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Abstract

For a set of spatially dependent dynamical models, we propose to estimate parameters

which control temporal dynamics by spatial smoothing. The new approach is particularly

relevant for analyzing spatially distributed panels of short time series. The asymptotic results

show that spatial smoothing will improve the estimation in the presence of nugget effect even

when the sample size in each location is large. The proposed methodology is used to analyze

the annual mink and muskrat data collected in a period of 25 years over 81 locations in Canada.

Based on the proposed method, we are able to model the temporal dynamics which reflects

the food-chain-interaction of the two species.
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1 Introduction

In the context of purely spatial data analysis, kriging is one of the most frequently used methods;

it is typically used for the prediction of a random variable from neighboring observations by

exploiting the statistical dependence between these observations and the unknown random variable

(see e.g. Chapter 3, Cressie, 1993). Unfortunately this approach is no longer pertinent when we

deal with spatio-temporal data and when we are particularly interested in estimating the temporal

dynamics. In fact, we argue that it will be difficult, if ever possible, to estimate the temporal

dynamics by relying on an approach which focuses on prediction. In this paper, we assume that

(i) the temporal dynamics follows a certain known structure governed by an unknown parameter

vector which varies smoothly over space, and (ii) the spatial dependence is driven by a series of

noise processes which are correlated over space but independent over time. This setting can be

viewed as an extension of Hjellvik and Tjøstheim (1999), in which they dealt with a panel of

dependent linear time series and accommodated the (spatial) dependence in terms of a common

noise term across the panel. We shall propose a spatio-temporal model approach, in which the the

functional form is assumed known up to some unknown parameters. We estimate the unknown

parameters by spatial smoothing technique through local linear kernel regression. A spin-off

of the proposed spatial smoothing is that, in the presence of the nugget effect (see e.g. p.59,

Cressie, 1993), even the estimation at locations at which observations are available can be further

improved.

Spatial smoothing is one of the very frequently used ideas in analyzing spatial data especially

for spatial interpolation, although the form of smoothing is diverse. Kernel smoothing was used

to estimate the intensity of the spatial pattern by Diggle (1985) and Diggle and Marron (1988),

marginal density functions in Hallin, Lu and Tran (2001) and Yao (2003). The approach proposed

in this paper is motivated by modeling the food chain interaction between mink and muskrat in
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Canada. The available data consist of the annual numbers of both mink and muskrat fur sales at

81 posts over a period of 25 years, namely 1925 – 1949. In short, we have 81 × 2 time series, but

each consisting of 25 points only. Most of these series exhibit cycles with a period of around 10

years. It is well-known that for many parts of Canada (such as those covered by boreal forests)

there exists a close food-chain-interaction between the mink (as predator) and the muskrat (as

prey). Biological studies suggest that the food-chain-interaction should be nonlinear, reflecting

the changing behavior of the animals at different stages of the population cycle. The statistical

analysis of this particular data set aims at a deeper understanding of the food-chain-interaction

from a quantitative point of view. Thus, we seek a statistical model which can capture much

of the temporal dynamical fluctuation and interaction of the two species as well as the pattern

change in the fluctuation and the interaction over space. Briefly, our approach is as follows. We

adopt the food-chain-interaction idea proposed by May (1981) and Stenseth et al. (1997, 1998a)

and couple it with the idea of regime change dictated by a threshold variable (Tong 1990) to

arrive at a model for the temporal dynamics at each of the 81 posts. We clothe the resulting

temporal model for each post with spatially dependent noise as one (but not the only) way to

induce spatial dependence in the data. By pooling the information from neighboring posts, we

overcome the difficulties in estimation due to the shortage of data at each post. Further, we are

able to identify the main factors which dominate the pattern change of the food-chain-interaction

over space using the estimated models.

The paper is organized as follows. In section 2, we present a local linear approach for the

estimation of spatially dependent parameters in a fairly general spatio-temporal model setup. In

section 3, we explain why it is practically relevant to include the nugget effect in our setting,

and present the asymptotic properties of the proposed estimators in the form of the fixed-domain

asymptotics. We conduct some simulation in Section 4, which illustrates the improvement due to

spatial smoothing. The analysis on mink and muskrat interaction over time and space based on

the proposed method is reported in Section 5. The technical proof of our main result is given in

an appendix.
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2 Methodology

2.1 Model

For each fixed location s ≡ (u, v)′ ∈ S, the process {(Yt(s),Xt(s)), t = 1, 2, · · ·} is strictly sta-

tionary, where Yt(s) is a scalar, Xt(s) is a p × 1 vector, and S is a subset of R2. In a time series

context, Xt(s) may include some lagged values of Yt(s). Further, we assume that at each location

s,

Yt(s) = g{Xt(s),θ(s)} + εt(s), t = 1, 2, · · · , (2.1)

where the form of function g is given and θ(s) is an unknown parameter vector and is continuous

in s. We assume that the noise processes εt(s) satisfy the condition below.

