗ × p matrices with, respectively, X(tl − jm) and Um(tl,θ0) as the (l,m)-

th element, and let X2 and U2 beN∗×q matrices with, respectively, X(tl−im) and Vm(tl,θ0) as the

(l,m)-th element. Write X = (X1,X2) and U = (U1,U2). Let R = diag{r(t1,θ0), · · · , r(tN∗ ,θ0)}τ ,

where r(·) was defined in (3.7).

Lemma 6. For X̂(s) as defined in (2.14) and k = 1, · · · , p + q, it holds that

N−1/2

{∣∣∣∣∣
∂

∂θk

N∗∑

m=1

log r(tm)

∣∣∣∣∣+
∣∣∣∣∣

N∗∑

m=1

{X(tm) − X̂(tm)}2

r(tm)2
∂r(tm)

∂θk

∣∣∣∣∣

}

θ=eθ

P−→ 0.

Proof. Let {Y (s)} be the same process as defined in the proof of Lemma 3. Write for s =

(u, v) ∈ I∗

γs ≡ γs(θ) = {γ(0, 1), γ(0, 2), · · · , γ(0, v − 1), γ(1,−(N2 − v)), γ(1,−(N2 − v) + 1),

· · · , γ(1, v − 1), γ(2,−(N2 − v)), · · · , γ(u− 1, v − 1)}τ .

For ϕs defined as in (3.5) (see also (3.4)), it follows from (3.6) that

ϕs = Σ−1
s γs, (4.6)

where Σs = Var(Ys) and Ys is defined as in (3.18). It follows from (3.8) that

1 = γ(0, 0) −
∞∑

k=1

ϕ0kγ(0, k) −
∞∑

j=1

∞∑

k=−∞

ϕjkγ(j, k) (4.7)

= γ(0, 0) −
v−1∑

k=1

ϕ0kγ(0, k) −
u−1∑

j=1

v−1∑

k=−(N2−v)

ϕjkγ(j, k) − ζs(0, 0),
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and for (l,m) ∈ Bs ≡ {(0,m) : 1 ≤ m < v} ∪ {(l,m) : 1 ≤ l < u,−(N2 − v) ≤ m < v},

γ(l,m) =
∞∑

k=1

ϕ0kγ(l,m− k) +
∞∑

j=1

∞∑

k=−∞

ϕjkγ(l − j,m− k) (4.8)

=
v−1∑

k=1

ϕ0kγ(l,m− k) +
u−1∑

j=1

v−1∑

k=−(N2−v)

ϕjkγ(l − j,m− k) + ζs(l,m),

where ζs(l,m) =
∑

i∈As
ϕiγ(l − j,m − k) and As is given in (3.2). By (3.7) and (4.7), r(s) =

γτs (ϕ̃s − ϕs) + 1 + ζs(0, 0), where ϕ̃s is given in (3.3). Thus

∂r(s)

∂θk
=
∂γτs
∂θk

(ϕ̃s − ϕs) + γτs
∂(ϕ̃s − ϕs)

∂θk
+
∂ζs(0, 0)

∂θk
. (4.9)

Write

ζs ≡ ζs(θ) = {ζs(0, 1), ζs(0, 2), · · · , ζs(0, v − 1), ζs(1,−(N2 − v)), ζs(1,−(N2 − v) + 1),

· · · , ζs(1, v − 1), ζs(2,−(N2 − v)), · · · , ζs(u− 1, v − 1)}τ .

Then (4.8) implies that ϕ̃s = Σ−1
s (γs − ζs). Together with (4.6), we have

∂(ϕ̃s − ϕs)

∂θk
= −Σ−1

s

∂Σs

∂θk
Σ−1

s ζs − Σ−1
s

∂ζs

∂θk
. (4.10)

From (4.9) and (4.6), we find that

∂r(s)

∂θk
= {∂γτs

∂θk
+ ϕτ

s

∂Σs

∂θk
}(ϕ̃s − ϕs) − ϕτ

s{
∂Σs

∂θk
Σ−1

s ζs +
∂ζs

∂θk
} +

∂ζs(0, 0)

∂θk
.

