Valuation equations for stochastic volatility models

Hao Xing

London School of Economics

joint work with
Erhan Bayraktar, University of Michigan
Kostas Kardaras, Boston University

SIAM Conference on Financial Mathematics & Engineering
San Francisco, November 19, 2010
Local martingales in finance

Throughout we assume \(r \equiv 0 \).

FTAP-I: NFLVR \iff \exists \ Q \sim \ P, \ s.t. \ S \text{ is a } Q \text{ local martingale.} \]

\(Q \) is called the Equivalent Local Martingale Measure (ELMM).
Local martingales in finance

Throughout we assume $r \equiv 0$.

FTAP-I: NFLVR $\iff \exists \ Q \sim P$, s.t. S is a Q local martingale. Q is called the Equivalent Local Martingale Measure (ELMM).

Local martingale:

$\exists \{\sigma^n\}_{n \in \mathbb{N}} \uparrow \infty$ such that $\{S_{\sigma^n \wedge t} | t \geq 0\}$ is a martingale for any n.

Strict local martingale: local martingale that is not a martingale.
Local martingales in finance

Throughout we assume $r \equiv 0$.

FTAP-I: NFLVR $\iff \exists \ Q \sim P$, s.t. S is a Q local martingale. Q is called the Equivalent Local Martingale Measure (ELMM).

Local martingale:

$\exists \{\sigma^n\}_{n \in \mathbb{N}} \uparrow \infty$ such that $\{S_{\sigma^n \wedge t} | t \geq 0\}$ is a martingale for any n.

Strict local martingale: local martingale that is not a martingale.

The loss of martingale property relates to stock price bubble.

[Heston-Loewenstein-Willard 07], [Cox-Hobson 05], [Jarrow-Protter-Shimbo 07, 10].
Strict local martingales in stochastic volatility models

Under a chosen ELMM, the stock prices can be strict local martingales.

[Sin 98], [Andersen-Piterbarg 07], [Lions-Musiela 07], [Hobson 10].
Strict local martingales in stochastic volatility models

Under a chosen ELMM, the stock prices can be strict local martingales.

[Sin 98], [Andersen-Piterbarg 07], [Lions-Musiela 07], [Hobson 10].

Example (Andersen-Piterbarg 07)
Consider \(dS_t = S(t)\sqrt{Y_t}dW_t \) and \(dY_t = (\theta - Y_t)dt + Y_t^p dB_t \).

- When \(p \leq 1/2 \), \(S \) is a martingale.
- When \(1/2 < p \leq 1 \), \(S \) is a martingale if and only if \(\rho \leq 0 \).
Stochastic volatility models

Let us consider

\[dS_t = S_t \, b(Y_t) \, dW_t, \quad S_0 = x > 0, \]
\[dY_t = \mu(Y_t) \, dt + \sigma(Y_t) \, dB_t, \quad Y_0 = y > 0, \]

in which \(W \) and \(B \) have constant correlation \(\rho \in (-1, 1) \).

(i) \(\mu : \mathbb{R}_+ \to \mathbb{R} \) satisfies \(\mu(0) \geq 0 \), \(\sigma, b : \mathbb{R}_+ \to \mathbb{R}_+ \) are strictly positive on \(\mathbb{R}_{++} \) and \(\sigma(0) = b(0) = 0 \).

(ii) \(\mu, \sigma^2, b^2, b\sigma \in C^{1,\alpha}(\mathbb{R}_+) \).

(iii) \(\mu \) and \(\sigma \) have at most linear growth, \((b^2)' \) has at most polynomial growth.
Stochastic volatility models

Let us consider

\[dS_t = S_t \, b(Y_t) \, dW_t, \quad S_0 = x > 0, \]
\[dY_t = \mu(Y_t) \, dt + \sigma(Y_t) \, dB_t, \quad Y_0 = y > 0, \]

in which \(W \) and \(B \) have constant correlation \(\rho \in (-1, 1) \).

(i) \(\mu : \mathbb{R}_+ \rightarrow \mathbb{R} \) satisfies \(\mu(0) \geq 0 \), \(\sigma, b : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) are strictly positive on \(\mathbb{R}_{++} \) and \(\sigma(0) = b(0) = 0 \).

