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I am very grateful to all four sets of discussants: Jean-Marc Freyermuth & Rainer von
Sachs, Thomas Lee, Yaeji Lim & Hee-Seok Oh, and Hernando Ombao, for their interesting
and stimulating comments, questions and insights. I offer my thoughts on some of them
below.

One issue discussed by Freyermuth & von Sachs is that of the difference between what they
refer to as ‘diagonal’ (‘separable’) and ‘tree-structured’ (‘vertical’) wavelet thresholding
rules. In the former, the decision on whether to keep or kill, or alternatively whether and
how to modify, each wavelet coefficient only depends on the magnitude of the coefficient
and on the value of a scalar parameter, referred to as a threshold. In the latter, extra
factors in the decision are the parent and/or children of the given coefficient in the wavelet
decomposition tree. It is worth mentioning that reconstructions from such a tree-structured
scheme could also be visualised via a Time-Threshold Map, as long as the thresholding
decisions for the coefficients of the decomposition could be jointly parameterised by a single
real-valued parameter which would be assigned to the y-axis of the TTM. For example, in
Fryzlewicz (2007), the simplest such decision rule for each wavelet coefficient dj,k is: keep if

(dj,k)2 + (d
(P )
j,k )2 > λ2 and kill otherwise, where d

(P )
j,k is the parent of dj,k. In this example,

the parameter appearing on the y-axis of the corresponding TTM could be e.g. λ, or λ2.

Freyermuth & von Sachs also ask a series of stimulating questions regarding the derivative
TTM, and in particular the Orthogonal Feature Decomposition. I believe that the analysis
of the properties of the OFD as a tool for signal approximation and feature extraction
can only be meaningfully performed in conjunction with the analysis of the properties of
the underlying wavelet transform: the OFD is best interpreted as acting on an existing
transform (by grouping the wavelet basis functions according to the magnitudes of the
corresponding coefficients) rather than serving as a separate transform in itself. For this
reason, approximation properties of the wavelet basis (whether selected adaptively or not)
will have a substantial impact on those of the resulting OFD. Thus it is my belief that the
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most obvious route to investigating the approximation properties of the OFD is to develop
an understanding of the approximation properties of the underlying wavelet basis (a useful
resource for the latter is e.g. DeVore (1998)).

From the algorithmic point of view, similar “grouping according to coefficient magnitudes”
could be performed for any decomposition of a signal into a linear combination of simpler
functions, such as that of Chen et al. (1998), and similarly yield a resolution of the signal
into what can be interpreted as its “more important” (i.e. those corresponding to larger
coefficients) and “less important” components.

Extension of the TTM approach to image data would be possible: the (three-dimensional)
object of interest would then be a sequence of image reconstructions via wavelets, performed
with increasing (or decreasing) threshold values and ‘stacked’ one on top of another.

Further, the TTM approach could be used to compare two or more decompositions of
the same signal, each in a different wavelet basis or system. The comparison could be
done according to a pre-specified criterion expressible as an appropriate functional of the
TTM. This could lead to the choice of the ‘best’ transform for the signal, as surmised by
Freyermuth & von Sachs.

Freyermuth & von Sachs’s final question regarding the TTM’s potential capacity for signal
classification, especially in the context of a competing method by Timmermans et al. (2011),
also based on Unbalanced Haar wavelets, is a very interesting one. In the latter work,
the authors define a distance between two signals by comparing the magnitudes and the
locations of their respective Unbalanced Haar coefficients, arranged in the order in which
the corresponding Unbalanced Haar vectors are selected. I conjecture that the natural
construction of a TTM-based distance using Unbalanced Haar wavelets would be to compare
the OFD’s of both signals, in which case one would most likely be comparing the orthogonal
features corresponding to the same or similar threshold values in both signals. I leave this
thought-provoking question for future investigation.

The discussion contribution by Lim & Oh proposes a number of interesting possible exten-
sions, modifications and improvements to the TTM methodology.

As regards the detection of peaks in the variogram, rather than using the TTM method
based on Unbalanced Haar wavelets (which ‘specialise’ in changepoint detection rather than
peak detection, see Cho and Fryzlewicz (2011)), it might be advantageous to use the taut
string methodology of Davies and Kovac (2001) in this context. The latter technique can
lead to consistent estimation of peaks and could be embedded in the TTM framework by
setting the parameter on the y-axis of the TTM to be the ‘tube width’ (see Davies and
Kovac (2001) for a description of this parameter) rather than the ‘threshold’. The reader
is referred to Cho and Fryzlewicz (2011) for a description of differences and similarities
between the Unbalanced Haar and taut string function estimation techniques.

Another interesting aspect of Lim & Oh’s contribution is an attempt to use the TTM
technique to aid the visualisation of the dependence structure between two signals or time
series. Here, at least two alternative TTM-based techniques might be possible. The first
possibility would be to construct a TTM of a ‘raw’ measure of dependence between two
signals Xt and Yt; the simplest such measure, taken under the assumption of both Xt and
Yt having mean zero, would be the product Zt = XtYt (note that E(Zt) = Cov(Xt, Yt)), but
more complex measures such as various local cross- periodograms, might also be an option.

Another possibility would be, for example, to define an empirical multiscale measure of
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dependence between Xt and Yt by computing the sequence of sample correlations between
the corresponding orthogonal features of Xt and Yt. This, I believe, could serve as a basis
for constructing a TTM-based distance between Xt and Yt, an issue also mentioned in
Freyermuth & von Sachs’s contribution, as described above. This could potentially be an
example of what Freyermuth and von Sachs refer to as “going beyond the representational
benefits of the derivative TTM”.

Lim & Oh also propose, and Lee mentions, a possible robust version of the TTM. It is worth
mentioning that naturally robust signal processing techniques such as the median filter (see
e.g. Huang and Lee (2006), where a data-adaptive span selection technique is proposed
for such a filter) could also be embedded in the TTM framework, by simply assigning the
parameter of the given technique (e.g. the span in median filtering) to the y-axis of the
TTM.

To respond to the final issue noted in Lim & Oh’s contribution, it is worth noting that
Haar and Unbalanced Haar wavelets do not suffer from the boundary problems, which is
one of the reasons why the present paper focuses on these two families. In addition, the
Unbalanced Haar transform extends naturally to data vectors of any length, whereas there is
no unique way of extending ‘classical’ discrete wavelet transforms to data of length different
from an integer power of two.

Lee, I believe, is correct in stating that SiZer and TTM should be viewed as complementary,
rather than competing, techniques. However, I was interested to read about the potential
advantage of the TTM over SiZer in terms of their computational speeds.

I also agree with Lee that iterating the construction of the artificial signal X̃t might be
a good idea in certain situations. However, it must be borne in mind that each such
iteration affects the structure of the noise – as I imagine, not always in easy to quantify
ways. Also, X̃t, constructed by averaging the TTM across thresholds, is but one example
of a functional of the TTM. Other, more complex, functionals, are possible, including ones
that attach more importance to certain thresholds than to others, perhaps using Bayesian
formalism, as suggested by Ombao.

Indeed, the ‘averaging’ aspect is the main focus of Ombao’s contribution. In fact, he goes
further and proposes an interesting aggregated wavelet function estimate, which at any
point of the domain is defined as a convex combination of the rows of the TTM; but in
which the weights are permitted to vary over the domain. This, I believe, is an appealing
idea which is worth investigating in more detail.

Once again, I would like to thank all four sets of contributors for the extremely interesting
discussion, and the Editors for accepting this work for publication in the Journal.
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