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Let {Yt} be a d× 1 time series defined by

Yt = AXt + εt,

– p.2



Let {Yt} be a d× 1 time series defined by

Yt = AXt + εt,

Xt: r × 1 unobservable factors, r (≤ d) unknown

A: d× r unknown constant factor loading matrix

{εt}: vector WN(µε,Σε)

no linear combinations of Xt are WN.

– p.2



Let {Yt} be a d× 1 time series defined by

Yt = AXt + εt,

Xt: r × 1 unobservable factors, r (≤ d) unknown

A: d× r unknown constant factor loading matrix

{εt}: vector WN(µε,Σε)

no linear combinations of Xt are WN.

Lack of identification: (A,Xt) may be replaced by
(AH,H−1

Xt) for any invertible H.

Therefore, we assume A
τ
A = Ir

But factor loading space M(A) is uniquely defined

– p.2



Let {Yt} be a d× 1 time series defined by

Yt = AXt + εt,

Xt: r × 1 unobservable factors, r (≤ d) unknown

A: d× r unknown constant factor loading matrix

{εt}: vector WN(µε,Σε)

no linear combinations of Xt are WN.

Lack of identification: (A,Xt) may be replaced by
(AH,H−1

Xt) for any invertible H.

Therefore, we assume A
τ
A = Ir

But factor loading space M(A) is uniquely defined

The model is not new, but it is effectively new: no model!
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What is new?

• No distributional assumption on εt. More significantly, allow
correlation between εt and Xt+k: the ACF of Yt may be
full-ranked.

Cov(Yt,Yt+k) = ACov(Xt,Xt+k)A
τ + ACov(Xt, εt+k)

+ Cov(εt,Xt+k)A
τ , k 6= 0.
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What is new?

• No distributional assumption on εt. More significantly, allow
correlation between εt and Xt+k: the ACF of Yt may be
full-ranked.

Cov(Yt,Yt+k) = ACov(Xt,Xt+k)A
τ + ACov(Xt, εt+k)

+ Cov(εt,Xt+k)A
τ , k 6= 0.

Therefore, if Cov(εt,Xt+k) = 0 for all k, rk{Γy(j)} ≤ r

for all j 6= 0. Then A and r may be estimated via
eigenanalysis (Peña and Box 1987).

• A new estimation method: growing space M(A)⊥ by one
dimension in each step

• Factor Xt, and therefore also Yt, may be nonstationary, not
necessarily driven by unit roots.
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Let B = (b1, · · · ,bd−r) be a d× (d− r) matrix such that

(A,B) is a d× d orthogonal matrix, i.e.

B
τ
A = 0, B

τ
B = Id−r.
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Let B = (b1, · · · ,bd−r) be a d× (d− r) matrix such that

(A,B) is a d× d orthogonal matrix, i.e.

B
τ
A = 0, B

τ
B = Id−r.

Since Yt = AXt + εt,

B
τ
Yt = B

τεt

i.e. {Bτ
Yt, t = 0,±1, · · · } is WN.

Therefore

Corr(bτ
i Yt,b

τ
jYt−k) = 0 ∀ 1 ≤ i, j ≤ d− r and 1 ≤ k ≤ p,

where p ≥ 1 is an arbitrary integer.
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Assuming S0 ≡ 1
n

∑n
t=1(Yt − Ȳ)(Yt − Ȳ)τ = Id
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Assuming S0 ≡ 1
n

∑n
t=1(Yt − Ȳ)(Yt − Ȳ)τ = Id

An estimator for B = (b1, · · · ,bd−r) is obtained by minimising

Ψn(B) ≡
p∑

k=1

||Bτ
SkB||2 =

p∑

k=1

∑

1≤i,j≤d−r

(bτ
i Skbj)

2,

where ||H|| = {tr(Hτ
H)}1/2, and

Sk =
1

n

n∑

t=k+1

(Yt − Ȳ)(Yt−k − Ȳ)τ .
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Assuming S0 ≡ 1
n

∑n
t=1(Yt − Ȳ)(Yt − Ȳ)τ = Id

An estimator for B = (b1, · · · ,bd−r) is obtained by minimising

Ψn(B) ≡
p∑

k=1

||Bτ
SkB||2 =

p∑

k=1

∑

1≤i,j≤d−r

(bτ
i Skbj)

2,

where ||H|| = {tr(Hτ
H)}1/2, and

Sk =
1

n

n∑

t=k+1

(Yt − Ȳ)(Yt−k − Ȳ)τ .

