Existence and convergence of Glosten-Milgrom equilibria

Hao Xing

London School of Economics

joint work with
Umut Cetin (LSE)

Nomura Seminar, Oxford, November 2, 2012
Market with insiders

What is a market?
Market with insiders

What is a market?

For example, securities exchanges.

Market maker is the middle man who hold inventories that help to match buyers and sellers arriving at different times.
Market with insiders

What is a market?

For example, securities exchanges.

Market maker is the middle man who hold inventories that help to match buyers and sellers arriving at different times.

Classical asset price theory has little to say about how orders are matched.

Problem is even more difficult when agents have different information.

For example, *insiders* who has private information

- How completely do prices reflect insider information?
- How large are insider profits?
- How does the market maker behave?
Market with insiders

What is a market?

For example, securities exchanges.

Market maker is the middle man who hold inventories that help to match buyers and sellers arriving at different times.

Classical asset price theory has little to say about how orders are matched.

Problem is even more difficult when agents have different information.

For example, **insiders** who has private information
 - How completely do prices reflect insider information?
 - How large are insider profits?
 - How does the market maker behave?

Market microstructure theory: [O’Hara]
Kyle model

Kyle (85) studied a market with single risky asset and obtained equilibrium between

- strategic informed investor [insider] whose trades move prices;
- other (uninformed) investors [noise trader] have random demand;
- a risk neutral market maker observe the aggregated demand and set the price as the conditional expectation of the risky asset.
Kyle model

Kyle (85) studied a market with single risky asset and obtained equilibrium between

- strategic informed investor [insider] whose trades move prices;
- other (uninformed) investors [noise trader] have random demand;
- a risk neutral market maker observe the aggregated demand and set the price as the conditional expectation of the risky asset.

Kyle’s model is quite influential:

- Kyle’s λ^* measures market depth.
- Continuous time model has been studied by Back(92).
- Connection to filtration enlargement: Jacod, Jeulin, Yor, Protter . . .
- Mathematical Finance: Pikovsky & Karatzas, Imkeller, Schweizer, Ankirchner, Amendinger, Monoyios, Campi, Cetin, Danilova . . .
Glosten-Milgrom model

In Kyle model, the market maker sets only one price.
Glosten-Milgrom model

In Kyle model, the market maker sets only one price.

Glosten-Milgrom (85) proposed a model

- insider, noise trader, and market maker.
- market maker treats each order individually. Bid/ask prices
Glosten-Milgrom model

In Kyle model, the market maker sets only one price.

Glosten-Milgrom (85) proposed a model

- insider, noise trader, and market maker.
- market maker treats each order individually. Bid/ask prices

Bid-ask spread exists because market maker wants to recoup the losses suffered in trading with informed trader.
Kyle meets Glosten and Milgrom

- Noise trades in Glosten-Milgrom is modeled by difference of two independent Poisson with intensity β and jump size δ.
- Noise trades in Kyle-Back is modeled by a Brownian motion.
Kyle meets Glosten and Milgrom

- Noise trades in Glosten-Milgrom is modeled by difference of two independent Poisson with intensity β and jump size δ.
- Noise trades in Kyle-Back is modeled by a Brownian motion.

Back and Baruch showed

1. When $\delta \downarrow 0$ and $\beta \uparrow \infty$,

 Glosten-Milgrom equilibria \implies Kyle-Back equilibrium.

2. When δ is small,

 bid-ask spread $\sim 2\delta \lambda^*$.
Our contributions

In Back-Baruch 04:

- HJB equations in Glosten-Milgrom are solved numerically.
- hard-to-check conditions for convergence of equilibria.
Our contributions

In Back-Baruch 04:

- HJB equations in Glosten-Milgrom are solved numerically.
- hard-to-check conditions for convergence of equilibria.

Our contributions:

1. Optimal strategies for insider is explicitly constructed in Glosten-Milgrom.
2. A point process bridge is constructed.
3. Use weak convergence to remove technical assumptions for convergence.
Model

Interest rate 0.