(ii) \(\mu, \sigma^2, b^2, b\sigma \in C^{1,\alpha}(\mathbb{R}_+) \).

(iii) \(\mu \) and \(\sigma \) have at most linear growth, \((b^2)' \) has at most polynomial growth.

These assumptions hold for most stochastic volatility models.

This framework allows various model behavior:

- Stock price can be a strict local martingale.
- Volatility process can potentially reach zero.
The valuation equation

Given a European option with the payoff \(g : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) which is of at most linear growth.

\[
u(x, y, T) := \mathbb{E}[g(S_T) \mid S_0 = x, Y_0 = y].\]
The valuation equation

Given a European option with the payoff \(g : \mathbb{R}_+ \to \mathbb{R}_+ \) which is of at most linear growth.

\[
u(x, y, T) := \mathbb{E}[g(S_T) \mid S_0 = x, Y_0 = y].\]

A formal application of Itô’s formula gives

\[
\partial_T \nu(x, y, T) = \mathcal{L} \nu(x, y, T), \quad (x, y, T) \in \mathbb{R}_+^3, \\
\nu(x, y, 0) = g(x), \quad (x, y) \in \mathbb{R}_+^2,
\]

in which \(\mathcal{L} := \mu(y) \partial_y + \frac{1}{2} b^2(y)x^2 \partial_{xx} + \frac{1}{2} \sigma^2(y) \partial_{yy} + \rho b(y) \sigma(y) x \partial_{xy} \).
Existence and uniqueness

We want to answer

(Q1) What is the concept of a solution (smoothness and boundary conditions), s.t. \(u \) is one such solution?

(Q2) What is a natural condition under which uniqueness holds in a certain class of functions (of at most linear growth)?
Existence and uniqueness

We want to answer

(Q1) What is the concept of a solution (smoothness and boundary conditions), s.t. \(u \) is one such solution?

(Q2) What is a natural condition under which uniqueness holds in a certain class of functions (of at most linear growth)?

These questions have been discussed in

[Daskalopoulos-Hamilton 98]
[Heath-Schweizer 00]
[Ekstrom-Tysk 10]
[Constantini-D’ippoliti-Papi 10]
Difficulties

1. Coefficients degenerate at boundaries.
 The standard form of Feynman-Kac formula cannot be applied directly.

[Amadori 07] and [Costantini et al. 10]:
- Underlying process doesn’t reach boundaries.
- Find sufficient conditions for uniqueness.
Difficulties

1. Coefficients degenerate at boundaries.
 The standard form of Feynman-Kac formula cannot be applied directly.

2. Non-standard in the PDE literature.
Difficulties

1. Coefficients degenerate at boundaries.
 The standard form of Feynman-Kac formula cannot be applied directly.

2. Non-standard in the PDE literature.

3. Standard viscosity solution techniques cannot be directly applied.
 Coefficients are not Lipschitz continuous in the state space.

[Amadori 07] and [Costantini et al. 10]:
 - Underlying process doesn’t reaches boundaries.
 - Find sufficient conditions for uniqueness.
Multiple solutions

\[S \text{ is a strict local martingale,} \]
\[\Downarrow \]
\[(\text{BS-PDE}) \text{ with boundary conditions has multiple solutions!} \]
Multiple solutions

\[S \text{ is a strict local martingale}, \]

\[\Downarrow \]

(BS-PDE) with boundary conditions has \textbf{multiple solutions}!

Consider \(g(x) \equiv 0 \). Define

\[\delta(x, y, T) := x - \mathbb{E}[S_T | S_0 = x, Y_0 = y]. \]

When \(S \) is a strict local martingale, \(\delta > 0 \) for \(T > 0 \) and \(\delta \) is a solution to (BS-PDE).
Multiple solutions

\[S \text{ is a strict local martingale,} \]
\[\downarrow \]
\[(\text{BS-PDE}) \text{ with boundary conditions has multiple solutions!} \]

Consider \(g(x) \equiv 0 \). Define

\[\delta(x, y, T) := x - \mathbb{E}[S_T | S_0 = x, Y_0 = y]. \]

When \(S \) is a strict local martingale, \(\delta > 0 \) for \(T > 0 \) and \(\delta \) is a solution to (BS-PDE). However, \(0 \) is another solution.