Now by the Cauchy-Schwarz inequality,

|∂r(s)
∂θk

| ≤
{
||∂γs

∂θk
|| + C1||ϕs||

}
||ϕ̃s − ϕs|| + C2||ϕs||

{
||ζs|| + ||∂ζs

∂θk
||
}

+ |∂ζs(0, 0)
∂θk

|, (4.11)

where C1, C2 ∈ (0,∞) are some constants. The existence of C1 and C2 is guaranteed by Lemma 5

and Remark 2. Note that

|ζs(l,m)|2 ≤
( ∑

i∈As

ϕ2
i

){ ∑

i∈As

γ(l − j,m− k)2
}
.

Since γ(·) decays at an exponential rate (Remark 1(v)), it may be shown that
∑

(l,m)∈Bs,i∈As
γ(l−

j,m− k)2 <∞. Hence for some constant α ∈ (0, 1), it holds that

||ζs||2 ≤ C3

∑

i∈As

ϕ2
i ≤ C4(α

u + αv + αN2−v). (4.12)
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Note Remark 1(vi). It also holds that

||∂ζs

∂θk
|| ≤ C5(α

u + αv + αN2−v). (4.13)

By (3.12) and (4.11), we have that

|∂r(s,θ)

∂θk
| ≤ C(θ){α(θ)u + α(θ)v + α(θ)N2−v},

where C(·) ∈ (0,∞) and α(·) ∈ (0, 1) are continuous. By Lemma 1, there exists a subset of the

sample space A with P (A) > 1−ǫ and ||θ̃−θ|| < ǫ on A for all sufficiently large N . Therefore there

exist constants C1 ∈ (0,∞) and α1 ∈ (0, 1) for which |∂r(s,θ)/∂θk|θ=eθ
≤ C1(α

u
1 + αv1 + αN2−v

1 )

on A. Since r(s) ≥ 1 for all θ ∈ Θ, it holds on the set A that

1

N1/2

∣∣∣∣∣
∂

∂θk

N∗∑

m=1

log r(tm)

∣∣∣∣∣
θ=eθ

≤ C1

N1/2

N1∑

u=n1

N2−n2∑

v=n2

(αu1 + αv1 + αN2−v
1 ) (4.14)

≤ C

N1/2
(N2α

n1

1 +N1α
n2

1 +N1α
N2−n2

1 ),

which converges to 0 under condition (C2). Thus N−1/2
∣∣∣ ∂
∂θk

∑N∗

m=1 log r(tm)
∣∣∣
θ=eθ

P−→ 0.

On the other hand,

N−1/2E

(∣∣∣∣∣

N∗∑

m=1

{X(tm) − X̂(tm)}2

t(tm)2
∂r(tm)

∂θk

∣∣∣∣∣
θ=eθ

I(A)

)

≤ C1N
−1/2E

(
N1∑

u=n1

{X(u, v) − X̂(u, v)}2

t(u, v)2
(αu1 + αv1 + αN2−v

1 )

)

≤ CN−1/2
N1∑

u=n1

N2∑

v=n2

(αu1 + αv1 + αN2−v
1 ) → 0.

Thus the required result holds. �

Lemma 7. For k = 1, · · · , p + q,

N−1/2
N∗∑

m=1

{∣∣∣∣∣
X(tm) − X̂(tm) + Z(tm)

r(tm)

∂{X̂(tm) + Z(tm)}
θk

∣∣∣∣∣

+

∣∣∣∣∣
X(tm) − X̂(tm) − Z(tm)

r(tm)

∂{X̂(tm) − Z(tm)}
θk

∣∣∣∣∣

}

θ=eθ

P−→ 0.

Proof. We only prove that N−1/2
∑N∗

m=1

∣∣∣X(tm)− bX(tm)+Z(tm)
r(tm)

∂{ bX(tm)+Z(tm)}
θk

∣∣∣
θ=eθ

P−→ 0, since the

other half may be proved in a similar and simpler manner.
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It follows from (4.3) that for s = (u, v) ∈ I∗,

Z(s) = a(B)−1b(B)X(s)

= X(s) −
v−1∑

k=1

ϕ0kX(u, v − k) −
u−1∑

j=1

v−1∑

k=−(N2−v)

ϕjkX(u− j, v − k) = X(s) − ϕ̃τ
sXs,

where ϕ̃s is given in (3.3) and Xs is defined in the same way as Ys in (3.18). Since X̂(s) = ϕτ
sXs,

E

(
∂{X̂(s) + Z(s)}

∂θk

)2

= σ2 ∂(ϕs − ϕ̂s)
τ

∂θk
Σs

∂(ϕs − ϕ̂s)

∂θk
≤ C||∂(ϕs − ϕ̂s)

∂θk
||2.

