A Haar-Fisz Algorithm for Poisson Intensity
Estimation

Piotr FRYzLEWICZ and Guy P. NAsoN

This article introduces a new method for the estimation of the intensity of an inho-
mogeneous one-dimensional Poisson process. The Haar-Fisz transformation transforms a
vector of binned Poisson counts to approximate normality with variance one. Hence we
can use any suitable Gaussian wavelet shrinkage method to estimate the Poisson intensity.
Since the Haar-Fisz operator does not commute with the shift operator we can dramati-
cally improve accuracy by always cycle spinning before the Haar-Fisz transform as well
as optionally after. Extensive simulations show that our approach usually significantly out-
performed state-of-the-art competitors but was occasionally comparable. Our method is
fast, simple, automatic, and easy to code. Our technique is applied to the estimation of the
intensity of earthquakes in northern California. We show that our technique gives visually
similar results to the current state-of-the-art.

Key Words: Cycle spinning; Denoising; Poisson process; Transform to Gaussian, Variance
stabilizing transform.

1. INTRODUCTION

Wavelet methods have now become a useful tool in the area of curve estimation includ-
ing, in particular, regression problems where noise is Gaussian, as well as density estimation.
A general overview of wavelet methods in statistics can be found, for example, in Vidakovic
(1999); see Daubechies (1992) for a mathematical introduction to wavelets. Some authors
have also considered the problem of estimating the intensity of a Poisson process using a
wavelet-based technique. The usual (regression) setting is as follows: the possibly inhomo-
geneous one-dimensional Poisson process is observed on the interval [0, T'), and discretized
into a vector v = (v, v1, . .., vn—1), where v, is the number of events falling into the inter-
val [nT/N, (n+1)T/N),and N = 27 is an integer power of two. Each v,, can be thought
of as coming from a Poisson distribution with an unknown parameter \,,, which needs to be
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estimated. The approach proposed by Donoho (1993) consists in first preprocessing the data
using Anscombe’s (1948) square-root transformation, Av = 2,/v + 3/8, so that the noise
becomes approximately Gaussian. Then the analysis proceeds as if the noise were indeed
Gaussian, yielding (after applying the inverse square-root transformation) an estimate of
the intensity of the process.

Besbeas, De Feis, and Sapatinas (2002) reported that the current state-of-the-art meth-
ods are those based on translation-invariant multiscale Bayesian techniques as described
by Kolaczyk (1999a) and Timmermann and Nowak (1997, 1999). Due to frequent citation
we abbreviate Timmermann and Nowak by “TN”. Kolaczyk (1999a) introduced a Bayesian
multiscale algorithm to estimate the discretized intensity. However, rather than transforming
the data using a wavelet transform, he considered recursive dyadic partitions, and places
prior distributions at the nodes of the binary trees associated with these partitions. The
Bayesian methods outperform earlier techniques in Kolaczyk (1997, 1999b), Nowak and
Baraniuk (1999), and also the recent technique of Antoniadis and Sapatinas (2001) [since
the latter is equivalent to Nowak and Baraniuk (1999) for Poisson data]. Sardy, Antoniadis,
and Tseng (2004) described a computationally intensive [;-penalized likelihood method
that can be used for estimating Poisson intensities.

Other recent contributions to the field of wavelet-based intensity estimation include
Patil and Wood (2004), who concentrated on the theoretical MISE properties of wavelet
intensity estimators, where the intensity is a random process rather than a deterministic
function (or, after discretization, a deterministic vector). Brillinger (1998) gave a brief
overview of wavelet-based methodology in the analysis of point process data, and obtains
an estimate of the autointensity function of the well-known California earthquake data.

This article proposes an alternative wavelet-based algorithm for estimating the de-
terministic discretized intensity function of an inhomogeneous one-dimensional Poisson
process. Our method is based on the asymptotic normality of a certain function of the Haar
wavelet and scaling coefficients of the vector v, the property first observed and proved by
Fisz (1955), but (obviously) not set in the wavelet context at that time. In his article, Fisz
used this property to test the hypothesis that two Poisson variables have equal means, and
the hypothesis that their means are both equal to a given number.

