Optimal consumption and investment for stochastic differential utility
a duality approach

Hao Xing

London School of Economics

joint work with

Anis Matoussi

Byrne Workshop on Stochastic Analysis in Finance and Insurance
Ann Arbor, June 6, 2016
What are recursive utilities?

Given a consumption stream c,

$$U_t = W(c_t, m(U_{t+1})).$$

Here m is the certainty equivalence and W is the aggregator.
What are recursive utilities?

Given a consumption stream c,

$$U_t = W(c_t, m(U_{t+1})).$$

Here m is the certainty equivalence and W is the aggregator.

Example (Kreps-Porteus 78, Epstein-Zin 89)

$$CE_t = \left[(1 - e^{-\delta})c_t^{\frac{1}{\psi}} + e^{-\delta}\mathbb{E}_t \left[CE_{t+1}^{1-\gamma} \right]^{\frac{1}{1-\gamma}} \right]^{\frac{1}{1-\frac{1}{\psi}}}.$$

Here ψ: elasticity of intertemporal substitution (EIS), γ: risk aversion
What are recursive utilities?

Given a consumption stream \(c \),

\[
U_t = W(c_t, m(U_{t+1})).
\]

Here \(m \) is the certainty equivalence and \(W \) is the aggregator.

Example (Kreps-Porteus 78, Epstein-Zin 89)

\[
CE_t = \left[(1 - e^{-\delta}) c_t^{1 - \frac{1}{\psi}} + e^{-\delta} \mathbb{E}_t \left[CE_{t+1}^{1-\gamma} \right]^{1-\gamma} \right]^{\frac{1}{1-\frac{1}{\psi}}}.
\]

Here \(\psi \): elasticity of intertemporal substitution (EIS), \(\gamma \): risk aversion

When \(\gamma = 1/\psi \), it is the time separable von Neumann-Morgenstern utility

\[
CE_t^{1-\gamma} = (1 - e^{-\delta}) c_t^{1-\gamma} + e^{-\delta} \mathbb{E}_t[CE_{t+1}^{1-\gamma}],
\]

\[
CE_0^{1-\gamma} \sim \mathbb{E} \left[\sum_{t=1}^{N} e^{-\delta t} c_t^{1-\gamma} \right].
\]
Stochastic differential utility (continuous time)
[Duffie Epstein 92]

\[U_t = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_s, U_s)ds \right]. \]
Stochastic differential utility (continuous time)

[Duffie Epstein 92]

\[U_t = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_s, U_s) ds \right]. \]

Example (Kreps-Porteus, Epstein-Zin)

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1 - \frac{1}{\psi}} ((1 - \gamma)U)^{1-\frac{1}{\theta}} - \delta \theta U, \quad U(c) = \frac{c^{1-\gamma}}{1 - \gamma}. \]

Here

\[\theta = \frac{1 - \gamma}{1 - 1/\psi}. \]

When \(\gamma = 1/\psi\), \(\theta = 1\).

\[U_t = \mathbb{E}_t \left[e^{-\delta T} U(c_T) + \int_t^T \delta e^{-\delta s} \frac{c_s^{1-\gamma}}{1 - \gamma} ds \right]. \]
Applications

- Equity premium puzzle, risk-free rate puzzle
- Excess volatility puzzle
- Credit spread puzzle

Three important ingredients in all these applications:

- Epstein-Zin utility with $\gamma > 1$ and $\psi > 1$.
- Market models where risky assets have unbounded price of risk.
- State price density (or marginal utility of indirect utility).
Applications

▶ Equity premium puzzle, risk-free rate puzzle: [Bansal-Yaron JF04]
▶ Excess volatility puzzle: [Benzoni-Collin Dufresne-Goldstein JFE11]
▶ Credit spread puzzle: [Bhamra-Kuehn-Strebulaev RFS10]

Three important ingredients in all these applications:

▶ Epstein-Zin utility with $\gamma > 1$ and $\psi > 1$.
▶ Market models where risky assets have unbounded price of risk.
▶ State price density (or marginal utility of indirect utility).
Early resolution of uncertainty

When the representative agent has Epstein-Zin utility with

\[\gamma > 1 \quad \text{and} \quad \psi > 1, \]

she prefers early resolution of uncertainty

[Kreps-Porteus 78], [Skiadas 98]
Early resolution of uncertainty

When the representative agent has Epstein-Zin utility with
\[\gamma > 1 \quad \text{and} \quad \psi > 1, \]
she prefers early resolution of uncertainty

