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Abstract

Wavelets are a commonly used tool in science and technology. Often, their use
involves applying a wavelet transform to the data, thresholding the coefficients and
applying the inverse transform to obtain an estimate of the desired quantities. In this
paper, we argue that it is often possible to gain more insight into the data by producing
not just one, but many wavelet reconstructions using a range of threshold values and
analysing the resulting object, which we term the Time-Threshold Map (TTM) of the
input data. We discuss elementary properties of the TTM, in its “basic” and “deriva-
tive” versions, using both Haar and Unbalanced Haar wavelet families. We then show
how the TTM can help in solving two statistical problems in the signal + noise model:
breakpoint detection, and estimating the longest interval of approximate stationarity.
We illustrate both applications with examples involving volatility of financial returns.
We also briefly discuss other possible uses of the TTM.

Keywords: Time-Threshold Maps; wavelets; thresholding; breakpoint detection; Un-
balanced Haar; volatility.

1 Introduction

Wavelets can be informally described as oscillatory functions, typically compactly supported
in the domain they live on and also localised, to some extent, in the corresponding frequency
domain. For the purpose of data analysis, they are often arranged into multiscale orthonor-
mal bases with a dyadic parent-children structure, which lead to decompositions of data
that (a) are fast to compute, (b) are stable and fast to invert, (c) provide a scale-location
resolution of the data and (d) are often sparse, i.e. only a small proportion of the coeffi-
cients of the decomposition tend to explain a large portion of the variability of the data.
There are many wavelet families to choose from. Section [2] provides a very brief introduc-
tion to wavelets; for a more complete overview the reader is referred to one of the many
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monographs on wavelets that have appeared since the late eighties, e.g. [Daubechies (1992),
Vidakovid (1999), Hérdle et al. (2000), Nason (2008) or the overview papers |Antoniadis
(2007), [Fryzlewicz (2010a).

Thanks to their attractive properties, an incomplete list of which appears above, wavelets
have attracted enormous attention in many branches of science and engineering. The Web
of Knowledge lists over 70,000 articles on the topic of wavelets published to date. Amongst
those published in 2011 alone, one can find applications of wavelets in climatology, astro-
physics, harmonic analysis, genome biology, signal, image and video processing, material
science, neuroscience, statistical time series analysis, and others.

Central to the popularity of wavelets and the breadth of their applicability is the concept of
sparsity of wavelet representations (already mentioned in the first paragraph above) and the
associated concept of complexity reduction via wavelet thresholding, which first appeared
in the seminal paper by [Donoho and Johnstone (1994) in the context of statistical signal
denoising. In a typical wavelet decomposition, the main salient features of the data are well
described by only a few large wavelet coefficients; the rest carry the “residual” component of
the data which in many applications can be safely omitted (e.g. the information discarded
in lossy image compression) or is indeed unwanted (e.g. the noise in signal denoising).
Thresholding, whereby small wavelet coefficients get set to zero and large ones are preserved,
is often used to separate the two groups and reduce the complexity of the data (e.g. denoise
the dataset or compress the image) as desired in the particular application.

Due to the importance of the concept of thresholding in wavelet applications, the topic of
threshold selection has attracted considerable attention in various contexts. The first work
in which a particular threshold selection method was proposed was again [Donoho and Johnstone
(1994), who introduced the so-called universal threshold in the problem of estimating a
function contaminated with iid Gaussian noise. The universal threshold guaranteed noise
removal with probability converging to one with the sample size. Due to the simplicity of
the function + Gaussian noise model and its importance as a “canonical” model in nonpara-
metric statistics, we will also use it to introduce the main ideas of this paper; therefore, it is
appropriate that we mention other statistical techniques used for wavelet threshold selection
in this setting; these include Stein’s shrinkage estimation (Donoho and Johnstone, [1995),
cross-validation (Nason, [1996), false discovery rate (Abramovich and Benjamini, [1996) and
empirical Bayes (Johnstone and Silvermanl, 2005).