Remark. Without the above assumption, Ψn(B) would be
defined as

∑p
k=1

∑
1≤i,j≤d−r(b

τ
i Skbj)

2/{bτ
i S0bi b

τ
jS0bj}.

– p.5



Tow problems:

• the number of factors r unknown

• nonlinear optimisation with d(d− r) variables
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Tow problems:

• the number of factors r unknown

• nonlinear optimisation with d(d− r) variables

Algorithm:

reduce the d(d− r)-dim optimisation problem to several d- or
lower-dimensional subproblems while determining r by the
portmanteau tests for WN.

Put

ψ(b) =

p∑

k=1

(bτ
Skb)2, ψm(b) =

p∑

k=1

m−1∑

i=1

{(bτ
Skb̂i)

2 + (b̂τ
i Skb)2}.
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Step1. Let b̂1 = arg min||b||=1 ψ(b). Terminate with r̂ = d, B̂ = 0 if

Lp,1 ≡ n(n+ 2)

p∑

k=1

(b̂τ
1Skb̂1)

2
/
(n− k) > χ2

p,α.

Otherwise proceed to Step 2.
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Step1. Let b̂1 = arg min||b||=1 ψ(b). Terminate with r̂ = d, B̂ = 0 if

Lp,1 ≡ n(n+ 2)

p∑

k=1

(b̂τ
1Skb̂1)

2
/
(n− k) > χ2

p,α.

Otherwise proceed to Step 2.

Step2. For m = 2, · · · , d, let b̂m = arg min{ψ(b) + ψm(b)} subject to

||b|| = 1, b
τ
b̂i = 0 for i = 1, · · · ,m− 1.

Terminate with r̂ = d−m+ 1 and B̂ = (b̂1, · · · , b̂m−1) if

Lp,m ≡ n2
p∑

k=1

1

n − k

[
(b̂τ

mSkb̂m)2 +
m−1∑

j=1

{(b̂τ
mSkb̂j)

2 + (b̂τ
j Skb̂m)2}

]

is greater than χ2
p(2m−1),α. L∗

p,m
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Remarks

1. In the event that Lp,m ≤ χ2
p(2m−1),α for all 1 ≤ m ≤ d, define

r̂ = 0 and B̂ = Id.
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Remarks

1. In the event that Lp,m ≤ χ2
p(2m−1),α for all 1 ≤ m ≤ d, define

r̂ = 0 and B̂ = Id.

2. The algorithm grows the dimension of M(B) by 1 each time
until a newly selected direction b̂m does not lead to a WN.
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Remarks

1. In the event that Lp,m ≤ χ2
p(2m−1),α for all 1 ≤ m ≤ d, define

r̂ = 0 and B̂ = Id.

2. The algorithm grows the dimension of M(B) by 1 each time
until a newly selected direction b̂m does not lead to a WN.

3. Since B̂
τ
B̂ = Id−br, we may let Â = (â1, · · · , âbr), where

Â
τ
Â = Ibr, and

(Id − B̂B̂
τ )âi = âi, 1 ≤ i ≤ r̂.
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4. Step 2 may be reduced to an unconstrained optimisation
problem with (d−m) free variables.
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4. Step 2 may be reduced to an unconstrained optimisation
problem with (d−m) free variables.

If ||b|| = 1 and b
τ
Bm−1 ≡ b

τ (b̂1, · · · , b̂m−1) = 0, then

b = Dmu ≡ (γ1, · · · ,γd−m+1)u,

where ||u|| = 1, D
τ
mDm = Id−m+1 and

(Id − Bm−1B
τ
m−1)γj = γj , 1 ≤ j ≤ d−m+ 1.
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4. Step 2 may be reduced to an unconstrained optimisation
problem with (d−m) free variables.

If ||b|| = 1 and b
τ
Bm−1 ≡ b

τ (b̂1, · · · , b̂m−1) = 0, then

b = Dmu ≡ (γ1, · · · ,γd−m+1)u,

where ||u|| = 1, D
τ
mDm = Id−m+1 and

(Id − Bm−1B
τ
m−1)γj = γj , 1 ≤ j ≤ d−m+ 1.