[Kreps-Porteus 78], [Skiadas 98]

\[U_t^{1-1/\psi} = V_t \]
\[= (1 - e^{-\delta}) \frac{c_t^{1-1/\psi}}{1 - 1/\psi} + e^{-\delta} \mathbb{E}_t [V_{t+1}]^{\frac{1}{\psi}} \]
\[\approx (1 - e^{-\delta}) \frac{c_t^{1-1/\psi}}{1 - 1/\psi} + e^{-\delta} \left\{ \mathbb{E}_t [V_{t+1}] + \frac{1}{2} \frac{\theta - 1}{\mathbb{E}_t[V_{t+1}]} \text{var}_t[V_{t+1}] \right\} \]
Early resolution of uncertainty

When the representative agent has Epstein-Zin utility with

\[\gamma > 1 \quad \text{and} \quad \psi > 1, \]

she prefers early resolution of uncertainty

[Kreps-Porteus 78], [Skiadas 98]

\[
U_t^{1-\frac{1}{\psi}} = V_t \\
= (1 - e^{-\delta}) \frac{c_t^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + e^{-\delta} \mathbb{E}_t [V_{t+1}]^{\frac{1}{\delta}} \\
\approx (1 - e^{-\delta}) \frac{c_t^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} + e^{-\delta} \left\{ \mathbb{E}_t [V_{t+1}] + \frac{1}{2} \frac{\theta - 1}{\mathbb{E}_t [V_{t+1}] \text{var}_t [V_{t+1}]} \right\}
\]

Hence asks a sizeable risk premium to compensate future uncertainty.
Difficulty 1

\[U_t^c = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_u, U_u^c)du \right], \quad \text{where} \]

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1 - \frac{1}{\psi}} ((1 - \gamma)U)^{1-\frac{1}{\theta}} - \delta \theta U, \quad U(c) = \frac{c^{1-\gamma}}{1-\gamma}. \]

When \(\theta < 0 \), \(f \) has super-linear growth in \(U \).
Difficulty 1

\[U_t^c = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_u, U_u^c) du \right] , \text{ where} \]

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} ((1-\gamma)U)^{1-\frac{1}{\theta}} - \delta\theta U, \quad U(c) = \frac{c^{1-\gamma}}{1-\gamma}. \]

When \(\theta < 0 \), \(f \) has super-linear growth in \(U \).

- [Duffie-Epstein 92]: Lipschitz aggregator
- [Duffie-Lions 92]: Markovian setting
- [Schroder-Skiadas 99]: \(\theta = \frac{1-\gamma}{1-1/\psi} > 0 \)
- [Seiferling-Seifried 16]: includes \(\gamma, \psi > 1 \)
\[U_t^c = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_u, U_u^c) du \right] , \quad \text{where} \]

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1 - \frac{1}{\psi}} ((1 - \gamma) U)^{1 - \frac{1}{\theta}} - \delta \theta U, \quad U(c) = \frac{c^{1-\gamma}}{1 - \gamma}. \]

When \(\theta < 0 \), \(f \) has super-linear growth in \(U \).

- [Duffie-Epstein 92]: Lipschitz aggregator
- [Duffie-Lions 92]: Markovian setting
- [Schroder-Skiadas 99]: \(\theta = \frac{1-\gamma}{1-1/\psi} > 0 \)
- [Seiferling-Seifried 16]: includes \(\gamma, \psi > 1 \)

\(c \) is admissible if \(\mathbb{E} \left[\int_0^T c_t^\ell dt + c_T^\ell \right] < \infty \) for all \(\ell \in \mathbb{R} \).
Difficulty 1

\[U_t^c = \mathbb{E}_t \left[U(c_T) + \int_t^T f(c_u, U_u^c)du \right], \quad \text{where} \]

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} ((1-\gamma)U)^{1-\frac{1}{\theta}} - \delta \theta U, \quad U(c) = \frac{c^{1-\gamma}}{1-\gamma}. \]

When \(\theta < 0 \), \(f \) has super-linear growth in \(U \).

- [Duffie-Epstein 92]: Lipschitz aggregator
- [Duffie-Lions 92]: Markovian setting
- [Schroder-Skiadas 99]: \(\theta = \frac{1-\gamma}{1-1/\psi} > 0 \)
- [Seiferling-Seifried 16]: includes \(\gamma, \psi > 1 \)

\(c \) is admissible if \(\mathbb{E} \left[\int_0^T c_t^\ell dt + c_T^\ell \right] < \infty \) for all \(\ell \in \mathbb{R} \).