We note that all of the above threshold selection procedures in the function estimation
problem advocate the choice of one single threshold value per each wavelet coefficient, which
leads to inference about data being based on the resulting single wavelet reconstruction.
Intuitively, it would appear to us that in some statistical problems (including, but not
necessarily limited to problems in which wavelet thresholding was already routinely used,
such as function estimation), more insight into the data could be gained by applying more
than one threshold value to each wavelet coefficient and analysing the resulting family of
wavelet reconstructions. Motivated by this observation, this work proposes a generic data-
analytic tool, the Time-Threshold Map (TTM), where the dataset at hand gets decomposed
in a given wavelet basis, the wavelet coeflicients get thresholded using a range of threshold
values, and the resulting sequence of wavelet reconstructions of the data (one for each
threshold value) is used as an output of the procedure and a basis for drawing conclusions
about the data. Roughly speaking, for a one-dimensional time-ordered dataset X; (e.g. a
time series or a signal), the TTM of X; in its most basic version is defined as the matrix



whose successive rows are the wavelet reconstructions of X; obtained for successive values
of the wavelet threshold parameters from a specified range.

The TTM is not the first method for data analysis that proceeds by applying the same sta-
tistical procedure for a range of parameter values; however, to the best of our knowledge, it is
the first one in a wavelet context. To quote some other examples, SiZer (Chaudhuri and Marron,
1999) is a data visualisation technique for displaying features of kernel-smoothed data as
a function of location and bandwidth, simultaneously over a range of bandwidths. Thick
Pen (Fryzlewicz and Oh,[2011) is a technique for displaying and analysing time series which
uses the idea of plotting the time series data with a range of pens with varying thicknesses.
Finally, we note that the idea of visualisation of the output of a statistical algorithm for
a range of tuning parameter values simultaneously also appears in a number of modern
variable selection techniques such as LARS (Efron et all, [2004) where entire solution paths
are computed and displayed at once to aid the analysis.

Having introduced the TTM, we provide two examples of its application: one to the problem
of breakpoint detection in time series, and the other to the problem of the estimation of
the longest interval of parameter constancy, also in a time series context. We also briefly
discuss how it can possibly be applied in a selection of other statistical problems.

The paper is organised as follows. Section 2 provides a very brief introduction to wavelets
and defines the “basic” and “derivative” TTM, as well as discussing their basic properties.
Section 3 uses an example of a well-known contrived dataset to illustrate the typical features
of TTMs and discusses how they can potentially aid in the analysis and understanding of
some types of data. Section 4 applies and extends these ideas to propose solutions, based
on the TTM, to the statistical problems listed in the previous paragraph.

2 Time-Threshold Maps: motivation, definition, versions

2.1 Haar and Unbalanced Haar wavelets

For a data vector x = (x1,...,2,)7, a wavelet transform of x is a linear orthonormal
transform Wx which provides a certain scale-location decomposition of x, is computable
in O(n) operations, and is able to represent x sparsely in the sense that many elements of
Wx will be close to or exactly zero. Rather than making these statements more precise
for a general wavelet transform, we provide two examples of wavelet transforms which will
be used throughout the paper: those involving Haar and Unbalanced Haar wavelets. For
a more complete introduction to wavelets, the reader is referred to the monographs and
overview papers listed in the Introduction.

In Haar wavelets, the rows of W = Wy are given by vectors 1);;, with elements of the form

wj,k(l) = 2_(J_j)/2ﬂ{1+(k71)2tf—f,...,2.7—1+(k71)2J—f}(l)
27(“]7])/2}1{27'*1+1+(k—1)2H,...,2j+(k—1)2H}(l)v

for I = 1,...,n, where j,k are (respectively) scale and location parameters with ranges

j=0,....,J—1land k=1,...,2, with n = 27 (the function I4(-) is the indicator function

of the set A). The exception is the first row, given by ¢_; ;(I) = n~1/2. For example, when



n = 8, we have the matrix

1 1 1 1 1 1 1 1
Y I L I
VB8 VB VB VB VB VB VB B
e T 0 0 0
2 2 2 2

S B N I

H = 1 1

5 s (1) 01 0 0 0 0
0 0 & -7 (1) 01 0 0
0 0 0 0 % —5 0 0
0 0 0 0 0 0 % %

The thus-defined Wy is orthonormal (its rows define an orthonormal basis of R™), it extracts
information from x at certain dyadic scales and locations, and its structure enables the
computation of Wgx in O(n) computational time via the pyramid algorithm of Mallat
(1989). It also offers a sparse representation of piecewise-constant vectors in the sense that
for a vector x with M breakpoints, only at most M logsn + 1 coefficients of Wyx are
non-zero. Lower values of j correspond to “coarser” and higher — to “finer” scales of the
decomposition.

