Pricing Asian Options For Jump Diffusions

Hao Xing

University of Michigan

joint work with
Erhan Bayraktar, University of Michigan

AMS Central Section Meeting, Kalamazoo
October 18, 2008
Jump Diffusions

Introduce discontinuity into the stock price dynamics

- Capture excess kurtosis, better describe catastrophic events,
- Generate implied volatility skew / smile.

\[dS_t = \left(r - \mu \right) S_t dt + \sigma S_t dB_t + \int \mathcal{R}(y - 1) N(dt, dy) \]

\[N(dt, dy) \text{ is a Poisson random measure with the mean measure } \lambda dt \nu(dy). \]

\[\int \mathcal{R}(y - 1) N(dt, dy) = \sum N_t(Y - 1). \]

At the time of jump, \(S_t \rightarrow S_t - Y, \) \(Y \) has distribution \(\nu(dy) \), (jump up for \(Y > 1 \), down for \(Y < 1 \)).

\[\mu \equiv \lambda (\xi - 1) \text{ and assume } \xi \equiv E[Y] < +\infty. \]

Example:

- Merton's model: \(\log Y \) is normal;
- Kou's model: \(\log Y \) is double exponential.
Jump Diffusions

Introduce discontinuity into the stock price dynamics

- Capture excess kurtosis, better describe catastrophic events,
- Generate implied volatility skew / smile.

Assume the stock price S follows jump diffusions (under the risk neutral measure \mathbb{P} calibrated from the market)

$$dS_t = (r - \mu)S_t \, dt + \sigma S_t \, dB_t + S_t \int_{\mathbb{R}} (y - 1)N(dt, dy),$$

- $N(dt, dy)$ is a Poisson random measure with the mean measure $\lambda dt \, \nu(dy)$. Here $\nu(dy)$ is a finite measure on \mathbb{R}_+.
 $$\int_{\mathbb{R}} (y - 1)N(dt, dy) = d \sum N_t (Y - 1).$$
- At the time of jump, $S_t \to S_t Y$, Y has distribution $\nu(dy)$, (jump up for $Y > 1$, down for $Y < 1$).
- $\mu \triangleq \lambda (\xi - 1)$ and assume $\xi \triangleq \mathbb{E}[Y] < +\infty$.

Example:

- Merton's model: $\log Y$ is normal;
- Kou's model: $\log Y$ is double exponential.
Jump Diffusions

Introduce discontinuity into the stock price dynamics

- Capture excess kurtosis, better describe catastrophic events,
- Generate implied volatility skew / smile.

Assume the stock price S follows jump diffusions (under the risk neutral measure \mathbb{P} calibrated from the market)

$$dS_t = (r - \mu)S_t \, dt + \sigma S_t \, dB_t + S_t \int_{\mathbb{R}} (y - 1) N(dt, dy),$$

- $N(dt, dy)$ is a Poisson random measure with the mean measure $\lambda dt \, \nu(dy)$. Here $\nu(dy)$ is a finite measure on \mathbb{R}_+.
 \[\int_{\mathbb{R}} (y - 1) N(dt, dy) = d \sum N_t (Y - 1). \]
- At the time of jump, $S_t \rightarrow S_t \, Y$, Y has distribution $\nu(dy)$, (jump up for $Y > 1$, down for $Y < 1$).
- $\mu \triangleq \lambda (\xi - 1)$ and assume $\xi \triangleq \mathbb{E}[Y] < +\infty$.

Example:

- Merton’s model: log Y is normal;
- Kou’s model: log Y is double exponential.
Asian Options

The value of European style continuous averaging Asian option is

$$V(S_0) \triangleq \mathbb{E}^{\mathbb{P}} \left\{ e^{-rT} \left(\zeta \cdot \left(\frac{1}{T} \int_0^T S_t dt - K_1 S_T - K_2 \right) \right)^+ \right\},$$

- K_1: Floating Strike, K_2: Fixed Strike,
- $\zeta \in \{-1, 1\}$ indicates put/call option,
- Maturity T is fixed.
Asian Options

The value of European style continuous averaging Asian option is

$$V(S_0) \triangleq \mathbb{E}^P \left\{ e^{-rT} \left(\zeta \cdot \left(\frac{1}{T} \int_0^T S_t dt - K_1 S_T - K_2 \right) \right) \right\}^+, $$

- K_1: Floating Strike, K_2: Fixed Strike,
- $\zeta \in \{-1, 1\}$ indicates put/call option,
- Maturity T is fixed.