[Schroder-Skiadas 99], [Kraft-Seifried-Stefensen 13], [Kraft-Seiferling-Seifried 15]
HJB equation is nonlinear

- [Schroder-Skiadas 03], [Chacko-Viceira 05]: $\psi = 1$
- [Kraft-Seifried-Stefensen 13]: special relation between γ and ψ
- [Kraft-Seiferling-Seifried 15]: the previous special relation is removed
HJB equation is **nonlinear**

- [Schroder-Skiadas 03], [Chacko-Viceira 05]: $\psi = 1$
- [Kraft-Seifried-Stefensen 13]: special relation between γ and ψ
- [Kraft-Seiferling-Seifried 15]: the previous special relation is removed

Optimal control of BSDE

- [X. 15]: ([Hu-Imkeller-Muller 05], [Cheridito-Hu 11]) unbounded coefficients, **but** restricted admissible set
HJB equation is nonlinear

- [Schroder-Skiadas 03], [Chacko-Viceira 05]: $\psi = 1$
- [Kraft-Seifried-Stefensen 13]: special relation between γ and ψ
- [Kraft-Seiferling-Seifried 15]: the previous special relation is removed

Optimal control of BSDE

- [X. 15]: ([Hu-Imkeller-Muller 05], [Cheridito-Hu 11])
 unbounded coefficients, but restricted admissible set

These are all primal approaches.
\[D^* \sim \exp \left[\int_0^\cdot \partial_v f(c_s^*, U_s^*) ds \right] \partial_c f(c^*, U^*). \]
\[D^* \sim \exp \left[\int_0^T \partial_v f(c_s^*, U_s^*) \, ds \right] \partial_c f(c^*, U^*). \]

Utility gradient [Duffie-Skiadas 94], [El Karoui-Peng-Quenez 01]:

\[U_0 - U_0^* = \mathbb{E} \left[\int_0^T f(c_s, U_s) - f(c_s^*, U_s^*) \, ds \right] \]

\[\leq \mathbb{E} \left[\int_0^T \partial_c f(c_s - c_s^*) + \partial_v f(U_s - U_s^*) \, ds \right]. \]

Define the adjoint process \(\Gamma = \exp \left(\int_0^T \partial_v f(c_s^*, U_s^*) \, ds \right) \).

\[U_0 - U_0^* \leq \mathbb{E} \left[\int_0^T \Gamma_s \partial_c f(c_s - c_s^*) \right] \leq 0. \]
Difficulty 3

\[D^* \sim \exp \left[\int_0^\cdot \partial_v f(c^*_s, U^*_s) ds \right] \partial_c f(c^*, U^*). \]

Utility gradient [Duffie-Skiadas 94], [El Karoui-Peng-Quenez 01]:

\[U_0 - U_0^* = \mathbb{E} \left[\int_0^T f(c_s, U_s) - f(c^*_s, U^*_s) \, ds \right] \]
\[\leq \mathbb{E} \left[\int_0^T \partial_c f(c_s - c^*_s) + \partial_v f(U_s - U^*_s) \, ds \right]. \]

Define the adjoint process \(\Gamma = \exp \left(\int_0^\cdot \partial_v f(c^*_s, U^*_s) ds \right) \).

\[U_0 - U_0^* \leq \mathbb{E} \left[\int_0^T \Gamma_s \partial_c f(c_s - c^*_s) \right] \leq 0. \]

However, when \(\gamma, \psi > 1, \) \(f \) is not jointly concave.
Utility gradient [Duffie-Skiadas 94], [El Karoui-Peng-Quenez 01]:

\[
U_0 - U_0^* = \mathbb{E} \left[\int_0^T f(c_s, U_s) - f(c_s^*, U_s^*) \, ds \right] \\
\leq \mathbb{E} \left[\int_0^T \partial_c f(c_s - c_s^*) + \partial_v f(U_s - U_s^*) \, ds \right].
\]

Define the adjoint process \(\Gamma = \exp \left(\int_0^\cdot \partial_v f(c_s^*, U_s^*) \, ds \right) \).

\[
U_0 - U_0^* \leq \mathbb{E} \left[\int_0^T \Gamma_s \partial_c f(c_s - c_s^*) \right] \leq 0.
\]

However, when \(\gamma, \psi > 1 \), \(f \) is not jointly concave.

