Optimal Contracting with Unobservable Managerial Hedging

Yu Huang1 Nengjiu Ju1 Hao Xing2

1Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University

2Department of Statistics, London School of Economics

Advances in Stochastic Analysis for Risk Modeling, Luminy, Nov. 17, 2017
Motivation: Relative Performance Evaluation (RPE)

Holmstrom (82): market shocks, which are not affected by managers, should be removed from managerial compensations.

RPE: Investors filter the market return from the firm’s output to compensate managers.
Motivation: Relative Performance Evaluation (RPE)

Holmstrom (82): market shocks, which are not affected by managers, should be removed from managerial compensations.

RPE: Investors filter the market return from the firm’s output to compensate managers.

Agent (Manager)
- $u(c) = -\frac{1}{\gamma} e^{-\gamma c}$
- reservation utility $u(R_0)$
- exert effort α with cost $h(\alpha) = \frac{1}{2} \alpha^2$
Motivation: Relative Performance Evaluation (RPE)

Holmstrom (82): market shocks, which are not affected by managers, should be removed from managerial compensations.

RPE: Investors filter the market return from the firm’s output to compensate managers.

Agent (Manager)
- $u(c) = -\frac{1}{\gamma}e^{-\gamma c}$
- reservation utility $u(R_0)$
- exert effort α with cost $h(\alpha) = \frac{1}{2}\alpha^2$

Output

\[X = I + M, \quad I \sim N(\alpha, \sigma_I), \quad M \sim N(0, \sigma_M), \quad M, N \text{ indep.} \]
Motivation: Relative Performance Evaluation (RPE)

Holmstrom (82): market shocks, which are not affected by managers, should be removed from managerial compensations.

RPE: Investors filter the market return from the firm’s output to compensate managers.

Agent (Manager)
- \(u(c) = -\frac{1}{\gamma} e^{-\gamma c} \)
- reservation utility \(u(R_0) \)
- exert effort \(\alpha \) with cost \(h(\alpha) = \frac{1}{2} \alpha^2 \)

Output
\[
X = I + M, \quad I \sim N(\alpha, \sigma_I), \quad M \sim N(0, \sigma_M), \quad M, N \text{ indep.}
\]

Principal (Investor)
- Risk neutral
- observe \(X \) and \(M \), not \(\alpha \)
- Pay Agent via the following linear contract
\[
\xi = a + bX + cM,
\]
where \(a, b, c \) are constants.
The optimal contract

Agent’s optimization problem:

$$\max_\alpha \mathbb{E} \left[-\frac{1}{\gamma} \exp \left(-\gamma (\xi - h(\alpha)) \right) \right].$$
The optimal contract

Agent’s optimization problem:

$$\max_{\alpha} \mathbb{E} \left[-\frac{1}{\gamma} \exp \left(-\gamma (\xi - h(\alpha)) \right) \right].$$

Equivalent to

$$\max_{\alpha} \left\{ b\alpha - h(\alpha) - \frac{\gamma}{2} \left(b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right) \right\}.$$
The optimal contract

Agent’s optimization problem:

$$\max_{\alpha} \mathbb{E} \left[-\frac{1}{\gamma} \exp \left(-\gamma(\xi - h(\alpha)) \right) \right].$$

Equivalent to

$$\max_{\alpha} \left\{ b\alpha - h(\alpha) - \frac{\gamma}{2} \left(b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right) \right\}. $$

$$\alpha^* = b, \quad a = R_0 - \frac{1}{2} b^2 + \frac{\gamma}{2} \left[b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right].$$
The optimal contract

Agent’s optimization problem:

$$\max_\alpha \mathbb{E}\left[-\frac{1}{\gamma} \exp\left(-\gamma(\xi - h(\alpha)) \right) \right].$$

Equivalent to

$$\max_\alpha \left\{ b\alpha - h(\alpha) - \frac{\gamma}{2} \left(b^2 \sigma^2_I + (b + c)^2 \sigma^2_M \right) \right\}.$$

$$\alpha^* = b, \quad a = R_0 - \frac{1}{2} b^2 + \frac{\gamma}{2} \left[b^2 \sigma^2_I + (b + c)^2 \sigma^2_M \right]$$