Unit vector u
τ = (u1, · · · , uk) may be expressed as

u1 =

k−1∏

j=1

cos θj , ui = sin θi−1

k−1∏

j=i

cos θj , i = 2, · · · , k − 1,

and uk = sin θk−1, depending on θ1, · · · , θk−1 only.
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5. The univariate portmanteau test statistic Lp,1 has a
non-standard normalised constant n(n+ 2) to improve the
finite sample performance (Ljung and Box 1978).

Li and McLeod (1981) proposed a multivariate version:

L∗
p,m = Lp,m +

p(p+ 1)(2m− 1)

2n
.
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5. The univariate portmanteau test statistic Lp,1 has a
non-standard normalised constant n(n+ 2) to improve the
finite sample performance (Ljung and Box 1978).

Li and McLeod (1981) proposed a multivariate version:

L∗
p,m = Lp,m +

p(p+ 1)(2m− 1)

2n
.

A univariate version:

L′
p,m = n(n+ 2)

p∑

k=1

(b̂τ
mSkb̂m)2

n− k
.

6. Skip all the tests if r is known.
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Modelling with estimated factors

Note ÂÂ
τ + B̂B̂

τ = Id. We may write

Yt = Âξt + et,

ξt = Â
τ
Yt = Â

τ
AXt + Â

τεt, et = B̂B̂
τ
Yt.

• et is treated as WN

• Model factors ξt by VARMA or other vector TS models.
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Modelling with estimated factors

Note ÂÂ
τ + B̂B̂

τ = Id. We may write

Yt = Âξt + et,

ξt = Â
τ
Yt = Â

τ
AXt + Â

τεt, et = B̂B̂
τ
Yt.

• et is treated as WN

• Model factors ξt by VARMA or other vector TS models.

Replace Â by ÂH with appropriate orthogonal H such that
ξt admits a simple model (Tiao and Tsay 1989), or replace ξt

by their principal components. Note

M(ÂH) = M(Â).
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Simulation

Basic model: Yti =

{
Xti + εti, 1 ≤ i ≤ 3

εti, 4 ≤ i ≤ d.

Case I:






Xt1 = 0.8Xt−1,1 + et1,

Xt2 = et2 + 0.9et−1,2 + 0.3et−2,2,

Xt3 = −0.5Xt−1,3 − εt3 + 0.8εt−1,3.

Case II:






Xt1 − 2t/n = 0.8(Xt−1,1 − 2t/n) + et1,

Xt2 = 3t/n,

Xt3 = Xt−1,3 +
√

10
n et3, (with X0,3 ∼ N(0, 1)).

All εti, eti are independent N(0, 1).

True values: r = 3 and A
τ = (I3,0)

– p.12



• set n = 300, 600, 1000 and d = 5, 10, 20

• in portmanteau tests: α = 5% and p = 15

• simulation replication: 1000 times (for each settings)

Measure the estimation error for factor loading space:

D1(A, Â) =
(
[tr{Âτ (Id − AA

τ )Â} + tr(B̂τ
AA

τ
B̂)]/d

)1/2
.

Then

D1(A, Â) ∈ [0, 1]

D1(A, Â) = 0 iff M(A) = M(Â)

D1(A, Â) = 1 iff M(A) = M(B̂).

– p.13



Case I: Relative frequency estimates of r

r̂

d n 0 1 2 3 4 5 ≥ 6

5 300 .000 .209 .444 .345 .002 .000
600 .000 .071 .286 .633 .010 .000

1000 .000 .004 .051 .933 .120 .000
10 300 .000 .219 .524 .255 .002 .000 .000

600 .000 .049 .290 .649 .012 .000 .000
1000 .000 .007 .062 .898 .033 .000 .000

20 300 .000 .162 .543 .285 .010 .000 .000
600 .000 .033 .305 .609 .053 .000 .000

1000 .000 .004 .066 .822 .103 .005 .000
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Case II: Relative frequency estimates of r

r̂

d n 0 1 2 3 4 5 ≥ 6

5 300 .000 .000 .255 .743 .002 .000
600 .000 .000 .083 .907 .010 .000

1000 .000 .000 .033 .945 .022 .000
10 300 .000 .000 .283 .695 .022 .000 .000

600 .000 .000 .103 .842 .054 .001 .000
1000 .000 .000 .051 .871 .077 .001 .000

20 300 .000 .000 .258 .663 .076 .001 .002
600 .000 .000 .035 .673 .278 .012 .002

1000 .000 .000 .099 .733 .162 .006 .000
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Estimation for non-stationary Case II is more accurate than that
for stationary Case I, especially when n = 300 and 600.

