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Abstract

Cramér’s V and Tschuprow’s T are closely related nominal variable association mea-
sures, which are usually estimated by their empirical values. Although these estimators
are consistent, they can have large bias for finite samples, making interpretation difficult.
We propose a new and simple bias correction and show via simulations that, for larger
than 2×2 tables, the newly obtained estimators outperform the classical (empirical) ones.
For 2 × 2 tables performance is comparable. The larger the table and the smaller the
sample size, the greater the superiority of the new estimators.

1 Introduction

Cramér’s V is a popular1 association measure for nominal random variables (Cramér, 1946;
Kendall & Stuart, 1973: Chapter 33; Bishop, Fienberg, & Holland, 1975: Chapter 11; Good-
man & Kruskal, 1979; Liebetrau, 1983). Closely related and older, but less well-known, is
Tschuprow’s T (Tschuprow, 1925, 1939), which has some possible theoretical advantages. The
usual estimators of these coefficients are simple functions of the Pearson chi-square statistic.
Unfortunately, the bias can be very large, especially for small samples, which makes interpre-
tation difficult. In the remainder of this section we define the coefficients. A bias correction
is proposed in Section 2, and in Section 3 we show via simulations that the new estimators
are superior to the classical ones.

Consider a probability distribution on an r × c contingency table with the probability in
cell (i, j) denoted πij (i.e.,

∑r
i=1

∑c
j=1 πij = 1). The mean square contingency (also known as

inertia in the correspondence analysis literature) is

ϕ2 =
r∑

i=1

c∑
j=1

(πij − πi+π+j)
2

πi+π+j
,

where a ‘+’ in a subscript denotes summation over that subscript. Two well-known measures

1A search for “Cramer’s V” receives around 5,000 Google Scholar hits and 50,000 Google hits at the time
of writing.
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of nominal association based on ϕ2 are Cramér’s V (Cramér, 1946),

V =

√
ϕ2

min(r − 1, c− 1)
,

and Tschuprow’s T (Tschuprow, 1925, 1939),

T =

√
ϕ2√

(r − 1)(c− 1)
.

Both coefficients range from zero to one, with equality to zero if and only if there is indepen-
dence in the table, i.e., if and only if πij = πi+π+j . Furthermore, T = 1 if and only if there
is perfect association in the table, i.e., if and only if exactly one cell in each row and each
column has nonzero probability. Thus, T can only equal 1 for square tables. On the other
hand, V can equal 1 for any rectangular table.

Now consider a multinomial sample of size n on the r×c contingency table. The proportion
of the sample which is in cell (i, j) is denoted pij . The empirical value ϕ̂2 of ϕ2 is

ϕ̂2 =

r∑
i=1

c∑
j=1

(pij − pi+p+j)
2

pi+p+j
,

and the empirical values of V and T are

V̂ =

√
ϕ̂2

min(r − 1, c− 1)

and

T̂ =

√
ϕ̂2√

(r − 1)(c− 1)
.

V̂ and T̂ are the usual estimators, with V̂ available in standard statistical packages such as
SPSS or SAS. However, it is well known that these are biased estimators of their population
counterparts and unfortunately, this bias may be rather large, even for large samples. Consider
for example a probability distribution with uniform marginals and satisfying independence
on a 5× 5 contingency table. In Table 1, the size of simulated biases can be seen for sample
sizes n = 10, n = 100, n = 1000 and n = 10, 000. Even in the latter case, it is still a not
entirely negligible 0.02. The standard errors are more than five times smaller than the bias,
i.e., most of the root mean squared error (RMSE) is due to the bias. Thus, unless the sample
size is large the empirical values V̂ and T̂ are hard to interpret as measures of strength of
association, potentially overestimating the true value by a large amount. Furthermore, since
the bias depends on the size of the table and the sample size, the estimators cannot easily be
used to compare association in tables of different sizes or of different sample sizes.

In the last row of Table 1 the RMSE of our bias corrected estimator Ṽ , presented in the
next section, is given. It can be seen that the improvement is well above a factor two.
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Sample size n 10 100 1000 10,000

Bias of V̂ 0.609 0.196 0.060 0.018

Standard error of V̂ 0.089 0.034 0.011 0.003

RMSE of V̂ 0.616 0.199 0.061 0.019

RMSE of Ṽ 0.261 0.074 0.023 0.007

Table 1: Simulation results for V̂ and Ṽ for a 5×5 table with uniform marginals and satisfying
independence.

2 Bias correction

The bias of ϕ̂2 at independence was conjectured by Tschuprow (1925) and proven by Bartlett
(1937) to be

Eϕ̂2 =
1

n− 1
(r − 1)(c− 1). (1)

(See also the English translation, Tschuprow, 1939, page 112.) Assuming his then conjecture
to be true, Tschuprow suggested the following bias-corrected version of ϕ̂2:

ϕ̃2 = ϕ̂2 − 1

n− 1
(r − 1)(c− 1).

Now clearly ϕ̃2 may be negative (or else it could not be unbiased when ϕ2 = 0), and since
negative values do not make sense, we will instead use the nonnegative estimator

ϕ̃2
+ = max(0, ϕ̃2).

Note that, since it is nonnegative and not always zero, ϕ̃2
+ is biased at independence.

