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EFFICIENT ESTIMATION OF ONE-DIMENSIONAL
DIFFUSION FIRST PASSAGE TIME DENSITIES
VIA MONTE CARLO SIMULATION
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Abstract

We propose a method for estimating first passage time densities of one-dimensional
diffusions via Monte Carlo simulation. Our approach involves a representation of the
first passage time density as the expectation of a functional of the three-dimensional
Brownian bridge. As the latter process can be simulated exactly, our method leads
to almost unbiased estimators. Furthermore, since the density is estimated directly, a
convergence of order 1/

√
N , where N is the sample size, is achieved, which is in sharp

contrast to the slower nonparametric rates achieved by kernel smoothing of cumulative
distribution functions.
Keywords: First passage time; Monte Carlo density estimation; one-dimensional
diffusion; three-dimensional Brownian bridge; rate function
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1. Introduction

The problem of computing the distribution of the first time that a diffusion crosses a certain
level naturally arises in many different contexts. As probably the most prevalent, we mention
quantitative finance, where first passage times are used in credit risk (times of default) as well
as in defining exotic contingent claims (so-called barrier options). In this paper, we focus on
the numerical computation of the probability density function of first passage times associated
with a general one-dimensional diffusion.

Analytic expressions of densities of first passage times are known only in very particular
cases. The primary example is Brownian motion with certain (constant) drift and diffusion
rates, for which a combination of Girsanov’s theorem and the special case of standard (driftless)
Brownian motion is used. The first passage time density for the latter case can be obtained
by the reflection principle; see, for example, [11, Section 2.6A]. An explicit form of the first
passage time density can also be obtained in the case of the radial Ornstein–Uhlenbeck process;
see [6] and [9]. Smoothness of the first passage time and related transition densities has been
studied in [14], [17], and [22], amongst others.

In the absence of general analytic expressions for first passage time distributions, compu-
tational methods are indispensable and, in fact, widely used. One approach is to use Volterra
integral equations—we mention [1], [4], and [18] as representative papers dealing with this
approach. Alternatively, we can use Monte Carlo simulation. The simplest scheme uses
the so-called Euler scheme to approximate the solution of the stochastic differential equation
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governing the diffusion at predetermined grid time points ih, i = 0, 1, . . . , where h is the step
size, stops at the first time that the diffusion crosses the level of interest, and continues this way
to obtain an estimator for the cumulative distribution function of the first passage time. As the
Euler scheme is only approximate, it causes bias in the estimation of the probability distribution
function. (To account for the fact that the passage can potentially happen in-between the sampled
points, a Brownian bridge interpolation may be used—this means that, given the sampled points,
the conditional probability that the first passage time occurs in each of the consecutive intervals
is approximated by the probability of first passage time of a corresponding Brownian bridge
This could potentially reduce the bias, but the whole scheme is still only approximate and some
bias remains.) See [7, Chapters 6–7] for a general discussion, [8] for the evaluation of error via
partial differential equations, and [2] for a sharp large deviation principle approach. The issue
with the bias becomes significantly more severe when numerically computing the density, as
some kind of numerical differentiation of the (nonsmooth) empirical distribution function is
necessary. Even if we use an exact simulation approach for the diffusion in question (which is,
of course, available only in special cases), the estimator for the density will have huge variance.
To top it all, even if the aforementioned problems can be eliminated, we can never hope for
convergence of the estimators to the true density to be of order 1/

√
N , where N is the ‘path

sample’ size, as the problem is nonparametric.
In this work we offer an alternative approach which has clear advantages. First, we arrive

at a representation of the density function in terms of the expectation of a functional of a three-
dimensional Brownian bridge. This makes it possible to estimate directly the first passage
time density without having to rely on estimators of the cumulative distribution function, thus
achieving the ‘parametric’rate of convergence 1/

√
N , whereN is the sample size. Furthermore,

only the three-dimensional Brownian bridge is involved in the simulation, which can be carried
out exactly. There is an integral involving the previous three-dimensional Brownian bridge,
which can be approximated via a Riemann sum; therefore, the error of the approximation can
be estimated efficiently. By construction, our method significantly improves both the bias and
variance of the density estimation obtained via the empirical distribution function. The only
potential problem of our approach is large-time density estimation, since the thin grid that has
to be used in the simulation of the Brownian bridge will result in high computational effort.
To circumvent this issue, we note that the tails of the first passage distribution usually decrease
exponentially with a rate that can be expressed as the principal eigenvalue of a certain Dirichlet
boundary problem involving a second-order ordinary differential equation. This implies that a
mixture of Monte Carlo and ordinary differential equation techniques can be efficiently utilized
to improve the quality of our estimator.