Principal’s optimization problem:

$$\max_{b,c} \mathbb{E}\left[\alpha^* - \xi \right].$$
The optimal contract

Agent’s optimization problem:

\[
\max_\alpha \mathbb{E} \left[-\frac{1}{\gamma} \exp \left(-\gamma (\xi - h(\alpha)) \right) \right].
\]

Equivalent to

\[
\max_\alpha \left\{ b\alpha - h(\alpha) - \frac{\gamma}{2} \left(b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right) \right\}.
\]

\[
\alpha^* = b, \quad a = R_0 - \frac{1}{2} b^2 + \frac{\gamma}{2} \left[b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right]
\]

Principal’s optimization problem:

\[
\max_{b,c} \mathbb{E} \left[\alpha^* - \xi \right].
\]

Equivalent to

\[
\max_{b,c} \left\{ \alpha^* - \frac{1}{2} (\alpha^*)^2 - \frac{\gamma}{2} \left[b^2 \sigma_i^2 + (b + c)^2 \sigma_M^2 \right] \right\}.
\]

Therefore, \(c^* = -b^* \), RPE \(\xi = a + b^* (X - M) \) is the best!
Empirical tests of RPE

Homlstrom (82) assumes that Managers do not hedge.

- Managers sell stocks to diversify Ofek-Yermack (00), trades financial derivatives Bettis-Bizjak-Lemmon (01)
- Cvitanić-Henderson-Lazrak (14): observable hedging
Empirical tests of RPE

Homlstrom (82) assumes that Managers do not hedge.

- Managers sell stocks to diversify Ofek-Yermack (00), trades financial derivatives Bettis-Bizjak-Lemmon (01)
- Cvitanić-Henderson-Lazrak (14): observable hedging

Testing RPE:

Is there a negative relationship between compensation and market return?
Empirical tests of RPE

Homlstrom (82) assumes that Managers do not hedge.
 ▶ Managers sell stocks to diversify Ofek-Yermack (00), trades financial derivatives Bettis-Bizjak-Lemmon (01)
 ▶ Cvitanić-Henderson-Lazrak (14): observable hedging

Testing RPE:

Is there a negative relationship between compensation and market return?

Results are mixed:
 ▶ Negative: Antle-Smith (86), Barro-Barro (90), Jensen-Murphy (90), Janakiraman-Lambert-Larcker (92), Aggrwal and Samwick (99)...
 ▶ Positive: Gong-Li-Shin (11), Albuquerque-De Franco-Verdi (13)
 ▶ Jenter-Kanaan (15): CEOs are more likely to be fired when the peers/market perform badly.
Empirical tests of RPE

Homlstrom (82) assumes that Managers do not hedge.

- Managers sell stocks to diversify Ofek-Yermack (00), trades financial derivatives Bettis-Bizjak-Lemmon (01)
- Cvitanić-Henderson-Lazrak (14): observable hedging

Testing RPE:

Is there a negative relationship between compensation and market return?

Results are mixed:

- Negative: Antle-Smith (86), Barro-Barro (90), Jensen-Murphy (90), Janakiraman-Lambert-Larcker (92), Aggrwal and Samwick (99)...
- Positive: Gong-Li-Shin (11), Albuquerque-De Franco-Verdi (13)
- Jenter-Kanaan (15): CEOs are more likely to be fired when the peers/market perform badly.

Messages from the empirical literature:

- Difficult to provide incentive when managers hedge
- The market return is not completely filtered out from compensation
- The relationship between CEO turnover and RPE is puzzling
Unobservable Managerial Hedging

Effort

Project

Agent

Private Portfolio Choice

Compensation

Consumption

(Moral hazard I): hidden effort

(Moral hazard II): unobservable saving & hedging: may offset incentives
Unobservable Managerial Hedging

(Moral hazard I): hidden effort
(Moral hazard II): unobservable saving & hedging: may offset incentives
Economic contributions

Our model imposes limited liability restriction for contract compensation. No negative compensation!

- Inefficient liquidation
- Risk-neutral principal is endogenously risk averse
- Principal shares market risk with agent
- Market contract sensitivity can be positive near liquidation boundary

\[
\text{Compensation} \sim dY_t = Z(Y_t) \text{ output } + U(Y_t) \text{ market},
\]

where \(Y \) is called Agent's contract value.

\[
\text{When } Y \text{ is close to liquidation boundary, } U(Y_t) \text{ can be positive.}
\]

\[
\text{market } \downarrow \Rightarrow Y \downarrow \Rightarrow \text{Liquidation probability } \uparrow.
\]
Economic contributions

Our model imposes limited liability restriction for contract compensation. No negative compensation!