- \(\mathcal{W}^{\pi} D^* + \int_0^\cdot D_s^* c_s \, ds \) is a supermartingale for any \((\pi, c)\);
- \(\mathcal{W}^{\pi^*} D^* + \int_0^\cdot D_s^* c_s^* \, ds \) is a martingale for optimal \((\pi^*, c^*)\).
Duality for time separable utility

\[U_0 = \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) \, dt \right] \text{ subject to } \mathbb{E} \left[\int_0^T D_t c_t \, dt \right] \leq w \]

\[\leq \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) - yD_t c_t \, dt \right] + wy \]

\[\leq \inf_{D \in D} \mathbb{E} \left[\int_0^T V(yD_t) \, dt \right] + wy, \]

where \(V(D) = \sup_c \{ U(c) - Dc \} \).
Duality for time separable utility

\[U_0 = \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) dt \right] \text{ subject to } \mathbb{E} \left[\int_0^T D_t c_t dt \right] \leq w \]

\[\leq \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) - yD_t c_t dt \right] + wy \]

\[\leq \inf_{D \in D} \mathbb{E} \left[\int_0^T V(yD_t) dt \right] + wy, \]

where \(V(D) = \sup_c \{ U(c) - Dc \} \).

[Harrison-Kreps 79], [Harrison-Pliska 81], [Cox-Huang 89],
[Karatzas-Lehoczky-Shreve 87], [Karatzas-Lehoczky-Shreve-Xu 91],
[He-Pearson 89, 91], [Kramkov-Schachermayer 99, 03],
and many many others
Duality for time separable utility

\[U_0 = \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) dt \right] \text{ subject to } \mathbb{E} \left[\int_0^T D_t c_t dt \right] \leq w \]

\[\leq \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) - yD_t c_t dt \right] + wy \]

\[\leq \inf_{D \in \mathcal{D}} \mathbb{E} \left[\int_0^T V(yD_t) dt \right] + wy, \]

where \(V(D) = \sup_c \{ U(c) - Dc \} \).

[Harrison-Kreps 79], [Harrison-Pliska 81], [Cox-Huang 89],
[Karatzas-Lehoczky-Shreve 87], [Karatzas-Lehoczky-Shreve-Xu 91],
[He-Pearson 89, 91], [Kramkov-Schachermayer 99, 03],
and many many others

Mathematically beautiful
Duality for time separable utility

\[U_0 = \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) dt \right] \quad \text{subject to} \quad \mathbb{E} \left[\int_0^T D_t c_t dt \right] \leq w \]

\[\leq \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) - yD_t c_t dt \right] + wy \]

\[\leq \inf_{D \in D} \mathbb{E} \left[\int_0^T V(yD_t) dt \right] + wy, \]

where \(V(D) = \sup_c \{ U(c) - Dc \} \).

[Harrison-Kreps 79], [Harrison-Pliska 81], [Cox-Huang 89], [Karatzas-Lehoczky-Shreve 87], [Karatzas-Lehoczky-Shreve-Xu 91], [He-Pearson 89, 91], [Kramkov-Schachermayer 99, 03], and many many others

Mathematically beautiful and requires minimal assumptions.
Duality for time separable utility

\[U_0 = \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) dt \right] \text{ subject to } \mathbb{E} \left[\int_0^T D_t c_t dt \right] \leq w \]

\[\leq \sup_{c \in C} \mathbb{E} \left[\int_0^T U(c_t) - yD_t c_t dt \right] + wy \]

\[\leq \inf_{D \in D} \mathbb{E} \left[\int_0^T V(yD_t) dt \right] + wy, \]

where \(V(D) = \sup_c \{U(c) - Dc\}. \)

[Harrison-Kreps 79], [Harrison-Pliska 81], [Cox-Huang 89], [Karatzas-Lehoczky-Shreve 87], [Karatzas-Lehoczky-Shreve-Xu 91], [He-Pearson 89, 91], [Kramkov-Schachermayer 99, 03], and many many others

Mathematically beautiful and requires minimal assumptions.

For stochastic differential utility:

- Q1: What is the dual problem?
- Q2: Is gradient of indirect utility minimizer of the dual problem?
Variational representation

Assume f is concave in c and convex in U.
(For Epstein-Zin, equivalent to $\gamma \psi > 1$)

$$U^c_t = \mathbb{E}_t \left[\int_t^T f(c_s, U^c_s) ds \right].$$

Let $F(c, \nu)$ be the concave dual of $U \mapsto f(c, U)$,

$$f(c, U) = \sup_{\nu} \{ F(c, \nu) - \nu U \}.$$
Variational representation

Assume f is concave in c and convex in U.
(For Epstein-Zin, equivalent to $\gamma \psi > 1$)

$$U^c_t = \mathbb{E}_t \left[\int_t^T f(c_s, U^c_s) ds \right].$$

Let $F(c, \nu)$ be the concave dual of $U \mapsto f(c, U)$,

$$f(c, U) = \sup_{\nu} \{ F(c, \nu) - \nu U \}.$$

U^c has the following variational representation ([Geoffard 95], [El Karoui-Peng-Quenez 97])