V satisfies a degenerate PDE with two space dimensions. Numerical solution of this PDE is difficult.
Dimension Reduction (Večer (01))

Define a process

\[Z_t^J \triangleq \frac{X_t}{S_t}, \quad t \in [0, T], \quad Z_0^J = z = q_0 - e^{-rT} \frac{K_2}{S_0}. \]

\(X = \{ X_t, t \in [0, T] \} \) is a self-financing portfolio with dynamics

\[dX_t = q_t dS_t + r(X_t - q_t S_t) dt, \quad X_0 = x = q_0 S_0 - e^{-rT} K_2. \]

\(q_t, t \in [0, T] \), is the number of shares invested in stock at time \(t \),

\[q_t \triangleq \frac{1}{rT} \left(1 - e^{-r(T-t)} \right). \]

Then

\[X_T = \frac{1}{T} \int_0^T S_t dt - K_2. \]
Define a process

\[Z^J_t \triangleq \frac{X_t}{S_t}, \quad t \in [0, T], \quad Z^J_0 = z = q_0 - e^{-rT} \frac{K_2}{S_0}. \]

\[X = \{X_t, t \in [0, T]\} \] is a self-financing portfolio with dynamics

\[dX_t = q_t dS_t + r(X_t - q_t S_t)dt, \quad X_0 = x = q_0 S_0 - e^{-rT} K_2. \]

\(q_t, t \in [0, T], \) is the number of shares invested in stock at time \(t, \)

\[q_t \triangleq \frac{1}{rT} \left(1 - e^{-r(T-t)} \right). \]

Then

\[X_T = \frac{1}{T} \int_0^T S_t dt - K_2. \]

Introduce a new measure \(\mathbb{Q} \) by the Randon-Nykodym derivative

\[\frac{d\mathbb{Q}}{d\mathbb{P}} \bigg|_{\mathcal{F}_t} = e^{-rt} \frac{S_t}{S_0}, \quad t \in [0, T], \]
Proposition (Večeř and Xu (04))

1. $V(S_0) = S_0 \cdot \mathbb{E}_z^Q[(\zeta \cdot (Z^J_t - K_1))^+]$, where

$$dZ^J_t = (q_t - Z^J_t) \left\{ \sigma dW_t + \int_{\mathbb{R}_+} \frac{y - 1}{y} [N(dt, dy) - y \nu(dy)dt] \right\}.$$
Proposition (Večeř and Xu (04))

1. \(V(S_0) = S_0 \cdot \mathbb{E}_z^Q[(\zeta \cdot (Z^J_t - K_1))^+] \), where
\[
dZ_t^J = (q_t - Z_t^-) \left\{ \sigma dW_t + \int_{\mathbb{R}_+} \frac{y-1}{y} [N(dt, dy) - y\nu(dy)dt] \right\}.
\]

2. Let \(v(z, t) \) be the solution of
\[
\frac{\partial}{\partial t} v + A(t)v - \lambda \xi v + \lambda \cdot (Pv)(z, t) = 0, \quad (z, t) \in \mathbb{R} \times [0, T),
\]
\[
v(z, T) = (\zeta \cdot (z - K_1))^+,
\]
where \(A(t) := -\mu(q_t - z) \frac{\partial}{\partial z} + \frac{1}{2} \sigma^2 (q_t - z)^2 \frac{\partial^2}{\partial z^2} \) and
\[
Pv(z, t) = \int_{\mathbb{R}_+} v \left(\frac{z}{y} + q_t \frac{y-1}{y}, t \right) y\nu(dy).
\]

If \(v_t, v_z \) and \(v_{zz} \) are continuous, then \(V(S_0) = S_0 \cdot v(z, 0). \)
Proposition (Večer and Xu (04))

