EXPONENTIAL INEQUALITIES FOR SPATIAL PROCESSES
AND UNIFORM CONVERGENCE RATES FOR
DENSITY ESTIMATION

QIWEI YAO
Department of Statistics
London School of Economics and Political Science
Houghton Street, London, WC2A 2AE, UK
E-mail: gq.yao@lse.ac.uk

We establish an exponential type of inequality for a-mixing spatial processes.
Based on it, an optimum convergence rate of a kernel density estimator for sta-
tionary spatial processes is obtained. Its asymptotic mean and variance are also
derived.

1 Introduction

The classical asymptotic theory in statistics is built upon central limit theorems
and laws of large numbers for the sequences of independent random variables.
In the study of the asymptotic properties for linear time series which are se-
quences of dependent random variables, the conventional approach is to express
a time series in terms of an moving average form in which the white noise is
assumed to be independent. This idea also prevails for linear spatial processes;
see Yao and Brockwell (2001) and Hallin, Lu and Tran (2002). Unfortunately
the moving average representation becomes irrelevant in the context of nonlin-
ear processes for which more complicated dependence structure is encountered
and certain asymptotic independence, typically represented by a mixing con-
dition, will be characterised. We refer to §2.6 of Fan and Yao (2003) for an
introductory survey on the mixing conditions for time series. A mixing spatial
process may be viewed as a process for which random variables from distant
locations are nearly independent; see §1.3.1 of Doukhan (1994).

The goal of this paper is two-fold. First we establish an exponential type
inequality for a-mixing spatial processes. Exponential type inequalities are
powerful tools in estimating tail probabilities of partial sums of random se-
quences; see, for example, §1.4 of Bosq (1998). They imply weak laws of large
numbers for mixing processes, and give sharp large deviation estimations. Note
that the stationarity is not required. Further, based on an established expo-
nential inequality, we derive an optimum uniform convergence rate for density
estimators of stationary spatial processes. The application of those results in
additive modelling for spatial processes will be reported elsewhere.

Nonparametric kernel estimation for spatial processes is still in its infant
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stage. A limited references include Diggle (1985), Diggle and Marron (1988),
Hallin, Lu and Tran (2002), and Zhang, Yao, Tong and Stenseth (2002). Re-
lated to current work, Hallin et al. established the asymptotic normality for
density estimators for linear spatial processes.

2 Exponential type inequalities
2.1 «a-mizing processes

Let {X(s)} be a real-valued spatial process indexed by s = (u,v) € Z?, where
Z consists of all integers. Since the index s is two dimensional, {X(s)} is
also called a random field. For any A C Z2, let F(A) denote the o-algebra
generated by {X(s), s € A}. We write |A| for the number of elements in A.
For any A, B C Z?, define

a(A,B)=  sup _|[P(UV)=PU)PV),
UEF(A),VEF(B)

and
d(A, B) = min{||s; —s2|| | s1 € A, s2 € B}.

where || - || denotes the Euclidean norm. Now the a-mixing coefficient for the
process {X (s)} is defined as

a(k;i,j) = sup {a(4,B)||A| <14, |B| <j,d(4,B) >k}, 1)
A,BCZ?

where i, j,k are positive integers and i,j may take values of infinite. The
process {X(s)} is a-mixing (or strong mixing) if a(k;i,j) — 0 as k — oo.
A typical choice is i = j = oo. Note that a(k;i,j) is monotonically non-
decreasing as a function of 7 or j. Hence a(k; 00, 00) — 0 implies a(k;4,5) — 0
for any values of ¢ and j.

In the context of stochastic processes with single index, a-mixing is the
weakest among the most frequently used mixing conditions (§2.6 of Fan and
Yao 2003). Such a simple statement is no longer pertinent for spatial pro-
cesses. For example if we let ¢ = j = o0, a-mixing is equivalent to p-mixing,
and further, 8-mixing reduces to simple m-dependence; see §1.3.1 of Doukhan
(1994) and references within. Further in contrast to single-indexed processes,
we need to choose appropriate values for ¢ and j according to the nature of a
spatial problem in hand. For example, the coefficient a(k; 0o, 00) is not useful
for Gibbs fields (Dobrushin 1968).

Remark 1. If {X(s)} is a causal and invertible ARMA process (Whittle
1954) defined in terms an independent and identically distributed white noise
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sequence {&(s)}, Ele(s)|® < oo for some § > 2, and density function p. of £(s)

satisfies the condition that
/|p5(;t: +2) —pe(x)|de < C|z|, z€R,

it follows from Corollary 1.7.3 of Guyon (1995) and Lemma 1 of Yao and
Brockwell (2001) that

a(k;i, §) < Cipk, 0,5,k >1, (2)

where C' > 0,p € (0,1) are constants independent of ¢, j and k.