- Inefficient liquidation
- Risk-neutral principal is endogenously risk averse
- Principal shares market risk with agent
- Market contract sensitivity can be positive near liquidation boundary

Main contributions:
- Contract sensitivities are state dependent

\[\text{Compensation} \sim dY_t = Z(Y_t) \text{ output } + U(Y_t) \text{ market}, \]

where \(Y \) is called Agent’s contract value.

- When \(Y \) is close to liquidation boundary, \(U(Y) \) can be positive

\[\text{market} \downarrow \Rightarrow Y \downarrow \Rightarrow \text{Liquidation probability} \uparrow. \]
“Impossible Trinity in Contracting”

Risk Aversion

- H-M (87)
- He (11)
- Williams (15)
- S-DT (16)

Liquidation Boundary

- Sannikov (08)

Private Saving

- D-S (06)
- He (09)
“Impossible Trinity in Contracting”

- Use agent’s **certainty equivalence** as the state variable
- Principal’s problem is stochastic control with **regular + singular** controls
A risk-free bond with rate r

A market portfolio with return process

$$dR_t = m dt + \sigma dB_t.$$
Model

A risk-free bond with rate r

A market portfolio with return process

$$dR_t = m dt + \sigma dB_t.$$

The output process of the project

$$dX_t = (\mu + A_t) dt + \rho \psi dB_t + \sqrt{1 - \rho^2 \psi} dB_t^\perp,$$

X and R are observable to the principal continuously.
Agent’s problem

Agent’s private wealth process

\[dS_t = rS_t dt + \pi_t (m - r) dt + \pi_t \sigma dB_t + dl_t - h(A_t) dt - c_t dt, \]

- \(\pi \): monetary value invested in the market
- \(l \): cumulative compensation, nondecreasing (limited liability)
- \(h(A) = \frac{\kappa}{2} A^2 + bA \): monetary cost for agent’s effort \(A \)
- \(c \): private consumption rate
- Admissibility: transversality condition: \(\lim_{T \to \infty} \mathbb{E}[e^{-\delta T} e^{-r \gamma S_T}] = 0. \)
Agent’s problem

Agent’s private wealth process

\[dS_t = rS_t dt + \pi_t (m - r) dt + \pi_t \sigma dB_t + dl_t - h(A_t) dt - c_t dt, \]

- \(\pi \): monetary value invested in the market
- \(l \): cumulative compensation, nondecreasing (limited liability)
- \(h(A) = \frac{\kappa}{2} A^2 + bA \): monetary cost for agent’s effort \(A \)
- \(c \): private consumption rate
- Admissibility: transversality condition: \(\lim_{T \to \infty} \mathbb{E}[e^{-\bar{\delta}T} e^{-r\gamma S_T}] = 0. \)

A CARA agent with \(u(c) = -\frac{1}{\gamma} e^{-\gamma c} \)

Discounting rate \(\bar{\delta} \)

Agent’s outside option:

\[V_t = \text{ess sup}_{c, \pi} \mathbb{E}_t \left[\bar{\delta} \int_t^\infty e^{-\bar{\delta}(s-t)} u(c_s) ds \right], \]

where \(dS_t = rS_t dt + \pi_t (m - r) dt + \pi_t \sigma dB_t - c_t dt. \)
Agent’s problem

Agent’s private wealth process

\[dS_t = rS_t dt + \pi_t (m - r) dt + \pi_t \sigma dB_t + dl_t - h(A_t) dt - c_t dt, \]

- \(\pi \): monetary value invested in the market
- \(l \): cumulative compensation, nondecreasing (limited liability)
- \(h(A) = \frac{\kappa}{2} A^2 + bA \): monetary cost for agent’s effort \(A \)
- \(c \): private consumption rate
- Admissibility: transversality condition: \(\lim_{T \to \infty} \mathbb{E}[e^{-\bar{\delta}T} e^{-r\gamma S_T}] = 0. \)