1. \(V(S_0) = S_0 \cdot \mathbb{E}_z^Q[(\zeta \cdot (Z^J_t - K_1))^+] \), where
\[
dZ^J_t = (q_t - Z^J_t) \left\{ \sigma dW_t + \int_{\mathbb{R}^+} \frac{\nu(y-1)}{y} [N(dt, dy) - y\nu(dy)dt] \right\}.
\]

2. Let \(v(z, t) \) be the solution of
\[
\frac{\partial}{\partial t} v + A(t)v - \lambda \xi v + \lambda \cdot (Pv)(z, t) = 0, \quad (z, t) \in \mathbb{R} \times [0, T),
\]
\[v(z, T) = (\zeta \cdot (z - K_1))^+,
\]
where \(A(t) := -\mu(q_t - z) \frac{\partial}{\partial z} + \frac{1}{2} \sigma^2(q_t - z)^2 \frac{\partial^2}{\partial z^2} \) and
\[
Pv(z, t) = \int_{\mathbb{R}^+} v \left(\frac{z}{y} + q_t \frac{y-1}{y}, t \right) y\nu(dy).
\]

If \(v_t, v_z \) and \(v_{zz} \) are continuous, then \(V(S_0) = S_0 \cdot v(z, 0) \).

Our goals: Show the assumptions are satisfied, use a sequence of diffusion problems to approximate the jump diffusion problem.
Functional Operator J

Let us introduce the functional operator J through its action on a test function $f : \mathbb{R} \times [0, T] \rightarrow \mathbb{R}_+$:

$$Jf(z, t) = \mathbb{E}_{t, z}^{Q} \left\{ e^{-\lambda \xi(T-t)} (\zeta \cdot (Z_T - K_1))^+ \right.$$

$$+ \int_{t}^{T} e^{-\lambda \xi(s-t)} \lambda \cdot Pf(Z_s, s) \, ds \right\},$$

in which $\mathbb{E}_{t, z}^{Q}$ is the conditional expectation and the process $Z = \{Z_t; s \geq 0\}$ is a diffusion process with the dynamics

$$dZ_s = -\mu(q_s - Z_s) \, ds + \sigma(q_s - Z_s) \, dW_s.$$

Recall $Pf(Z_s, s) = \int_{\mathbb{R}_+} f \left(\frac{Z_s}{y} + q_s \frac{y-1}{y}, t \right) y \nu(dy)$.

Functional Operator J

Let us introduce the functional operator J through its action on a test function $f : \mathbb{R} \times [0, T] \to \mathbb{R}_+$:

$$Jf(z, t) = \mathbb{E}_{t, z}^{Q} \left\{ e^{-\lambda \xi(T-t)} \left(\zeta \cdot (Z_T - K_1) \right)^+
ight. $$

$$+ \left. \int_t^T e^{-\lambda \xi(s-t)} \lambda \cdot Pf(Z_s, s) \, ds \right\},$$

in which $\mathbb{E}_{t, z}^{Q}$ is the conditional expectation and the process $Z = \{Z_t; s \geq 0\}$ is a diffusion process with the dynamics

$$dZ_s = -\mu(q_s - Z_s)ds + \sigma(q_s - Z_s)dW_s.$$

Recall $Pf(Z_s, s) = \int_{\mathbb{R}_+} f \left(\frac{Z_s}{y} + q_s \frac{y-1}{y}, t \right) y \nu(dy)$.

Remark: Intuitively, let τ_1 be the first jump time of a Poisson process with the parameter $\lambda \xi$,

$$Jf(x, t) = \mathbb{E}_{t, z}^{Q} \left\{ (\zeta \cdot (Z_T - K_1))^+ 1_{\{\tau_1 > T-t\}} + f(S_{\tau_1}, \tau_1) 1_{\{\tau_1 \leq T-t\}} \right\}.$$
The Approximating Sequence

Using the operator J, let us introduce

$$v_0(z, t) \triangleq (\zeta \cdot (z - K_1^+)),$$

$$v_{n+1}(z, t) \triangleq Jv_n(z, t), \quad n \geq 0, \text{ for } (z, t) \in \mathbb{R} \times [0, T].$$
The Approximating Sequence