Key: The quadratic forms of the sample covariance matrices

Sk =
1

n

n∑

t=k+1

(Yt − Ȳ)(Yt−k − Ȳ)τ , k = 1, · · · , p

are significantly non-zero in the directions in the factor loading

space M(A).
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Theoretical Properties ⇛

First, let r be known.

Recall
B̂ = arg min

B∈H
Ψn(B),

H = {all d× r half orthogonal matrices},

Ψn(B) =

p∑

k=1

||Bτ
SkB||2, Ψ(B) =

p∑

k=1

||Bτ
ΣkB||2.
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Theoretical Properties ⇛

First, let r be known.

Recall
B̂ = arg min

B∈H
Ψn(B),

H = {all d× r half orthogonal matrices},

Ψn(B) =

p∑

k=1

||Bτ
SkB||2, Ψ(B) =

p∑

k=1

||Bτ
ΣkB||2.

C1. As n→ ∞, Sk
P−→ Σk for k = 0, 1, · · · , p, and Σ0 = Id.

Remark. C1 is implied by ρ-mixing and ESk → Σk, and is also
fulfilled by some deterministic processes. theorems

– p.19



Lemma. Let {Yt} be ϕ-mixing, and ESk → Σk. Suppose

Yt = Ut + Vt, Cov(Ut,Vt) = 0, sup
t
E||Ut||h <∞ (h > 2),

1

n

n∑

t=1

Vt
P→ c,

1

n

n∑

t=1

EVt → c.

Then

(i) Sk
P→ Σk, and

(ii) Sk
a.s.→ Σk provided 1

n

∑n
t=1 Vt

a.s.→ c, and

ϕ(m) =

{
O(m− b

2b−2
−δ), if 1 < b < 2,

O(m− 2

b
−δ), if b ≥ 2,

where δ > 0 is a constant.
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For H1,H2 ∈ H, define

D(H1,H2) = ||(Id − H1H
τ
1)H2|| =

√
r − tr(H1H

τ
1H2H

τ
2).

Then D(H1,H2) = 0 iff M(H1) = M(H2).
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τ
1H2H

τ
2).

Then D(H1,H2) = 0 iff M(H1) = M(H2).

In fact, D(H1,H2) is a well-defined distance on the quotient
space HD ≡ H/D, i.e.

D(H1,H2) ≤ D(H1,H3) +D(H3,H2).
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In fact, D(H1,H2) is a well-defined distance on the quotient
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metric space (HD, D).
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For H1,H2 ∈ H, define

D(H1,H2) = ||(Id − H1H
τ
1)H2|| =

√
r − tr(H1H

τ
1H2H

τ
2).

Then D(H1,H2) = 0 iff M(H1) = M(H2).

In fact, D(H1,H2) is a well-defined distance on the quotient
space HD ≡ H/D, i.e.

D(H1,H2) ≤ D(H1,H3) +D(H3,H2).

In fact both Ψn(·) and Ψ(·) are well-defined functions on the
metric space (HD, D).

C2. There exists a B0 ∈ HD which is the unique minimiser
of Ψ(·). theorems
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Theorem 1. Under conditions C1 and C2 , D(B̂,B0)
P−→ 0.
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Theorem 1. Under conditions C1 and C2 , D(B̂,B0)
P−→ 0.

Theorem 2. Under conditions C1 – C3,

sup
B∈HD

|Ψn(B) − Ψ(B)| = OP (
1√
n

), D(B̂,B0) = OP (n−
1

2c ).

C3. It holds for any B ∈ HD that

Ψ(B) − Ψ(B0) ≥ a[D(B,B0)]
c,

where a, c > 0 are some constants. Furthermore,
√
n(ESk − Σk) = O(1).
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Theorem 1. Under conditions C1 and C2 , D(B̂,B0)
P−→ 0.

Theorem 2. Under conditions C1 – C3,

sup
B∈HD

|Ψn(B) − Ψ(B)| = OP (
1√
n

), D(B̂,B0) = OP (n−
1

2c ).

C3. It holds for any B ∈ HD that

Ψ(B) − Ψ(B0) ≥ a[D(B,B0)]
c,

where a, c > 0 are some constants. Furthermore,
√
n(ESk − Σk) = O(1).