2.2 Ezponential inequalities

Suppose we have observations {X(u,v); u = 1,---, N1, v = 1,---, Ny}. Let
N = N;N,. Define the partial sum

N N;

Sy = ZZX(U,’U)

v=1u=1

Theorem 1 below presents upper bounds for the tail probabilities of |Sy|,
which resembles the exponential type inequalities for single-indexed stochastic
processes; see Theorem 1.3 of Bosq (1998). We introduce some notation first.
Define an auxiliary continuous-indexed process

g(t17t2) = X([t1]7 [t2])7 (t17t2) € R27

where [t] denotes the integer part of t. For an integer ¢ between 1 and NyAN; =
min{Ny, N2}, let p; = N;/(2¢) (1 =1,2). Fori,j =1,---,q, define

@ (2i—1)p1 (2j—1)p2
V;J = / dtl / E(tl ) t2 )dt2a
2 2

(i—1)p1 (i—1)p2
@ (2i—1)p1 2jp2
‘/Z] :/ dtl/ §(t1;t2)dt2;
2(i-1)px (2—1)p2
) 2ip1 (27—1)p=2
‘/Z] :/ dtl/ §(t1;t2)dt2;
(2i—1)p1 2(j—1)p2
@ 2ipy 2jp2
V= [T an [ et ).
(2i—1)p1 (2j—1)p2
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It is easy to see that

q
Sv= Y (V7 + VP + v + v, (3)

,j=1
For some constant €, K > 0, let
32¢* m\2  Ke
2 _ ulid
o) =7 max B(V) + 5

i<i<a

Now we are ready to present the theorem.
Theorem 1. Let {X(s)} be a zero-mean spatial process with
P{sup | X (s)] <K} =1
s€Z?

Then for any integer ¢ between 1 and N3 A Ny and € > 0, it holds that

P(|Sn| > Ne) < 8exp (_g%qz) (4)
() e ([HA[E] [ v,
and
P(|Sy| > Ne) < 8exp (—%) (5)

ru (1) " e ([ A L) (3] )

Proof. The key idea of this proof is to divide the rectangular {(u,v) : 1 <
u < Np, 1 < v < No} into 4¢? small blocks (see (3)), and then apply Bradley’s
coupling lemma to replace the sums of random variables on those blocks by
their independent counterparts. The required inequalities (4) and (5) then
follow from Hoeffding’s inequality and Bernstein’s inequality respectively. We
outline the main steps of the proof as follows.

Let p=pip2 = N/(4¢%), 6 = 1 +¢/(2K), B = min{Ne/(8¢*), (6 — 1)Kp},
and ¢ = §Kp. Then |Vi§-1) +c| > c— |Vl§1)| > (6—1)Kp almost surely. Applying
Bradley’s coupling lemma (see, e.g. Lemma 1.2 of Bosq 1998) recursively, we

4



may define a sequence of independent random variables { W 1)} such that Wi(jl)

and Vig-l) share the same marginal distribution, and further

6+ 1)K 3 _
min{ne/(8¢?), (§ — 1)Kp}) a([p] A lp2]; [pl, N)

= 11 {max (7, SO DO } o(lpi] A [p2); [, V)

P(W V| > ) <11 (

_ 1 (1 + %)ma([m] A lpals I8, V).

Since {Wi(jl)} are independent, it follows from Hoeffding’s inequality (Theo-
rem 1.2 of Bosq 1998) that

(1) Ne N2g2 _ Ne?
P(ZWU >?>52exp(‘m =2ew |~k ) ©
,L’j

Combining the above two inequalities, we have that

N
P ZV(” >TE)

Ne .
<P |3V > 5 V) = W] < B for all @,g) + PV - W > )

Ne
<P\ Wy > —m) +¢ PV - Wl > 5)

1] 8

N
<P Xwd|> —“‘) +q* PV =W > )

<20 (-L2) 111 (14 )" o b, )

It is easy to see that the above inequality also holds for {V;g”} for | = 2,3,4.
Now (4) follows immediately from the relation

P(ISx| > Ne) <> P ( Zv(z) S Ns) ’
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which is implied by (3).
Inequality (5) may be proved in the same manner with (6) replaced by

2 AT2
P ZWi(jl) >— ] <2exp|-— 5]1\/'/64
8 Ay, EW)? + 2pK Ne/8

%]
52q2
<2 -9
- eXp( 8V(q)2)’

which is guaranteed by Bernstein’s inequality (Theorem 1.2 of Bosq 1998). O

3 Density estimation for spatial processes
3.1 Estimators and regularity conditions

We assume now that the process {X(s)} is strictly stationary with marginal
density function f(-). The kernel estimator for f is defined as

=N 1 N1 N2
Ja) = 5 3 S Wil X (o) - 2}, (7)
u=1v=1
where Wy, (-) = h='W(-/h), W(-) is a probability density function defined in
R and h > 0 is a bandwidth. We introduce some regularity conditions first.
We use C to denote some positive generic constant which may be different at
different places.