Using the operator J, let us introduce

$$v_0(z, t) \triangleq \left(\zeta \cdot (z - K_1)^+ \right),$$

$$v_{n+1}(z, t) \triangleq Jv_n(z, t), \quad n \geq 0, \text{ for } (z, t) \in \mathbb{R} \times [0, T].$$

We want to show:

1. $\{v_n\}_{n \geq 0}$ converges to a limit v_∞,
2. v_∞ is the unique classical solution, i.e. $v_\infty \in C^{2,1}$, of the following equation

$$\frac{\partial}{\partial t} v_\infty + A(t)v_\infty - \lambda \xi v_\infty + \lambda \cdot (Pv_\infty)(z, t) = 0,$$

$$v_\infty(z, T) = \left(\zeta \cdot (z - K_1) \right)^+.$$

Therefore, $V(S_0) = S_0 \cdot v_\infty(z, 0)$.
Properties of J

The operator J can be rewritten as:

$$Jf(z, t) = \mathbb{E}_{\xi} \left\{ e^{-\lambda \xi (T-t)} \left(\xi \cdot \left(zH_0T - t + bT - t - K_1 \right) \right) + \int_{T-t}^0 e^{-\lambda \xi s} \lambda \cdot Pf(zH_0s + bs, t + s) \, ds \right\}$$

where $H_0s = \exp((\mu - \frac{1}{2} \sigma^2) s - \sigma W_s)$ and b_s is represented by H and q.

Lemma

For any $t \in [0, T]$, $|f(z, t) - f(\tilde{z}, t)| \leq D |z - \tilde{z}|$, $z, \tilde{z} \in \mathbb{R}$.

Then Jf satisfies:

$$|Jf(z, t) - Jf(\tilde{z}, t)| \leq E |z - \tilde{z}|,$$

with $E = \max\left\{ 1, D \right\}$.
Properties of J

J maps “nice” functions to “nicer” functions.
Properties of J

J maps “nice” functions to “nicer” functions.

The operator J can be rewritten as

$$Jf(z, t) = \mathbb{E}^Q \left\{ e^{-\lambda \xi(T-t)} \left(\zeta \cdot (zH^0_{T-t} + b_{T-t} - K_1) \right)^+
ight. $$

$$ \quad + \left. \int_0^{T-t} e^{-\lambda \xi s} \lambda \cdot Pf(zH^0_s + b_s, t + s) \, ds \right\},$$

where $H^0_s \triangleq \exp((\mu - \frac{1}{2}\sigma^2)s - \sigma W_s)$ and b_s is represented by H and q.

Lemma

For any $t \in [0, T]$, $|f(z, t) - f(\tilde{z}, t)| \leq D |z - \tilde{z}|$, $z, \tilde{z} \in \mathbb{R}$, then Jf satisfies $|Jf(z, t) - Jf(\tilde{z}, t)| \leq E |z - \tilde{z}|$, $z, \tilde{z} \in \mathbb{R}$, with $E = \max\{1, D\}$.
Properties of J

J maps “nice” functions to “nicer” functions.

The operator J can be rewritten as

$$
Jf(z, t) = \mathbb{E}^Q \left\{ e^{-\lambda \xi(T-t)} \left(\zeta \cdot (zH^0_{T-t} + b_{T-t} - K_1) \right)^+ \\
+ \int_0^{T-t} e^{-\lambda \xi s} \lambda \cdot Pf(zH^0_s + b_s, t + s) \, ds \right\},
$$

where $H^0_s \triangleq \exp((\mu - \frac{1}{2} \sigma^2)s - \sigma W_s)$ and b_s is represented by H and q.

Lemma

For any $t \in [0, T]$,

$$
|f(z, t) - f(\tilde{z}, t)| \leq D |z - \tilde{z}|, \quad z, \tilde{z} \in \mathbb{R},
$$

Then Jf satisfies

$$
|Jf(z, t) - Jf(\tilde{z}, t)| \leq E |z - \tilde{z}|, \quad z, \tilde{z} \in \mathbb{R}, \quad \text{with } E = \max\{1, D\}.
$$
Properties of J cont.