The idea behind our algorithm is the following: we first preprocess the (Poisson) vector
v using a nonlinear wavelet-based transformation, which we call the Haar-Fisz transfor-
mation, and then treat the preprocessed vector as if it were signal plus iid Gaussian noise
of unit variance. In other words, we provide a new Gaussianizing and variance stabiliz-
ing transform, which operates in the wavelet domain, and not in the time domain, like the
standard square-root transformation.

The main advantages of our method are the following.

1. Its performance is extremely good, see Section 3.

2. It is of computational order N (or N M if M cycle-spins are used); in practice the

software is itself very fast.

3. Itis simple and easy to code.

4. Tt is fully automatic (up to any parameters that the Gaussian denoiser requires).
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5. It can make use of any signal+Gaussian noise denoising technology, an area where
a vast amount of research effort has been and is being expended. Hence our method
can only get better as we take advantage of newer Gaussian denoisers.

The articles by Kolaczyk (1999a), Timmermann and Nowak (1999), and the review
article Besbeas, De Feis, and Sapatinas (2002) all conclude that the Bayesian methods
proposed by Kolaczyk (1999a) and Timmermann and Nowak (1999) are the best currently
available. Section 3.2 demonstrates that our algorithm usually significantly outperforms the
above Bayesian methods but occasionally its performance was comparable.

Section 2 introduces the Haar-Fisz transform and describes its theoretical and empirical
properties. Section 3 introduces the Haar-Fisz algorithm for estimating Poisson intensities
and performs a thorough simulation study on its performance. Section 4 exhibits our al-
gorithm and that of Kolaczyk (1999a) on a dataset derived from the well-known Northern
Californian Earthquake database studied by Brillinger (1998). Finally, Section 5 provides
some conclusions and ideas for future exploration.

2. THE HAAR-FISZ TRANSFORMATION

2.1 THE HAAR DISCRETE WAVELET TRANSFORM

The discrete wavelet transform (DWT) is a linear orthogonal transform RV — RY,
where N = 27. In this section we are only concerned with the Haar DWT and we shall
describe the fast O(N) version as devised by Mallat (1989). The Haar DWT works as
follows: given an input vector v.= (vg,vy,...,Un_1) We set s = v and recursively
perform the following steps:

s1=(sh ' +50)/2, @1
and

dl = (sh; ' = 53 0)/2 22)
and define s7 and d’ be the vectors of s/ and d/ all for i = 0,...,2777 — 1, where
j=1,...,J. The elements of s/ (and d’) can be thought of as smooth (and detail) of the

original vector v at scale 27. The result of the full Haar DWT retains the detail vectors along
with the coarsest scale smooth element to give (s”,d”’,d’~!,... d").

The Haar DWT coefficients have a simple interpretation. For example, for N = 8§
the coarsest scale smooth coefficient is simply the mean of the original input vector: s*> =
% ZZ:O v;, and, for example, the coarse scale detail coefficient

1

d% = Z(U4 + v5 — Vg — ’U7),

is alocalized difference at scale 2. Both coefficients can be easily obtained from the recursive
transform formulas (2.1) and (2.2).
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The output from the Haar DWT may be inverted to recover the original vector v. The
inverse algorithm simply reverses formulas (2.1) and (2.2) to give:

s =l +d, (2.3)
and

S = s —d] 24)
fori =0,...,2/77 — 1 where j = J,..., 1. Remember that v = s°.

As an aid to understanding the modifications to the Haar DWT we are about to propose
consider the following example. Using steps (2.3) and (2.4) of the inverse Haar DWT with
N = 8 we can represent v, as

vy =89 = sy +dy —dj+dj. (2.5)

Expanding these summands using the forward formulas (2.1) and (2.2) gives

7 3 7
1 1 1 1
= §;Ui+§ <;vi—;w> —Z(Uo-i-vl —U2—03)+5(U2—U3), (2.6)

Formula (2.6) demonstrates the action of the forward and then the inverse Haar DWT.
Noting the pattern of operations in formula (2.6) makes it easier to understand the origin of
the more complicated formulas (2.9)—(2.16) in Section 2.2.

Note that formulas (2.1) and (2.2) can also be viewed as the convolution of an input
sequence with finite impulse response filters §(1,1) and (1, —1). Most presentations of
the Haar DWT use alternative filters where % isreplaced by \%2 which makes the Haar DWT
orthonormal.