$$U^c_t = \text{ess sup}_\nu \mathbb{E}_t \left[\int_t^T e^{-\int_t^s \nu u du} F(c_s, \nu_s) ds \right].$$
Duality bound

\[
\sup_c U_0^c = \sup_c \sup_\nu \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} F(c_s, \nu_s) ds \right]
\]
Duality bound

\[\sup_c U^c_0 = \sup_c \sup_{\nu} \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu(u) du} F(c_s, \nu_s) ds \right] \]

\[= \sup_{\nu} \sup_c \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu(u) du} F(c_s, \nu_s) ds \right]. \]
Duality bound

\[\sup_c U_0^c = \sup_c \sup_\nu \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} F(c_s, \nu_s) ds \right] \]

\[= \sup_\nu \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} F(c_s, \nu_s) ds \right]. \]

Define \(G(D, \nu) = \sup_c \{ F(c, \nu) - Dc \}. \)
Duality bound

\[
\sup_c U_0^c = \sup_c \sup \nu \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u \, du} F(c_s, \nu_s) \, ds \right]
\]

\[
= \sup \nu \sup_c \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u \, du} F(c_s, \nu_s) \, ds \right].
\]

Define \(G(D, \nu) = \sup_c \{ F(c, \nu) - Dc \} \).

\[
\leq \sup \inf_D \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u \, du} G(e^{\int_0^s \nu_u \, dy_s}, \nu_s) \, ds \right] + wy \right\}
\]
Duality bound

\[
\sup_c U_0^c = \sup_c \sup_{\nu} \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} F(c_s, \nu_s) ds \right] = \sup_{\nu} \sup_c \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} F(c_s, \nu_s) ds \right].
\]

Define \(G(D, \nu) = \sup_c \{ F(c, \nu) - Dc \} \).

\[
\leq \sup_{\nu} \inf_D \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} G(e^{\int_0^s \nu u du} yD_s, \nu_s) ds \right] + wy \right\}
\]

\[
\leq \inf_D \sup_{\nu} \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} G(e^{\int_0^s \nu u du} yD_s, \nu_s) ds \right] + wy \right\}
\]
Duality bound

\[
\sup_c U_0^c = \sup_c \sup_{\nu} \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} F(c_s, \nu_s) ds \right]
\]

\[
= \sup_{\nu} \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} F(c_s, \nu_s) ds \right].
\]

Define \(G(D, \nu) = \sup_c \{ F(c, \nu) - Dc \} \).

\[
\leq \sup_{\nu} \inf_D \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} G(e^{\int_0^s \nu_u du} yD_s, \nu_s) ds \right] + \nu \mathbb{E} \right\}
\]

\[
\leq \inf_D \sup_{\nu} \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu_u du} G(e^{\int_0^s \nu_u du} yD_s, \nu_s) ds \right] + \nu \mathbb{E} \right\}
\]

When \(G \) is power in \(D \), define \(g(D, \nu) = \sup_{\nu} \{ G(D, \nu) - \nu \mathbb{E} \} \).
Duality bound

\[
\sup_c U_0^c = \sup_c \sup_\nu \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} F(c_s, \nu_s) ds \right]
\]

\[
= \sup_\nu \sup_c \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} F(c_s, \nu_s) ds \right].
\]

Define \(G(D, \nu) = \sup_c \{ F(c, \nu) - Dc \} \).

\[
\leq \sup_\nu \inf_D \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} G(e^{\int_0^s \nu u du} D_s, \nu_s) ds \right] + \nu y \right\}
\]

\[
\leq \inf_D \sup_\nu \left\{ \mathbb{E} \left[\int_0^T e^{-\int_0^s \nu u du} G(e^{\int_0^s \nu u du} D_s, \nu_s) ds \right] + \nu y \right\}
\]

When \(G \) is power in \(D \), define \(g(D, \nu) = \sup_\nu \{ G(D, \nu) - \nu \nu \} \)

\[
\leq \inf_D \left\{ \mathbb{E}[V_0^{y,D}] + \nu y \right\}
\]

\[
V_t^{y,D} = \mathbb{E}_t \left[\int_t^T g(D_s, kV_s^{y,D}) ds \right]
\]
Double Fenchel-Legendre transformation

Recursive

Primal \(U_T(c), f(c, u) \)