One risky asset whose fundamental value is \(\tilde{v} \).

\(\tilde{v} \) has two states: high and low: 0 and 1 resp.

The fundamental value will be revealed at time 1.

Three types of market participants:

- **Noisy/liquidity traders**: total demand \(Z = Z^B - Z^S \),
 \(Z^B/\delta \) and \(Z^S/\delta \) are independent Poisson with intensity \(\beta \).

- **Informed trader/insider**: observes \(\tilde{v} \) at time 0,
 net order \(X = X^B - X^S \).

- **Market maker**: observe the aggregated order process \(Y = X + Z \)
 and set the price at \(\mathbb{E}[\tilde{v} \mid \mathcal{F}_t^Y] \).
Admissibility

A function $p : \delta \mathbb{Z} \times [0, 1] \rightarrow [0, 1]$ is a pricing rule if

$$y \mapsto p(y, t)$$

is strictly increasing.
Admissibility

A function $p : \delta \mathbb{Z} \times [0, 1] \to [0, 1]$ is a pricing rule if

$$y \mapsto p(y, t)$$

is strictly increasing.

Insider’s filtration \mathcal{F}_I contains filtration generated by Z and $\tilde{v} + \mathcal{G}$.

The insider’s strategy (X^B, X^S) is admissible if

i) X^B and X^S, with $X^B_0 = X^S_0 = 0$, are \mathcal{F}_I–adapted increasing point processes with jump size δ;

ii) Z^B and X^B (resp. Z^S and X^S) never jump at the same time;

iii) X^B and X^S admit $(\mathcal{F}_I, \mathbb{P})$–intensities θ^B and θ^S.
Admissibility

A function $p : \delta Z \times [0, 1] \rightarrow [0, 1]$ is a pricing rule if

$$y \mapsto p(y, t)$$

is strictly increasing.

Insider’s filtration \mathcal{F}^I contains filtration generated by Z and $\tilde{v} + ?$. The insider’s strategy (X^B, X^S) is admissible if

i) X^B and X^S, with $X^B_0 = X^S_0 = 0$, are \mathcal{F}^I–adapted increasing point processes with jump size δ;

ii) Z^B and X^B (resp. Z^S and X^S) never jump at the same time;

iii) X^B and X^S admit ($\mathcal{F}^I, \mathbb{P}$)–intensities θ^B and θ^S.

Insider can either contributes or cancels noise trader’s order.

$X^B = X^{B,B} + X^{B,S}$, where

- $X^{B,B}$: buy orders which compensate Z^B,
- $X^{B,S}$: buy orders which cancel some orders of Z^S.
Noise trader
Market maker
A Glosten-Milgrom equilibrium is \((p, X^B, X^S)\) such that

i) Given \((X^B, X^S)\), \(p(Y_t, t) = E[\tilde{v} | \mathcal{F}_t^Y]\) for \(t \in [0, 1]\);

ii) given \(p\), \((X^B, X^S)\) maximizes the expected profit.
Insider’s problem

Insider maximizes profit associated to (X^B, X^S)

$$\int_0^1 X_t \, dp(Y_t, t) + (\tilde{v} - p(Y_1, 1))X_1.$$
Insider’s problem

Insider maximizes profit associated to \((X^B, X^S)\)

\[
\int_0^1 X_t^- dp(Y_t, t) + (\tilde{v} - p(Y_1, 1))X_1.
\]

This can be rewrite as

\[
\int_0^1 (\tilde{v} - p(Y_t, t))dX_t^B - \int_0^1 (\tilde{v} - p(Y_t, t))dX_t^S
\]

\[
= \int_0^1 (\tilde{v} - p(Y_t- + \delta, t))dX_t^{B,B} + \int_0^1 (\tilde{v} - p(Y_t-, t))dX_t^{B,S}
\]

\[
- \int_0^1 (\tilde{v} - p(Y_t- - \delta, t))dX_t^{S,S} - \int_0^1 (\tilde{v} - p(Y_t-, t))dX_t^{S,B}.
\]