C1 {ε1(s), s ∈ S}, {ε2(s), s ∈ S}, · · · is a sequence of independent spatial processes

with identical distribution. Further, for each t > 1, {εt(s), s ∈ S} is independent

of {(Yt−j(s),Xt+1−j(s)), s ∈ S and j ≥ 1}. The spatial covariance function

Γ(s1, s2) ≡ Cov{εt(s1), εt(s2)} (2.2)

is bounded over S2.

We further assume that the noise εt(s) admits the decomposition below.

C2 For any t ≥ 1 and s ∈ S,

εt(s) = ε1,t(s) + ε2,t(s), (2.3)

where {ε1,t(s), t ≥ 1, s ∈ S} and {ε2,t(s), t ≥ 1, s ∈ S} are two independent

processes, and both fulfill conditions imposed on {εt(s)} in C1 above. Further,

Γ1(s1, s2) ≡ Cov{ε1,t(s1) , ε1,t(s2)} is continuous in (s1, s2), and Cov{ε2,t(s1) , ε2,t(s2)} =

σ2
0(s1) ≥ 0 if s1 = s2, and 0 otherwise, where σ2

0(s) is continuous.

When σ2
0(s) > 0, Condition C2 implies that the nugget effect exists in the spatial noise process

{εt(s), s ∈ S}. The nugget effect was introduced by G. Matheron in early 1960’s. It reflects the
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fact that the variogram E{εt(s1) − εt(s2)}
2 does not converges to 0 as ||s1 − s2|| → 0, where || · ||

denotes the Euclidean distance. In our notation, it is equivalent to the fact that the function

γ(s) ≡ Γ(s1 +s, s1) is not continuous at s = 0 for any given s1 ∈ S. For example, C2 implies that

Γ(s1 + s, s1) = Γ1(s1, s1) + σ2
0(s1) if s = 0, and Γ1(s1 + s, s1) otherwise. Note that decomposition

(2.3) is one easy, but not the only, way to model a nugget effect. In this decomposition, ε1,t(s)

represents system noise which typically has continuous sample path (in s), while ε2,t(s) stands

for microscale variation and/or measurement noise; see, e.g. Cressie (1993, esp. §2.3.1) and also

Remark 2 in Section 3 below. Hjellvik and Tjøstheim (1999) adopted a similar, but different,

noise decomposition to model the dependence in panels of time series data.

2.2 Estimation

Suppose that we have observations at N locations denoted by SN ≡ {s1, · · · , sN} ⊂ S. For

each location, we have observed data {(Yt(s),Xt(s)), 1 ≤ t ≤ T}. The goal is to estimate θ(s0)

for a given location s0 ∈ S. If we have observations at s0 (i.e. s0 ∈ SN ), the least squares

estimator θ̃(s0) for θ(s0) based on the data at the location s0 is the solution of minimizing the

sum
∑T

t=1{Yt(s0)−g(Xt(s0),a)}2 over vector a. When s0 6∈ SN , we may estimate θ(s0) by pooling

the information from observations at nearby locations. This leads us to consider the local linear

estimator θ̂(s0) ≡ â, where (â, B̂) is the minimizer of

∑

s∈SN

T∑

t=1

{Yt(s) − g(Xt(s),a) − ġ(Xt(s),a)′B(s − s0)}
2Kh(s − s0). (2.4)

Here ġ(x,a) = ( ∂
∂a

)g(x,a), B is a matrix, K(·) is a kernel function, and Kh(s) = h−2K(s/h).

Obviously, B̂ is an estimator for θ̇(s0), where θ̇(s) = ( ∂
∂s)θ(s). For linear model g(x,θ) = x′θ,

the above sum of squares reduces to

∑

s∈SN

T∑

t=1

{Yt(s) −X′
t(s)(a + B(s − s0))}

2Kh(s − s0).

When s0 ∈ SN , the estimator θ̂(s0) based on the combined data from neighboring locations

has a smaller asymptotic mean squared error than the ordinary least squares estimator θ̃(s0)
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based on the data at the location s0 only; see Remark 1 below. From now on, we call θ̂(s0) the

smoothed estimator and θ̃(s0) the unsmoothed estimator.

2.3 Bandwidth selection

The bandwidth h plays a crucial role in kernel smoothing. For a comprehensive discussion on

bandwidth selection, we refer to Fan and Gijbels (1996, Ch.4) and Simonoff (1996, Ch.5). In this

paper, we adopt the generalized cross-validation method proposed by Wahba (1977) and Craven

and Wahba (1979) to select h.

Let Ŷt0(s0) = g(Xt0(s0), θ̂(s0)), where θ̂(s0) is the local linear estimator derived from (2.4).