The structure of the paper is as follows. In Section 2, the problem is formulated and the
key representation formula is obtained. In Section 3 we discuss the Monte Carlo estimator
of the first passage time density function, and study its large sample properties. In Section 4,
the relation between the exponential tail decay of the probability density and the eigenvalues
of a Dirichlet boundary problem is discussed. The proofs of all the results are deferred to
Appendix A in order to keep the presentation smooth in the main body of the paper.

2. A representation of first passage time densities

2.1. The setup

Consider a one-dimensional diffusion X with dynamics

dXt = a(Xt ) dt + dWt, t ∈ R+, (2.1)
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whereW is a standard one-dimensional Brownian motion. The restrictions on the drift function
a that we will impose later (see Assumptions 2.1) ensure that (2.1) has a weak solution, unique
in the sense of the probability law, for any initial condition x ∈ (0,∞). Let Pax denote the law
on the canonical path space C(R+; R) of continuous functions from R+ to R that makes the
coordinate processes behave according to (2.1) and is such that Pax[X0 = x] = 1.

Define τ0 := inf{t ∈ R+ | Xt = 0} to be the first passage time of X at level 0. We will
consider the problem of finding convenient, in terms of the numerical approximation using the
Monte Carlo simulation technique, representations of the quantity

pax(t) := ∂

∂t
Pax[τ0 ≤ t], x ∈ (0,∞), t ∈ R+,

i.e. the density of the first passage time of the diffusion at level 0.

Remark 2.1. The fact that we are using a unit diffusion coefficient in (2.1) by no means entails
loss of generality in our discussion. Indeed, consider a general one-dimensional diffusion Y
with dynamics

dYt = b(Yt ) dt + σ(Yt ) dWt, t ∈ R+, (2.2)

where W is a standard one-dimensional Brownian motion, such that Y0 = y ∈ R. If (2.2)
has a weak solution unique in the sense of the probability law, we may assume without loss
of generality that σ ≥ 0. (Indeed, otherwise we replace σ by |σ | in (2.2) and we obtain
the same law for the process Y .) Consider a level � < y. Under the mild assumption that
1/σ is locally integrable, the transformation X = ∫ Y

�
(1/σ(z)) dz defines a diffusion with

dynamics dXt = a(Xt ) dt + dWt for a function a that is easily computable from b and σ .
With x := ∫ y

�
(1/σ(z)) dz, the first passage time of Y with Y0 = y at level � is equal to the first

passage time of X with X0 = x at level 0.

2.2. The representation

The following assumption on the drift function in (2.1) will allow us to arrive at a very
convenient representation for the density function pax .

Assumption 2.1. The function a restricted on [0,∞) is continuously differentiable, and satis-
fies ∫ ∞

0
exp

(
−2

∫ w

0
a(z) dz

)
dw = ∞.

In particular, under Assumption 2.1, a is locally square integrable on [0,∞) and the function

γ := a2 + a′

2
(2.3)

is continuous and locally integrable. The theory of one-dimensional diffusions ensures that,
for all x ∈ (0,∞), there exists a probability Pax on C(R+,R) such that the coordinate process
X has dynamics given by (2.1). Assumption 2.1 also ensures that Xτ0 , which is X stopped at
level 0, does not explode to ∞—see, for example, [11, Chapter 5, Proposition 5.32(iii)].

Proposition 2.1. Suppose that Assumption 2.1 holds. On C([0, 1]; R
3), consider the proba-

bility PBB3 under which the coordinate process β is a standard three-dimensional Brownian
bridge. Then,

pax(t) = qx(t) exp

(
−

∫ x

0
a(v) dv

)
EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)]
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holds for all t ∈ R+, where e1 := (1, 0, 0)�, |·| stands for the usual Euclidean norm, and qx
is the density given for all t ∈ R+ by

qx(t) ≡ p0
x(t) = x√

2πt3
exp

(
−x

2

2t

)
, (2.4)

corresponding to the first passage time to 0 of a standard Brownian motion starting from x.

3. Monte Carlo density estimation

We now discuss issues related to the estimation of the density pax . For the purposes of this
and the next section, we fix a drift function a satisfying Assumption 2.1 and we write px for
pax in order to simplify the notation.