If \(u \) is a solution to (BS-PDE), \(u + \delta \) is another solution.
Multiple solutions

\[S\text{ is a strict local martingale,}\]
\[\Downarrow\]
\[\text{(BS-PDE) with boundary conditions has multiple solutions!}\]

Consider \(g(x) \equiv 0\). Define

\[\delta(x, y, T) := x - \mathbb{E}[S_T | S_0 = x, Y_0 = y].\]

When \(S\) is a strict local martingale, \(\delta > 0\) for \(T > 0\) and \(\delta\) is a solution to (BS-PDE). However, 0 is another solution.

If \(u\) is a solution to (BS-PDE), \(u + \delta\) is another solution.

Remark: For a strict local martingale \(S\), coefficients may grow faster than linearly. This is outside the standard framework of classical and viscosity solutions.
Martingale property of S

$$d\tilde{Y}_t = \left(\mu(\tilde{Y}_t) + \rho b \sigma(\tilde{Y}_t)\right) dt + \sigma(\tilde{Y}_t) d\tilde{W}_t, \quad Y_0 = y,$$

it has a unique strong solution up to $\zeta^Y = \inf\{t \geq 0 : \tilde{Y}_t^Y = \infty\}$.

Consider $v(x) := \int_c^x \frac{s(x) - s(y)}{s'(y)\sigma^2(y)} dy$, where s is the scale fun. of \tilde{Y}.
Martingale property of S

\[d\tilde{Y}_t = \left(\mu(\tilde{Y}_t) + \rho b\sigma(\tilde{Y}_t) \right) dt + \sigma(\tilde{Y}_t)d\tilde{W}_t, \quad Y_0 = y, \]

it has a unique strong solution up to $\zeta^y = \inf\{t \geq 0 : \tilde{Y}_t^y = \infty\}$.

Consider \(v(x) := \int_c^x \frac{s(x) - s(y)}{s'(y)\sigma^2(y)} dy \), where \(s \) is the scale fun. of \(\tilde{Y} \).

Proposition (Sin 98)

\[\mathbb{E}[S_T] = S_0 \cdot \mathbb{Q}(\zeta^y > T). \ T.F.A.E. \]

- \(S^{x,y} \) is a martingale for any \((x, y) \in \mathbb{R}^2_{++}\).
- \(v(\infty) = \infty. \)
Martingale property of S

$$d\tilde{Y}_t = \left(\mu(\tilde{Y}_t) + \rho b\sigma(\tilde{Y}_t)\right) dt + \sigma(\tilde{Y}_t)d\tilde{W}_t, \quad Y_0 = y,$$

it has a unique strong solution up to $\zeta^\gamma = \inf\{t \geq 0 : \tilde{Y}^\gamma_t = \infty\}$.

Consider $v(x) := \int_c^x \frac{s(x) - s(y)}{s'(y)\sigma^2(y)} dy$, where s is the scale fun. of \tilde{Y}.

Proposition (Sin 98)

$${\mathbb{E}}[S_T] = S_0 \cdot Q(\zeta^\gamma > T). \ T.F.A.E.$$

\triangleright $S^{x,y}$ is a martingale for any $(x, y) \in \mathbb{R}^{++}$.

\triangleright $v(\infty) = \infty$.

Proposition

\triangleright $S^x_{\cdot \wedge T}$ is a strict local mart. for some, then all, $(x, y, T) \in \mathbb{R}^{3+}$.

\triangleright $v(\infty) < \infty$.