Then Ŷt0(s0) can be written as a linear combination of {Yt(s), 1 ≤ t ≤ T, s ∈ SN} with coefficients

depending on {Xt(s)} and h only. Let Y be the (NT ) × 1 vector with {Yt(s), 1 ≤ t ≤ T, s ∈ SN}

as its NT components and Ŷ be the corresponding vector with Yt(s) replaced by Ŷt(s). Then we

may write Ŷ = H(h)Y, where H(h) is a (NT )× (NT ) coefficient matrix independent of {Yt(s)}.

The GCV selects h which minimizes

GCV(h) = NT
{
tr
(
I − H(h)

)}−2
(Y− Ŷ)′(Y − Ŷ).

3 Asymptotic properties

We study the asymptotic properties of our estimator when both T and N tend to infinity. For

the sake of simplicity, we only present the asymptotic results for linear models. Specifically,

we always assume in this section that model (2.1) holds with g(x,θ) = x′θ, and the smoothed

estimator θ̂(s0) is derived from (2.4). Similar results hold for a general nonlinear g but with more

complicated notation. First we state some regularity conditions.

C3 For any s ∈ S, there exists a constant C0 such that E‖Xt(s)‖
2δ < C0 < ∞ for

some δ > 2. Further, the process {(Yt(s),Xt(s)), t ≥ 1} is α-mixing with the

mixing coefficient α(k) satisfying the condition
∑∞

k=1{α(k)}1−2/δ < ∞.
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C4 The kernel K(·) is a symmetric (i.e. K(x) = K(−x)) density function on R2 with

a bounded support.

C5 As N → ∞, N−1∑
s∈SN

I(s ∈ A) →
∫
A f(s)ds for any measurable set A ⊂ S,

where f is a sampling intensity (i.e. density) function on S. Further, f > 0 in a

neighborhood of s0 ∈ S.

C6 The matrix function A1(s1, s2) ≡ E{Xt(s1)Xt(s2)
′} admits the decomposition

A1(s1, s2) = A1,1(s1, s2) + A1,2(s1, s2), (3.1)

where A1,1(s1, s2) is continuous, A1,2(s1, s2) = 0 if s1 6= s2, A1,2(s, s) is con-

tinuous (as a function of s), and both A1,1(s, s) and A1,2(s, s) are non-negative

definite matrices. Further, θ(s) is twice continuously differentiable.

Condition C5 assumes that all the locations are within a fixed area determined by the intensity

function f when N → ∞. Note that N is the number of locations where the observations are taken.

Our approach belongs to the category of the fixed-domain asymptotics. Fixed-domain asymptotics

is one of two frequently used asymptotic frameworks in the analysis of spatial statistics; see, e.g.

Cressie (1993, §3.3). Note that the process {Yt(s), s ∈ S} (as well as {Xt(s), s ∈ S}) may exhibit

a nugget effect when such an effect exists with noise process {εt(s), s ∈ S}; see (2.3). This is

reflected in the decomposition (3.1) in C6. On the other hand, condition C3 requires that at

each given location, multiple time series {(Yt(s),Xt(s)), t ≥ 1} is α-mixing. It is known that

many frequently used time series are α-mixing. For example, linear and causal ARMA time

series with continuously-distributed innovations are α-mixing with exponentially decaying mixing

coefficients. For further discussion on mixing properties of time series, see section 2.6 of Fan and

Yao (2003).

We introduce some notation. Let A(s) = A1(s, s), A0(s) = A1,1(s, s), σ2
1(s0) = Γ1(s0, s0),

and

µi,1 =

∫ ∫
uiK(u, v)dudv, µi,2 =

∫ ∫
viK(u, v)dudv,

νi,1 =

∫ ∫
uiK2(u, v)dudv, νi,2 =

∫ ∫
viK2(u, v)dudv.
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Theorem 1. Let conditions C1 – C6 hold. As T −→ ∞, N −→ ∞ and h −→ 0, it holds for

s ∈ S that,

θ̂(s0) − θ(s0) =
1

2
h2b(s0){1 + oP (1)} + γT−1/2ξ{1 + oP (1)}.

where ξ is a p × 1 random vector with zero mean and identity covariance matrix, and

γ2 = σ2
1(s0)A

−1(s0)A0(s0)A
−1(s0) +

ν0,1σ
2
0(s0)

Nh2f(s0)
A−1(s0), b(s) = µ2,1

∂2θ(s)

∂u2
+ µ2,2

∂2θ(s)

∂v2
.

Remark 1. It may be shown that when s0 ∈ SN ,

θ̃(s0) − θ(s0) = {σ2
1(s0) + σ2

0(s0)}
1/2T−1/2A−1/2(s0)ξ{1 + oP (1)}.