3.1. Convergence

It is clear how to get an estimate of the density px(t) for a given t ∈ R+, at least in theory.
One simulates N independent paths of the three-dimensional Brownian bridge, β̂1, . . . , β̂N ,
and then defines the estimator p̂Nx (t) for px(t) via

p̂Nx (t) := qx(t) exp

(
−

∫ x

0
a(v) dv

)
1

N

N∑
i=1

exp

(
−t

∫ 1

0
γ (|uxe1 + √

t β̂iu|) du

)
, (3.1)

where recall that qx is given in (2.4). By the strong law of large numbers, the estimator p̂Nx (t)
converges almost surely to the true density px(t) as N goes to ∞ for each fixed t ∈ R+.
Moreover, the estimator p̂Nx (t) is unbiased and the variance of the estimator p̂Nx (t) decreases
in the order of 1/N , for every fixed t ∈ R+, as a direct consequence of (3.1). (Of course,
EBB3 [p̂Nx (t)] = px(t) holds only if we assume that we actually have the whole path of each
Brownian bridge simulated exactly, which is not possible in practice. However, we can simulate
exactly discretized paths of the Brownian bridge, and then we can easily estimate the order of
bias from the Riemann approximation of the integral. In this respect, see also Section 4.2.)
In order to get weak convergence of the whole empirical densities (p̂Nx (t))t∈R+ , as well as
the uniform rate of convergence over compact time intervals, we introduce an additional
assumption.

Assumption 3.1. Together with Assumption 2.1, we suppose that the function γ in (2.3) is such
that infz∈R+ γ (z) > −∞, and that a′ is locally Lipschitz continuous on R+ with Lipschitz
constant growing at most polynomially, that is, there exist constants c1 > 0, c2 > 0, and n ∈ N

such that

sup
0≤v1<v2≤κ

∣∣∣∣a
′(v2)− a′(v1)

v2 − v1

∣∣∣∣ ≤ c1 + c2κ
n holds for all κ > 0. (3.2)

The next two results are concerned with a central limit theorem for the whole density function
estimator as well as the uniform rate of convergence on compact intervals of R+.

Proposition 3.1. For all N ∈ N, define ηN := √
N(p̂Nx − px)/qx . Suppose that Assump-

tion 3.1 holds. Then, the family of stochastic processes {ηN | N ∈ N} is tight. As N → ∞,
ηN converges weakly to a centered Gaussian process with continuous covariance function 
,
where, with I (t) = ∫ 1

0 γ (|uxe1 + √
tβu|) du for t ∈ R+,


(s, t) = exp

(
−2

∫ x

0
a(v) dv

)
covBB3 [exp(−sI (s)), exp(−tI (t))], (s, t) ∈ R

2+.
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Proposition 3.2. Under Assumption 3.1, for any fixed T ∈ R+, the sequence
(√
N max
t∈[0,T ] |p̂

N
x (t)− px(t)|

)
N∈N

is bounded in probability.

Remark 3.1. In a similar manner, for fixed x1 and x2 in (0,∞) with x1 < x2, we may show
that (√

N max
x∈[x1,x2]

|p̂Nx (t)− px(t)|
)
N∈N

is bounded in probability. Moreover, under some additional conditions on the differentiability
of a, we may estimate the partial derivatives of px(t) with respect to (x, t) by differentiating
the estimator with respect to the variable of interest.

4. The rate function

Recall that we are dropping the qualifying ‘a’ from ‘pax ’ in order to simplify the notation.
Define implicitly the function λx via

px(t) = qx(t) exp

(
−

∫ x

0
a(v) dv

)
exp(−tλx(t)), t ∈ R+.

In other words, and in view of Proposition 2.1, we have

λx(t) := −1

t
log

(
EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)])
for t ∈ R+. (4.1)

4.1. Theoretical results

Proposition 3.2 ensures the uniform convergence of the estimator on finite intervals [0, T ]
for fixed T ∈ (0,∞). Of course, it is almost always the case that limt→∞ px(t) = 0. For
large t ∈ R+, λx(t) gives a better understanding of the behavior of the density function, as it
represents in a certain sense the exponential decrease of px(t); therefore, it makes more sense
to focus on λx rather than px . In fact, the following result implies that the function λx is
frequently bounded on R+—this is the case, for example, when γ is bounded from below.