Remark: This generalizes Theorem 2.4 in [Lions-Musiela 07].
Boundary conditions

Let h be the smallest nonnegative, concave, and nondecreasing function that dominates g.

h is of linear or strict sublinear growth whenever g does.

$$u(x, y, T) \leq h(x), \quad (x, y, T) \in \mathbb{R}^3.$$
Boundary conditions

Let h be the smallest nonnegative, concave, and nondecreasing function that dominates g.

h is of linear or strict sublinear growth whenever g does.

$$u(x, y, T) \leq h(x), \quad (x, y, T) \in \mathbb{R}^3_+.$$

Boundary conditions at $y = 0$:

Consider $U^{x,y}_t := u(S_t^x, Y_t^y, T - t) = \mathbb{E} \left[g(S_T^x) | \mathcal{F}_t \right]$.

It is a martingale on $[0, T]$.
Boundary conditions

Let h be the smallest nonnegative, concave, and nondecreasing function that dominates g.

h is of linear or strict sublinear growth whenever g does.

$$u(x, y, T) \leq h(x), \quad (x, y, T) \in \mathbb{R}^3_+.$$

Boundary conditions at $y = 0$:

Consider $U_t^{x,y,T} := u(S_t^{x,y}, Y_t^y, T - t) = \mathbb{E} \left[g(S_T^{x,y}) \mid \mathcal{F}_t \right].$

It is a martingale on $[0, T]$.

For any solution ν, $V_t^{x,y,T} := \nu(S_t^{x,y}, Y_t^y, T - t)$ needs to be at least a local martingale on $[0, T]$.
Boundary conditions

Let \(h \) be the smallest nonnegative, concave, and nondecreasing function that dominates \(g \).

\(h \) is of linear or strict sublinear growth whenever \(g \) does.

\[
 u(x, y, T) \leq h(x), \quad (x, y, T) \in \mathbb{R}_+^3.
\]

Boundary conditions at \(y = 0 \):

Consider \(U_t^{x, y, T} := u(S_t^{x, y}, Y_t^y, T - t) = \mathbb{E}[g(S_T^{x, y}) | \mathcal{F}_t] \).

It is a martingale on \([0, T]\).

For any solution \(v \), \(V_t^{x, y, T} := v(S_t^{x, y}, Y_t^y, T - t) \) needs to be at least a local martingale on \([0, T]\).

If \(v \in C^{2,2,1}(\mathbb{R}_+^3) \), \(V_t^{x, y, T} \) is a local martingale until

\[
 \tau_0^y = \inf \{ t \geq 0 | Y_t^y = 0 \}.
\]

Boundary cond. at \(y = 0 \) \(\implies V_t^{x, y, T} \) is a local mart. until \(T \).
Boundary condition cond.

(A) $\mathcal{Q}[\tau_0^y = \infty] = 1$: no boundary cond. is needed.

(B) $\mathcal{Q}[\tau_0^y < \infty] > 0$ and $\mu(0) = 0$: $v(x, 0, T) = g(x)$.

(C) $\mathcal{Q}[\tau_0^y < \infty] > 0$ and $\mu(0) > 0$: consider the class \mathcal{C}.

A function $v \in \mathcal{C}$ if

(i) $v \in \mathcal{C}(\mathbb{R}^3_+ \cap \mathcal{C}_2^2(\mathbb{R}^3_+) \cap \mathcal{C}_0^1(\mathbb{R}^++\times\mathbb{R}_+))$,

(ii) $\limsup_{y \downarrow 0} b_2(\mathbb{R}^+ v(x, y, T) \mathcal{C})^2 < \infty$ for $(x, T) \in \mathbb{R}^3_+$,

(iii) $0 \leq v(x, y, T) \leq h(x)$ for $(x, y, T) \in \mathbb{R}^3_+$ and

(iv) $\partial_\mathcal{T} v(x, y, T) = L v(x, y, T)$ for $(x, y, T) \in \mathbb{R}^3_+$.

Let \mathcal{C} is the closure of \mathcal{C} under the point-wise convergence.
Boundary condition cond.

(A) $Q[\tau_0^y = \infty] = 1$: no boundary cond. is needed.
(B) $Q[\tau_0^y < \infty] > 0$ and $\mu(0) = 0$: $v(x, 0, T) = g(x)$.
(C) $Q[\tau_0^y < \infty] > 0$ and $\mu(0) > 0$: consider the class \mathcal{C}.