Defining $M_f \triangleq \sup_{t \in [0, T]} f(0, t)$ and $M_{Jf} \triangleq \sup_{t \in [0, T]} Jf(0, t)$, we have f and Jf both satisfy linear growth conditions. Moreover,

Lemma

\[
M_{Jf} \leq U + \alpha \left(M_f + \frac{B}{\xi} \right),
\]

in which $\alpha = 1 - e^{-\lambda \xi T} < 1$, and U, B are positive constants depending on T.
Properties of J cont.

Defining $M_f \triangleq \sup_{t \in [0, T]} f(0, t)$ and $M_{Jf} \triangleq \sup_{t \in [0, T]} Jf(0, t)$, we have f and Jf both satisfy linear growth conditions. Moreover,

Lemma

\[M_{Jf} \leq U + \alpha \left(M_f + \frac{B}{\xi} \right), \]

in which $\alpha = 1 - e^{-\lambda \xi T} < 1$, and U, B are positive constants depending on T.

Lemma

Assume $|f(z, t) - f(\tilde{z}, t)| \leq D |z - \tilde{z}|$, for $z, \tilde{z} \in \mathbb{R}$, then

\[|Jf(z, t) - Jf(z, s)| \leq F \left(1 + |z| \right) (s - t)^{\frac{1}{2}}, \quad 0 \leq t < s \leq T, \]

in which F is a positive constant that only depends on λ, ξ, T and M_f.
Properties of J cont.

Theorem

 Assume function f satisfies

$$|f(z, t) - f(\tilde{z}, s)| \leq D|z - \tilde{z}| + F(1 + |z|)|s - t|^{\frac{1}{2}},$$

then the function Jf is the unique classical solution, i.e. $Jf \in C^{2,1}$, of

$$\mathcal{L}_{D}Jf(z, t) \triangleq \frac{\partial}{\partial t}Jf + A(t)Jf - \lambda \xi Jf = -\lambda \cdot Pf(z, t)$$

$$Jf(z, T) = (\zeta \cdot (z - K_1))^+. $$
Properties of J cont.

Theorem

Assume function f satisfies

$$|f(z, t) - f(\tilde{z}, s)| \leq D|z - \tilde{z}| + F(1 + |z|)|s - t|^{\frac{1}{2}},$$

then the function Jf is the unique classical solution, i.e. $Jf \in C^{2,1}$, of

$$\mathcal{L}_D Jf(z, t) \triangleq \frac{\partial}{\partial t} Jf + A(t) Jf - \lambda \xi Jf = -\lambda \cdot Pf(z, t)$$

$$Jf(z, T) = (\zeta \cdot (z - K_1))^+.\$$

Proof: For any point $(z, t) \in D = [z_1, z_2] \times [0, T]$.

$$\mathcal{L}_D u(z, t) = -\lambda \cdot Pf(z, t), \quad u(z, t) = Jf(z, t), \quad (z, t) \in \partial_0 D.$$
Properties of J cont.

Theorem
Assume function f satisfies
\[|f(z, t) - f(\tilde{z}, s)| \leq D|z - \tilde{z}| + F(1 + |z|)|s - t|^{\frac{1}{2}}, \] then the function Jf is the unique classical solution, i.e. $Jf \in C^{2,1}$, of
\[
\mathcal{L}_D Jf(z, t) \triangleq \frac{\partial}{\partial t} Jf + A(t) Jf - \lambda \xi Jf = -\lambda \cdot Pf(z, t)
\]
\[
Jf(z, T) = (\zeta \cdot (z - K_1))^+.
\]

Proof: For any point $(z, t) \in D = [z_1, z_2] \times [0, T]$.
\[
\mathcal{L}_D u(z, t) = -\lambda \cdot Pf(z, t), \quad u(z, t) = Jf(z, t), \quad (z, t) \in \partial_0 D.
\]

Pervious Lemmas \implies 1. Jf is joint continuous, 2. $Pf(z, t)$ is Lipschitz in z and Hölder continuous in t uniformly in D.
Properties of J cont.