Hence ask/bid prices can be defined

\[
a(Y_t- \delta, t) := p(Y_t- \delta, t)
\]

\[
b(Y_t- \delta, t) := p(Y_t- \delta, t)
\]
Insider’s problem

Insider maximizes profit associated to \((X^B, X^S)\)

\[\int_0^1 X_t \, dp(Y_t, t) + (\tilde{v} - p(Y_1, 1))X_1.\]

This can be rewritten as

\[\int_0^1 (\tilde{v} - p(Y_t, t))dX_t^B - \int_0^1 (\tilde{v} - p(Y_t, t))dX_t^S\]

\[= \int_0^1 (\tilde{v} - p(Y_{t-} + \delta, t))d\theta_t^{B,B} + \int_0^1 (\tilde{v} - p(Y_{t-}, t))d\theta_t^{B,S}
- \int_0^1 (\tilde{v} - p(Y_{t-} - \delta, t))d\theta_t^{S,S} - \int_0^1 (\tilde{v} - p(Y_{t-}, t))d\theta_t^{S,B}
+ \text{martingales.}\]

Hence ask/bid prices can be defined

\[a(Y_{t-}, t) := p(Y_{t-} + \delta, t) \quad \text{and} \quad b(Y_{t-}, t) := p(Y_{t-} - \delta, t).\]

Since \(y \mapsto p\) is increasing, \(a > b\).
Value function

Given \(\tilde{\nu} \), the value function for the insider is

\[
V(\tilde{\nu}, y, t) := \sup_{\theta^{i,j}, i,j \in \{B, S\}} \mathbb{E}_P \left[\int_t^1 (\tilde{\nu} - a(Y_{u-}, u)) d\theta_u^{B,B} + \int_t^1 (\tilde{\nu} - p(Y_{u-}, u)) d\theta_u^{B,S} \\
- \int_t^1 (\tilde{\nu} - b(Y_{u-}, u)) d\theta_u^{S,S} - \int_t^1 (\tilde{\nu} - p(Y_{u-}, u)) d\theta_u^{S,B} \right] \bigg| \tilde{\nu}, Y_t = y.
\]
HJB equation

The value function $V(\tilde{v}, y, t)$ is expected to satisfy,

$$V_t + (V(y + \delta, t) - 2V(y, t) + V(y - \delta, t)) \beta$$

$$+ \sup_{\theta^B, B \geq 0} [V(y + \delta, t) - V(y, t) + (\tilde{v} - a(y, t)) \delta] \theta^B, B$$

$$+ \sup_{\theta^B, S \geq 0} [V(y, t) - V(y - \delta, t) + (\tilde{v} - p(y, t)) \delta] \theta^B, S$$

$$+ \text{sell side} = 0.$$

The system reduces to

$$V_t + (V(y + \delta, t) - 2V(y, t) + V(y - \delta, t)) \beta = 0,$$

$$V(y + \delta, t) - V(y, t) + (\tilde{v} - p(y + \delta, t)) \delta \leq 0,$$ (1)

$$V(y - \delta, t) - V(y, t) - (\tilde{v} - p(y - \delta, t)) \delta \leq 0.$$ (2)
Several observations

\[V_t + (V(y + \delta, t) - 2V(y, t) + V(y - \delta, t)) \beta = 0, \]
\[V(y + \delta, t) - V(y, t) + (\tilde{v} - p(y + \delta, t))\delta \leq 0, \] \hspace{1cm} (3)
\[V(y - \delta, t) - V(y, t) - (\tilde{v} - p(y - \delta, t))\delta \leq 0. \] \hspace{1cm} (4)