A function $v \in \mathcal{C}$ if

(i) $v \in C(\mathbb{R}_+^3) \cap C^{2,2,1}(\mathbb{R}_+^3) \cap C^{0,1,1}(\mathbb{R}_+^2 \times \mathbb{R}_+ \times \mathbb{R}_+^2)$,

(ii) $\limsup_{y \downarrow 0} b^2(y) \left| \partial_{xx}^2 v(x, y, T) \right| < \infty$ for $(x, T) \in \mathbb{R}_+^2$,

(iii) $0 \leq v(x, y, T) \leq h(x)$ for $(x, y, T) \in \mathbb{R}_+^3$ and

(iv) $\partial_T v(x, y, T) = \mathcal{L} v(x, y, T)$ for $(x, y, T) \in \mathbb{R}_+^3$.

Let $\overline{\mathcal{C}}$ is the closure of \mathcal{C} under the point-wise convergence.
Classical solutions

Definition

v is called a classical solution (with growth domination h):

(A) : $v \in C(\mathbb{R}^3_+) \cap C^{2,2,1}(\mathbb{R}^3_{++}), 0 \leq v \leq h$, and v solves (BS-PDE).

(B) : All conditions in (A), v satisfies $v(x, 0, T) = g(x)$.

(C) : $v \in \overline{C} \cap C(\mathbb{R}^3_+)$ and v satisfies the initial cond.
Classical solutions

Definition

\(\nu \) is called a classical solution (with growth domination \(h \)):

(A) : \(\nu \in C(\mathbb{R}_+^3) \cap C^{2,2,1}(\mathbb{R}_+^3), 0 \leq \nu \leq h \), and \(\nu \) solves (BS-PDE).

(B) : All conditions in (A), \(\nu \) satisfies \(\nu(x, 0, T) = g(x) \).

(C) : \(\nu \in \overline{C} \cap C(\mathbb{R}_+^3) \) and \(\nu \) satisfies the initial cond.

Remark

- Since \(0 \leq u \leq h \), it suffices to consider nonnegative solutions dominated by \(h \).

- In Case (C), Schauder interior estimate implies that in fact \(\nu \in C^{2,2,1}(\mathbb{R}_+^3) \) satisfies \(\partial_T \nu = \mathcal{L} \nu \) on \(\mathbb{R}_+^3 \).

- Boundary conditions are specified to identify \(u \) as a unique solution. This is contrast to [Ekstrom-Tysk 10].
Main results

Theorem (Existence)

The value function u is a classical solution to (BS-PDE). Moreover, it is the smallest classical solution.
Main results

Theorem (Existence)

The value function u *is a classical solution to (BS-PDE).* *Moreover, it is the smallest classical solution.*

Theorem (Uniqueness)

The following two statements hold:

(i) *When* g *is of strictly sublinear growth,*

u *is the unique classical soln dominated by* h.

(ii) *When* g *is of linear growth,* *T.F.A.E.*

u *is the unique classical soln dominated by* h

S *is a martingale.

$v(\infty) = \infty$.

Uniqueness holds \Leftrightarrow *the following comparison result holds.*

Let v and w be classical super/sub-solutions.

$v(x, y, 0) \geq g(x) \geq w(x, y, 0) \implies v \geq w$ on \mathbb{R}^3_+.
Remarks

1. h is of strict sublinear or linear whenever g does.
Remarks

1. h is of strict sublinear or linear whenever g does.

2. The uniqueness result complements the classical PDE results.
Remarks

1. \(h \) is of strict sublinear or linear whenever \(g \) does.

2. The uniqueness result complements the classical PDE results.

3. The comparison result is also a necessary condition for uniqueness.
Remarks

1. h is of strict sublinear or linear whenever g does.

2. The uniqueness result complements the classical PDE results.

3. The comparison result is also a necessary condition for uniqueness.

4. In the special case $g(x) \equiv x$, consider $I(y, T) = \mathbb{E}[\mathcal{E}(\int b(Y_s) \, dW_s)_T]$. It satisfies

 \[
 \partial_T I - \frac{1}{2} \sigma^2(y) \partial_{yy} I - (\mu + \rho b \sigma)(y) \partial_y I = 0, \quad I(y, 0) = 1.
 \]

T.F.A.E:

- I is the unique solution among bounded functions.
- $\mathcal{E}(\int b(Y_s) \, dW_s)$ is a martingale.
- \tilde{Y} does not explode to infinity.