(C1) As N = N1 Ny — o0, N1 /N5 converges to a positive and finite
constant.

(C2) As N = oo, h — 0 and NB-5h8+5(log N)~(B+1) — oo, where
B > 5 is a constant.

(C3) The kernel function W (-) is bounded, symmetric and Lipschitz

continuous.

(C4) The density function f(-) has continuous second derivative

f(+). Further the joint density function {X (u,v), X (u +i,v + j)}

is bounded by a constant independent of (i, j).

(C5) Tt holds that a(k; k', 5) < Ck™? for any k,j and k' = O(k?).
Conditions (C2) — (C4) are standard in kernel estimation. For optimum band-
width h = O(N—1/%), (C2) requires 8 > 7.5. For causal and invertible ARMA

processes satisfying conditions in Remark 1, a(k; k', 00) decays at an exponen-
tial rate as k — oo. Therefore, condition (C5) fulfils for any S > 0.
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Remark 2. We assume in this paper that the observations were taken from
a rectangular. This assumption can be relaxed. In fact Proposition 1 and
Theorem 2 below still hold if the observations were taken over a connected
region in Z2, and both minimal length of the side of the squares containing
the region and the maximal length of side of the squares contained in the region
converge to infinite at the same rate. For general discussion on the condition
of sampling sets, we refer to Perera (2001).

3.2 Asymptotic means and variances

Proposition 1. Let conditions (C1) and (C3) — (C5) hold with 8 > 4. Then
for h = 0 and Nh — o0 as N — 00, it holds that

B{f@)} = 1(e) + 30 f(@) [ W+ o), ®
and
N 1 2 —13—1
Var{f(z)} = N—hf(x)/W(u) du + o(N—1h1). )

Proof. Equation (8) follows from simple algebraic manipulation. Put Z,, =
Wp{X(u,v) —z}. Then,
-~ 1 1
Var{f(2)} = Var(Zu) + 55 D Cov(Zuv, Zij)-
(u,0)#(i9)

The first term on the RHS of the above expression is equal to the RHS of (9).
We only need to prove the second term is of the order O(ﬁ)' To this end,
note that for (u,v) # (¢, 5),

|Cov(Zuv, Zij)| < Ch,

where C7 > 0 is a constant independent of u,v, 4, j. Define a unilateral order
in Z? as follows: (u,v) > 0 if either u > 0 or u = 0 and v > 0, and further
(u,v) > (4,§) if (u—2,v—75) > 0. Let S, = {(u,v) : 1 <u< Ny, 1 <ov< N}
Then

1 2
Il Z |COV(ZuvaZij)|:m Z |Cov(Zyw, Zij)|

(u,v)#(4,4) (u,v)<(4,5)
2
= ﬁ Z Z |COV(ZUWJZU+i,v+j)|
(u)ESNy  (i:3)>0

(uti,v+j)ESN



< % Z Z + Z |COV(Zuv; Zu+i,v+j)|

(u,0)ESN | (4.3)>0,i2+432<T2 2452572
(u+i,v+j)ESN

= O(TQ/N) + % Z Z |C0V(Zuva Zu+i,v+j)|a (10)

(u,v)ESN 2+452>T?

where T = T(N) > 0 is a constant. By Billingsley’s inequality (see, e.g.
Corollary 1.1 of Bosq 1998) and condition (C5),

|CoV(Zuw, Zutinei)| < Caf(i® + j%)2;1,1} /A% < C(i? +j2)*§/h2.

Thus the second term on the RHS of (10) is bounded from the above by

8

2¢ 2+32\ 7% 1 1 1
NP 2 ( T? ) ﬁ_O(NhZT/H) _O(N_h)’

2+52>T2

provided T = h~2/8 for 8 > 4. This also ensures O(%) = o(§7); see (10).

The proof is completed now. o

3.8 Optimum uniform convergence rates

Theorem 2. Under conditions (C1) — (C5), it holds that for any finite a < b,

~ AN log N 1/2
s [Fo) = £7) —op{( ) } (11)

s o= ro| =0 (S6) o). o

Remark 3. Theorem 2 presents the uniform convergence rates for the kernel
estimator f(-). For h = O{(log N/N)'/5}, (12) admits the form

logN 2/5
|70 - 1] = 0, ,
z€[a,b]

which is the optimal convergence rate according to Hasminskii (1978). The
similar results for single-indexed processes may be found in, for example,
Masry (1996) and Theorem 5.3 of Fan and Yao (2003).