- \(\theta^B \cdot > 0 \) only when (3) = 0; \(\theta^S \cdot > 0 \) only when (4) = 0;
- When one eqn. is identity, the other eqn. is strict inequality;
- \(p \sim \partial_y V \) where \(V \) is a harmonic function. Therefore

\[p(y, t) = \mathbb{E}_\mathbb{P} [p(Z_1, 1)| Z_t = y] . \]
Characterization of equilibrium

For $z \in \delta \mathbb{Z}$, let $P^z(y) = p(y, 1) = \mathbb{I}_{y \geq z}$ and

$$p^z(y, t) := \mathbb{P}[Z_1 \geq z \mid Z_t = y].$$

We expect $[\tilde{\nu} = 1] = [Y_1 \geq y_\delta]$ for some y_δ.

Theorem

(p^{y_δ}, X^B, X^S) is a Glosten-Milgrom equilibrium if

i) $[Y_1 \geq y_\delta] = [\tilde{\nu} = 1]$ \mathbb{P}-a.s. for some $y_\delta \in \delta \mathbb{Z}$;

ii) $X^S \equiv 0$ on $[\tilde{\nu} = 1]$ ($X^B \equiv 0$ on $[\tilde{\nu} = 0]$).

iii) $Y = Z + X^B - X^S$ where Y^B/δ and Y^S/δ are independent, \mathcal{F}^Y–adapted Poisson processes with intensity β;
Characterization of equilibrium

For \(z \in \delta \mathbb{Z} \), let \(P^z(y) = p(y, 1) = \mathbb{I}_{[y \geq z]} \) and

\[
p^z(y, t) := \mathbb{P}[Z_1 \geq z \mid Z_t = y].
\]

We expect \([\tilde{v} = 1] = [Y_1 \geq y_\delta]\) for some \(y_\delta \).

Theorem

\((p^y, X^B, X^S) \) is a Glosten-Milgrom equilibrium if

i) \([Y_1 \geq y_\delta] = [\tilde{v} = 1] \mathbb{P}\text{-a.s. for some } y_\delta \in \delta \mathbb{Z};\)

ii) \(X^S \equiv 0 \text{ on } [\tilde{v} = 1] \) (\(X^B \equiv 0 \text{ on } [\tilde{v} = 0]\)).

iii) \(Y = Z + X^B - X^S \) where \(Y^B / \delta \) and \(Y^S / \delta \) are independent, \(\mathcal{F}^Y \)-adapted Poisson processes with intensity \(\beta \);

Proof: Verification.

\[
\mathbb{E}_\mathbb{P}[\tilde{v} \mid \mathcal{F}_t^Y] = \mathbb{P}[Y_1 \geq y_\delta \mid \mathcal{F}_t^Y] = \mathbb{P}[Z_1 \geq y_\delta \mid Z_t = Y_t] = p^{y_\delta}(Y_t, t).
\]
Point process bridge

Assume $\delta = 1$.

We want to construct on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$

$$Y = Z^B - Z^S + X^B I_{l} - X^S I_{l^c},$$

$l \in \mathcal{F}_0$ and two point processes (X^B, X^S), such that

i) $l = [Y_1 \geq y_1] \mathbb{P}$–a.s.;

ii) Y^B and Y^S are independent poisson with intensity β.

$$G_t = Z^B_t \vee \sigma_Y$$
Point process bridge

Assume $\delta = 1$.

We want to construct on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$

$$Y = Z^B - Z^S + X^B\mathbb{1}_I - X^S\mathbb{1}_{I^c},$$

$I \in \mathcal{F}_0$ and two point processes (X^B, X^S), such that

i) $I = [Y_1 \geq y_1] \mathbb{P}$-a.s.;

ii) Y^B and Y^S are independent poisson with intensity β.

Similar to initial filtration enlargement where $\mathcal{G}_t = \mathcal{F}_t^Z \vee \sigma([Y_1 \geq y_1])$.
Point process bridge

Assume $\delta = 1$.