Variational

Dual \(V_T(d), g(d, \nu) \)

concave conjugate in \(u \)

convex conjugate in \(c \)

convex conjugate in \(\nu \)
Epstein-Zin utility

Primal: stochastic differential utility

\[U_t^c = \mathbb{E}_t \left[\frac{c_T^{1-\gamma}}{1-\gamma} + \int_t^T f(c_s, U_s^c) ds \right] \]

\[f(c, U) = \delta \frac{c^{1-\frac{1}{\psi}}}{1-\frac{1}{\psi}} ((1-\gamma)U)^{1-\frac{1}{\delta}} - \delta \theta U. \]

\[C = \{ c \text{ can be financed by nonnegative } \mathcal{W}^\pi, U^c \text{ exists} \}. \]
Epstein-Zin utility

Primal: stochastic differential utility

\[U_t^c = \mathbb{E}_t \left[\frac{c^1_{T}}{1 - \gamma} + \int_t^T f(c_s, U_s^c) \, ds \right] \]

\[f(c, U) = \delta \frac{c^{1 - \frac{1}{\psi}}}{1 - \frac{1}{\psi}} ((1 - \gamma)U)^{1 - \frac{1}{\theta}} - \delta \theta U. \]

\[C = \{ c \text{ can be financed by nonnegative } \mathcal{W}^\pi, \, U^c \text{ exists} \}. \]

Dual: stochastic differential dual

\[V_t^{yD} = \mathbb{E}_t \left[\gamma \frac{y_{DT}}{1 - \gamma} \left(\frac{\gamma - 1}{\gamma} \right) + \int_t^T g(y_{D_s}, V_s^{yD}) \, ds \right] \]

\[g(D, V) = \frac{\delta \psi}{\psi - 1} D^{1 - \psi} \left(\frac{1 - \gamma}{\gamma} V \right)^{1 - \frac{\gamma \psi}{\theta}} - \frac{\delta \theta}{\gamma} V. \]

\[D = \{ DW^\pi + \int_0^t D_s c_s \, ds \text{ is a supartingale}, \, V^{yD} \text{ exists} \}. \]
Sufficient condition for existence and uniqueness

Proposition

Let $\gamma, \psi > 1$.

1. When $\mathbb{E}\left[\int_0^T c_s^{1-1/\psi} ds + c_T^{1-\gamma} \right] < \infty$,
 then there exists a unique U^c of class (D).

2. When $\mathbb{E}\left[\int_0^T D_s^{1-\psi} ds + D_T^{\gamma-1} \right] < \infty$,
 then there exists a unique V^{yD} of class (D), for any $y > 0$.
Sufficient condition for existence and uniqueness

Proposition

Let $\gamma, \psi > 1$.

1. When $\mathbb{E}\left[\int_0^T c_s^{1-1/\psi} ds + c_T^{1-\gamma}\right] < \infty$,

 then there exists a unique U^c of class (D).

2. When $\mathbb{E}\left[\int_0^T D_s^{1-\psi} ds + D_T^{\frac{\gamma-1}{\gamma}}\right] < \infty$,

 then there exists a unique V^{yD} of class (D), for any $y > 0$.

Remark: Instead of considering equation for U^c, consider

$Y_t = e^{-\delta \theta t}(1 - \gamma) U^c_t$.

$$Y_t = e^{-\delta \theta T} c_T^{1-\gamma} + \int_t^T F(s, c_s, Y_s) ds - \int_t^T Z_s dB_s,$$

where $F(t, c, y) = \delta \theta e^{-\delta t} c^{1-\frac{1}{\psi}} y^{1-\frac{1}{\psi}}$.

F satisfies the **monotonicity condition** [Pardoux 99]
Consumption investment problem

Financial market: S^0: risk free asset, $S = (S^1, \ldots, S^n)$: risky assets.

$$dS^0_t = S^0_t r(X_t) \, dt,$$
$$dS_t = \text{diag}(S_t) \left[(r(X_t) + \mu(X_t)) \, dt + \sigma(X_t) \, dW^\rho_t\right],$$
$$dX_t = b(X_t) \, dt + a(X_t) \, dW_t,$$
$$d\langle W^\rho, W \rangle_t = \rho(X_t) \, dt.$$

The wealth process satisfies

$$d\mathcal{W}_t = \mathcal{W}_t \left[(r_t + \pi_t'\mu_t) \, dt + \pi_t'\sigma_t \, dW^\rho_t\right] - c_t \, dt.$$