Proposition 4.1. Let Assumption 2.1 hold. Then

inf
z∈R+

γ (z) ≤ inf
t∈R+

λx(t) ≤ lim sup
t→∞

λx(t) ≤ inf
κ>0

{
m(κ + x)+ π2

2κ2

}
, (4.2)

where m(w) = max0≤z≤w γ (z) for w > 0. Furthermore, if γ is bounded from below then

lim
t↓0

λx(t) = 1

x

∫ x

0
γ (u) du =

∫ 1

0
γ (ux) du. (4.3)

Remark 4.1. Inequalities (4.2) only imply bounds for the inferior and superior limits of λx(t)
as t → ∞. In fact, it is expected that limt→∞ λx(t) exists, possibly except in pathological
cases. Let us now argue for this point on a rather loose and intuitive level.

The stopping time τ0 can be approximated by the sequence (τn0 )n∈N, where, for all n ∈ N,
τn0 := inf{t ≥ 0 | Xt �∈ (0, n)} is the first exit time of X from the interval (0, n). Therefore,
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the rate function λx may be approximated by the rate functions corresponding to τn0 , n ∈ N. It
follows from [5] that the density function pnx of τn0 has the eigenvalue expansion (see also [12]
and [19, Chapter 5] for similar problems)

pnx(t) = ∂

∂t
Pax[τn0 ≤ t] =

∞∑
k=1

e−µnk tψnk (x) for (t, x) ∈ R+ × (0, n), n ∈ N,

with the functions {ψnk | k ∈ N} computed from the eigenfunctions {ϕnk | k ∈ N} and the
corresponding eigenvalues 0 < µn1 < µn2 < · · · of the Dirichlet problem

1
2ϕ

′′(z)+ a(z)ϕ′(z) = −µϕ(z) for z ∈ (0, n), (4.4)

where ϕ ∈ C2,α([0, n],R+) with limz→0 ϕ(z) = 0 = limz→n ϕ(z). Thus, the limit as t → ∞
for the rate function of τn0 is exactly the principal eigenvalue µn1, i.e.

lim
t→∞ λ

n
x(t) = − lim

t→∞
1

t
log

(
pnx(t)

qx(t)

)
= µn1 for all n ∈ N,

which does not depend on the initial value x > 0. Since τ0 = limn→∞ τ0,n, it is conjectured
that the limit of λx(t) as t → ∞ actually exists and is equal to limn→∞ µn1. A thorough study
aimed at finding reasonable sufficient conditions for

lim
t→∞ λx(t) = lim

n→∞µ
n
1 = lim

n→∞ lim
t→∞ λ

n
x(t)

to hold for x > 0 lies beyond the scope of this paper.

4.2. Practical issues

In view of Proposition 3.1 and Proposition 3.2, the estimator (p̂Nx (t))t∈R+ of (3.1) conver-
gences uniformly with rate 1/

√
N over compact time intervals. In practice, the computation

of (3.1) is implemented by generating a standard three-dimensional Brownian bridge, which is
simulated in an exact way over a thin enough grid. The approximation error for the Riemann
integral over the finite interval [0, 1] in (3.1) can be controlled very efficiently. More precisely,
the numerical computation of the exponential functional of the Brownian bridge in (3.1) can be
carried out using the fourth-order Runge–Kutta scheme which is proposed and analyzed in [15].
Under appropriate mild regularity conditions on the function γ , it is shown that this numerical
scheme has weak order four. For this numerical issue, consult the original paper [15], and the
related monographs of [7], [13], and [16].

A potential problem with our estimator (p̂Nx (t))t∈R+ can arise for large t , that is, the density
function at the tail. Note that what is meant here is that the relative error of the estimator of
px(t) tends to be large; the absolute error tends to be extremely small, as px(t) is very close
to being 0 for large t ∈ R+. To visualize the issue, it is helpful to study by experiment the
large-time behavior of the rate function (4.1) when X is an Ornstein–Uhlenbeck (OU) process
starting with x = 1. Here a(z) = −z and γ (z) = (z2 − 1)/2 for z ∈ R+. The first passage
time density of this OU process is known analytically (see, for example, [9, Equation (8)]) and
reads

p1(t) = 1√
2π

1

sinh3/2(t)
exp

(
1 + t − coth(t)

2

)
for t ∈ R+. (4.5)

The true density (4.5) and the estimated density (3.1) with N = 100 simulations are shown
over the interval [0, 10] in Figure 1(a). Note that even with this small number of simulations,
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Figure 1: Comparisons of the simulated density and rate functions in (3.1) and (4.6), with theoretical
values for the OU process with a(z) = −z (z ∈ R+) and x = 1.