To obtain bias-corrected estimators of Cramér’s V and Tschuprow’s T we could just replace
the occurrence of ϕ̂2 by ϕ̃2

+. However, this would yield a nonzero RMSE when there is perfect
dependence in the population. Instead, with

r̃ = r − 1

n− 1
(r − 1)2 and c̃ = c− 1

n− 1
(c− 1)2

we propose to use

Ṽ =

√
ϕ̃2
+

min(r̃ − 1, c̃− 1)

and

T̃ =

√
ϕ̃2
+√

(r̃ − 1)(c̃− 1)
.
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It is now straightforward to verify that, with probability 1, T = 1 implies T̃ = 1 and V = 1
implies Ṽ = 1.

Due to the bias correction, RMSE can be expected to be small if ϕ2 = 0; simulation results
given in Table 1 show that in the above example of a 5×5 contingency table, the RMSE for Ṽ
resp. T̃ is less than half that of V̂ resp. T̃ in each of the presented cases. In the next section,
simulations show that also when there is association in present in a table (i.e., ϕ2 > 0), Ṽ
and T̃ are superior to V̂ resp. T̂ .

3 Simulations

In this section we compare the bias and RMSE of V̂ 2 and Ṽ 2 through simulations. (The
reason we do not compare bias and RMSEs of V̂ and Ṽ is that we found these to have very
differently shaped distributions, making comparison of bias and RMSE inappropriate, see
Cox & Hinkley, 1994, Section 8.5. For the comparison of V̂ 2 and Ṽ 2, the RMSE should be a
reasonable indicator of performance.)

The simulations are for square tables so all results are identical for Cramér’s V and
Tschuprow’s T . Hence, to simplify presentation, we omit reference to Tschuprow’s T .

By design, the bias correction should work well if independence holds in the table. Hence,
we first investigate whether the bias correction also works if there is dependence. For this
we will do simulations for a “diagonal association” model for r × r tables, for which all
diagonal cells have the same probability and all off-diagonal cells have the same probability.
We parameterize the model using a parameter θ ∈ [− 1

r−1 , 1], with the diagonal cells having

probability 1
r2

+ θ(r−1)
r2

and the off-diagonal cells having probability 1
r2

− θ
r2
. It is immediately

seen that independence holds if θ = 0. With this parameterization, it can be shown that

V = |θ|.

For a 3× 3 table, the model is given as

1
9 + 2θ

9
1
9 − θ

9
1
9 − θ

9

1
9 − θ

9
1
9 + 2θ

9
1
9 − θ

9

1
9 − θ

9
1
9 − θ

9
1
9 + 2θ

9

.

Figures 1, 2, and 3 give simulation results for θ ∈ [−1
r , 1] for r×r tables with r = 3, r = 5,

and r = 7, respectively, and sample sizes n = 20, n = 100, and n = 1000. It can be seen that
the bias is reduced significantly for all values of θ.

In Figures 4, 5, and 6 the RMSE of V̂ 2 and Ṽ 2 for the same diagonal association model
is plotted. It can be seen that the new estimator gives the most improvement for moderate
levels of association and small sample sizes. The improvement also increases somewhat with
table size.
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Figure 1: Bias of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator Ṽ 2

(orange solid line) of Cramér’s V for a 3× 3 table under the diagonal association model.

It may be remarked that in Figures 4, 5, and 6 the ‘bumps’ in each case becomes more
pronounced as the sample size increases, in particular, at θ = 0 (independence), the RMSE
decreases at a rate of approximately 1/n, and for largish values of θ at a rate of approximately
1/

√
n. To see why this is so, recall that n×min(r−1, c−1)V̂ 2 is the Pearson chi-square statistic

which has an asymptotic chi-square distribution under independence, so V̂ 2 − θ = Op(1/n) if
θ = 0, while by asymptotic normality V̂ 2 − θ = Op(1/

√
n) if 0 < θ < 1.

In Figure 7, we give the ratio of the average RMSEs of V̂ 2 and Ṽ 2 for sample sizes
n = 20 and n = 100 for up to 7× 7 tables. The average is computed over 10,000 probability
distributions sampled from a uniform distribution over the (rc − 1)-dimensional probability
simplex (note that this is a Dirichlet distribution with concentration vector (1, 1, . . . , 1)′). On
average, for a 7× 7 table, the RMSE of V̂ 2 is about three times larger than the RMSE of Ṽ 2.
We see that, on average, the bias-corrected estimator is always better than the classical one.
The smaller the sample, the greater the relative difference, and also the larger the table, the
greater the relative difference.

We also investigated, but did not present here, the case of a 2× 2 table, and found there
to be little difference in RMSE of the two estimators. Note that, for a 2× 2 table, Cramér’s
V equals the square of the correlation coefficient.
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Figure 2: Bias of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator Ṽ 2

(orange solid line) of Cramér’s V for a 5× 5 table under the diagonal association model.
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Figure 3: Bias of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator Ṽ 2

(orange solid line) of Cramér’s V for a 7× 7 table under the diagonal association model.
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Figure 4: RMSE of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator
Ṽ 2 (orange solid line) of Cramér’s V for a 3× 3 table under the diagonal association model.
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Figure 5: RMSE of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator
Ṽ 2 (orange solid line) of Cramér’s V for a 5× 5 table under the diagonal association model.
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Figure 6: RMSE of empirical estimator V̂ 2 (blue dashed line) and bias-corrected estimator
Ṽ 2 (orange solid line) of Cramér’s V for a 7× 7 table under the diagonal association model.
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Figure 7: Ratio of average RMSEs of empirical value versus bias-corrected estimator of
Cramér’s V for I × J tables for n = 20 and n = 100. It is seen that the larger the ta-
ble and the smaller the sample size, the better the relative performance of the bias-corrected
estimator.
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