Problem:

$$U^c_0 \rightarrow \text{Max!}$$
Dynamic equation

The homothetic property of Epstein-Zin utility implies

$$U^*_t = \frac{\mathcal{W}_t^{1-\gamma}}{1-\gamma} e^{Y_t} \quad \text{and} \quad V^*_t = \frac{\gamma}{1-\gamma} (yD_t)^{\frac{\gamma-1}{\gamma}} e^{Y_t/\gamma}$$

where Y satisfies the following BSDE

$$Y_t = \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s. \quad (1)$$

$U^* + \int_0^t f(c^*_s, U^*_s) ds$ and $V^* + \int_0^t g(yD^*_s, V^*_s) ds$ are martingales.

$$H(t, y, z) = \text{quadratic in } z$$

$$+ \theta \frac{\delta \psi}{\psi} e^{-\frac{\psi}{\theta} y}$$

$$+ (1 - \gamma) r(X) + \frac{1 - \gamma}{2\gamma} \mu' \Sigma^{-1} \mu(X)$$

$$- \delta \theta.$$
Dynamic equation

The homothetic property of Epstein-Zin utility implies

\[U_t^* = \frac{\mathcal{W}_t^{1-\gamma}}{1-\gamma} e^{Y_t} \quad \text{and} \quad V_t^* = \frac{\gamma}{1-\gamma} (yD_t)^{\frac{\gamma-1}{\gamma}} e^{Y_t/\gamma} \]

where \(Y \) satisfies the following BSDE

\[Y_t = \int_t^T H(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s. \quad (1) \]

\(U^* + \int_0^t f(c_s^*, U_s^*) ds \) and \(V^* + \int_0^t g(yD_s^*, V_s^*) ds \) are martingales.

\[H(t, y, z) = \text{quadratic in } z \geq 0 \]
\[+ \theta \frac{\delta \psi}{\psi} e^{-\frac{\psi}{\delta}} y \leq 0 \]
\[+ (1 - \gamma) r(X) + \frac{1 - \gamma}{2\gamma} \mu' \Sigma^{-1} \mu(X) =: h(X) \leq h_{max} \]
\[- \delta \theta. \]
Existence

Thanks to previous bounds on H, solution to (1) can be construction via the localization technique in [Briand-Hu 06].

Proposition

Suppose $\gamma, \psi > 1$ and $\mathbb{E} \left[\int_0^T h(X_s) ds \right] > -\infty$. Then (1) admits a solution (Y, Z) such that

$$
\mathbb{E}_t \left[\int_t^T h(X_s) ds \right] - C_t \leq Y_t \leq C_t + \log \mathbb{E}_t \left[\exp \left(\int_t^T h(X_s) ds \right) \right].
$$

In particular, since $h \leq h_{\text{max}}$, Y is bounded from above.
Existence

Thanks to previous bounds on H, solution to (1) can be construction via the localization technique in [Briand-Hu 06].

Proposition

Suppose $\gamma, \psi > 1$ and $\mathbb{E} \left[\int_0^T h(X_s) ds \right] > -\infty$. Then (1) admits a solution (Y, Z) such that

$$\mathbb{E}_t \left[\int_t^T h(X_s) ds \right] - C_t \leq Y_t \leq \overline{C}_t + \log \mathbb{E}_t \left[\exp \left(\int_t^T h(X_s) ds \right) \right].$$

In particular, since $h \leq h_{\text{max}}$, Y is bounded from above.

The candidate optimal strategies:

$$\pi^*_t = \frac{1}{\gamma} \sigma^{-1}_t (\mu_t + \sigma_t \rho_t Z'_t) \quad \frac{c^*_t}{W^*_t} = \delta^\psi e^{-\frac{\psi}{\theta}} Y_t,$$

$$dD_t^*/D_t^*$$ is also given in Z.

Verification

Only need to show primal and dual candidate lead to the same value (i.e. no duality gap)
Verification

Only need to show primal and dual candidate lead to the same value
(i.e. no duality gap)
\[U^* + \int_0^\cdot f(c_s^*, V_s^*) ds \quad \text{and} \quad V^* + \int_0^\cdot g(yD_s^*, V^*) ds \] are martingales.
Verification

Only need to show primal and dual candidate lead to the same value (i.e. no duality gap)

\[U^* + \int_0^\cdot f(c_s^*, V_s^*)ds \quad \text{and} \quad V^* + \int_0^\cdot g(yD_s^*, V_s^*)ds \]

are martingales.

Assumption

There exists a Lyapunov function \(\phi \in C^2(E) \) such that

i) \(\phi(x) \to \infty, \text{ as } x \to \partial E; \)

ii) \(\mathcal{F}[\phi] \text{ is bounded from below on } E, \text{ where } \mathcal{F} \text{ is associated to } (1). \)
Verification

Only need to show primal and dual candidate lead to the same value
(i.e. no duality gap)
\[U^* + \int_0^\cdot f(c^*_s, V^*_s)ds \quad \text{and} \quad V^* + \int_0^\cdot g(yD^*_s, V^*)ds \]
are martingales.

