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X;: r x 1 unobservable factors, r (< d) unknown

A: d x r unknown constant factor loading matrix
{e,}: vector WN(p., X:)
no linear combinations of X; are WN.
Lack of identification: (A, X;) may be replaced by
(AH,H'X,) for any invertible H.
Therefore, we assume ATA =1,

But factor loading space M(A) is uniquely defined

The model is not new, but it is effectively new: no model!
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What 1s new?

e No distributional assumption on &;. More significantly, allow

correlation between ¢; and X, : the ACF of Y, may be
full-ranked.

COV(Y,AJ7 Yt—l—k) = ACOV(Xt7 Xt_|_k)AT + 1ACOV(}<,57 €t_|_k)
+ COV(E:t, Xt_|_k)AT, k # 0.
Therefore, if Cov(e, Xy1x) =0 forall k, rk{T,(j)} <r

forall 7 #0. Then A and r may be estimated via
eigenanalysis (Pena and Box 1987).

e A new estimation method: growing space M(A)* by one
dimension in each step

e Factor X;, and therefore also Y;, may be nonstationary, not
necessarily driven by unit roots.
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Let B = (by,--- ,by_,) bead x (d— r) matrix such that

(A,B) Is a d x d orthogonal matrix, I.e.
B'A=0, B B=I;,.
Since Y; = AX; + gy,
B'Y,=B¢
l.e. {B"Y;, t=0,4+1,---}is WN.
Therefore
Corr(b; Y, biY; 1) =0 V1<ij<d-r and 1<k <p,

where p > 1 is an arbitrary integer.
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Assuming Sp=->7 (Y - Y)Y, —Y) =1,

An estimator for B = (by,--- ,by_,) IS obtained by minimising

p
=) [|IB7S;BJ* = Z > (b]Sib;)?
k=1

k=11<i,5<d—r

where ||H|| = {tr(H"H)}!/2, and

1 — _ _
S, = - Z (Y= Y) (Y = Y).
t=k+1

Remark. Without the above assumption, ¥,,(B) would be
defined as Zgzl Zlgi,jgd—r(bgskbj)Q/{bfZ'_SObi b;SOb]}
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Tow problems:
e the number of factors » unknown

e nonlinear optimisation with d(d — r) variables

Algorithm:

reduce the d(d — r)-dim optimisation problem to several d- or
lower-dimensional subproblems while determining r by the
portmanteau tests for WN.

Put




step1. Let by = arg min|p = ¥ (b). Terminate with 7 = d, B =0if
p
Lyi=n(n+2)Y (b]Syb1)?/(n—k) > x2,.
k=1

Otherwise proceed to Step 2.



step1. Let by = arg min|p = ¥ (b). Terminate with 7 = d, B =0if

(b7Skb1)?/(n — k) > X2,

NE

Ly1=n(n+2)

i

1
Otherwise proceed to Step 2.
Step2. FOrm =2, - -+, d, let by, = arg min{y(b) + ¥, (b)} subject to

Ibl|=1, b™b;=0 fori=1,---,m—1.

Terminate with7=d —m +1and B = (b, -+ ,by,_1) if

p m—1
Lp,m

1 SOt S
9 T 9 T 2 T 2
n ]; — (b}, Sibm)” + ;{(bmskbj) + (b7 Skby)"}]

is greater than X]29(2m—1) .
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Remarks

1. Inthe eventthat L, < X3, 1), forall1 <m < d, define

r=0and B =1,.

2. The algorithm grows the dimension of M(B) by 1 each time
until a newly selected direction b,, does not lead to a WN.

3. Since BB =1, ~,wemay let A = (a,--- ,a;), where
A"A =1, and

(I,—BBa, =a;, 1<i<T?m



4. Step 2 may be reduced to an unconstrained optimisation
problem with (d — m) free variables.



4. Step 2 may be reduced to an unconstrained optimisation
problem with (d — m) free variables.

If [|b]| =1and b™B,, | =b" (b1, ,b,,_1) =0, then
b=Dpu= (717 S 77d—m+1)u7
where ||u|| =1, D] D,, =1;_,,.1 and

(Ii—BuoiBl_)v;=7;, 1<j<d-m+1.