Note that for any symmetric matrices A1,A2,

xτA1A2A1x ≤ λmax(A2) ||A1x||2 ≤ λmax(A2) {λmax(A1)}2 ||x||2,

where λmax(A) denotes the maximal eigenvalue of A. It follows from (4.10) that the RHS of the

above expression is not greater than

C(||ϕs − ϕ̂s||2 + ||ζs||2 + ||∂ζs

∂θk
||) ≤ C1(α

u + αv + αN2−v),

see (3.12), (4.12) and (4.13). By the same argument as in the proof of Lemma 6, we may show

that

E

(
∂{X̂(s) + Z(s)}

∂θk

∣∣∣∣∣
θ=eθ

I(A)

)2

≤ C(αu + αv + αN2−v),

where A is an event with probability close to 1. Now by the Cauchy-Schwarz inequality,

N−1/2
N∗∑

m=1

E
(∣∣∣
X(tm) − X̂(tm) + Z(tm)

r(tm)

∂{X̂(tm) + Z(tm)}
θk

∣∣∣
θ=eθ

I(A)
)2

≤ N−1/2
N∗∑

m=1

[
E
{
X(tm) − X̂(tm) + Z(tm)

}2
E
(∂{X̂(tm) + Z(tm)}

θk

∣∣∣
θ=eθ

I(A)
)2]1/2

≤ C2

N1∑

u=n1

N2∑

v=n2

(αu + αv + αN2−v)1/2 → 0.

Thus the required limit holds. �

Lemma 8. N−1UτR−1U P−→ σ2W(θ0)
−1.

Proof. Within this proof, all Ul(s), Vm(s), Z(s) and r(s) are defined at θ = θ0. Let a0(z)
−1 =

1 −∑i>0 diz
i, and b0(z)/a0(z)

2 = 1 −∑i>0 ciz
i. Then the coefficients djk and cjk decay at an
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exponential rate (see (2.7)). It follows from (4.5) that

Ul(s) = a0(B)−1X(s − jl) +
∑

i∈As−jl

diX(s − jl − i) (4.15)

= b0(B)−1ε(s − jl) +
∑

i∈As−jl

diX(s − jl − i) ≡ Ũl(s) + ul(s),

Vm(s) = a0(B)b0(B)X(s − im) +
∑

i∈As−im

ciX(s − im − i) (4.16)

= a0(B)−1ε(s − im) +
∑

i∈As−im

ciX(s − im − i) ≡ Ṽm(s) + vm(s),

where As is defined in (3.2). By an argument similar to the one used for (3.12) we may show that

for s − jl = (µ, ν) and s − im = (ζ, β),

E{ul(s)2} ≤ C(αµ + αν + αN2−ν), E{vl(s)2} ≤ C(αζ + αβ + αN2−β),

E
∣∣Ũl(s)ul(s)

∣∣ ≤
[
E{Ũl(s)2}E{ul(s)2}

]1/2 ≤ C{αµ+αν+αN2−ν}1/2 ≤ C{αµ/2+αν/2+α(N2−ν)/2},

and

E
∣∣Ṽm(s)vm(s)

∣∣ ≤
[
E{Ṽm(s)2}E{vm(s)2}

]1/2 ≤ C{αζ+αβ+αN2−β}1/2 ≤ C{αζ/2+αβ/2+α(N2−β)/2},

where α ∈ (0, 1) is a constant. Consequently the (l,m)-th element of Uτ1R−1U1/N may be

expressed as

1

N

N∗∑

d=1

Ul(td)Um(td)/r(td) =
1

N

N∗∑

d=1

Ũl(td)Ũm(td)/r(td) +RN , (4.17)

where E(R2
N ) < ǫ for all sufficiently large N , and ǫ > 0 is any given constant (see (4.14)).

Let b0(z) = 1 +
∑

i>0 hiz
i, td = (αd, βd) and jl = (ul, vl). Then

Ũl(td) = ε(αd − ul, βd − vl) +
∞∑

j=0

∞∑

k=−∞

hjkε(αd − ul − j, βd − vl − k) (4.18)

= ε(αd − ul, βd − vl) +

n1∑

j=0

n1∑

k=−n1

hjkε(αd − ul − j, βd − vl − k) + ũl(tk)

= U∗
l (s) + ũl(tk), say.