2.2 THE HAAR-F1SZ TRANSFORM

The Haar-Fisz transform of the vector v = (vg,v1,...,vx_1) for N = 27, where
v; > 0 for all 7 is defined as follows.

1. Take the Haar DWT of v but with the modification that as each set of s’ and d” is
produced immediately define 7 by

if s =0,
fl= - .7)
& / s otherwise.
2. Apply the inverse Haar DWT to the modified transform (s, f/ £/~ ... f!) to
produce the vector u.
For fixed ¢, j formula (2.7) is an example of the Fisz (1955) transform which we shall define
and explain in Section 2.3. There is a one-to-one correspondence between vectors v and u,
and we will denote

u=Fv. (2.8)
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The nonlinear operator F defines the Haar-Fisz transform. A general formula for the Haar-
Fisz transform appears in Fryzlewicz and Nason (2003, sec. 8). Because the only difference
between Haar-Fisz and the Haar DWT transform are the O(1) in-place coefficient modifica-
tions in (2.7), the computational speed and memory requirement of the Haar-Fisz transform
is O(N). The inverse Haar-Fisz transform simply reverses the above Steps 2 and 1: Ap-
ply the Haar DWT to u to produce (s”, f”, f/=1 ...,
DWT while undoing the effect of (2.7) as each scale j is produced. The inverse Haar-Fisz
transform has the same computational complexity O (V).

f1) and then apply the inverse Haar

As an example we demonstrate the Haar-Fisz transform applied to the input vector v
of length 8 now with all positive entries. The Haar-Fisz transform u = Fv is given by

P ZZ‘:OWJFZ? ovz_ i= 4”Z UO+U1_(v2+U3) Yo~ (2.9)
_ ZZ‘:O Ui Zf o Vi — 27—4 Vi % o — (2 +v3) Y — U
w = Tty -5 , (2.10)
W SLen  2/Thow Voot o
7
w = Zigovz i Zz o Vi 72—4”! _ vt = (ntwn) \[’Uz v ,(2.11)
WIS 2Tiew  VAVETH
_ ZZ:O V4 Zf‘:o Ui — 217':4 vi v+ v — (v +v3) Y2 " U
u3 e 8 —+ - 7 - \/Q\/m’ (212)
22\/x ]y 2/S v 2 F 03
7 3 7
= Zigo vi D im0 Vi — DiaVi + Vs + s — (v +v7) + Ve T U5 , (2.13)
23S v Zm V2 Fus
Yo% XaoVi—Diat | vatus—(Vtvy)  va—vs
w = Lol 7 n 7 - L (2.14)
N 23S, v Vs s
Zzzo U5 Zf’:o Vi — ZZ‘:4 Vi va+us — (v6 +v7) Y6 — W1
wp = = = - t 5 . (2.15)
WA T 2/Shu Voot
I Slooli | MgV — gV va+vs — (v + v7) LT (2.16)
; _ — (2.
8
23 m 5 \/ﬁ V246 + v1

The structure of the underlying Haar inverse DWT can clearly be seen in the formula. In
particular, compare the formula for u, above with formula (2.6). Formulas (2.9) to (2.16)
are a special case of the general formula for F given in Fryzlewicz and Nason (2003, sec.
8).

2.3 RATIONALE BEHIND THE HAAR-F1SZ TRANSFORM

The Haar-Fisz transform possesses Gaussianizing and variance stabilization properties
stemming from the following result which is a special case of the theorem in Fisz (1955).
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Theorem 1. (Fisz) Let X; ~ Pois()\;) fori = 1,2 and X, X, independent. Define
the function ¢ : R> — R by

0 if X;=X,=0,

2.17
(X1 — X2)/(X, 4+ X2)?  otherwise. @17)

C(Xl,Xz){

If (A1, \a) — (00,00) and Ay /\a — 1 then (X1, X2) — C(A1, ) = N(0, 1),

We call ( the Fisz transform. We illustrate the use of Fisz’s theorem in our algorithm
using the specific example in (2.9)—(2.16). Each summand, apart from the first (the mean
of all data), in formulas (2.9)—(2.16) is of the form a({(X,, X,) where X; are independent
Poisson with mean \;, ¢ = 1,2 and a > 0. If A; and ), are large and close then, by Fisz’s
theorem, each summand will be close to normal, with variance of a> and mean of a( (A1, A2).