It is easy to see that to minimize the mean squared error of θ̂(s), we should use the bandwidth h

of the order (NT )−1/6. Further by choosing h = O{(NT )−1/6}, Theorem 1 implies that the mean

squared error of the smoothed estimator θ̂(s0) is smaller than that of θ̃(s0) under the condition

T = o(N2). Furthermore, the smaller is σ2
1(s0)/σ

2
0(s0) (the system-noise-to-measurement-noise

ratio), the larger is the improvement due to spatial smoothing. In particular, if σ2
1(s0) = 0, the

mean squared error of θ̂(s0) is an order of magnitude smaller than that of the method using the

data at location s0 only.

Remark 2. In the case of no nugget effect (i.e. σ2
0(s0) = 0 and A1,2(s0, s0) = 0), spatial

smoothing cannot reduce the asymptotic variance of the unsmoothed estimator θ̃(s0). This is

due to the fact that the spatial smoothing uses effectively the data at locations within a distance

h from s0. Due to the continuity of the function Γ1(·, ·) stated in C2, all the εt(s)
′s from those

locations are asymptotically identical. (The conventional weighted least squares approach using

correlation coefficients as weights leads to an estimator with a constant bias, and is therefore

not applicable here.) We argue that asymptotic theory under this setting presents an excessively

gloomy picture. Adding a nugget effect in the model brings the theory closer to reality since in

practice the data used in local spatial smoothing usually contain some noise components which are

not identical even within a very small neighborhood. Note that the nugget effect is not detectable
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in practice since we can never estimate Γ(s+∆, s) defined in (2.2) for ||∆|| less than the minimum

pairwise-distance among observed locations.

Remark 3. Theorem 1 above does not require the process {Yt(s),Xt(s)} to be stationary over

space; see conditions C1 and C2. The asymptotic properties were in fact derived under the

mixing property over time (condition C3), the continuity over space (conditions C2 and C6), and

the assumption of i.i.d. temporal noise at each given location (condition C1). If the asymptotic

normality of θ̂(s0) is desired, we would have to impose certain form of stationarity over space.

4 Numerical properties

Theorem 1 above shows that a smoothed estimator has a smaller mean squared error than its

unsmoothed counterpart. In this section, we illustrate the finite sample properties of the method

with two simulated examples. The improvement due to spatial smoothing has been observed in

both Example 1, which fulfills the conditions of Theorem 1, and also Example 2, which indi-

cates the usefulness of the smoothing is beyond the circumstance confined to the conditions of

Theorem 1.

Here and also in section 5, we use kernel K(s) = (1 − u2 − v2)+ and select the bandwidth h

by the GCV method described in section 2.3. In both the examples below, we set the sample size

T = 25. The observations are taken over N = m2 grid points on the square [0, 6]2 with m = 3, 6

and 9, and the grid points {(ui, vj), 1 ≤ i, j ≤ m} are defined as

ui = 6(i − 1)/(m − 1), vj = 6(j − 1)/(m − 1).

We generate the process {Xt(ui, vj), 1 ≤ i, j ≤ m}, which is independent in t, with the formula

Xt(ui, vj) =
1

49

3∑

k=−3

3∑

l=−3

ei+k+3,j+l+3,

where ei,j are independent N(0, 1) random variables. We replicate the simulation 100 times for

each setting.

Example 1: Consider the model

Yt+1(u, v) = a1(u, v) + a2(u, v)Xt(u, v) + a3(u, v)Yt(u, v) + εt+1(u, v),
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where

a1(u, v) = 0.2 sin(u + v), a2(u, v) = u + v, a3(u, v) =
1

6
cos2(u + v),

and the noise process {εt(u, v)} satisfies conditions C1 and C2. More specifically, it admits

the decomposition (2.3) with both ε1,t(u, v) and ε2,t(u, v) normal with mean 0 and the common

variance σ2
? , and

Corr{ε1,t(s1), ε1,t(s2)} = exp{−||s1 − s2||}.

We select σ2
? such that the ratio of noise to signal defined as

Var{εt(u, v)}/Var[g{Xt(u, v),θ(u, v)}]

is equal to 0.2. Note that at each fixed location (u, v), the time series {Yt(u, v)} defined above is

a causal linear AR(1) process with independent normal innovations a2(u, v)Xt(u, v) + εt+1(u, v),

and, therefore, is also α-mixing with the exponentially decaying coefficients (see, for example,

section 2.6.1 of Fan and Yao, 2003).

For each k = 1, 2, 3, the mean squared error, defined by

MSE(âk) =
1

m2

m∑

i=1

m∑

j=1

E{âk(ui, vj) − ak(ui, vj)}
2,

is employed as the criterion to compare the empirical performance of the (new) smoothed estimator

and the (more conventional) unsmoothed estimator for ak(u, v). Table 1 lists the values of

RMSE(ak) = MSE1(ak)/MSE2(ak),

where MSE1(ak) and MSE2(ak) are respectively the MSE for the smoothed estimator and the

unsmoothed estimator of ak(u, v). Note that all the entries in Table 1 are less than 1, and some of

them by a large margin. This indicates that the gain from spatial smoothing is substantial even

when m is moderate.