Theorem

Assume function f satisfies

$$|f(z, t) - f(\tilde{z}, s)| \leq D|z - \tilde{z}| + F(1 + |z|)|s - t|^\frac{1}{2},$$

then the function J_f is the unique classical solution, i.e. $J_f \in C^{2,1}$, of

$$\mathcal{L}_D J_f(z, t) \triangleq \frac{\partial}{\partial t} J_f + A(t) J_f - \lambda \xi J_f = -\lambda \cdot \mathcal{P}f(z, t)$$

$$J_f(z, T) = (\zeta \cdot (z - K_1))^+.$$

Proof: For any point $(z, t) \in D = [z_1, z_2] \times [0, T]$.

$$\mathcal{L}_D u(z, t) = -\lambda \cdot \mathcal{P}f(z, t), \quad u(z, t) = J_f(z, t), \quad (z, t) \in \partial_0 D.$$

Pervious Lemmas \implies 1. J_f is joint continuous, 2. $\mathcal{P}f(z, t)$ is Lipschitz in z and Hölder continuous in t uniformly in D. Theory of parabolic PDE \implies there is an unique classical solution.
Properties of J cont.

Theorem

Assume function f satisfies

$$|f(z, t) - f(\tilde{z}, s)| \leq D|z - \tilde{z}| + F(1 + |z|)|s - t|^{\frac{1}{2}},$$

then the function Jf is the unique classical solution, i.e. $Jf \in C^{2,1}$, of

$$\mathcal{L}_D Jf(z, t) \triangleq \frac{\partial}{\partial t} Jf + A(t)Jf - \lambda \xi Jf = -\lambda \cdot Pf(z, t)$$

$$Jf(z, T) = (\zeta \cdot (z - K_1))^+.$$

Proof: For any point $(z, t) \in D = [z_1, z_2] \times [0, T]$.

$$\mathcal{L}_D u(z, t) = -\lambda \cdot Pf(z, t), \quad u(z, t) = Jf(z, t), \quad (z, t) \in \partial_0 D.$$

Pervious Lemmas \implies 1. Jf is joint continuous, 2. $Pf(z, t)$ is Lipschitz in z and Hölder continuous in t uniformly in D. Theory of parabolic PDE \implies there is an unique classical solution. Its representation is exactly Jf.
Properties of v_n

Lemma

1. Define $M_n = \sup_{t \in [0, T]} \{ v_n(0, t) \}$, then
 $M_n < M_\infty \triangleq \frac{U}{1-\alpha} + \frac{\alpha}{1-\alpha} \frac{B}{\xi} + K_1 < \infty$ for $n \geq 0$.
2. For $n \geq 0$, $|v_n(z, t) - v_n(\tilde{z}, t)| \leq |z - \tilde{z}|$, $z, \tilde{z} \in \mathbb{R}$.
3. $|v_n(z, t) - v_n(z, s)| \leq F_n(1 + |z|)(s - t)^{\frac{1}{2}}$, $0 \leq t < s \leq T$, in which F_n are finite constants depends on T.
4. $\{v_n(z, t)\}_{n \geq 0}$ is a Cauchy sequence.
Properties of v_n

Lemma

1. Define $M_n = \sup_{t \in [0, T]} \{v_n(0, t)\}$, then

 $$M_n < M_\infty \triangleq \frac{U}{1-\alpha} + \frac{\alpha}{1-\alpha} \frac{B}{\xi} + K_1 < \infty \text{ for } n \geq 0.$$

2. For $n \geq 0$, $|v_n(z, t) - v_n(\tilde{z}, t)| \leq |z - \tilde{z}|$, $z, \tilde{z} \in \mathbb{R}$.

3. $|v_n(z, t) - v_n(z, s)| \leq F_n(1 + |z|)(s - t)^{1/2}$, $0 \leq t < s \leq T$, in which F_n are finite constants depends on T.

4. $\{v_n(z, t)\}_{n \geq 0}$ is a Cauchy sequence.