We note that each Haar vector 1) changes signs from positive to negative exactly in
the middle of its support, which may be restrictive in some statistical applications, such
as in breakpoint detection in the piecewise constant function + noise model (see e.g.
Brodsky and Darkhovsky, 1993, for the problem set-up and some early references). An-
other restriction is that the definition of a Haar basis is only straightforward if n is an
integer power of 2. To allow greater flexibility on both counts, it is possible to define Un-
balanced Haar (UH) wavelets, in which the sign change occurs not necessarily in the middle
of the support of the wavelets.

The construction of UH wavelets proceeds as follows. First, a vector 1y 1() is formed, which
is constant and positive for { = 1,...,b%!, and constant and negative for [ = 0% +1,...,n.
The breakpoint b%! < n is to be chosen by the analyst. Then this construction is repeated on
the two parts of the domain determined by g 1: that is, provided that b9 > 2 we construct
(in a similar fashion) a vector ;1 supportedonl =1,... b0 with a breakpoint b'. Also,
provided that n — %! > 2, we construct a vector 1,2 supported on | = WOl +1,...,n with
a breakpoint b'2. The recursion then continues in the same manner for as long as feasible,
with each vector 1;; having at most two “children” vectors v 12r—1 and 41 9;. For
each vector vy, their start, breakpoint and end indices are denoted by sPk bk and elk,
respectively. As in the Haar wavelets, the indices j, k are scale and location parameters,
respectively. Small (large) values of j can be thought of as corresponding to “coarse”
(“fine”) scales.

We consider an example of a set of UH vectors for n = 6. The rows of the matrix Wy gy
defined below contain (from top to bottom) vectors ©_i 1, %01, ¥1,2, ¥2,3, VY24 and Y37
determined by the following set of breakpoints: (b%!,b12 523 p24 v37) = (1,3,2,5,4).



1 1 1 1 1 1
V6 V6 V6 V6 V6 V6
v6 1 1 1 1 1
V6 /30 V30 V30 V30 V30
0 M3 M8 V2 V2 V2
Won = VIO VIO TV TV VIS
0 5 U 0 0 ?f
1 1 2
0 0 0 ? 761 -5
0 0 0 % 5 0

We note that similarly to Wy, the transform Wy is orthonormal, provides a scale-location
decomposition of its input and represents it sparsely if it is (close to) piecewise constant. If
the set of breakpoints is fixed, the UH decomposition can also be computed in time O(n).

The running example of the use of the TTM involving Unbalanced Haar wavelets in this
paper will be in the problem of breakpoint detection in the function + noise model. In
this type of application, selecting a suitable UH basis is of utmost importance. One basis
selection procedure described in [Fryzlewicz (2007) is the following greedy forward stagewise
procedure, related to the matching pursuit algorithm of Mallat and Zhang (1993) and to
the binary segmentation technique of |[Sen and Srivastava (1975). We first define the UH
mother vector 1sp . with elements defined by

1 1 1/2 1 1 1/2
— — I(s<I1<b)— — Ib+1<i<e).
Vsbell) {b—s—i—l e—s—i—l} (s<isb) {e—b e—s—i—l} (b+1<i<e)

e The breakpoint %!

in absolute value.

is chosen such that the inner product (x,%; 0.1 ,) is maximised

e Similarly, /1 := argmaxy| (x, g1 4 ei1.0)|, Where I = 2k — 1,2k,

Under a mild assumption on the permitted degree of “unbalancedness” of the thus-constructed
UH basis, the computational complexity of the above procedure is O(nlog n).

A large variety of other wavelet families have been used in various statistical contexts: these
include Shannon’s, Meyer’s, Franklin’s and Daubechies’ wavelets. The reader is refereed to
Vidakovid (1999), Section 3.4, for a concise description of these wavelets.