In the above expressions, we assume that h00 = 1 and h0,−k = 0 for all k > 0. Similar to (4.17),

we may choose n1 sufficiently large such that

1

N

N∗∑

d=1

Ũl(td)Ũm(td)/r(td) =
1

N

N∗∑

d=1

U∗
l (td)Ũ

∗
m(td)/r(td) +R∗

N (4.19)
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with E(R∗
N )2 < ǫ for any given ǫ > 0. Now since {ε(s)} are independent and identically dis-

tributed, it holds that

1

N

N∗∑

d=1

U∗
l (td)Ũ

∗
m(td)

=

n1∑

j1,j2=0

n2∑

k1,k2=−n1

hj1,k1hj2,k2
1

N

N∗∑

d=1

ε(αd − ul − j1, βd − vl − v1)ε(αd − um − j2, βd − vm − v2)

a.s.−→ σ2
n1∑

j=0

n1∑

k=−n1

hjkhul−um+j,vl−vm+k,

which converges to σ2Cov(ξjl , ξjm) as n1 → ∞. Now combining this with (4.17), (4.19) and the

fact that r(s) → 1, we have

1

N

N∗∑

d=1

Ul(td)Um(td)/r(td)
P−→ σ2Cov(ξjl , ξjm).

Similar results hold for other elements in UτR−1U/N . Thus the lemma holds. �

Lemma 9. N−1/2UτR−1Z D−→ N(0, σ4W(θ0)
−1).

Proof. Within this proof, all Ul(s), Vm(s), Z(s) and r(s) are defined at θ = θ0. It follows from

(4.3) and (2.8) that Z(s) = ε(s)+ z(s), where z(s) =
∑

i∈As
ϕiX(s− i) and As is defined in (3.2).

For k = 1, · · · , N∗, let

Uk = {Ũ1(tk), · · · , Ũp(tk), Ṽ1(tk), · · · , Ṽq(tk)}τ ,

uk = {u1(tk), · · · , up(tk), v1(tk), · · · , vq(tk)}τ ,

where Ũl, Ṽm, ul and vm are defined in (4.15) and (4.16). Now

1

N1/2
UτR−1Z =

1

N1/2

N∗∑

k=1

(Uk + uk)
ε(tk) + z(tk)

r(tk)
=

1

N1/2

N∗∑

k=1

Ukε(tk)/r(tk) + op(1).

The last equality may be justified using the same argument as in the proof of Lemma 8.

Define Fk to be the σ-algebra generated by {ε(s) : s < tk+1} for k = 1, · · · ,N∗ − 1, and FN∗

generated by {ε(s) : s ≤ tN∗}. Then Fk−1 ⊂ Fk, Ukε(tk) is Fk-measurable, and

E{Ukε(tk)|Fk−1} = UkE{ε(tk)} = 0.

Therefore {Ukε(tk)} are martingale differences with respect to {Fk}. Note that r(s) ≥ 1. For

22



any ǫ > 0 and α ∈ Rp+q,

1

N

N∗∑

k=1

E

{(
ατUkε(tk)

r(tk)

)2

I{|ατUkε(tk)/r(tk)| > N1/2ǫ}
∣∣∣∣∣Fk−1

}

≤ 1

N

N∗∑

k=1

E[{ατUkε(tk)}2I{|ατUkε(tk)| > N1/2ǫ}{I(|ατUk| > logN) + I(|ατUk| ≤ logN)}|Fk−1]

≤ σ2

N

N∗∑

k=1

(ατUk)
2I(|ατUk| > logN) +

1

N

N∗∑

k=1

(ατUk)
2E[ε(tk)

2I{|ε(tk)| > N1/2ǫ/ logN}].

The first sum on the RHS of the above expression is, for all sufficiently large N , smaller than

σ2

N

N∗∑

k=1

(ατUk)
2I(|ατUk| > K)

which converges in probability, via an argument as in the proof of Lemma 8, to an arbitrarily

small constant (by choosing K large enough but fixed). Therefore it converges to 0. In the same

vein, the second sum also converges to 0 in probability. Note that

1

N

N∗∑

k=1

(
ατUkε(tk)

r(tt)
)2 ∼ 1

N

N∗∑

k=1

{ατUkε(tk)}2 P−→ E{ατU1ε(t1)}2 = σ4ατW(θ0)
−1α.