We want to construct on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})$

$$Y = Z^B - Z^S + X^B I - X^S I_c,$$

$I \in \mathcal{F}_0$ and two point processes (X^B, X^S), such that

i) $I = [Y_1 \geq y_1] \mathbb{P}$-a.s.;

ii) Y^B and Y^S are independent poisson with intensity β.

Similar to initial filtration enlargement where $\mathcal{G}_t = \mathcal{F}_t^Z \vee \sigma([Y_1 \geq y_1])$.

However, standard theory gives

$$Y = Z^B - Z^S + \text{absolute cont. part.}$$

The absolute cont. part gives \mathcal{G}-intensities of Y^B and Y^S.
Explicit construction

Let us focus on I and before the first jump of Y.
Recall $p(y, t) = \mathbb{P}[Z_1 \geq y_1 | Z_t = y]$.

We want to construct, before the first jump of Y:

$$Y^B = Z^B + X^{B, B} \text{ with intensity } \beta \frac{p(1, t)}{p(0, t)} > \beta;$$

$$Y^S = Z^S - X^{B, S} \text{ with intensity } \beta \frac{p(-1, t)}{p(0, t)} < \beta.$$
Explicit construction

Let us focus on I and before the first jump of Y.

Recall $p(y, t) = \mathbb{P}[Z_1 \geq y_1 | Z_t = y]$.

We want to construct, before the first jump of Y:

$$Y^B = Z^B + X^{B,B} \text{ with intensity } \beta \frac{p(1, t)}{p(0, t)} > \beta;$$

$$Y^S = Z^S - X^{B,S} \text{ with intensity } \beta \frac{p(-1, t)}{p(0, t)} < \beta.$$

$X^{B,B}$ and $X^{B,S}$ are constructed to match the desired intensities.

> For $X^{B,B}$, construct ν_1 with $\mathbb{P}(\nu_1 > t) = \exp \left(\beta \int_0^t \left[1 - \frac{p(1, u)}{p(0, u)} \right] du \right)$;

> for $X^{B,S}$, accept jumps of Z^S at the rate $\beta \frac{p(-1, t)}{p(0, t)}$.
Explicit construction

Let us focus on \(I \) and before the first jump of \(Y \).

Recall \(p(y, t) = \mathbb{P}[Z_1 \geq y_1 \mid Z_t = y] \).

We want to construct, before the first jump of \(Y \):

\[
Y^B = Z^B + X^{B,B} \quad \text{with intensity} \quad \beta \frac{p(1, t)}{p(0, t)} > \beta;
\]

\[
Y^S = Z^S - X^{B,S} \quad \text{with intensity} \quad \beta \frac{p(-1, t)}{p(0, t)} < \beta.
\]

\(X^{B,B} \) and \(X^{B,S} \) are constructed to match the desired intensities.

- For \(X^{B,B} \), construct \(\nu_1 \) with \(\mathbb{P}(\nu_1 > t) = \exp \left(\beta \int_0^t \left[1 - \frac{p(1, u)}{p(0, u)} \right] du \right) \);
- for \(X^{B,S} \), accept jumps of \(Z^S \) at the rate \(\beta \frac{p(-1, t)}{p(0, t)} \).

Both can be achieved by introducing a sequence of iid uniform \([0, 1]\) r.v.
First jump
Existence of Glosten-Milgrom equilibrium

Proposition

When $\mathbb{P}(I) = p(0,0)$, then Y constructed above satisfies

i) $[Y_1 \geq y_1] = I \mathbb{P}$-a.s.;

ii) Y^B and Y^S are independent Poisson with intensity β under the natural filtration of Y.

Existence of Glosten-Milgrom equilibrium

Proposition
When $P(I) = p(0, 0)$, then Y constructed above satisfies

i) $[Y_1 \geq y_1] = I \mathbb{P}$-a.s.;

ii) Y^B and Y^S are independent Poisson with intensity β under the natural filtration of Y.