2.2 Time-Threshold Maps

For any wavelet transform W (with rows 1); ) applied to a data vector x, we denote d; ;, =
(¥, x), where (-,-) is the inner product. The sparsity property of wavelets means that
for a “typical” input vector x, the sequence d; will be sparse, with many elements close
to or even exactly zero. The meaning of “typical” depends on what wavelet basis is used:
for example, Haar and Unbalanced Haar wavelets produce sparse decompositions of vectors
which are exactly or close to piecewise constant.

A canonical example of a statistical application where the sparsity property of wavelets has
been used is that of estimating a function from noisy observations (a.k.a. smoothing or
denoising). In the most basic setup, we observe

x; = fi +¢&, (1)



where f; = f(i/n) are the function values to be estimated and ¢; is noise, which in this
illustration we assume to be iid Gaussian with mean zero. A wavelet decomposition W
of the terms of this regression equation using any fixed orthonormal wavelet basis yields,
respectively, d; i, = ik + €k, where many of the 1 ;’s are hopefully close to zero and only
a few are large in magnitude, and ¢, ;’s are again iid Gaussian due to the orthonormality of
W. Because of this separation of the coefficients d; j into a few large and many small ones,
a natural estimator for ji;, is the (hard) thresholding estimator

(and fi_1; = d_1,1), which yields an estimator f of f upon applying the inverse wavelet
transform W1 = WT. For any j, k, we introduce the functional notation t(dj N) == [k,
which will be useful later. If A is chosen well, f can often be shown to possess several
attractive properties, e.g. mean-square consistency with a near-optimal rate for a wide
range of signals f, see e.g. [Vidakovid (1999), Section 6.6, for a summary. Arguably the
simplest “good” choice of A is the universal threshold of IDonoho and Johnstone (1994) of
the form A\ = o/2log n where 02 = Var(g;) (and can be easily estimated from the data),
which leads to f being noise-free in a suitable sense, with high probability. The principle
of function estimation via wavelet thresholding has been extended to a variety of other
settings with more complicated noise structure, including Poisson intensity estimation (see
Besbeas et al., 2004, for a review), spectral density estimation in time series (Neumann,
1996, amongst others), or time-varying parameter estimation in locally stationary time
series models (Nason et all, 2000, amongst others). Although details differ, meaningful
application of wavelet thresholding in these settings often requires the use of a different
threshold value )\, for each j, k.

For notational convenience later, we define the vectors d = (d; 1), and A = (A );x (where
the indices j, k, here and below, are arranged in the same order as in the rows of W). We ex-
tend the definition of the function ¢(-) to vector arguments as follows: t(d, A) = (t(djk, A)); x
and ¢(d, A) = (¢(djk, Ajk)); - We also define the term “wavelet reconstruction” or “recon-
struction” of a data vector x with (vector) threshold A as follows:

xp = Wt (Wx, A), (2)

with x) defined analogously. We note that this definition is model-free and that x, should
not necessarily be viewed as an estimator of any quantity, even if there is a stochastic model
for x. However, if, for example, x follows model ([Il) and A\ = ov/21log n, then x) reduces to
the estimator f described above. We also observe that xy = x, and X, is a vector whose
elements are the sample means of x.

The overwhelming majority of existing applications of wavelet thresholding in statistics
involve a single reconstruction x,, corresponding to a single (possibly vector) threshold A.
The canonical example is again the denoising problem in which we typically search for a
suitable threshold A such that x4 is a good estimator of f.

Our main proposition is this paper is to argue that for a range of statistical problems, more
insight into the data x could be gained by producing reconstructions x for an entire range
of thresholds A and analysing them jointly. How precisely to do this and what insight can
be gained is of course problem-dependent, and we will have ample examples in the paper.
We first construct the necessary toolbox. Starting with scalar thresholds A (rather than



vector thresholds A), we define the TTM of x as

T(x) = {33},

where d = max; iy£(-1,1) |dj k|- It is enough to stop at d as X\ = Xo for A > d. We will
occasionally refer to T'(x) as the “basic” Time-Threshold map to differentiate it from the
Derivative TTM below.