It follows from Theorem 4 on p.511 of Shiryayev (1984) that

1√
N

N∗∑

k=1

ατUkε(tk)/r(tt)
D−→ N(0, σ4ατW(θ0)

−1α), for any α ∈ R
p+q.

This leads to the required CLT. �

Proof of Theorem 2. It follows from (2.20) that

M(θ) ≡ −2σ2 logL(θ, σ2) = N∗σ2 log σ2 + σ2
N∗∑

j=1

log r(tj) +

N∗∑

j=1

{X(tj) − X̂(tj)}2/r(tj)

= N∗σ2 log σ2 + σ2
N∗∑

j=1

log r(tj) +

N∗∑

j=1

Z(tj)
2

r(sj)
+

N∗∑

j=1

{X(tj) − X̂(tj)}2 − Z(tj)
2

r(sj)
,

where Z(·) is defined in (4.4). Note that θ̂ is the solution of the equation ∂
∂θ
M(θ)|

θ=bθ
= 0. For

1 ≤ k ≤ p, the equality ∂
∂bjk

M(θ)|
θ=bθ

= 0 leads to

0 =
N∗∑

m=1

Z(tm, θ̂)Uk(tm, θ̂)/r(tm, θ̂) + δk (4.20)

=

N∗∑

m=1

{X(tm) −
p∑

ℓ=1

b̂jℓX(tm − jℓ) −
q∑

ℓ=1

âiℓZ(tm − iℓ,θ0)}
Uk(tm,θ0)

r(tm,θ0)
+ ητk(θ̂ − θ0) + δk,
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where

δk =

(
σ2

2

∂

∂bjk

N∗∑

m=1

log r(tm) − 1

2

N∗∑

m=1

{X(tm) − X̂(tm)}2

r(tm)2
∂r(tm)

∂bjk

− 1

2

N∗∑

m=1

{
X(tm) − X̂(tm) + Z(tm)

r(tm)

∂{X̂(tm) + Z(tm)}
∂bjk

+
X(tm) − X̂(tm) − Z(tm)

r(tm)

∂{X̂(tm) − Z(tm)}
∂bjk

})

θ=bθ

,

ηk =
N∗∑

m=1

Uk(tm,θ0)

r(tm,θ0)

q∑

ℓ=1

aiℓ,0U(tm− iℓ,θ0)+
N∗∑

m=1

Z(tm,θ0)
∂

∂θ

(
Uk(tm)

r(tm)

)

θ=θ0

+Op(N ||θ̂−θ0||),

(4.21)

where aiℓ,0 denotes the true value of aiℓ , and U(s) = {U1(s), · · · , Up(s), V1(s), · · · , Vq(s)}τ . Simi-

larly the equation ∂
∂aik

M(θ)|
θ=bθ

= 0 (1 ≤ k ≤ q) leads to

0 =

N∗∑

m=1

{X(tm)−
p∑

ℓ=1

b̂jℓX(tm−jℓ)−
q∑

ℓ=1

âiℓZ(tm−iℓ,θ0)}
Vk(tm,θ0)

r(tm,θ0)
+ητp+k(θ̂−θ0)+δp+k, (4.22)

where

δp+k =

(
σ2

2

∂

∂aik

N∗∑

m=1

log r(tm) − 1

2

N∗∑

m=1

{X(tm) − X̂(tm)}2

r(tm)2
∂r(tm)

∂aik

− 1

2

N∗∑

m=1

{
X(tm) − X̂(tm) + Z(tm)

r(tm)

∂{X̂(tm) + Z(tm)}
∂aik

+
X(tm) − X̂(tm) − Z(tm)

r(tm)

∂{X̂(tm) − Z(tm)}
∂aik

})

θ=bθ

,

ηp+k =

N∗∑

m=1

Uk(tm,θ0)

r(tm,θ0)

q∑

ℓ=1

aiℓ,0U(tm−iℓ,θ0)+

N∗∑

m=1

Z(tm,θ0)
∂

∂θ

(
Vk(tm)

r(tm)

)

θ=θ0

+Op(N ||θ̂−θ0||).

(4.23)

Now it follows from (4.20) and (4.21) that

UτR−1X θ̂ = UτR−1Y + Aτ (θ̂ − θ) + δ, (4.24)

where δ = (δ1, · · · , δp+q)τ , and A is a (p + q) × (p + q) matrix with ηk as its k-th column. Note

that Y − Xθ0 = Z and

U = X −
q∑

ℓ=1

aiℓ,0




U(t1 − iℓ,θ0)
τ

...