A CARA agent with \(u(c) = -\frac{1}{\gamma} e^{-\gamma c} \)

Discounting rate \(\bar{\delta} \)

Agent’s outside option:

\[V_t = \text{ess } \sup_{c, \pi} \mathbb{E}_t \left[\bar{\delta} \int_t^\infty e^{-\bar{\delta}(s-t)} u(c_s) ds \right] = u(rS_t - \ell), \]

where \(dS_t = rS_t dt + \pi_t (m - r) dt + \pi_t \sigma dB_t - c_t dt. \)
Agent’s problem

\[u(G_t) = \text{ess sup}_{A,\pi,c} \mathbb{E}_t \left[\bar{\delta} \int_t^\tau e^{-\delta(s-t)} u(c_t) dt + e^{-\bar{\delta}(\tau-t)} u(rS_\tau - \ell) \right], \]

where

\[\tau = \inf\{u \geq 0 : G_u \leq rS_u - \ell\}. \]
Agent’s problem

\[u(G_t) = \text{ess sup}_{A, \pi, c \in \mathbb{E}} \left[\bar{\delta} \int_t^\tau e^{-\delta (s-t)} u(c_t) dt + e^{-\delta (\tau-t)} u(rS_\tau - \ell) \right], \]

where

\[\tau = \inf \{ u \geq 0 : G_u \leq rS_u - \ell \}. \]

- \(G \) is Agent’s certainty equivalence
- The project is liquided when Agent’s certainty equivalence reaches his outside option
Agent’s problem

\[u(G_t) = \text{ess sup}_{A, \pi, c} \mathbb{E}_t \left[\frac{1}{\delta} \int_t^\tau e^{-\delta(s-t)} u(c_t) dt + e^{-\delta(\tau-t)} u(rS_\tau - \ell) \right], \]

where

\[\tau = \inf \{ u \geq 0 : G_u \leq rS_u - \ell \}. \]

- \(G \) is Agent’s certainty equivalence
- The project is liquided when Agent’s certainty equivalence reaches his outside option

Define

\[G_t = rS_t - \ell + rY_t. \]

Contract’s additional value to the agent is \(Y \), the Agent’s contract value.
Principal’s problem

Principal is risk neutral

Discounting rate δ

Principal’s problem:

$$\sup \mathbb{E} \left[\delta \int_0^\tau e^{-\delta t} ((\mu + A^*) dt - dl_t) + e^{-\delta \tau} \phi \mu \right].$$

$\phi \in (0, 1]$ is the liquidation discount
Principal’s problem

Principal is risk neutral

Discounting rate δ

Principal’s problem:

$$\sup I \mathbb{E} \left[\delta \int_0^\tau e^{-\delta t} \left((\mu + A^*) dt - dl_t \right) + e^{-\delta \tau} \phi \mu \right].$$

$\phi \in (0, 1]$ is the liquidation discount

We choose Y as Principal’s unique state variable.

Principal does not know Agent’s private wealth S.

CARA utility assumption is essential.
Principal’s problem

Principal is risk neutral

Discounting rate δ

Principal’s problem:

$$\sup_{I} \mathbb{E} \left[\delta \int_{0}^{\tau} e^{-\delta t} \left((\mu + A^*) dt - dl_t \right) + e^{-\delta \tau} \phi \mu \right].$$

$\phi \in (0, 1]$ is the liquidation discount

We choose Y as Principal’s unique state variable.

Principal does not know Agent’s private wealth S.

CARA utility assumption is essential.

Goal: Find Principal’s optimal contract I^*, Agent's optimal effort A^*.
Dynamics of Y

Suppose that the dynamics of Y follows

$$dY_t = dH_t + Z_t dX_t + U_t dR_t$$
Dynamics of Y

Suppose that the dynamics of Y follows

$$dY_t = dH_t + Z_t dX_t + U_t dR_t$$

H can be determined by the Martingale Principal:
El Karoui-Rouge (00), Hu-Imkeller-Muller (05)

1. $e^{-\delta t} u(G_t) + \delta \int_0^t e^{-\delta s} u(c_s) ds$ is a supermartingale until τ for arbitrary strategy A, π, c;
2. it is a martingale for the optimal strategy.
Dynamics of Y