Further,
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Proof of Theorem 2. Write the N observations as X(s;),---, X (sy). Par-
tition [a, b] into L subintervals {I;} of equal length. Let z; be the centre of I;.
Since

2|H

N

- C

() — Z (Wi X (sj) — 2} = Wa{X(s)) — '} < 7lo = 2],
it holds that |E]?(;c) - Ef(:z:’)| < €|z — z'|. Hence

sup |f(2) — Ef(2)| < |f(x;) — Ef(x;)| +

zel; - Lh’
Therefore,
s 1) = B < max, Fte) - (o) + oW
Since |[Wy(-)| < Ch™1, it follows from (5) that
P{F(@) - Bf ()| > ¢} < Sexp (—5—‘1) (14)
8(g)?

1/2
-4 (1 + %) Fa(lp] A fpa; [papel, N),

where p; = N;/(2q). Let ¢ = [€'/2(Ny A N2)]. By (9), v(q)? < C/(p1p2h) +
Ce/h < Ce/h. Now let €2 = 8\‘,15\17]35)]2\[,1 for some large constant a > 0. It is
easy to see that

52(]2 62(N1 /\N2)2h
=1 )<« x4 ) =N"% 1
exp( 81/((1)2) _exp( 80 ) (15)

On the other hand, condition (C5) entails that

()™ 2@ a(lp1) A [pe]; [prip2], N) < Cleh)™ 2@ (pi Apa)™  (16)
— O(E(ﬁ+1)/2Nh—l/2) — O{N—ﬁ/4+3/4h—ﬂ/4—3/4(10gN)ﬁ/4+1/4}

Let L = (N/h)'/2. 1t follows from (14) — (16) and condition (C2) that
P{ max |f(z;) = Ef(z;)] > e}
< L{N~% 4 CN—P/A+3/4p=B/4=3/4(1og N')B/441/4} 5 .
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Note that e = O{(*%&X)'/2}. Now (11) follows from (13) immediately.

z€[a,b]

Note that

sup, 7o) = f(@)] < sup |F(o) - Bf(@)| + sup |Efi@) - 1(a)],

z€[a,b] z€[a,b

and the second term on the RHS of the above expression is non-random. Simple
algebraic manipulation shows that it is of the order h? under the condition
that W is symmetric and f has two continuous derivatives. Now (12) follows
from (11). O

Acknowledgments

The research was partially supported by a BBSRC/EPSRC joint research

grant.
References
1. Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes (2nd
edition). Springer, New York.
2. Diggle, P.J. (1985). A kernel method for smoothing point process data.
Appl. Statist. 34, 138-147.
3. Diggle, P.J. and Marron, J.S. (1988). Equivalence of smoothing parame-
ter selectors in density and intensity estimation. J. Amer. Statist. Assoc.
83, 793-800.
4. Dobrushin, R.L. (1968). The description of the random field by its con-
ditional distribution. Theory Probab. Appl. 13, 201-229.
5. Doukhan, P. (1994). Mixing. Springer-Verlag, New York.
6. Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and

10.

11.

Parametric Methods. Springer, New York.

Guyon, X. (1995). Random Fields on a Network: Modeling, Statistics,
and Application. Springer-Verlag, New York.

Hallin, M., Lu, Z. and Tran, L.T. (2002). Density estimation for linear
processes. Bernoulli, to appear.

Hasminskii, R.Z. (1978). A lower bound on the risks of nonparametric
estimates densities in the uniform metric. Theory Prob. Appl., 23, 794—
798.

Masry, E. (1996). Multivariate local polynomial regression for time series:
uniform strong consistency and rates. J. Time Series Analy. 17, 571-559.
Perera, G. (2001). Random fields on Z%: limit theorems and irregular
sets. In Spatial Statistics: Methodological Aspects and Applications, M.
Moore (edit.), p-57-82. Springer, New York.

10



12. Whittle, P. (1954). On stationary processes in the plane. Biometrika,
41, 434-449.

13. Yao, Q. and Brockwell, P.J. (2001). Gaussian maximum likelihood esti-
mation for ARMA models II: spatial processes. A preprint.

14. Zhang, W., Yao, Q., Tong, H. and Stenseth, N.C. (2002). Smoothing for
spatio-temporal models and its application in modelling muskrat-mink
interaction. A preprint.

11