In general, since we are dealing with inhomogeneous intensities with means Aj, Ay
which are not always large and close, it would be desirable to gain some insight into

e how well the Fisz transform can Gaussianize and stabilize variance, and
e how well we can determine the mean, that is, how close E¢(X, X;)isto ((A1, A2),

for a whole range of \;. These issues would be challenging to investigate theoretically.
However, to cast some light we performed the following simulation experiment. We chose
values of \; to range from 1 to 40 in steps of 1. For each pair (A1, \2) we draw 10° values
of (X, X;) as defined by (2.17) and denote the sample by z(\;, A;). For a comparison of
Gaussianization we also compute Anscombe’s transform, as mentioned in Section 1, to the
X, which arises from the larger \; (this comparison is charitable to Anscombe: either X
or X, could be used but Anscombe works better for larger intensities).

Figure 1 gives some idea of how well the Fisz transform Gaussianizes, stabilizes vari-
ance and how close Z( A1, A2) is to ((A1, A2). The top left figure shows that Fisz is always
“more Gaussian” than Anscombe. The top right figure merely shows that z(\;, \;) is very
close to ((A1, A2). The bottom row of Figure 1 shows that the variance of z(A;, A;) is stable
and close to one for a wide range of (A, \;). To summarize, the above experiment shows
that {(X1, X,), the Fisz transform of X and X, can be thought of as an approximately
Gaussian variable with mean (A, A2) and variance bounded above by (and close to) one.

The above discussion concentrates on the distributional properties of individual Fisz
transformed variates. However, it is also of interest to ascertain how well the fully Haar-
Fisz transformed variables u from (2.8) are Gaussianized and variance-stabilized. Another
property we desire of the Haar-Fisz transform is that it should not unduly introduce cor-
relation in u: especially when none existed in v. In an attempt to empirically investigate
the degree of (de)correlation, Gaussianization and variance stabilization (“D-G-S”) of the
Haar-Fisz transform we carried out an extensive simulation study which is fully documented
in Fryzlewicz and Nason (2003) but we briefly summarize the conclusions here.

1. The degree of D-G-S was strikingly similar for sample sizes of N = 128 and

N = 1,024: we suspect that the degree of D-G-S is not strongly dependent on N.
We consider N = 128 to be a short vector in this situation.
2. The greater the minimum of the intensity vector, A, the higher the degree of D-G-S.
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Figure 1. Top left: Difference between Kolmogorov-Smirnov test statistics computed on Anscombe-transformed
Poisson variables with intensity max(\1, \2), and (A1, X2). Positive difference means that Haar-Fisz is closer
to Gaussian. Top right: |Z(A1, \2) — C(A1, A2)|. Bottom left (and right): perspective (and contour) plot of
var(z(A1, A2)).

For constant intensities D-G-S is extremely effective from about A = 4.

3. For nonconstant intensities, the degree of D-G-S depends not only on min A but
also on the length of the stretch where the intensity is equal, or close, to min A. The
shorter the stretch, the lower the “acceptable” value of min A for which D-G-S is
still very effective. For example, if the intensity is at its constant minimum, 2, for
25% of the time and the remaining intensity is constant at 10, then the D-G-S is
extremely effective.

The following example compares the D-G-S properties of the Haar-Fisz transform, F,
Anscombe’s transform, .4, and the identity transform. Let us consider the intensity as in
the top plot of Figure 2 (a rescaled and shifted version of the Donoho and Johnstone (1994)
bumps function). This intensity vector will be denoted by A, and v will denote a sample
path generated from it.

Figure 2 compares the Q-Q plots of v — X\, Av — A\, and Fv — F A averaged over 100

samples of v. Clearly, the Q-Q plot shows that the Haar-Fisz transformation does a better job
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Figure 2. From top to bottom: intensity vector X of Donoho and Johnstone (1994) bumps function (solid; shifted
and scaled so that the minimum intensity is 3 and the maximum is 18) and one sample path v (dotted); Q-Q plots
of vectors v — X, Av — A\, and Fv — F X averaged over 100 v samples.
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in “Gaussianization.” In particular, the Haar-Fisz transformed data are less “stepped” and
look more like variates from a continuous distribution than a discrete one. The Anscombe-
transformed data appear more “stepped” for lower quantiles than for higher ones. Further,
the tails for Haar-Fisz are more normal than for Anscombe which in turn is more normal
than the raw count data.