Each component of the vector x is a piecewise-constant (right-continuous) function of A.
We define
Ax)y = lim x)\ — X)4p-
h—0

The interpretation of Axy is simple: it is the effect of the inverse wavelet transform W=!
applied to only those coefficients d; i ((j,k) # (—1,1)) of x whose absolute value equals
exactly A. Therefore, it is the “detail” present in the reconstruction x, but not in any
reconstructions x5 for A > 0.

The introduction of Ax) invites the definition of the Derivative TTM of x as
AT (x) = {Ax g U fxac}-

We note that AT'(x) provides a decomposition of x which is orthogonal and invertible, in
the sense that

<AX)\1,AX,\2> = 0 if )\1 7& )\2 (3)
A€[0,d]

@) is the result of the fact that a coefficient d;j cannot simultaneously have magnitude A\
and A2, and of the orthonormality of W. In (), all but at most n terms Ax) in the range

A € [0, d] are zero.

T'(x) can be interpreted as a visualisation of how quickly the nonlinear approximation x)
of x = x( reaches the latter as \ decreases. Note that this is presented as a function of the
threshold A, rather than of the number of terms in the nonlinear approximation. For more
on nonlinear approximation, the reader is referred to [DeVore (1998).

To define the TTM for vector thresholds A, we restrict our attention to separable thresholds
A(X) for which
)‘j,k = )‘T(X’ ja k)

and define )
T(x) = {xp0) }r=o>

where

A=min{A: A > dgal V0 R) # (—L D).

We end this section by mentioning that the TTM methodology does not provide a new
wavelet thresholding procedure; instead, it helps visualise existing procedures in a way that
displays more information at once and can therefore potentially lead to improved inference.



3 Basic properties and features of the TTMs

In this section, we illustrate some generic features of the Time-Threshold Map, both in its
basic and derivative version. As we restrict our attention to Haar and Unbalanced Haar
wavelets, which are piecewise-constant, we use the well-known piecewise-constant “blocks”
signal (first having appeared in [Donoho and Johnstone, [1994) as a running example.

3.1 Basic Time-Threshold Map

3.1.1 Ordering the importance of features

We provide the first illustration of the TTM on the blocks signal, using the Unbalanced
Haar wavelets with the basis selection procedure described in Section 2.1l The middle plot
in Figure [Il shows the signal, x, sampled at n = 1000 equispaced time points. The top-plot
shows the values of the TTM T'(x) = {x,}¢_, (lighter colours correspond to higher values)
as a function of time (on the z-axis) and A (on the y-axis). The threshold parameter A has
been sampled at 50 equispaced points between 0 and d (thus the size of the plotted matrix
is 50 x 1000). The bottom plot shows x for A = %cz, k=0,1,...,4.

Note that each vertical line in the TTM corresponds to a breakpoint in x) for the values
of A\ within the range of that particular vertical line. One characteristic of the TTM of a
piecewise-constant signal (such as blocks) is that the time-locations of the vertical lines in
the TTM correspond exactly to the locations of breakpoints in the input signal x. This
is guaranteed by Lemma 2.2 in [Venkatraman (1993) which, translated into the notation of
our paper, states that the breakpoint b in each selected UH basis vector jx coincides
with one of the breakpoints in x (provided there are any breakpoints in x contained in the

support of 1 1).

We further note that the length of each vertical line can be interpreted as a measure of
“importance” or “prominence” of the given breakpoint in x. For example, in the blocks
signal, the “most prominent” feature is the one defined by the two breakpoints at times
t = 650 and t = 810, since the vertical lines corresponding to these two breakpoints are
present for A € [0,d), i.e. for the entire permitted range. Similarly, the “least important”
feature is the breakpoint at time ¢t = 780 (as it corresponds to the shortest vertical line)
or, interpreting features as peaks or troughs rather than individual breakpoints, the small
trough between times ¢ = 760 and ¢ = 780 as it is defined by two vertical lines the sum
of whose lengths is the shortest among all pairs of vertical lines in the TTM. Similarly,
quantities such as the ratio or the difference of the lengths of two vertical lines can serve as

a measure of the relative importance of two breakpoints in the signal.