Assumption

There exists a Lyapunov function \(\phi \in C^2(E) \) such that
i) \(\phi(x) \to \infty, \text{ as } x \to \partial E; \)
ii) \(\mathcal{F}[\phi] \) is bounded from below on \(E \), where \(\mathcal{F} \) is associated to (1).

Lyapunov function exists
\[\implies \text{non-explosion [Stroock-Varadhan 97 Chap. 10]} \]
\[\implies \text{some exponential local martingale is martingale.} \]
Main result

Theorem
Let $\gamma, \psi > 1$ and the previous assumption hold. Then

1. c^* and π^* are optimal consumption and investment strategy.

2. The marginal indirect utility D^* is the minimizer of the dual problem.

3. $W^{\pi^*} D^* + \int_0^\cdot D^*_s c^*_s ds$ is a martingale.
Main result

Theorem

Let $\gamma, \psi > 1$ and the previous assumption hold. Then

1. c^* and π^* are optimal consumption and investment strategy.

2. The marginal indirect utility D^* is the minimizer of the dual problem.

3. $\mathcal{W}^{\pi^*} D^* + \int_0^\cdot D^*_s c^*_s ds$ is a martingale.

Remark:

D^* can be interpreted as the least favourable completion

[Karatzas-Lehoczky-Shreve-Xu 91]
Example: Kim-Omberg model

\[
dS_t/S_t = (r(X_t) + \mu(X_t))dt + \sigma dB_t,
\]
\[
dX_t = -bX_t dt + aW_t,
\]
where \(r(X) = r_0 + r_1 X \) and \(\mu(X) = \sigma(\lambda_0 + \lambda_1 X) \).

Main theorem holds under either of the following parameter restrictions:

1. \(r_1 = 0 \) and \(-b + \frac{1-\gamma}{\gamma} a\lambda'_1 \sigma' \Sigma^{-1} \sigma \rho < 0; \)
 OR
2. \(\lambda'_1 \sigma' \Sigma^{-1} \sigma \lambda_1 > 0. \)
Example: Kim-Omberg model

\[\frac{dS_t}{S_t} = (r(X_t) + \mu(X_t))dt + \sigma dB_t, \]
\[dX_t = -bX_t dt + aW_t, \]

where \(r(X) = r_0 + r_1 X \) and \(\mu(X) = \sigma(\lambda_0 + \lambda_1 X) \).

Main theorem holds under either of the following parameter restrictions:

1. \(r_1 = 0 \) and \(-b + \frac{1-\gamma}{\gamma} a\lambda_1'\sigma'\Sigma^{-1}\sigma\rho < 0;\)

 OR

2. \(\lambda_1'\sigma'\Sigma^{-1}\sigma\lambda_1 > 0.\)

Lyapunov function is

\[\phi(x) = C|x|^2. \]
Heston model

\[
dS_t / S_t = (r(X_t) + \lambda X_t)dt + \sqrt{X_t}dB_t,
\]
\[
dX_t = b(\ell - X_t)dt + a\sqrt{X_t}dW_t,
\]

where \(b \geq 0, a > 0, b\ell > \frac{1}{2}a^2, r(X) = r_0 + r_1X. \)

Main theorem holds under either of the following parameter restrictions:

1. \(r_1 > 0; \)

 OR

2. \(\lambda'\sigma'\Sigma^{-1}\sigma\lambda > 0. \)
Heston model

\[dS_t/S_t = (r(X_t) + \lambda X_t)dt + \sqrt{X_t}dB_t, \]
\[dX_t = b(\ell - X_t)dt + a\sqrt{X_t}dW_t, \]

where \(b \geq 0, a > 0, b\ell > \frac{1}{2}a^2 \), \(r(X) = r_0 + r_1X \).

Main theorem holds under either of the following parameter restrictions:

1. \(r_1 > 0; \)

 OR

2. \(\lambda'\sigma'\Sigma^{-1}\sigma\lambda > 0. \)

Lyapunov function is

\[\phi(x) = -C\log(x) + \bar{C}x. \]
Conclusion

- Introduce a dual problem for SDU

- Solve consumption-investment problem under minimal conditions.

 \[\gamma, \psi > 1, \text{ unbounded market price of risk} \]

- State price density (marginal indirect utility) is the minimizer of the dual problem.
Thanks for your attention!