When r unknown?
– p.22



Illustration With Real Data

• Easy example: monthly temperature data from 7 cities in
Eastern China in Jaunary 1954 — December 1986

n = 396, d = 7

• Less easy example: weekly yields of the 3-month, 6-month
and 12-month USA Treasury bills in 17 July 1959 – 12
August 1972

n = 700, d = 3

– p.23



Time plots of the monthly
temperature in 1959-1968 of
Nanjing, Dongtai, Huoshan,
Hefei, Shanghai, Anqing and
Hangzhow.
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With p = 12, α = 1%, the fitted model is Yt = Âξt + et, r̂ = 4,
et ∼ WN(µ̂ε, Σ̂ε),

bµe =

0
BBBBBBBBBBBBB@

3.41

2.32

4.39

4.30

3.40

4.91

4.77

1
CCCCCCCCCCCCCA

, bΣe =

0
BBBBBBBBBBBBB@

1.56

1.26 1.05

1.71 1.34 1.91

1.90 1.49 2.10 2.33

1.37 1.16 1.46 1.58 1.37

1.67 1.26 1.91 2.09 1.37 1.97

1.41 1.14 1.58 1.67 1.39 1.56 1.53

1
CCCCCCCCCCCCCA

.

bA =

0
BBBBB@

.394 .386 .378 .387 .363 .376 .366

−.086 .225 −.640 −.271 .658 −.014 .164

.395 .0638 −.600 .346 −.494 −.074 .332

.687 −.585 −.032 −.306 .173 .206 −.139

1
CCCCCA

τ

,

ξt are PCAed factors: 1st PC accounts for 99% of TV of 4 factors,

and 97.6% of the original 7 series.
– p.25



Time plots of the 4 estimated factors VAR(1)
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Sample cross-correlation of the 4 estimated factors
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Sample cross-correlation of the 3 residuals (i.e. B̂
τ
Yt)
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Since the first two factors are dominated by periodic
components, we remove them before fitting.
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In the fitted factor model Yt = Âξt + et, the AICC selected
VAR(1) for the factor process:

ξt − αt = ϕ̂0 + Φ̂1(ξt−1 − αt−1) + ut,

where ατ
t = (pt1, pt2, 0, 0) is the periodic component, and

bΦ1 =

0
BBBBB@

.27 −.31 .72 .40

.01 .36 −.04 .04

.00 −.01 .42 −.02

−.00 .03 .03 .48

1
CCCCCA

, bΣu =

0
BBBBB@

14.24

−.17 .23

−.02 .03 .05

.042 .01 −.00 .05

1
CCCCCA

,

bϕ0 = (.07,−.02,−.11, .10)τ .

– p.30



• Temperature dynamics in the 7 cities may be modelled in
terms of 4 common factors

• The annual periodic fluctuations may be explained by a
single common factor

• Removing the periodic components, the dynamics of the 4
common factors may be represented by an AR(1) model

– p.31



3−month Treasuary bills
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Sample cross-correlation of the differenced Treasury bills
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With p = 15, α = 5%, r̂ = 2, Yt = Âξt + et,

bA =

0
BB@

.719 −.547

.452 −.102

.529 .831

1
CCA , bµε =

0
BB@

.0006

.0010

.0007

1
CCA , bΣε =

0
BB@

.004

.007 .011

.005 .008 .005

1
CCA .

There exist little cross-correlation between the two factor series.

AICC models:

ξt1 = 1.64ξt−1,1 − 1.31ξt−2,1 + .27ξt−3,1 + ut1 − 1.45ut−1,1 + .096ut−2,1,

ξt2 = −0.04ξt−7,2 − 0.04ξt−10,2 + 0.74ξt−13,2 + ut2 + 0.09ut−1,2

−0.20ut−2,2 − 0.07ut−3,2 − 0.04ut−5,2 − 0.07ut−12,2 − 0.49ut−13,2,

where ut1 ∼ WN(0, .017), ut2 ∼ WN(0, .003)
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Sample cross-correlation functions of the 2 estimated factors
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Sample ACF of B̂
τ
Yt
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Final Remarks

Factor models — a useful tool to reduce the dimensionality
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Final Remarks

Factor models — a useful tool to reduce the dimensionality

• Still need to fit multi-dimensional factors

• Length of time series

A new algorithm for estimating conditional variance:

multivariate volatility models

– p.37
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