the two curves are almost indistinguishable. Figure 1(b) contains graphs of the more refined
rate functions. In this scale, we can see that the estimation of the exponential rate of decay of
the density for large t is not as good. (As can be seen from Figure 1(b), on the interval [0, 7],
the true and estimated rate functions almost coincide. However, on the interval [7, 20], the
estimated rate functions λ̂Nx are much larger than the true rate function λx , which implies that
the estimator (3.1) underestimates the tail probability.) In fact, the estimated asymptotic rate
seems to increase linearly instead of converging to a finite limit. This becomes clear once we
note that, in this OU example,

−t
∫ 1

0
γ (|uxe1 + √

tβu|) du = t2
1

2

∫ 1

0
|βu|2 du+ t3/2x

∫ 1

0
〈e1, βu〉 du+ t

x2

6
;

therefore, the estimator for λx for sample size N ∈ N becomes

λ̂Nx (t) = x2

6
− 1

t
log

(
1

N

N∑
i=1

exp

(
t2

1

2

∫ 1

0
|β̂iu|2 du+ t3/2x

∫ 1

0
〈e1, β̂

i
u〉 du

))
. (4.6)

Observe that the leading term in the estimator of λx will be increasing linearly in t .
In order to overcome this poor situation in the tail, we can use a mixture method that combines

the estimator (3.1) on the finite interval [0, T ] and an estimator for the tail probability of the
form

c∗qx(t) exp(−λt) for t ∈ [T ,∞),

for some choice of large thresholdT , whereλ is the principal eigenvalue of the Dirichlet problem
(4.4) for some choice of large threshold n, and c∗ is chosen so that the density estimator is
continuous. The principal eigenvalue can be numerically computed from the Sturm–Liouville
problem

−
[

exp

(
2

∫ z

0
a(u) du

)
ϕ′(z)

]′
= 2λ exp

(
2

∫ z

0
a(u) du

)
ϕ(z) for z ∈ [0, n]
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(see [23, Chapter 23]), with the same Dirichlet boundary conditions, by use of either the
variational method or the Liouville transform method. In the variational method, the princi-
pal eigenvalue is obtained by minimizing numerically the corresponding Rayleigh quotient.
The Liouville transform method turns the Sturm–Liouville equation into a Schrödinger-type
equation, which is then numerically solvable with a discrete approximation. Both numerical
methods are well studied—see [10, pp. 333–376] and the references within.

Appendix A. Proofs

A.1. Proof of Proposition 2.1

Consider the nonnegative Pax-supermartingale

Z := exp

(
−

∫ ·∧τ0

0
a(Xu) dWu − 1

2

∫ ·∧τ0

0
a2(Xu) du

)
. (A.1)

As follows from a modification of [11, Exercise 5.5.38] for the restricted state space [0,∞),
Z is a Pax-martingale. With Qx being the probability on C(R+; R) that makes the coordinate
processX behave like a Brownian motion starting from x and stopping when it reaches level 0,
Girsanov’s theorem implies that

dQx
dP

∣∣∣∣
Ft

= Zt (A.2)

for all t ∈ R+. Moreover, since Xτ0 = 0, Itô’s formula (under Qx) implies that, on the set
{τ0 < ∞},

−
∫ x

0
a(v) dv =

∫ Xτ0

x

a(v) dv =
∫ τ0

0
a(Xu) dXu + 1

2

∫ τ0

0
a′(Xu) du.

Combining this with (2.1) and (2.3), the stochastic exponential defined in (A.1) under Qx
satisfies

1

Zτ0

= exp

(∫ τ0

0
a(Xu)[dXu − a(Xu) du] + 1

2

∫ τ0

0
a2(Xu) du

)

= exp

(∫ τ0

0
a(Xu) dWQx

u − 1

2

∫ τ0

0
a2(Xu) du

)

= exp

(
−

∫ x

0
a(v) dv − 1

2

∫ τ0

0
a′(Xu) du− 1

2

∫ τ0

0
a2(Xu) du

)

= exp

(
−

∫ x

0
a(v) dv −

∫ τ0

0
γ (Xu) du

)
, (A.3)

on {τ0 < ∞}, whereWQx is a standard Brownian motion under Qx . Therefore, (A.2) and (A.3)
imply that

Pax[τ0 ≤ t] = EQx

[
1

Zt∧τ0

1{τ0≤t}
]

= EQx

[
exp

(
−

∫ x

0
a(v) dv −

∫ τ0

0
γ (Xu) du

)
1{τ0≤t}

]

for (t, x) ∈ (R+)2.
Note that the density function of τ0 under Qx is given by qx in (2.4). Using the regular

conditional Qx-expectation of exp(
∫ τ0

0 γ (Xu) du), given τ0 = t , we can write

pax(t) = Pax[τ0 ∈ dt] = qx(t) exp

(
−

∫ x

0
a(v) dv

)
EQx

[
exp

(
−

∫ τ0

0
γ (Xu) du

) ∣∣∣∣ τ0 = t

]
.