U(tN∗ − iℓ,θ0)
τ



.
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By (4.24), (4.20) and (4.22), we have

UR−1U(θ̂ − θ0) = UR−1Z + Aτ
1(θ̂ − θ0) + δ,

where A1 is a (p + q) × (p + q) matrix with the sum of the last two terms on the RHS of (4.21)

as its k-th column for k = 1, · · · , p, and the sum of the last two terms on the RHS of (4.23) as its

(p+ k)-th column for k = 1, · · · , q. Hence

N1/2(θ̂−θ0) = {UR−1U/N−Aτ
1/N}−1N−1/2(UR−1Z−δ) = {UR−1U/N}−1N−1/2UR−1Z+op(1).

The last equality follows from the fact that N−1/2δ
P−→ 0 and A1/N

P−→ 0. The former is

guaranteed by Lemmas 6 and 7, and the latter follows from Theorem 1 and a similar argument

as in the proof of Lemma 8. Now the theorem follows from Lemmas 8 and 9 immediately. �

5. Final remarks

5.1. Edge effect correction

So far the asymptotic normality of the estimators for stationary spatial processes has been estab-

lished via different edge-effect corrections; see Guyon (1982), Dahlhaus and Künsch (1987) and

also Theorem 2 above. Whether such a correction is essential or not for the asymptotic normality

of the GMLE remains as an open problem, although we would think that the answer should be

negative. However it seems to us that an edge-effect correction would be necessary to ensure that

the GMLE has the simple asymptotic distribution stated in Theorem 2 which is distribution-free.

For Gaussian processes, Guyon showed that his estimator is asymptotically efficient in a certain

sense; see p.101 of Guyon (1982). Note that in the context of estimating coefficients of a spatial

Gaussian ARMA process, Guyon’s estimator, Dahlhaus and Künsch’s estimator and our modified

GMLE share the same asymptotic distribution as stated in Theorem 2. However, as far as we

can see, Guyon’s efficiency does not imply that these estimators will share the same asymptotic

distribution with the genuine (Gaussian) MLE. This requires, in addition to what has been proved

in Guyon (1982), the necessary condition

(N1N2)
−1/2

∣∣∣∣
∣∣∣∣
∂

∂θ
{l(θ) − l∗(θ)}

∣∣∣∣
∣∣∣∣
θ=θ0

P−→ 0,

where l(·) denotes the log Gaussian likelihood function and l∗(·) denotes the approximation from

which the estimator is derived. From the derivation in §4, the above limit seems unlikely to
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hold for, at least, our edge-effect-corrected likelihood. (Note that the Whittle likelihood for

spatial processes automatically suppresses the inhomogeneity at the boundary points up to a

non-negligible order.) It will be interesting to see the form of the asymptotic distribution of the

MLE without any edge-effect-correction, which, to our knowledge, is unknown at present.

5.2. Spatio-temporal ARMA models

A serious drawback of spatial ARMA models is the artifact due to the enforced unilateral order,

which rules out some simple and practically meaningful models from the class. (See, e.g. Besag

1974.) In fact, the half-plane ordering is only appropriate for a few applications such as line-by-

line image-scanning. Such a drawback may disappear naturally in the context of spatio-temporal

modelling. To this end, let Xt(s) denote the variable at time t and location s. Now the index

(t, s) is three-dimensional. Under Whittle’s half-plane unilateral order, the model

Xt(s) =

p∑

ℓ=1

∑

i∈Iℓ

bℓ,iXt−ℓ(s − i) + εt(s) +

q∑

ℓ=1

∑

i∈Jℓ

aℓ,iεt−ℓ(s− i)

is legitimate for any subsets Iℓ and Jℓ of Z2, since Xt(s) depends only on its ‘lagged’ values, εt(s)

and the ‘lagged’ values of εt(s). By letting Iℓ and Jℓ contain, for example, (0, 0) and its four

nearest neighbours, the model is practically meaningful and can be used to model real data over

space and time. This is in marked contrast to the spatial models (2.1) in which I1 and I2 must be

some subsets of {s > 0}. The asymptotic theory developed in this paper may be readily extended

to deal with the above model.
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