(Put Table 1 here)

Example 2. Consider the threshold model

Yt+1(u, v) =





a1(u, v) + a2(u, v)Xt(u, v) + a3(u, v)Yt(u, v) + εt+1(u, v) Xt(u, v) ≤ 0.6,

a4(u, v) + a5(u, v)Xt(u, v) + a6(u, v)Yt(u, v) + εt+1(u, v) Xt(u, v) > 0.6,
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where

a1(u, v) = 1 + u + v, a2(u, v) = 0.5(u2 + v2), a3(u, v) = 0.2 sin(u + v),

a4(u, v) = u + 3v, a5(u, v) = 0.5(u2 + 2v2), a6(u, v) = 0.5 cos(u + v),

and we generate the noise process {εt(ui, vj), 1 ≤ i, j ≤ m}, which is independent in t, with the

formula

εt(ui, vj) =
σ

25

2∑

k=−2

2∑

l=−2

ei+2+k,j+2+l, (4.1)

where ei,j are independent N(0, 1) random variables. We select σ > 0 such that the ratio of

noise to signal is equal to 0.2. Table 2 lists the values of RMSE(ak) from a simulation with 100

replications, which exhibits the similar pattern as in Table 1.

(Put Table 2 here)

The numerical results from different settings (i.e. with different values of m0 and T ) present

the same profile as Tables 1 and 2, and therefore are not presented here. Note that the process

{εt(u, v)} used in Example 2 does not facilitate a decomposition of the form (2.3); see (4.1).

However the setting still ensures that for any 1 ≤ i, j, k, l ≤ m and (i, j) 6= (k, l),

E{εt(ui, vj) − εt(uk, vl)}
2 ≥

σ2

(2m0 + 1)4
> 0,

no matter how small ||(ui, vj)−(uk, vl)|| is. Hence Example 2 lends further support to the assertion

that the proposed smoothed estimator outperforms the unsmoothed estimator when there exists

a nugget effect in the sense that E{εt(s1) − εt(s2)}
2 6→ 0 as ||s1 − s2|| → 0. (See also Remark 2.)

5 Modelling food-chain-interaction between mink and muskrat

From the records compiled by the Hudson Bay Company on fur sales at auction in 1925-1949,

we can extract annual numbers of mink and muskrats caught over 81 trapping regions (each

represented by a post where the fur were collected) in Canada for a period of 25 years. Based

on the population dynamic structure, Yao et al. (2000) arrived at a grouping which divided the

81 posts into three groups, namely the western group (29 posts), the central group (43 posts),
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and the eastern group (9 posts). Let Yt(si) and Xt(si) be the mink observation and the muskrat

observation respectively, on a natural logarithmic scale, for the i-th post and at time t.

5.1 Initial fitting

Biological considerations suggest nonlinear temporal dynamics. In ecological population modeling,

threshold autoregression has been found to be a simple approach which often offers interesting

biological insights; see, for example, Framstad et al. (1997) and Stenseth et al. (1998a,b). We

apply our smoothing approach to this class of models in the context of the food-chain-interaction

between mind and muskrat. The class of models is of the form

Xt+1(si) =





a1(si) + a2(si)Yt(si) + a3(si)Xt(si) + εt+1(si) Xt(si) ≤ r1(si),

a4(si) + a5(si)Yt(si) + a6(si)Xt(si) + εt+1(si) Xt(si) > r1(si),

(5.1)

Yt+1(si) =





b1(si) + b2(si)Xt(si) + b3(si)Yt(si) + εt+1(si) Xt(si) ≤ r2(si),

b4(si) + b5(si)Xt(si) + b6(si)Yt(si) + εt+1(si) Xt(si) > r2(si),

(5.2)

t = 1, · · · , 24, i = 1, · · · , 81. Here, si =(latitude, longitude) is the location of the ith post. The

pattern of the food-chain-interaction between the two species is reflected by the signs and the

magnitudes of the coefficients ai and bi and thresholds ri (see the discussion towards the end of

section 5.2 below).

It is clear that if we estimate the above parameters for each post using observations from that

post only, large variability will result because only 24 observations are available to estimate at

least 7 parameters of interest. The estimation proposed in section 2.2, which involves smoothing,

provides a natural remedy for this problem by pooling the information from nearby posts within

the same group. We denote âi(s), b̂i(s) and r̂i(s) the estimators derived from the smoothed

method. We have also conducted an analysis of variance for the estimated coefficients âi(s), b̂i(s)

and r̂i(s). As expected, the variation within (the three) groups are much smaller than the variation

between groups.