(A.4)
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Given τ0 = t , the regular conditional Qx-distribution of (Xt−s , 0 ≤ s ≤ t) is that of a
three-dimensional Bessel bridge from 0 to x over [0, t], owing to [21, Proposition VI.3.10 and
Proposition VII.4.8]. On the canonical space (C([0, 1],R3),PBB3) with coordinate process β,
the process {|(s/t)xe1 + √

tβs/t |, 0 ≤ s ≤ t} has the exact law of the aforementioned Bessel
bridge. Therefore,

EQx

[
exp

(
−

∫ τ0

0
γ (Xu) du

) ∣∣∣∣ τ0 = t

]

= EBB3

[
exp

(
−

∫ t

0
γ

(∣∣∣∣ st xe1 + √
tβs/t

∣∣∣∣
)

ds

)]

= EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)]
, (t, x) ∈ (R+)2.

Combining this with (A.4) completes the proof of Proposition 2.1.

A.2. Proof of Proposition 3.1

The following technical result is the backbone of the proof.

Lemma A.1. Suppose that Assumption 3.1 holds, and define

ξ(t) := exp(−tI (t)) := exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)
, t ∈ R+. (A.5)

Then we have

|ξ(t)− ξ(s)| ≤ �T |t − s| for all s ∈ [0, T ] and t ∈ [0, T ],
where EBB3 [|�T |m] < ∞ for all T ∈ R+ and m ∈ N.

Proof. First, note that (3.2) in Assumption 3.1 implies that, for every κ > 0,

|a′(v1)| ≤ |a′(0)| + |a′(v1)− a′(0)| ≤ |a′(0)| + c1v1 + c2κ
nv1, 0 ≤ v1 ≤ κ,

|a(κ)| =
∣∣∣∣a(0)+

∫ κ

0
a′(u) du

∣∣∣∣
≤ |a(0)| +

∫ κ

0
|a′(u)| du

≤ |a(0)| + |a′(0)|κ + c1κ
2 + c2κ

n+2,

|a(v1)− a(v2)| ≤
∣∣∣∣
∫ v2

v1

a′(u) du

∣∣∣∣
≤ (|a′(0)| + c1κ + c2κ

n+1)|v2 − v1|, 0 ≤ v1 ≤ v2 ≤ κ.

Using these inequalities, we obtain estimates for γ for every κ > 0 and every 0 ≤ v1 ≤ v2 ≤ κ:

|γ (v1)| =
∣∣∣∣a

2(v1)+ a′(v1)

2

∣∣∣∣
≤ 1

2 (|a(0)| + |a′(0)|κ + c1κ
2 + c2κ

n+2)2 + 1
2 (|a′(0)| + c1κ + c2κ

n+1)

=: ϕ1(κ),
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|γ (v1)− γ (v2)| ≤ 1
2 |a2(v1)− a2(v2)| + 1

2 |a′(v1)− a′(v2)|
≤ 1

2 |a(v1)+ a(v2)||a(v1)− a(v2)| + 1
2 (c1 + c2κ

n)|v1 − v2|
≤ [

(|a(0)| + |a′(0)|κ + c1κ
2 + c2κ

n+2)(|a′(0)| + c1κ + c2κ
n+1)

+ 1
2 (c1 + c2κ

n)
]|v1 − v2|

=: ϕ2(κ)|v1 − v2|. (A.6)

Here R+ � κ �→ ϕj (κ), j = 1, 2, are polynomial functions of κ ∈ R+ and do not depend on
v1 and v2.

Fix T ∈ R+. For s ∈ [0, T ], t ∈ [0, T ], and u ∈ [0, 1], consider the random variables
κ = √

T max0≤u≤1|βu| + x, v(s, u) = |uxe1 + √
sβu|, and v(t, u) = |uxe1 + √

tβu|. Using
the estimates established before, we obtain estimates for I (t) in (A.5):

|I (t)| =
∣∣∣∣
∫ 1

0
γ (|uxe1 + √

tβu|) du

∣∣∣∣
≤

∫ 1

0
|γ (|uxe1 + √

tβu|)| du

=
∫ 1

0
|γ (v(t, u))| du

≤ ϕ1(κ),

s|I (t)− I (s)| ≤ s

∫ 1

0
|γ (v(t, u))− γ (v(s, u))| du

≤ s

∫ 1

0
|v(t, u)− v(s, u)|ϕ2(κ) du

≤ s(
√
t − √

s)