4. Step 2 may be reduced to an unconstrained optimisation
problem with (d — m) free variables.

If [|b]| =1and b™B,, | =b" (b1, ,b,,_1) =0, then
b=Dpu= (717 S 77d—m+1)u7
where ||u|| =1, D] D,, =1;_,,.1 and

(Ii—BuoiBl_)v;=7;, 1<j<d-m+1.

Unit vector u” = (uy, - -+ ,u;) may be expressed as
k—1 k—1
ulzncosﬁj, uizsinﬁi_lncosﬁj, 1 =2,--- ,k—1,
j=1 j=i

and u; = sinf;,._1, depending on 6, --- ,60;._1 only.



5. The univariate portmanteau test statistic L, ; has a

non-standard normalised constant n(n + 2) to improve the
finite sample performance (Ljung and Box 1978).

Li and McLeod (1981) proposed a multivariate version:

) p(p+1)(2m —1)
Lp,m — Lp,m + m :
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5. The univariate portmanteau test statistic L, ; has a

non-standard normalised constant n(n + 2) to improve the
finite sample performance (Ljung and Box 1978).

Li and McLeod (1981) proposed a multivariate version:

) p(p+1)(2m —1)
Lp,m — Lp,m + m :

A univariate version:

p T . \2
/ (b,,Skbm)
Lp,m_n(n+2); T

6. Skip all the tests if r Is known.

—p.1



Modelling with estimated factors
Note AA™ + BB™ = I,. We may write
Yt — Agt + €¢,

St — ATYt = ATAXt + ATEt, €t = ]/?;]/_D;TYt.
e ¢, IS treated as WN
e Model factors &, by VARMA or other vector TS models.
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Modelling with estimated factors
Note AA™ + BB™ = I,. We may write
Yt — Ast + €¢,

St — ATYt = ATAXt + ATEt, €t = ]/?;]/?;TYt.
e ¢; IS treated as WN
e Model factors &, by VARMA or other vector TS models.

Replace A by AH with appropriate orthogonal H such that

&, admits a simple model (Tiao and Tsay 1989), or replace &,
by their principal components. Note

-p.1



Basic model: Y;; = {

Case |:

Case IlI: ¢

Simulation

Xt + &t 1<1<3
Eti, 4 <1 <d.

X1 = 0.8X¢-11 + e,
X =e2+0.9et_1 2+ 0.3et_2.2,
X3 = —O.5Xt_173 — &3 + 0.8875_1’3.

( X4 — 2t/n = O.S(Xt_ljl — 2t/n) + €41,
XtQ — St/n,

\ X3 = Xi—13+ 4/ 1—7?6753, (With X0,3 ~ N(O, 1))

All £, e;; are independent N(0, 1).

True values: r =3 and A™ = (I3, 0)

-p.1



e set n = 300,600,1000 and d=5,10,20
e IN portmanteau tests: a = 5% and p =15

e simulation replication: 1000 times (for each settings)

Measure the estimation error for factor loading space:
Di(A,A) = ([tr{A"(I; — AAT)A} + tr(B"AA"B)]/d)

Then

1/2

-p.1



Case |: Relative frequency estimates of r

W 3)

5 300
600
1000

.000
.000
.000

209
071
.004

444
.286
051

345
.633
933

.002
.010
120

.000
.000
.000

10 300
600
1000

.000
.000
.000

219
.049
.007

524
290
.062

255
.649
.898

.002
012
.033

.000
.000
.000

.000
.000
.000

20 300
600
1000

.000
.000
.000

162
.033
.004

543
305
.066

285
.609
.822

.010
.053
103

.000
.000
.005

.000
.000
.000

— p_]_A
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Case Il: Relative frequency estimates of r

W 3)

5 300
600
1000

.000
.000
.000

.000
.000
.000
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.083
.033

(43
907
945

.002
.010
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.000
.000
.000
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600
1000

.000
.000
.000

.000
.000
.000
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.842
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600
1000

.000
.000
.000

.000
.000
.000
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076
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.000
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Estimation for non-stationary Case Il is more accurate than that
for stationary Case I, especially when n = 300 and 600.

Key: The quadratic forms of the sample covariance matrices

1 «— _ _
S, = — _ YT S
k n Z (Yt Y)(Yt k Y) ) K 17 » P
t=k+1
are significantly non-zero in the directions in the factor loading

space M(A).