The top two plots in Figure 3 show the squared residual Av — AN\ for Anscombe and
Fv — F X for Haar-Fisz averaged over 1,000 samples. It can be seen that both transforms
stabilize variance around 1 very well. Further extensive simulations, reported by Fryzlewicz
and Nason (2003), show that Haar-Fisz stabilizes variance extremely well, in many cases
much better than Anscombe. In particular, when the intensity is larger than three both Haar-
Fisz and Anscombe perform well. Haar-Fisz is also good for intensities 2—3. However,
for low intensities, less than 2, neither Haar-Fisz nor Anscombe stabilize very well, but
Haar-Fisz always does better.

The bottom plot in Figure 3 shows the sample autocorrelation of v — F\ averaged
over 100 samples and demonstrates that there is little autocorrelation in the Haar-Fisz
transformed variates. This is a common feature provided the vector is well Gaussianized:
see conclusions 1-3 above and see also Fryzlewicz and Nason (2003) for further simulation
results.

Finally, in this section, we quote two propositions for the operator F for constant
intensities [the proofs appear in Fryzlewicz and Nason (2003, sec. 8)]. In actuality we are
interested in nonconstant intensities but as mentioned earlier such theory is beyond the scope
of the present article. Our propositions provide some reassurance that using denoisers for
signals contaminated with uncorrelated Gaussian is not an unreasonable thing to do (even for
nonconstant intensities, particularly those that are slowly changing or piecewise constant).
This will be confirmed later by our simulation results in Section 3.

Proposition 1 says that the coefficients of the Haar-Fisz transformed vector of Poisson
counts are asymptotically uncorrelated.

Proposition 1. Let v = (vg, vy, .. .,vn—1) be a vector of iid Poisson variables with
mean A, and let N be an integer power of two. Let u = Fv. For m #+ n, we have

cor(tm,un) =0 as A— oo and MN/N — 0. (2.18)

Proposition 2 says that these coefficients are also asymptotically normal with variance one.

Proposition 2. Let v = (vo,vy,...,vn—1) be a vector of iid Poisson variables with
mean A\, and let N be an integer power of two. Letu = Fv. Foralln =0,1,...,N — 1,
we have

Up — A=V +Y,, (2.19)
where
v % 0 as AN—=0
Y, 4 N@©,1) as (\N)— (00,00). (2.20)
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3. POISSON INTENSITY ESTIMATION

We propose the following core algorithm for estimating the intensity A of a Poisson
process:

[A1] Given the vector v of Poisson observations, preprocess it using the Haar-Fisz trans-
formation to obtain Fv.

[A2] Denoise Fv using any suitable ordinary wavelet denoising technique, appropriate
for Gaussian noise (i.e., DWT—thresholding—inverse DWT). Denote the smoothed
version of v by FX. We can optionally exploit the fact that the asymptotic variance
of the noise is equal to one.

[A3] Perform the inverse Haar-Fisz transform to obtain F ! (ﬂ) and take it to be the
estimate of the intensity.

Section 3.1 describes a range of methods for Poisson intensity estimation including our new
ones. Section 3.2 evaluates the performance of our Poisson intensity estimation algorithm
and compares it to existing techniques on a variety of test intensities.

3.1 METHODS FOR POI1SSON INTENSITY ESTIMATION

Existing methods. As mentioned in the introduction, the Bayesian methods due to Ko-
laczyk (1999a) and Timmermann and Nowak (1997, 1999) are currently state-of-the-art;
see Besbeas, De Feis, and Sapatinas (2002). Our simulation study compared our technique
with these Bayesian methods, as well as with the computationally intensive [;-penalized
likelihood technique of Sardy, Antoniadis, and Tseng (2004) and with a choice of methods
based on the Anscombe transformation [to save space, for the latter two see Fryzlewicz
and Nason (2003)]. To compare our technique with Kolaczyk (1999a) we used Kolaczyk’s
BMSMShrink MATLAB software. As we did not have access to TN’s software we exactly
reproduced the simulation setup as in Timmermann and Nowak (1999) and compared our
results to their Tables I and II. [Incidentally, the methods in Kolaczyk (1999a) and Tim-
mermann and Nowak (1999) are very similar: the underlying Bayesian model is exactly
the same, although the hyperparameter estimation is slightly different (E. D. Kolaczyk,
personal communication, 2001)].