We note at this point that the TTM does not necessarily preserve the order in which the UH
basis vectors have been chosen, i.e. the vertical lines corresponding to breakpoints b7 at
the coarsest scales (= those for the lowest values of j) are not necessarily the longest (since
the corresponding UH coefficients are not necessarily of the largest magnitude). This makes
the TTM inherently different from dendrogram-type plots in which, using our terminology,
coarser-scale splits would be presented as more prominent than finer-scale ones.
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Figure 1: Middle: the blocks signal x. Top: the TTM of x using Unbalanced Haar wavelets;
see Section [B.I.T] for details. Bottom: x) for A = %d, k=0,1,...,4 (black, red, green, dark
blue, light blue). 9



3.1.2 Separation of signal from noise

In Section BIT], we considered the TTM of the noise-free blocks signal. In this section, we
illustrate the behaviour of the TTM of the blocks signal with added iid Gaussian noise. We
are particularly interested in very noisy set-ups where the human eye cannot be relied on
to denoise the signal and more sophisticated techniques are needed.

The middle plot in Figure 2] shows the blocks signal from Section BT contaminated
with iid Gaussian noise with mean zero and standard deviation 2, resulting in the root-
signal-to-noise ratio of 0.952. Although the overall shape of the signal is clear, it would be
challenging to an untrained eye to give an accurate estimate of the number of breakpoints
in the underlying true signal. The top plot shows the TTM of the noisy blocks, again
using Unbalanced Haar wavelets with the basis selection procedure from Section 21, with
superimposed true locations of the breakpoints in blocks.

It is unsurprising to observe that the bottom part of the TTM shows those reconstructions
x which still contain noise. It is more interesting to note that the visibly noisy part of the
TTM is confined to a relatively narrow strip of the TTM, reaching only as far as A =5 or
A = 6 but not above these values. This may give the impression of the TTM being “cleaner”
and providing more distinct separation of signal from noise than the plot of the original
signal. Indeed, all the true breakpoints in blocks are clearly reflected in the TTM for some
values of A significantly above A = 6. The spurious features in the TTM occurring before
the first true breakpoint are unsurprising given the appearance of this particular simulated
data sample in that time region.

The bottom plot in Figure Bl showing x) for A\ = 7.5, confirms the good noise separation
property of the TTM in this example: the reconstruction is almost perfect except for the
spurious break before the first true breakpoint.

We do not formally quantify the above noise-separation property of the TTM in this section;
however, we provide some rigorous (albeit asymptotic) results concerning this property in
Section 1] where we apply it to the problem of breakpoint detection in a particular signal
+ noise set-up.

We end this section by noting that the noise-separation property can be viewed as an
instance of the feature-ordering property from Section BTt the fact that the vertical lines
corresponding to noise tend to be shorter than those corresponding to the signal can be
interpreted as noise being “less prominent” than signal in this example.

3.2 Derivative Time-Threshold Map
3.2.1 Visualising basis vectors on the Time-Threshold plane

In this section, we illustrate some features of the Derivative Time-Threshold Map, using
again the blocks example. We now use both Haar and Unbalanced Haar wavelets and there-
fore consider length n = 1024, which is a power of two as required by Haar wavelets (but not
by Unbalanced Haar). As in the previous section, we add independent Gaussian noise with
mean zero and standard deviation of 2. Algorithmically, it is straightforward to compute
the Derivative TTM simply by taking row-wise differences of the matrix representing the
basic TTM (whose construction is described in Section B.1.T]).

10
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Section [3.2.1] for details.

See



The top and middle plots in Figure Bl show the sign of the Derivative TTMs of the noisy
blocks. The reason why sign{AT(x)}, rather than AT(x) itself, is shown, is that the
magnitudes of the non-zero elements in AT'(x) are much lower for small values of A than
they are for its large values, which makes AT (x) inconvenient to view as a heat map due
to insufficient contrast for small values of A. The interpretation of the plots is simple: each
light-dark colour strip represents a different component (wavelet basis vector ;. times the
wavelet coefficient d;j) of x. The y-coordinate determines the magnitude of the wavelet
coefficient d; ;. The light-colour part of the strip coincides with the positive part of the
support of d;;x, and the dark colour — with the negative part. In other words, the
Derivative TTM provides a natural way of visualising the contribution of each wavelet 1;
to the input signal.