Suppose that the dynamics of Y follows

$$dY_t = dH_t + Z_t dX_t + U_t dR_t$$

H can be determined by the Martingale Principal: El Karoui-Rouge (00), Hu-Imkeller-Muller (05)

1. $e^{-\delta t} u(G_t) + \delta \int_0^t e^{-\delta s} u(c_s) ds$ is a supermartingale until τ for arbitrary strategy A, π, c;
2. it is a martingale for the optimal strategy.

$$dY_t = \left[rY_t + \frac{r\gamma}{2} \psi^2 (1 - \rho^2) Z_t^2 + h(A^*(Z_t)) + (m - r)\zeta_t \right] dt - dl_t$$

$$+ \zeta_t \sigma dB_t + Z_t \sqrt{1 - \rho^2} \psi dB_t$$

- $\zeta = \frac{\rho \psi}{\sigma} Z + U$ is the agent's exposure to the market
- Agent's optimal portfolio is $\pi^* = \frac{m-r}{r\gamma \sigma^2} - \zeta$
- $\tau = \inf\{ t \geq 0 : Y_t \leq 0 \}$ is the liquidation time
- $A^*(Z) = \arg \min\{ h(A) - ZA \}$
Consider Y as Principal’s unique state variable

$$
W(y) = \sup_{l, Z, \zeta} \mathbb{E} \left[\delta \int_0^{\tau} e^{-\delta t} \left((\mu + A^*(Z_t)) dt - dl_t \right) + e^{-\delta \tau} \mu \right],
$$

where $\tau = \inf \{ t \geq 0 : Y_t \leq 0 \}$

- Z, ζ: regular control, $Z \in [\underline{Z}, \overline{Z}]$
- l: singular control
Variational inequality

\[
\min \left\{ \delta W - \sup_{Z, \zeta} \left\{ \delta (\mu + A^*(Z)) + (r y + g(Z, \zeta)) W' \right. \right. \\
+ \frac{1}{2} \left[\sigma^2 \zeta^2 + (1 - \rho^2) \psi^2 Z^2 \right] W'' \left. \right\}, \\
W' + \delta \right\} = 0,
\]

where

\[
g(Z, \zeta) = \frac{r \gamma}{2} \psi^2 (1 - \rho^2) Z^2 + (m - r) \zeta + h(A^*(Z)).
\]

Cost of hedging

Cost of effort
Variational inequality

\[
\min \left\{ \delta W - \sup_{Z, \zeta} \left\{ \delta (\mu + A^*(Z)) + (ry + g(Z, \zeta)) W' \right\} + 1/2 \left[\sigma^2 \zeta^2 + (1 - \rho^2) \psi^2 Z^2 \right] W'' \right\},
\]

\[
W' + \delta = 0,
\]

where

\[
g(Z, \zeta) = \frac{r \gamma}{2} \psi^2 (1 - \rho^2) Z^2 + (m - r) \zeta + h(A^*(Z)).
\]

A free boundary problem:

\[
\delta W = \sup_{Z, \zeta} \left\{ \delta (\mu + A^*(Z)) + (ry + g(Z, \zeta)) W' + 1/2 \left[\sigma^2 \zeta^2 + (1 - \rho^2) \psi^2 Z^2 \right] W'' \right\}
\]

\[
W'(\bar{y}) = -\delta, \quad W''(\bar{y}) = 0,
\]

\[
W(0) = \phi \mu.
\]
Main result

Theorem
Assume that

1. \(r > \delta \) (ensure \(\bar{y} \) is finite),
2. \(Z > 0 \) (ensure the HJB is uniform elliptic).

There is a unique solution \(W \in C^2(0, \infty) \) of the variational inequality. Moreover,

1. \(W \) is strictly concave on \((0, \bar{y})\),
2. \(W \) satisfies the free boundary problem,
3. The optimal contract is a “local time” type, which reflects \(Y \) at \(\bar{y} \).
Risk sharing and incentive provision

Panel A: Principal’s Value Function under OPE

Panel B: Optimal Gross Market Exposure

Panel C: Optimal Sensitivity to Output

Panel D: Optimal Sensitivity to Market Return
Economic results

1. W is concave, principal is endogenously risk averse
Economic results

1. W is concave, principal is endogenously risk averse

2. The optimal exposure to the market is

$$\zeta^* = -\frac{m - r}{\sigma^2} \frac{W'(y)}{W''(y)}.$$

When $m > r$,

- When Y is close to the liquidation boundary: $W' > 0 \implies \zeta^* > 0$
- When Y is close to the payment boundary: $W' < 0 \implies \zeta^* < 0$
Economic results