-p.1



Theoretical Properties

First, let » be known.

Recall

B = in ¥, (B
arg min U, (B),

H = {all d x r half orthogonal matrices},

p p
U,(B) =) [IB"S:B|]?>, ¥(B)=)» |B"%;BJ>
k=1 k=1
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Theoretical Properties

First, let » be known.

Recall

B = in ¥, (B
arg min U, (B),

H = {all d x r half orthogonal matrices},
p p
U,(B) =) |B7S;BI? ¥(B)=) [B B>
k=1 k=1

Cl. Asn — oo, Skizkfork:(),l,--- ., p, and Xy = 1.

Remark. C1 is implied by p-mixing and ES; — X, and is also
fulfilled by some deterministic processes.

-p.1



Lemma. Let {Y,} be ¢o-mixing, and ES; — 3. Suppose

Y, =U;+V;, Cov(U, V) =0, supE||U]|" <o (h>2),
t

1 — 2 1 —
—E V: — c, —E EV, — c.
n n

Then

(i) S, & %, and
(i) Sy = =y, provided + >, V; =5 ¢, and

O(m 279 ifl<b<?2,
gp(m) — _2_§ -
O(m=»72%), ifb>2,

where § > 0 IS a constant.

—p.2



For H{,H, € H, define

D(Hy, Hy) = ||(Ig — H{H])Hy|| = /r — tr(H, H]HpHJ).

Then D(Hl, HQ) = 0 Iff M(Hl) = M(Hz)

-p.2



For H{,H, € H, define

D(Hy, Hy) = ||(Ig — H{H])Hy|| = /r — tr(H, H]HpHJ).

Then D(Hl, HQ) = 0 Iff M(Hl) = M(HQ)

In fact, D(H;, Hs) Is a well-defined distance on the quotient
space Hp = H/D, i.e.

D(Hy,Hy) < D(Hy, H3) + D(Hs, Ha).
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For H{,H, € H, define

D(Hy, Hy) = ||(Ig — H{H])Hy|| = /r — tr(H, H]HpHJ).

Then D(Hl, HQ) = 0 Iff M(Hl) = M(Hg)

In fact, D(H;, Hs) Is a well-defined distance on the quotient
space Hp = H/D, i.e.

D(Hy,Hy) < D(Hy, H3) + D(Hs, Ha).

In fact both ¥,,(-) and ¥ (-) are well-defined functions on the
metric space (Hp, D).
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For H{,H, € H, define

D(Hy, Hy) = ||(Ig — H{H])Hy|| = /r — tr(H, H]HpHJ).

Then D(Hl, HQ) = 0 Iff M(Hl) = M(Hz)

In fact, D(H;, Hs) Is a well-defined distance on the quotient
space Hp = H/D, i.e.

D(Hy,Hy) < D(Hy, H3) + D(Hs, Ha).

In fact both ¥,,(-) and ¥ (-) are well-defined functions on the
metric space (Hp, D).

C2. There exists a By € Hp which is the unigue minimiser
of W(-).

-p.2



3 P

Theorem 1. Under conditions C1 and C2, D(B,Bgy) — 0.
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P

Theorem 1. Under conditions C1 and C2, D(B,By) — 0.

Theorem 2. Under conditions C1 — C3,

sup |¥,(B) — ¥(B)| = Op(—=), D(B,Bg)=Op(n~2).

BeHp

Bl

C3. Itholds for any B € Hp that
V(B) — ¥(Bo) = a|D(B, B)]",
where a, ¢ > 0 are some constants. Furthermore,

Vn(ESy — ) = O(1).

- p.2



P

Theorem 1. Under conditions C1 and C2, D(B,By) — 0.

Theorem 2. Under conditions C1 — C3,

sup |¥,(B) — ¥(B)| = Op(—=), D(B,Bg)=Op(n~2).

BeHp

Bl

C3. Itholds for any B € Hp that
V(B) — ¥(Bo) = a|D(B, B)]",
where a, ¢ > 0 are some constants. Furthermore,

Vn(ESy — ) = O(1).

When » unknown?