Traditionally, visualising the wavelet decomposition of a signal has mostly been done via
so-called time-scale plots (see e.g. [Vidakovid, [1999, Section 3.1), in which, in contrast to
the Derivative TTM, the displayed object is the d;;’s, arranged as a function of k (on the
z-axis) and j (on the y-axis). A time-scale plot of the Haar decomposition of the same
noisy blocks signal, computed in the R package wavethresh, is shown in the bottom plot
of Figure Bl

The two approaches, the time-scale plots and the Derivative TTM, aim to visualise the
same information in two different ways and should be viewed as ‘complementary’ rather than
‘competing’. However, one scenario in which the Derivative TTM might be a more attractive
option than the time-scale plot is the case where the given wavelet system does not have a
clear notion of scale. One example of such a wavelet system is the Unbalanced Haar basis.
Although notionally, the j parameter in the Unbalanced Haar wavelets 1; j is referred to as
“scale”, parameters such as the shape or frequency characteristics of different Unbalanced
Haar wavelets for the same value of j can be dramatically different as they heavily depend
on the previously selected Unbalanced Haar basis vectors in the basis selection algorithm
as well as on the shape of the input signal over the current sub-interval. Note that this is
different from the Haar wavelet case where a wavelet at scale j always has the same shape
and length of support. Since the Derivative Time-Threshold Map completely circumvents
the notion of “scale” (as it only uses ‘time’ and ‘threshold’ as the free variables), it might
be a more natural visualisation tool for such types of wavelets.

Another classic example of a wavelet system for which it is not obvious how to define scale is
when it arises from a lifting transform, see e.g. [Jansen and Oonincx (2005) for an overview
of the latter. For lack of a better term, we shall refer to such wavelets as “lifted”. Indeed,
Knight et all (2011) in their work on lifted wavelet spectra for time series sampled on a
non-equispaced grid provide one particular assignment of “scales” to lifted wavelets, but
refer to such scales as “artificial”. Many other assignments are possible. Since it avoids
the concept of scale altogether, the Derivative Time-Threshold Map might provide a less
ambiguous framework in which to visualise and analyse lifted wavelet decompositions.

3.2.2 Orthogonal Feature Decomposition via the Derivative TTM

It is a straightforward but interesting consequence of (B]) that for any disjoint intervals
[A1,A2), [A3, A1), the vectors x5, — x), and x,, — X), are exactly orthogonal. To see this,
recall the definition of x) from (&), the fact that W ! is orthonormal and that the supports
of t(Wx, A1) — t(Wx, \2) and t(Wx, A3) — t(Wx, \y) are disjoint.
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The implication is that for any sampling of the threshold parameter A, the rows of the
Derivative TTM matrix, computed from the basic TTM by row-wise differencing as de-
scribed in Section B.21] are exactly orthogonal to each other (with some of them possibly
being exactly zero).

As an example, consider again the noisy blocks signal from Section B.2.1] and its Derivative
TTM computed using Unbalanced Haar wavelets, where the threshold parameter A has been
sampled at six points \;, i = 1,...,6, equispaced between 0 and d = 38.91. Additionally,
we denote Ay = oo.

Figure [ shows the rows of the Derivative TTM, that is the vectors xy, —X»,,, (i = 1,...,6),
which provide the following orthogonal decomposition:
6
X=X\ + Z i T XXiqae (5)
i=1

The fact that the orthogonal components x), — x),,, correspond to different features of
the input signal x motivates calling these components the ‘orthogonal features’ of x and
the resolution of identity in (B) — the ‘Orthogonal Feature Decomposition’. Obviously,
the number of non-zero features in an Orthogonal Feature Decomposition is bounded from
above by the length of the input signal.

At this point, we note the difference between (Bl) and the wavelet multiresolution decompo-
sition of [Mallati (1989): the latter provides a linear decomposition of x whereas the former
is nonlinear. Indeed, the components of a multiresolution decomposition are defined by the
scales of the underlying wavelet basis, whereas in the Orthogonal Feature Decomposition
they are defined not by scales but by the magnitudes of the wavelet coefficients (hence
the nonlinearity). As an aside, note that additionally, in the case of the Unbalanced Haar
wavelets (as in the data example considered in this