1. W is concave, principal is endogenously risk averse

2. The optimal exposure to the market is

$$\zeta^* = -\frac{m - r}{\sigma^2} \frac{W'(y)}{W''(y)}.$$

When $m > r$,

- When Y is close to the liquidation boundary: $W' > 0 \implies \zeta^* > 0$
- When Y is close to the payment boundary: $W' < 0 \implies \zeta^* < 0$

3. $U^* = \zeta^* - \frac{\rho \psi}{\sigma} Z^*$ can be positive when Y is close to the liquidation boundary
Economic results

1. W is concave, principal is endogenously risk averse

2. The optimal exposure to the market is

$$\zeta^* = -\frac{m - r}{\sigma^2} \frac{W'(y)}{W''(y)}.$$

When $m > r$,

- When Y is close to the liquidation boundary: $W' > 0 \implies \zeta^* > 0$
- When Y is close to the payment boundary: $W' < 0 \implies \zeta^* < 0$

3. $U^* = \zeta^* - \frac{\rho \psi}{\sigma} Z^*$ can be positive when Y is close to the liquidation boundary

4.

$$dY_t = dH_t + Z_t dX_t + U_t dR_t.$$

When Y is close to 0, positive U implies

$$dR_t < 0 \implies Y_t \text{ closer to } 0 \implies \mathbb{P}(\text{liquidation}) \uparrow$$
Conclusion

- A model with unobservable managerial hedging
- Market contract sensitivity is dynamic and can be positive; OuYang (05), Ozdenoren-Yuan (17)
- Risk aversion + private saving/investment + liquidation
- Positive market contract sensitivity implies more liquidation when market falls
Conclusion

- A model with unobservable managerial hedging
- Market contract sensitivity is dynamic and can be positive; OuYang (05), Ozdenoren-Yuan (17)
- Risk aversion + private saving/investment + liquidation
- Positive market contract sensitivity implies more liquidation when market falls

Thanks for your attention!
Model comparison

\[dY_t = dH_t + Z_t dX_t + U_t dR_t. \]

- APE: \(U \equiv 0 \)
- RPE: \(U = -\frac{\rho \psi}{\sigma} Z \)
- OPE: \(U \) can be chosen freely
- Benchmark: observable hedging, unobservable effort
Proofs

\[
\min \left\{ \delta \mathcal{W} - \sup_{Z, \zeta} \left\{ \delta (\mu + A^*(Z)) + (ry + g(Z, \zeta)) W' + \frac{1}{2} \Sigma(Z, \zeta) W'' \right\}, \right. \\
\left. W' + \delta \right\} = 0
\]

1. \(\underline{\mathcal{W}} \leq \mathcal{W} \leq \overline{\mathcal{W}} \), where \(\overline{\mathcal{W}}(y) = \mu - \delta y + \sup_{Z, \zeta} \{A^*(Z) - g(Z, \zeta)\} \)
and \(\underline{\mathcal{W}}(y) = \phi \mu - \delta y \).

2. \(\mathcal{W} \) is viscosity solution (DPP)

3. unique viscosity solution with linear growth (controls need to be bounded), hence \(\mathcal{W} \) is continuous

4. \(\tilde{\mathcal{W}}(y) = \mu - ry + \sup_{Z, \zeta} \{A^*(Z) - g(Z, \zeta)\} \). The free boundary is before the intersection of \(\underline{\mathcal{W}} \) and \(\tilde{\mathcal{W}} \) (\(r > \delta \))

5. \(\mathcal{W} \) is concave

\[
\mathcal{W}'' = \inf_{Z, \zeta} \left\{ \frac{\delta \mathcal{W} - \delta [\mu + A^*(Z) - (ry + g(Z, \zeta))] W'}{\frac{1}{2} \Sigma(Z, \zeta)} \right\}
\]

6. \(\mathcal{W} \) is \(C^2 \) (uniformly elliptic) Strulovici-Szydlowski (2015), Pham (09)