Therefore the infinity is natural boundary for \tilde{Y}, uniqueness holds without any boundary cond. at infinity.
Proof: Martingale \iff uniqueness (verification)

Lemma

If v is a classical solution, then $V^{x,y,T} = v(S^{x,y}, Y^y, T - \cdot)$ is a local martingale on $[0, T]$.
Proof: Martingale \implies uniqueness (verification)

Lemma
If ν is a classical solution, then $V^{x,y,T} = \nu(S^{x,y}, Y^y, T - \cdot)$ is a local martingale on $[0, T]$.

When 0 is instantaneous reflect boundary, this follows from:
1. the local time of Y at 0 is 0;
2. $\nu \in \overline{C}$.
Proof: Martingale \implies uniqueness (verification)

Lemma

If ν is a classical solution, then $V^{x,y,T} = \nu(S^{x,y}, Y^y, T - \cdot)$ is a local martingale on $[0, T]$.

When 0 is instantaneous reflect boundary, this follows from:

1. the local time of Y at 0 is 0;
2. $\nu \in \overline{\mathcal{C}}$.

To show the uniqueness, we want to show $\nu \equiv u$.

Let $\{\sigma^n\}_{n \in \mathbb{N}}$ be a localizing sequence of V.
Proof: Martingale \iff uniqueness (verification)

Lemma

If v is a classical solution, then $V^{x,y,T} = v(S^{x,y}, Y^y, T - \cdot)$ is a local martingale on $[0, T]$.

When 0 is instantaneous reflect boundary, this follows from:

1. the local time of Y at 0 is 0;
2. $v \in \overline{C}$.

To show the uniqueness, we want to show $v \equiv u$.

Let $\{\sigma^n\}_{n \in \mathbb{N}}$ be a localizing sequence of V.

$V_{\sigma^n \wedge T}^{x,y,T} \leq C(1 + S_{\sigma^n \wedge T})$.
Proof: Martingale \iff uniqueness (verification)

Lemma

If v is a classical solution, then $V^{x,y,T} = v(S^{x,y}, Y^{y}, T - \cdot)$ is a local martingale on $[0, T]$.

When 0 is instantaneous reflect boundary, this follows from:

1. the local time of Y at 0 is 0;
2. $v \in \overline{C}$.

To show the uniqueness, we want to show $v \equiv u$.

Let $\{\sigma^n\}_{n \in \mathbb{N}}$ be a localizing sequence of V.

$$V^{x,y,T}_{\sigma^n \wedge T} \leq C(1 + S_{\sigma^n \wedge T}).$$

S is a martingale $\implies \{S_{\sigma^n \wedge T}\}_{n \in \mathbb{N}}$ is uniformly integrable.
Proof: Martingale \implies uniqueness (verification)

Lemma
If v is a classical solution, then $V^{x,y,T} = v(S^{x,y}, Y^y, T - \cdot)$ is a local martingale on $[0, T]$.

When 0 is instantaneous reflect boundary, this follows from:
1. the local time of Y at 0 is 0;
2. $v \in \overline{C}$.

To show the uniqueness, we want to show $v \equiv u$.
Let $\{\sigma^n\}_{n \in \mathbb{N}}$ be a localizing sequence of V.

$$V_{\sigma^n \wedge T}^{x,y,T} \leq C(1 + S_{\sigma^n \wedge T}).$$

S is a martingale $\implies \{S_{\sigma^n \wedge T}\}_{n \in \mathbb{N}}$ is uniformly integrable.

Therefore, we can exchange limit and expectation in

$$v(x, y, T) = \lim_n \mathbb{E} \left[V_{\sigma^n \wedge T}^{x,y,T} \right] = \mathbb{E}[g(S_T^{x,y})] = u(x, y, T).$$

\square
Thanks for your attention!