Our method. The following describes the common features for our Poisson intensity
estimation.

1. All our techniques always involve the Haar-Fisz transform, [A1], of the data, and

the inverse Haar-Fisz transform, [A3].

2. Instep [A2] of our algorithm the wavelet denoising technique may be of a translation
invariant (TI) transform type; see Coifman and Donoho (1995). We refer to TI-
denoising at this stage as “internal” cycle spinning (CS).

3. Instep [A2] we could use any one of a number of wavelet families [e.g., multiwavelet,
see Downie and Silverman (1998), complex-valued, see Lina (1997) etc.] for the
denoising. In our simulations below we use Haar wavelets and Daubechies least-
asymmetric wavelets of order 10; see Daubechies (1992).
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4. Let S be the shift-by-one operator from Nason and Silverman (1995). The Haar-Fisz
transform is not translation-equivariant because 7S # SF. This noncommutativity
implies that it is beneficial to apply CS to the whole algorithm [A1]-[A3] even if
[A2] uses a TI technique. We call this “external” CS.

Due to the particular type of nonlinearity of the Haar-Fisz transform there is no fast
O(N log N) algorithm for the external CS. Therefore, we implement external CS
by actually shifting the data before [A1], shifting back the estimate after [A3], and
averaging over the estimates obtained through several different shifts.

For a dataset of length N there are IV possible shifts. However, through empirical
investigation detailed by Fryzlewicz and Nason (2003), we have found that 50 shifts
are enough for data of length < 1,024. We postulate that using more shifts for longer
datasets is likely to be beneficial.

Note that there is no point in doing external CS with the Anscombe transformation, A,

provided one has carried out internal CS, since Anscombe’s transformation commutes with

the shift operator: AS = SA.

The following list labels and describes the wavelet denoising methods that we choose
to use in [A2]. In each case F <1 denotes the use of the Haar-Fisz transform and its inverse.
F><U: Universal hard thresholding from Donoho and Johnstone (1994) as implemented

in WaveThresh (Nason 1998) with default parameters (e.g., uses MAD variance
estimation on all coefficients). No CS is performed.

F > CV: Cross-validation method from Nason (1996) as implemented in WaveThresh using
default parameters but hard thresholding. No CS is performed.

Fr<BT: A variant of the greedy tree algorithm from Baraniuk (1999). No CS is performed.

F<xU CS, F<xCV CS, F<BT CS: As above, but supplemented with external CS (50
shifts).

Hybrids. We also looked at the performance of certain hybrid methods. These estimate the
intensity by averaging the results of two of the above Haar-Fisz methods. Our main
hybrid, H:CV+BT CS, combines F>xCV CS and F<BT CS. Note that hybrids
can be easily formulated due to the large number of methods available for denoising
Gaussian contaminated signals.

During our investigations we made use of several other denoisers including the eBayes

procedure as described by Johnstone and Silverman (2001) using software kindly supplied

by Bernard Silverman; universal hard threshold with internal cycle-spinning; and hybrids
of these with FxCV CS.

3.2 SIMULATION RESULTS FOR STANDARD TEST FUNCTIONS

Simulated data, v, for the model described in the first paragraph of the Section 1, can be
easily obtained: fix the known intensities \,, and then draw a sequence of Poisson variables
vy, €ach with known intensity A,,.

The simulation setup in this section is the same as that described by Timmermann
and Nowak (1999) and the results here can be directly compared. The results cited here as
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Figure 4. Selected estimates for the Donoho and Johnstone intensity functions (dashed, described in text). Each
estimate gives an idea of “average” performance in that in each case its MISE is the closest to the median
MISE obtained over 50 sample paths. The estimation method in each case was F ><xxU CS with Daubechies least-
asymmetric wavelets with 10 vanishing moments except for blocks which used H:CV+BT CS with Haar wavelets.