- p.2



| llustration With Real Data

e Easy example: monthly temperature data from 7 cities in
Eastern China in Jaunary 1954 — December 1986

n=39%, d=7

e Less easy example: weekly yields of the 3-month, 6-month
and 12-month USA Treasury bills in 17 July 1959 — 12

August 1972
n =700, d=3

- p.2:



Time plots of the monthly
temperature in 1959-1968 of
Nanjing, Dongtai, Huoshan,
Hefei, Shanghai, Anging and
Hangzhow.
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With p = 12, a = 1%, the fitted model is Y, = A€, + e, T =4,
St ~ WN(ﬁea )

(341\ [ 1.56 \

2.32 1.26 1.05
4.39 171 1.34 1.91
.= | 430 |, Ze=| 190 149 210 2.33
3.40 1.37 1.16 1.46 1.58 1.37
4.91 1.67 1.26 1.91 2.09 1.37 1.97
K4.77) \ 141 1.14 158 1.67 1.39 1.56 1.53)

T

( 394 336 378 387 .363 376 .366 \

—.086 225 —.640 —.271 658 —.014 .164
395 .0638 —.600 346 —.494 —.074 332

K 687 —.585 —.032 —.306 173 .206 —.139)

¢, are PCAed factors: 1st PC accounts for 99% of TV of 4 factors,

and 97.6% of the original 7 series.

>)
I

- p.2!
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Time plots of the 4 estimated factors
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Sample cross-correlation of the 4 estimated factors

factor 1

factor 1 and factor 2

factor 1 and factor 3

factor 1 and factor 4
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Sample cross-correlation of the 3 residuals (i.e.
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20

10

Since the first two factors are dominated by periodic
components, we remove them before fitting.
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In the fitted factor model Y; = th + ¢4, the AICC selected
VAR(1) for the factor process:

€t — O = 9790 + ‘I’1(€t_1 — at—l) + Uy,

where af = (p:1, pe2, 0,0) IS the periodic component, and

(27 -31 72 40 ) [ 14.24 \
R 0l .36 —.04 .04 . —17 .23
<I>1 = 3 Zu —
00 —.01 .42 —.02 —.02 .03 .05
\ —00 .03 .03 .48) \ .042 01 -.00 .05 )

@0 = (.07, —.02, —.11,.10)".

—p.3!



e Temperature dynamics in the 7 cities may be modelled in
terms of 4 common factors

e The annual periodic fluctuations may be explained by a
single common factor

e Removing the periodic components, the dynamics of the 4
common factors may be represented by an AR(1) model

-p.3
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3—-month Treasuary bills
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Sample cross-correlation of the differenced Treasury bills
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With p = 15, a = 5%, 7= 2, Y; = A&, + ey,

719 —.547 0006 .004
A=| 452 —102 |, .= 0010 |, Z=| .007 .011
529  .831 .0007 005 .008 .005

There exist little cross-correlation between the two factor series.

AICC models:

§i1 = 1.645 11— 131891 + 27831 +up — 1.45u4—1 1 + .096u—2 1,

Eto = —0.04_72 —0.04& 102 + 0.74—13 2 + us2 + 0.09u—1 2
—O.Qout_272 — O.O7ut_3,2 — O.O4ut_572 — O.O7ut_12,2 — O.49ut_1372,

where us ~ WN(0,.017), use ~ WN(O0,.003)
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Sample cross-correlation functions of the 2 estimated factors

ACF
00 02 04 06 08 10

0.15

ACF
0.0 0.05

-0.10

factor 1 factor 1 and factor 2
|
o
o_ \\ L
o |‘ | I‘ J ‘ [
8
"""" I A
______ R DA
0 5 1IO 15 20 0 5 1I0 15 20
factor 2 and factor 1 factor 2
S
______________________________________ ©
| | - I“ N I j
o
BN L Remas e et e s
____________________________________ N \{i —
?
=20 -15 -10 -5 0 0 5 10 15 20

- p.3



1.0

0.6 0.8

0.4

0.2

0.0

Sample ACF of B™Y;

ACF of residual

~p.3



Final Remarks

Factor models — a useful tool to reduce the dimensionality

-p.3



Final Remarks

Factor models — a useful tool to reduce the dimensionality

e Still need to fit multi-dimensional factors

e Length of time series

-p.3



Final Remarks

Factor models — a useful tool to reduce the dimensionality

e Still need to fit multi-dimensional factors

e Length of time series

A new algorithm for estimating conditional variance:

multivariate volatility models
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