To further extract the common features in the food-chain-interaction among nearby posts,

we apply, as an exploratory tool, a principal component analysis to the estimated coefficients
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{(b̂1(sj), · · · , b̂6(sj), r̂2(sj))
′} in each of the three regions. The coefficients of the first two prin-

cipal components, produced by Splus, are presented in Table 4, which account for 93.6%, 94.5%

and 88.2% of total variation in western, central and eastern regions respectively. Note that Splus

suppresses small coefficients by default. Although such a censoring lacks firm statistical underpin-

nings, it suggests that, for example, in the western region the major (spatial) variation of model

(5.2) occurs in the coefficients b1(s), b4(s) and r2(s), and we may set bj(s) ≡ bj for j = 2, 3, 5, 6. If

we ignore a ‘small’ coefficient in the fourth row of Table 4, the same argument may apply to the

central region. Similarly we may set bj(s) ≡ bj for j = 2, 3, 5, 6 in the eastern region. The same

analysis for the estimates {(â1(sj), · · · , â6(sj), r̂1(sj))
′} for each of the three regions leads to the

suggestion that aj(s) ≡ aj for j = 2, 3, 5, 6 in model (5.1) for all the three regions.

(Put Table 3 here.)

Note that the principal component analysis above merely serves as a data-analytic tool to

synchronize the fittings across different posts, in which the dependence among estimated coeffi-

cients from different posts was ignored. In the same vein, we apply a simple one-sample t-test for

testing, for example, the null hypothesis a2(s)−a5(s) = 0 in each of the three regions based on the

estimated coefficients {â2(s)− â5(s)}. This is effectively to check whether, for example, in model

(5.1) the effect of Yt(s) is nonlinear. The p-values of those tests are reported in Table 4. Setting

a significance level at 5%, we may treat a2(s) = a5(s) for all the three regions, b3(s) = b6(s) for

central region, a1(s) = a4(s) for eastern region, and b1(s) = b4(s) in the western (with p-value

5.3%) and the eastern region.

(Put Table 4 here.)

5.2 Refined fitting

The above exploratory analysis of the estimated coefficients suggests that we may impose some

constraints on models (5.1) and (5.2) in fitting the mink and muskrat data. We only report

the results from the western and central regions where the food-chain-interaction between mink
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and muskrat is evident. For example, in western region the fitted model, under appropriate

constraints, is

Xt+1(si) =





â1(si) − 0.226Yt(si) + 0.856Xt(si) + ε̂t+1(si) Xt(si) ≤ r̂1(si),

â4(si) − 0.226Yt(si) + 1.009Xt(si) + ε̂t+1(si) Xt(si) > r̂1(si),

Yt+1(si) =





b̂1(si) + 0.260Xt(si) + 0.478Yt(si) + ε̂t+1(si) Xt(si) ≤ r̂2(si),

b̂1(si) + 0.182Xt(si) + 0.656Yt(si) + ε̂t+1(si) Xt(si) > r̂2(si),

The above model is obtained as follows. We first estimate model (5.1) with constraint a2(s) ≡

a5(s) and model (5.2) using the proposed smoothing method. We then replace âj(si) and b̂j(si),

respectively, by their mean values over the 29 posts for j = 2, 3, 5, 6. This idea of estimating

constant coefficients was explored in Fan and Zhang (2000). Note that the coefficients of Yt(s) in

the upper regime and the lower regime in the muskrat model are the same, suggesting that the

influence of mink over muskrat in the western region does not depend on the value of threshold

variable Xt(s). The spatial variation is limited to intercepts and thresholds only.

The fitted model for the central region under the constraints is

Xt+1(si) =





â1(si) − 0.208Yt(si) + 0.848Xt(si) + ε̂t+1(si) Xt(si) ≤ r̂1(si),

â4(si) − 0.208Yt(si) + 1.024Xt(si) + ε̂t+1(si) Xt(si) > r̂1(si),

Yt+1(si) =





b̂1(si) + 0.220Xt(si) + 0.534Yt(si) + ε̂t+1(si) Xt(si) ≤ r̂2(si),

b̂4(si) + 0.351Xt(si) + 0.534Yt(si) + ε̂t+1(si) Xt(si) > r̂2(si),

This model presents a similar pattern as those for the western region, except that now the self-

influence of mink is also the same in the upper and the lower regimes.

The above fitted model may be interpreted biologically as follows. First in both regions the

mink is affected positively by the presence of its prey muskrat. The effect is about the same in

both regions. Further the effect of the mink on the muskrat population is the same in both the

upper and the lower regimes, whereas the effect of the muskrat on the mink is not. This seems to

indicate that the muskrat is more important for the mink in the upper regime (corresponding to

the increase and peak population phase; see Yao et al. 2000) in the central region which indeed

may be due to the possibility that this region may be the mink-muskrat’s core area within which
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they are most closely linked with each other. Furthermore, in both regions self-regulation within

the muskrat population is stronger in the lower regime (corresponding to the decrease phase of

the population cycle), during which competition within the population is likely to be stronger.

A similar pattern is found for the mink in the western region but not in the central region,

which indeed is consistent with the central region being a region of strong interaction between

the species.