BAYES are taken from and refer to the Bayesian method developed in Timmermann and
Nowak (1999) obtained over 25 independent simulations. The study by Timmermann and
Nowak (1999) obtains two sets of intensity functions of length N = 1,024 from the test
functions from Donoho and Johnstone (1994). Each set is obtained by shifting and scaling
to achieve (min,max) intensities of (1/8,8) and (1/128, 128). The true intensity functions
for the (1/8, 8) case are shown as dashed lines in Figure 4. All the results in this section on
our methods and BMSMShrink are based on 100 independent simulations.

The results reported in Table 1 are the MISE normalized by the squared I/, norm of the
true intensity vector, multiplied by 10,000 and then rounded for clarity of presentation [this
is exactly the same performance measure as in Timmermann and Nowak (1999) which is
useful for comparability].

The results show that our FaU CS method with the LA10 wavelet outperforms the
existing state-of-the-art methods especially for the lower intensity, except for the blocks
function. The main reason why its performance for blocks is less impressive is that a
smooth wavelet is used in the Gaussian denoising step [A2]. As expected, the performance
of F >a U CS with the Haar wavelet is much better in this context, but still not as good as that
of BMSMShrink, which is the better of the two Bayesian competitors for blocks. However,
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Table 1. Normalized MISE Values (x 10,000) for Existing Bayesian Techniques and our Fi<i U, Fr<U
CS and H:CV + BT CS Methods Using Haar Wavelets and Daubechies’ Least Asymmetric
Wavelets with 10 Vanishing Moments (LA10), on the Test Functions with Peak Intensities 8
and 128. The best results are indicated by bold.

FraU Fr<U CS H:CV+BT CS
Intensity BAYES BMSMShrink  Haar LA10 Haar LA10 Haar
Peak intensity = 8
Doppler 154 146 380 181 201 99 159
Blocks 178 129 374 450 191 302 135
HeaviSine 52 46 214 79 68 40 64
Bumps 1475 1871 3245 1892 2826 1268 2266

Peak intensity = 128

Doppler 26 20 92 24 29 12 23
Blocks 27 8 22 64 8 37 7
HeaviSine 7 7 35 13 9 7 9
Bumps 143 174 357 211 185 133 163

the hybrid method H:CV+BT CS with the Haar wavelet achieves performance comparable
to BMSMShrink. We should emphasize here that our Fr<xU CS method is far simpler to
implement than the current state-of-the-art techniques. The non-CS results for FoaU are
reported for information only as both BAYES and BMSMShrink use cycle-spinning.

In Figure 4 the small spike in the heavisine function is not picked up well at intensity
8 but is almost always clearly estimated at intensity 128 (not shown). However, it should
be said that the spike is almost completely obscured by noise in all realizations at intensity
8 so it would be extremely difficult for any method to detect it. We are impressed with
the quality of the estimates using the new Haar-Fisz method, particularly with bumps and
doppler. Also, the reconstruction of blocks, using the hybrid method H:CV+BT CS, is
very accurate. Overall, it must be remembered that the reconstructions are usually going
to be less impressive than the classical wavelet shrinkage problem where the test functions
are contaminated with Gaussian noise with variance one.

We also performed an indirect comparison with the computationally intensive /-
penalized likelihood method proposed by Sardy, Antoniadis, and Tseng (2004) using re-
sults presented therein, as well as a direct comparison with methods using the Anscombe
transform but otherwise constructed in exactly the same way as F<U and Fr<U CS. Al-
though our technique significantly outperformed these competitors for peak intensity 8, its
performance was almost identical to the Anscombe-based method for peak intensity 128.
Also, the method of Sardy, Antoniadis, and Tseng (2004) based on Haar wavelets turned
out to be slightly superior to our technique for the bumps function for peak intensity 128:
the average MISE achieved by their method was about 8% lower. This investigation was
detailed by Fryzlewicz and Nason (2003).