Remark:

- $1+2 \implies v_n(z, t) \leq M_\infty + |z| \triangleq L(z).$
Properties of \(v_n \)

Lemma

1. **Define** \(M_n = \sup_{t \in [0, T]} \{ v_n(0, t) \} \), then
 \[
 M_n < M_\infty \triangleq \frac{U}{1-\alpha} + \frac{\alpha}{1-\alpha} \frac{B}{\xi} + K_1 < \infty \text{ for } n \geq 0.
 \]

2. For \(n \geq 0 \), \(|v_n(z, t) - v_n(\tilde{z}, t)| \leq |z - \tilde{z}|, \ z, \tilde{z} \in \mathbb{R} \).

3. \(|v_n(z, t) - v_n(z, s)| \leq F_n(1 + |z|)(s - t)^{\frac{1}{2}}, \ 0 \leq t < s \leq T \), in which \(F_n \) are finite constants depends on \(T \).

4. \(\{ v_n(z, t) \}_{n \geq 0} \) is a Cauchy sequence.

Remark:

- \(1+2 \implies v_n(z, t) \leq M_\infty + |z| \triangleq L(z) \).
- \(4 \implies \) the pointwise limit for \(\{ v_n \}_{n \geq 0} \) exists, we call it \(v_\infty \). Moreover, \(v_\infty \leq L(z) \) and for any compact domain \(D \in \mathbb{R} \),

\[
|v_\infty(z, t) - v_n(z, t)| \leq M_D \left(1 - e^{-\lambda \eta(T-t)} \right)^n,
\]

where \(M_D \) is a constant depending on \(D \) and \(\eta = \max\{ \xi, 1 \} \).
Combining 2, 3 and the Theorem for Jf, we have that v_{n+1} is the unique classical solution, i.e. $v_{n+1} \in C^{2,1}$, of

$$\frac{\partial}{\partial t} v_{n+1} + A(t)v_{n+1} - \lambda \xi v_{n+1} + \lambda \cdot (Pv_{n})(z, t) = 0,$$

$$v_{n+1}(z, T) = (\zeta \cdot (z - K_1))^+. $$

This is a parabolic PDE with an integral term as the driving term.
Properties of v_∞

Lemma

1. v_∞ is a fixed point of the operator J.
2. $|v_\infty(z, t) - v_\infty(\tilde{z}, t)| \leq |z - \tilde{z}|$.
3. $|v_\infty(z, t) - v_\infty(z, s)| \leq F_\infty (1 + |z|)|t - s|^\frac{1}{2}$.

Apply the Theorem on Jf to v_∞, we obtain

Theorem (Main Theorem)
The function v_∞ is the unique classical solution, i.e. $v_\infty \in C^2_{1}$, of

$$
\frac{\partial}{\partial t} v_\infty + A(t) v_\infty - \lambda \xi v_\infty + \lambda \cdot (Pv_\infty)(z, t) = 0,
$$

$v_\infty(z, T) = (\zeta \cdot (z - K_1)) + \ldots$.

Proof: Combining 2, 3 and Theorem on Jf, we have that Jv_∞ is the unique classical solution of the parabolic PDE with the integral term $\lambda \cdot (Pv_\infty)$. The theorem follows since $Jv_\infty = v_\infty$.
Properties of v_{∞}

Lemma

1. v_{∞} is a fixed point of the operator J.
2. $|v_{\infty}(z, t) - v_{\infty}(\tilde{z}, t)| \leq |z - \tilde{z}|$.
3. $|v_{\infty}(z, t) - v_{\infty}(z, s)| \leq F_{\infty} (1 + |z|) |t - s|^{\frac{1}{2}}$.

Apply the Theorem on Jf to v_{∞}, we obtain

Theorem (Main Theorem)

The function v_{∞} is the unique classical solution, i.e. $v_{\infty} \in C^{2,1}$, of

$$
\frac{\partial}{\partial t} v_{\infty} + A(t)v_{\infty} - \lambda \xi v_{\infty} + \lambda \cdot (Pv_{\infty})(z, t) = 0,
$$

$$
v_{\infty}(z, T) = (\zeta \cdot (z - K_1))^+.
$$

Proof: Combining 2, 3 and Theorem on Jf, we have that Jv_{∞} is the unique classical solution of the parabolic PDE with the integral term $\lambda \cdot (Pv_{\infty})$. The theorem follows since $Jv_{\infty} = v_{\infty}$.
Numerical Algorithm

We solve the sequence of PDEs satisfied by v_n iteratively, using the finite difference method.