In conclusion, ecological time series are typically short, but there may be many of them for

each single species or system (see, e.g., Stenseth 1999). By pooling information from nearby loca-

tions through kernel smoothing, we have derived reliable estimation for the food-chain-interaction

models between mink and muskrat thereby enabling relevant biological interpretation.

Appendix – Proof of Theorem 1

Let

Xi = Ωi ⊗
(
1, (si − s0)

′/h
)
, with Ωi =

(
X1(si), · · · ,XT (si)

)′
, i = 1, · · · , N.

Y′ = (Y1, · · · ,YN ), with Yi =
(
Y1(si), · · · , YT (si)

)
.

X = (X′
1, · · · ,X

′
N )′, W = diag

(
Kh(s1 − s0), · · · ,Kh(sN − s0)

)
⊗ IT ,

we use ek,m to denote the unit vector of length m with 1 at the k-th position. Solving (2.4), we

obtain the estimator of θ(s0)

θ̂(s0) = Ip ⊗ eT
1,3(X

′WX)−1X′WY. (A.1)

Put

α′
i =

(
1, (si − s0)

′/h
)
, B =

(
Ip ⊗ diag(1, h, h)

)
,

note that Xi = (Ωi ⊗ α′
i)B we have

B−1XT WXB−1 =
N∑

i=1

(Ω′
iΩi) ⊗ (αiα

′
i)Kh(si − s0),

and

B−1XT WY =
N∑

i=1

(Ω′
i ⊗ αi)YiKh(si − s0).
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For any 3p-dimensional vector Z with Z ′Z = 1, we have

1

NT
Z ′B−1(X′WX)B−1Z =

1

N

N∑

i=1

[
1

T
Z ′
{
(Ω′

iΩi) ⊗ (αiα
′
i)
}
Z

]
Kh(si − s0)

Let

ξi =
1

T
Z ′
{
(Ω′

iΩi) ⊗ (αiα
′
i)
}
Z,

we have

Var
{
(NT )−1Z ′B−1(X′WX)B−1Z

}
≤

{
1

N

N∑

i=1

(
Var(ξi)

)1/2
Kh(si − s0)

}2

.

Let

ξi,j = Z ′
{
Xj(si)X

′
j(si) ⊗ (αiα

′
i)
}
Z,

we have

ξi =
1

T

T∑

j=1

ξi,j.

For k < 0, let Cov(ξi,1, ξi,1+k) = Cov(ξi,1, ξi,1−k), we get

Var(ξi) =
1

T 2

∑

1≤j,k≤T

Cov(ξi,j, ξi,k) =
1

T

T−1∑

k=−(T−1)

(
1 −

|k|

T

)
Cov(ξi,1, ξi,1+k)

≤
1

T

T−1∑

k=−(T−1)

Cov(ξi,1, ξi,1+k).

By Davydov’s inequality, we get

Cov(ξi,1, ξi,1+k) ≤
2δ

δ − 2

{
2α(k)

}1−2/δ{
E|ξi,1|

δ
}2/δ

,

this together with condition C3 leads to

Var(ξi) ≤
C

T

T−1∑

k=0

{
α(k)

}1−2/δ
≤ C1T

−1

where C and C1 are constants, and free of i, T . This gives

Var
{
(NT )−1Z ′B−1(X′WX)B−1Z

}
= O(T−1).

Moreover,

E
{
(NT )−1Z ′B−1(X′WX)B−1Z

}
=

1

N

N∑

i=1

Z ′
{
A(si) ⊗ (αiα

′
i)Kh(si − s0)

}
Z

= Z ′A(s0) ⊗ diag(1, µ2,1, µ2,2)f(s0)Z(1 + o(1)).
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So,

1

NT
B−1X′WXB−1 = A(s0) ⊗ diag(1, µ2,1, µ2,2)f(s0)(1 + oP (1)). (A.2)

Let Σ = Σ2 ⊗ IT , Σ2 is a n × n matrix with the (i, j)th element Γ1(si, sj).

B−1X′WΣWXB−1 =
N∑

i=1

N∑

j=1

(Ω′
iΩj) ⊗ (αiα

′
j)Kh(si − s0)Kh(sj − s0)Γ1(si, sj),

similar to the derivation for (A.2), and note that

N∑

i=1

N∑

j=1

A1(si, sj) ⊗ (αiα
′
j)Kh(si − s0)Kh(sj − s0)Γ1(si, sj)

= N2f(s0)
2A0(s0) ⊗ ∆(1 + o(1)),

where

∆ =

∫ ∫
(1,u′

1)
′(1,u′

2)K(u1)K(u2)Γ1(s0 + hu1, s0 + hu2)du1du2,

we obtain

B−1X′WΣWXB−1 = N2Tf(s0)
2A0(s0) ⊗ ∆(1 + oP (1)), (A.3)

and

e′1,3∆e1,3 =

∫ ∫
K(u1)K(u2)Γ1(s0 + hu1, s0 + hu2)du1du2 = σ2

1(s0)(1 + o(1)).