Theorem (Existence)
If there exists $y_\delta \in \delta \mathbb{Z}$ such that

$$\mathbb{P}(Z_1 \geq y_\delta) = \mathbb{P}(\tilde{v} = 1),$$

and \mathcal{F}_t includes filtration generated by \tilde{v}, Z, and a sequence of iid uniform. Then there exists a Glosten-Milgrom equilibrium.
Kyle-Back model

In Kyle-Back model, demand of noise trader Z is a Brownian motion.

When $\tilde{v} = 0$ or 1, set $y_0 = \Phi^{-1}(1 - P(\tilde{v} = 1))$ and pricing function

$$p^0(y, t) := P^0_y[W_{1-t} \geq y_0].$$

Then the equilibrium demand satisfies

$$Y = W + \mathbb{I}_{[\tilde{v}=1]} \int_0^\cdot \partial_y \log p^0(Y_s, s) \, ds + \mathbb{I}_{[\tilde{v}=0]} \int_0^\cdot \partial_y \log(1 - p^0(Y_s, s)) \, ds, \, ds.$$

Y is Brownian motion conditional on $\mathbb{I}_{[W_1 \geq y_0]}$.

The insider’s strategy is the additional drift in the enlarged filtration.
Convergence

When \(\beta^\delta = (2\delta^2)^{-1} \),

\[Z^{B,\delta} - Z^{S,\delta} \xrightarrow{\mathcal{L}} W. \]
Convergence

When $\beta^\delta = (2\delta^2)^{-1}$,

$$Z^{B,\delta} - Z^{S,\delta} \overset{\mathcal{L}}{\to} W.$$

Theorem (Convergence)

For any \tilde{v} satisfying $\mathbb{P}(\tilde{v} = 1) \in (0, 1)$, $\exists (\tilde{v}^\delta)_{\delta > 0} \overset{\mathcal{L}}{\to} \tilde{v}$, s.t.

G-M equilibrium $(p^\delta, X^{B,\delta}, X^{S,\delta})$ exists whose fundamental value of risky asset is \tilde{v}^δ.

When $\beta^\delta = (2\delta^2)^{-1}$, as $\delta \to 0$, G-M equilibria \to K-B equilibrium:

$$\lim_{\delta \downarrow 0} \frac{1}{\delta} \left(a^\delta(y, t) - p^\delta(y, t) \right) = \lim_{\delta \downarrow 0} \frac{1}{\delta} \left(p^\delta(y, t) - b^\delta(y, t) \right) = \partial_y p^0(y, t).$$

ii) When $\tilde{v} = 1$, $X^{B,\delta} \overset{\mathcal{L}}{\to} B^0$; when $\tilde{v} = 0$ $X^{S,\delta} \overset{\mathcal{L}}{\to} S^0$.
Proof

Let us consider \(\tilde{v} = 1 \).

\[
\mathbb{P}^{\delta,H} = \text{Law}(Y^\delta | Y^\delta_1 \geq y^\delta).
\]

Then \(\mathbb{P}^{\delta,H} \xrightarrow{\mathcal{L}} \mathbb{P}^{0,H} \) if

a) finite dimensional distributions converge;

b) \((\mathbb{P}^{\delta,H})_\delta \) is tight, which is equivalent to

- uniform bounded,
- equi-continuous.
Conclusion

- Construct a point process bridge;
- Prove the existence of Glosten-Milgrom equilibrium;
- Remove technical assumptions in the convergence.

Future research:

- When noisy trader can submit multiple orders, then pricing rule can behavior like a LOB:

\[
\sum_{i=1}^{n} a_{i+}(t, z), \quad \text{where} \quad a_{i+}(t, z) = \mathbb{P}^{t, z}(Z_1 \geq y | \Delta Z_t \geq i).
\]

Here \(i \rightarrow a_{i+} \) is increasing.

- Risk averse insider / market maker.
- multiple insiders / market makers.
Thanks for your attention!