∫ 1

0
|βu|ϕ2(κ) du

≤ s(t − s)√
t + √

s

κ√
T
ϕ2(κ)

≤ sκϕ2(κ)

2
√
sT

(t − s)

≤ κϕ2(κ)

2
(t − s). (A.7)

Here we have used (A.6) in the second inequality, since 0 ≤ v(s, u) ≤ κ and 0 ≤ v(t, u) ≤ κ ,
the fact that |v(t, u) − v(s, u)| ≤ (

√
t − √

s)|βu| in the third inequality, and the fact that
max0≤u≤1|βu| ≤ κ/

√
T in the fourth inequality for 0 < s < t ≤ T .

Finally, since γ is bounded from below by Assumption 3.1, so is I in (A.5), that is,
I (t) ≥ infz∈R+ γ (z) > −∞ for every t ≥ 0. With this observation, because of monotonicity
and the differentiability of the exponential function, we obtain, for 0 ≤ s < t ≤ T ,∣∣∣∣ξ(t)− ξ(s)

∣∣∣∣ = |e−tI (t) − e−sI (s)|
≤ (e−T inf γ ∨ 1)|tI (t)− sI (s)|
= c3|(t − s)I (t)+ s(I (t)− I (s))|
≤ c3|t − s||I (t)| + c3s|I (t)− I (s)|,
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where c3 := exp(−T inf γ ) ∨ 1 < ∞. Combining this with the estimates for |I (t)| and
s|I (t)− I (s)| in (A.7), we obtain, for 0 ≤ s < t ≤ T ,

|ξ(t)− ξ(s)| ≤ c3

(
ϕ1(κ)+ κϕ2(κ)

2

)
|t − s| =: ϕ3(κ)|t − s|,

where ϕ1 and ϕ2 are defined in (A.6), and, hence, ϕ3 can be written as a polynomial function
of κ whose coefficients do not depend on s or t , but do depend on T . Letting �T be ϕ3(κ),
and noting that all positive integer moments of the maximum of a standard three-dimensional
Bessel Bridge are finite (see [20, Corollary 7]) completes the proof of Lemma A.1.

Let us define ν(t) := EBB3 [ξ(t)] for 0 ≤ t ≤ T . It follows from Lemma A.1 that ξ is locally
Lipschitz continuous and, moreover,

EBB3 [|ξ(t)− ξ(s)− (ν(t)− ν(s))|2] ≤ c4|t − s|2, 0 ≤ s < t ≤ T .

Since the random paths {β̂i , i = 1, . . . , N} are independent and identically distributed, for any
s, t ≤ T , we obtain

EBB3 |ηN(t)− ηN(s)|2

= exp

(
−2

∫ x

0
a(v) dv

)
EBB3 [|ξ(t)− ξ(s)− (ν(t)− ν(s))|2]

≤ exp

(
−2

∫ x

0
a(v) dv

)
c4|t − s|2

=: c5|t − s|2, (A.8)

where the constant c5 depends on T and x, but not on N , s, and t . This inequality is a
sufficient condition for the tightness of the sequence {ηN | N ∈ N} of continuous stochas-
tic processes starting at 0 in C(R+,R)—see [11, Problem 2.4.12]. By the usual multi-
dimensional central limit theorem, for each n ≥ 1 and 0 ≤ t1 < · · · < tn < ∞, the
sequence {(ηN(t1), ηN(t2), . . . , ηN(tn)) | N ∈ N} of random vectors converges in distribution
to a Gaussian random vector with mean 0 and variance-covariance matrix (
(ti , tj ))1≤i,j≤n,
where


(s, t) = exp

(
−2

∫ x

0
a(v) dv

)
covBB3 [exp(−sI (s)), exp(−tI (t))], (s, t) ∈ R

2+.

Therefore, we conclude that the tight sequence {ηN | N ∈ N} converges weakly to a continuous
Gaussian process with mean 0 and continuous covariance function 
.

A.3. Proof of Proposition 3.2

Define the Gaussian tail function �̄ via

�̄(z) =
∫ ∞

z

e−y2/2

√
2π

dy for z ∈ R.