4. APPLICATION TO EARTHQUAKE DATA

In this section, we analyze Northern Californian earthquake data, available from:
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Earthquakes in Northern California, magnitude >= 3.0
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Figure 5. The number of earthquakes of magnitude > 3.0 which occurred in Northern California in 1,024
consecutive weeks, the last week being 29 November—5 December 2000.

http://quake.geo.berkeley.edu. We analyze the time series Ny, k = 1,. .., 1,024, where Ny,

is the number of earthquakes of magnitude 3.0 or more which occurred in the kth week,
the last week under consideration being 29 November—5 December 2000. The time series,
imported into S-Plus, is plotted in Figure 5.

Our aim is to extract the intensity which underlies the realization of this process. For
the purposes of this example we shall use the BMSMShrink methodology of Kolaczyk
(1999a) and our hybrid H:CV+BT CS method with Haar wavelets. The rationale for using
H:CV+BT CS is that:

e it appears that the true earthquake intensity is highly nonregular and H:CV+BT
CS with Haar wavelets worked the best on the blocks simulation example from the
previous section;

o the earthquake data exhibits medium to high intensities and H:CV+BT CS was
better than the other hybrids that we tried in this situation.

Figure 6 shows the intensity estimates obtained using BMSMShrink and H:CV+BT CS
plotted on a log scale. (Due to the large peak at 274 weeks the original scale of 0-250 is not
suitable for analyzing the subtle differences between the estimates.) Visually the estimates
are very similar however the H:CV+BT CS estimate is a little less variable. Although with
this real data there is clearly no right or wrong answer it is reassuring that they do give such
similar visual results even though BMSMShrink and H:CV+BT CS are based on completely
different philosophies.
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Figure 6. Intensity estimates for earthquake data for weeks 201 to 400. Dotted line is BMSMShrink estimate and
solid is H:CV+BT CS estimate.

5. CONCLUSIONS

This article describes a new wavelet-based technique for bringing vectors of Poisson
counts to normality with variance one. The technique, named the Haar-Fisz transformation,
was applied to estimating the intensity of an inhomogeneous Poisson process, yielding a
method whose performance was nearly always better than that of the current state-of-the-art.

For Poisson intensity estimation our methodology requires two components. The first,
the Haar-Fisz transform, is very simple and easy to code. The second component can be any
suitable Gaussian denoising procedure: we have used and compared a variety of wavelet
methods ranging from the fast universal thresholding to more complicated techniques such
as cross-validation, Baraniuk trees, and empirical Bayes. Because any Gaussian denoiser
can be used, the Haar-Fisz algorithm can only improve as the field develops.

If computational speed is not an issue, and little is known about the smoothness of
the true intensity, we recommend that several denoisers be used and a hybrid averaging
all of their results, with optional full cycle-spinning, be considered. However, if speed
is important, then there is an issue over which one denoiser should be chosen: not all
denoisers are appropriate for all types of intensity as our earlier simulations confirmed. Our
recommendation is that if one suspects the intensity is piecewise constant then one should
use Haar wavelets and a hybrid method such as H:CV+BT CS; otherwise, we strongly
recommend the use of F>aU CS with a smooth wavelet.



A HAAR-FiszZ ALGORITHM FOR PoI1sSON INTENSITY ESTIMATION 637

We believe that one of the reasons why the performance of the Haar-Fisz algorithm
is so good is due to the non-commutativity of the Fisz and shift operators, which enables
meaningful cycle spinning. Also, the Fisz transform itself is a more effective normalizer
than Anscombe.

Future ideas. The Haar-Fisz transform has the potential to “Gaussianize” a wide range
of other noise distributions such as binomial, Gamma, and negative binomial. As X2 is
a special case of the Gamma distribution we believe that the Haar-Fisz algorithm could
be a potentially useful variance-stabilizer for a putative (wavelet) periodogram smoothing
technique for (locally) stationary time series analysis. See Priestley (1981) for details on
periodogram smoothing for stationary time series and Nason, von Sachs, and Kroisandt
(2000) for smoothing of wavelet periodograms of locally stationary wavelet processes.

Also, we note that our algorithm (1) can be easily extended to more than one dimension
to handle, for example, images; (2) can be used in conjunction with denoisers other than
wavelets; and (3) could profit from a theoretical study of the properties of the Haar-Fisz
transform for inhomogeneous intensities. These extensions are avenues for further research.

Software. The S-Plus routines written and used by us can be downloaded from the
associated Web page: http://www.stats.bris.ac.uk/~mapzf/Poisson/Poisson.html.
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