- Crank-Nicolson discretization + SOR,
- trapezoidal rule to evaluate the integral Pv_n.

Let \tilde{v}_n and \tilde{v}_∞ be the numerical solutions for the discretized PDEs satisfied by v_n and v_∞ respectively, we have also shown

- The algorithm is stable, \tilde{v}_n converges to \tilde{v}_∞ uniformly and at an exponential rate.
- $\tilde{v}_\infty \to v_\infty$ as discretizations go to 0.
Numerical Algorithm

We solve the sequence of PDEs satisfied by v_n iteratively, using the finite difference method.

- Crank-Nicolson discretization + SOR,
- trapezoidal rule to evaluate the integral Pv_n.

Let \tilde{v}_n and \tilde{v}_∞ be the numerical solutions for the discretized PDEs satisfied by v_n and v_∞ respectively, we have also shown

- The algorithm is stable, \tilde{v}_n converges to \tilde{v}_∞ uniformly and at an exponential rate.
- $\tilde{v}_\infty \to v_\infty$ as discretizations go to 0.
Numerical Results

Table: The approximated price for continuously averaged European type Asian options for a double exponential jump model.

\(r = 0.15, \ S_0 = 100, \ T = 1, \ \rho = 0.6 \) and \(\eta_1 = \eta_2 = 25 \). Monte Carlo method uses \(10^6 \) simulations and \(10^3 \) time steps. "C - P" is the difference between our approximated call and put option prices. "Parity" is the difference predicted by the put-call parity. All our computations are performed on a Pentium IV 3.0 GHz machine with C++ implementation. Run times are in seconds.

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(K_2)</th>
<th>(\lambda)</th>
<th>Iteration Algorithm</th>
<th>Monte Carlo (Call Option)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Call Option (C)</td>
<td>Put Option (P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Value</td>
<td>Time</td>
</tr>
<tr>
<td>0.1</td>
<td>90</td>
<td>1</td>
<td>15.419</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>15.457</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1</td>
<td>7.170</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7.456</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1</td>
<td>1.702</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.220</td>
<td>1.5</td>
</tr>
<tr>
<td>0.2</td>
<td>90</td>
<td>1</td>
<td>15.699</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>15.802</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1</td>
<td>8.540</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>8.790</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1</td>
<td>3.723</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.045</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Table: The approximated price for continuously averaged European type Asian options for normal jump diffusion model.

$r = 0.15$, $S_0 = 100$, $T = 1$, $\lambda = 1$, $\mu = -0.1$ and $\sigma = 0.3$. Monte Carlo method uses 10^6 simulations and 10^3 time steps. "C - P" is the difference between our approximated call and put option prices. "Parity" is the difference predicted by the put-call parity. All our computations are performed on a Pentium IV 3.0 GHz machine with C++ implementation. Run times are in seconds.

<table>
<thead>
<tr>
<th>σ</th>
<th>K_2</th>
<th>Call Option</th>
<th>Put Option</th>
<th>C - P</th>
<th>Parity</th>
<th>Monte Carlo (Call Option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>90</td>
<td>16.997</td>
<td>1.601</td>
<td>15.396</td>
<td>15.398</td>
<td>16.991</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>10.062</td>
<td>3.272</td>
<td>6.789</td>
<td>6.791</td>
<td>10.046</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>4.836</td>
<td>6.653</td>
<td>-1.817</td>
<td>-1.816</td>
<td>4.834</td>
</tr>
<tr>
<td>0.2</td>
<td>90</td>
<td>17.346</td>
<td>1.950</td>
<td>15.396</td>
<td>15.398</td>
<td>17.339</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>10.959</td>
<td>4.170</td>
<td>6.789</td>
<td>6.791</td>
<td>10.968</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>6.303</td>
<td>8.120</td>
<td>-1.817</td>
<td>-1.816</td>
<td>6.310</td>
</tr>
</tbody>
</table>
Thanks for your attention!