Similar to (A.2), we have

1

NT
B−1X′W 2XB−1 = h−2A(s0) ⊗ diag(ν0,1, ν2,1, ν2,2)f(s0)(1 + oP (1)). (A.4)

By Taylor expansion, we have

θj(u, v) = θj(u0, v0) +

(
∆u

∂

∂u
+ ∆v

∂

∂v

)
θj(u0, v0)

+
1

2

(
∆u

∂

∂u
+ ∆v

∂

∂v

)2

θj(u0, v0) + O
{
(∆2

u + ∆2
v)

3/2
}

where (u, v) = s, (u0, v0) = s0, ∆u = u − u0, ∆v = v − v0. This gives

θ̂(s0) − θ(s0) = J1h
2 + J2 + oP (h2), (A.5)

where

J1 =
1

2
(Ip ⊗ e′1,3)(X

′WX)−1X′WΨγ, J2 = (Ip ⊗ e′1,3)(X
′WX)−1X′W

(
ε(1) + ε(2)

)
,
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γ =
1

2
(θ̈′1, · · · , θ̈

′
p)

′, θ̈i =

(
∂2θi(u0, v0)

∂u2
,
∂2θi(u0, v0)

∂u∂v
,
∂2θi(u0, v0)

∂v2

)′

ε(1) =
(
ε
(1)
1 (s1), · · · , ε

(1)
T (s1), · · · , ε

(1)
1 (sN ), · · · , ε

(1)
T (sN )

)′
,

ε(2) =
(
ε
(2)
1 (s1), · · · , ε

(2)
T (s1), · · · , ε

(2)
1 (sN ), · · · , ε

(2)
T (sN )

)′
, Ψ = (Ψ′

1, · · · ,Ψ
′
N )′,

with

Ψi = Ωi ⊗ β′
i, β′

i =
(
(ui − u0)

2, 2(ui − u0)(vi − v0), (vi − v0)
2
)
/h2.

Note that

B−1X′WΨ =
N∑

i=1

(Ω′
iΩi) ⊗ (αiβ

′
i)Kh(si − s0),

and using the similar argument for getting (A.2), we can obtain

1

NT
B−1X′WΨ = A(s0) ⊗




µ2,1 0 µ2,2

0 0 0

0 0 0




f(s0)(1 + oP (1)).

This together with (A.2) leads to

J1 =
1

2
b(1 + oP (1)) (A.6)

Now, we discuss J2. Let

η =
{
T−1σ2

1(s0)A
−1(s0)A0(s0)A

−1(s0) + (NTh2f(s0))
−1ν0,1σ

2
0(s0)A

−1(s0)
}−1/2

J2 (A.7)

From (A.2), we get

η =
{
T−1σ2

1(s0)A
−1(s0)A0(s0)A

−1(s0) + (NTh2f(s0))
−1ν0,1σ

2
0(s0)A

−1(s0)
}−1/2

×

(NT )−1
(
A−1(s0) ⊗ e′1,3

)
f(s0)

−1B−1X′W (ε(1) + ε(2))(1 + oP (1)).

By (A.3), (A.4)

Cov(η) = Ip(1 + o(1)),

which together with (A.5), (A.6) and (A.7) leads to the result of Theorem 1.
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Table 1: Empirical Performance Comparison for Example 1

m RMSE(a1) RMSE(a2) RMSE(a3)

3 0.692 0.716 0.783

6 0.244 0.272 0.638

9 0.177 0.212 0.465

Table 2: Empirical Performance Comparison for Example 2

m RMSE(a1) RMSE(a2) RMSE(a3) RMSE(a4) RMSE(a5) RMSE(a6)

3 0.865 0.941 0.907 0.680 0.772 0.883

6 0.403 0.463 0.378 0.502 0.495 0.562

9 0.263 0.342 0.026 0.046 0.088 0.008
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Table 3: First Two Principal Components of Smoothing Estimates

western (first) -0.15 0 0 0.50 0 0 0.85

western (second) -0.76 0 0 -0.60 0 0 0.21

central (first) -0.27 0 0 -0.85 0 0 0.44

central (second) -0.93 0 0.14 0.33 0 0 0

eastern (first) 0 0 0 -0.85 0 0 0.51

eastern (second) -0.98 0 0.13 0 0 0 0

Table 4: p-values for one-sample t-tests

Null Hypothesis Western Central Eastern

a1(s) = a4(s) 0.000 0.000 0.377

a2(s) = a5(s) 0.422 0.282 0.456

a3(s) = a6(s) 0.000 0.000 0.090

b1(s) = b4(s) 0.053 0.000 0.292

b2(s) = b5(s) 0.000 0.000 0.118

b3(s) = b6(s) 0.000 0.639 0.050
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