Furthermore, for fixed T ∈ R+, define the modulus of continuity in L
2:

ψT (h) := max
(s,t)∈[0,T ]2, |t−s|≤h

(EBB3 [η(t)− η(s)]2)1/2 for h ∈ [0, T ]. (A.9)

It follows from (A.8) that ψT (h) ≤ √
c5h for h ∈ R+; therefore,

∫ ∞
1 ψT (e−y2

) dy < ∞. We
now recall Fernique’s inequality for Gaussian processes, which we will use.
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Lemma A.2. (Fernique’s inequality—see Equation (2.2) of [3].) If the function ψT in (A.9)
satisfies

∫ ∞
1 ψT (e−y2

) dy then, for that fixed T > 0 and any integer m ≥ 2,

PBB3

[
max

0≤t≤T |η(t)| > C1(T ,m)z
]

≤ C2(m)�̄(z) for all z > (1 + 4 logm)1/2,

where C1(T ,m) := max(s,t)∈[0,T ]2 
(s, t)1/2 + (2 + √
2)

∫ ∞
1 ψT (Tm

−y2
) dy and C2 :=

5m2
√

2π/2.

The weak convergence of {ηN | N ∈ N} to η and the invariance principle for the maxi-
mum function imply that the sequence (

√
N maxt∈[0,T ](|p̂Nx (t)−px(t)|/qx(t)))N∈N converges

weakly to max0≤t≤T η(t), where η is the limiting Gaussian process, as N goes to ∞. Since
the law of the last random variable does not charge ∞, and since maxt∈[0,T ] qx(t) < ∞, we
conclude that the family {√N maxt∈[0,T ] |p̂Nx (t)− px(t)| | N ∈ N} is bounded in probability.

A.4. Proof of Proposition 4.1

For the lower bound in (4.2), observe that

log EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)]
≤ −t inf

z∈R+
γ (z), t ∈ R+,

by Assumption 3.1. Therefore,

inf
z∈R+

γ (z) ≤ inf
t∈R+

[
−1

t
log EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)]]
= inf
t∈R+

λx(t).

For the upper bound in (4.2), for a fixed κ > 0, consider Aκ := {√t max0≤u≤1|βu| ≤ κ}. On
Aκ , |uxe1 + √

tβu| ≤ κ + x holds for 0 ≤ u ≤ 1; hence,
∫ 1

0
γ (|uxe1 + √

tβu|) du ≤ max
0≤z≤κ+x γ (z) = m(κ + x),

where m(w) := max0≤z≤w γ (z) for w > 0. It follows that, for t ∈ R+,

EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)]

≥ EBB3

[
exp

(
−t

∫ 1

0
γ (|uxe1 + √

tβu|) du

)
1Aκ

]

≥ exp(−tm(κ + x))PBB3

[√
t max

0≤u≤1
|βu| ≤ κ

]
,

and, hence,

λx(t) ≤ m(κ + x)− 1

t
log PBB3

[
max

0≤u≤1
|βu| ≤ κt−1/2

]
. (A.10)

The distribution for the maximum of the absolute value of the standard three-dimensional Bessel
bridge |β| is known—see, for example, [20, Equation (5)]. More precisely, we have

PBB3

[
max

0≤u≤1
|βu| ≤ κt−1/2

]

= 2

κ3

√
2t

π

∞∑
n=1

nπ

J 2
3/2(nπ)

exp

(
−π

2n2

2κ2 t

)
for κ > 0 and t ∈ R+, (A.11)
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where J3/2 is the Bessel function of index 3
2 . In particular,

lim
t→∞

(
−1

t
log PBB3

[
max

0≤u≤1
|βu| ≤ κt−1/2

])
= π2

2κ2 ,

as only the first term in the summand in the series in (A.11) will play a role in the limit.
Combining the last limiting relationship with inequality (A.10), we obtain

lim sup
t→∞

λx(t) ≤ m(κ + x)+ π2

2κ2 .

Upon minimizing the right-hand side of the above inequality, the upper bound in (4.2) is
obtained.

Finally, to verify (4.3), observe that γ being bounded from below implies that the random
variables exp(−t ∫ 1

0 γ (|uxe1 + √
tβu|) du) are uniformly bounded for small t ∈ R+. Then,

l’Hôpital’s rule and the bounded convergence theorem give

lim
t↓0

λx(t) = (−1) lim
t↓0

(∂/∂t)EBB3 [exp(−t ∫ 1
0 γ (|uxe1 + √

tβu|) du)]
EBB3 [exp(−t ∫ 1

0 γ (|uxe1 + √
tβu|) du)]

=
∫ 1

0
γ (ux) du

= 1

x

∫ x

0
γ (u) du.
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