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A Additional numerical experiments

A.1 Sensitivity analysis

Several tuning parameters are required in the algorithm of our approach. The notable ones are the
maximum number of scales qmax, and the autoregressive order p used in the initial step. Besides, the
choice of number of intervalsM would also be required, but it should be apparent from our algorithm
that it only plays a minor role under a large p (which, in the setup of our current algorithm, would
imply T > 250000).

Based on our experiments, we find that the proposed approach is not too sensitive to the choice of
all the aforementioned tuning parameters. Detailed results are given below.

A.1.1 Maximum number of timescales - qmax

Here we run the same experiments listed in the main manuscript, but set qmax = 5, 20. The same
evaluation metrics are used. Results are given in Table 4 and Table 5.

By comparing the results with those from Table 1 and Table 2 in the main manuscript (where by
default qmax = 10), it becomes evident that our approach does not appear to be sensitive to the
choice of qmax. In particular, for different choices of qmax, every corresponding AMAR performs
better than the competitors.

1



Model (M1)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.164 0.17 0.539 0.589 0.016 0.0162 0.018 0.0134

(0.013) (0.013) (0.043) (0.046) (0.00086) (0.00082) (0.0052) (0.00092)

T = 800 0.051 0.051 0.187 0.206 0.00351 0.00385 0.00446 0.00469
(0.0072) (0.0074) (0.032) (0.034) (0.00026) (0.00036) (0.00049) (0.00054)

T = 1500 0.022 0.021 0.143 0.117 0.00116 0.00117 0.00138 0.00145
(0.0046) (0.0045) (0.045) (0.043) (0.000088) (0.000088) (0.00024) (0.00024)

T = 3000 0.01 0.011 0.021 0.049 0.000546 0.000549 0.000671 0.000685
(0.0031) (0.0033) (0.0083) (0.029) (0.000027) (0.000027) (0.00017) (0.00017)

Model (M2)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.251 0.289 1.07 1.27 0.0207 0.0206 0.0187 0.0243

(0.017) (0.017) (0.064) (0.071) (0.0015) (0.0014) (0.002) (0.0049)

T = 800 0.134 0.149 0.463 0.538 0.00551 0.00574 0.00649 0.00911
(0.011) (0.012) (0.044) (0.049) (0.0006) (0.00059) (0.0011) (0.0013)

T = 1500 0.125 0.136 1.18 1.26 0.00152 0.00142 0.00234 0.0025
(0.011) (0.011) (0.13) (0.13) (0.00029) (0.00026) (0.00036) (0.00039)

T = 3000 0.064 0.069 0.673 0.663 0.000159 0.000181 0.000776 0.00118
(0.008) (0.008) (0.1) (0.1) (0.00011) (0.000074) (0.0002) (0.00034)

Model (M3)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.511 0.706 1.46 1.35 0.0238 0.0209 0.0355 0.0289

(0.023) (0.035) (0.054) (0.046) (0.00094) (0.00075) (0.0021) (0.0016)

T = 800 0.262 0.344 0.631 0.64 0.00756 0.00701 0.0103 0.00918
(0.018) (0.026) (0.034) (0.034) (0.00039) (0.00031) (0.00088) (0.00075)

T = 1500 0.068 0.078 0.285 0.297 0.00197 0.00201 0.00341 0.00343
(0.0089) (0.011) (0.04) (0.042) (0.0001) (0.00011) (0.00039) (0.0004)

T = 3000 0.052 0.054 0.192 0.196 0.000677 0.000671 0.00152 0.00151
(0.0078) (0.0082) (0.04) (0.04) (0.000042) (0.000041) (0.00023) (0.00023)

Table 4: Performance of AMAR using different qmax under (M1) – (M3), with estimated errors
given in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance
between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the mean
squared prediction errors of different models.
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Model (M4)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.065 0.106 0.154 0.252 0.0104 0.00932 0.015 0.0145

(0.0079) (0.013) (0.022) (0.031) (0.00085) (0.00061) (0.0011) (0.001)

T = 800 0.041 0.061 0.129 0.131 0.00399 0.00489 0.00627 0.00722
(0.0063) (0.0098) (0.024) (0.022) (0.0004) (0.00042) (0.00057) (0.00063)

T = 1500 0.041 0.035 0.274 0.202 0.0018 0.00193 0.00313 0.00352
(0.0063) (0.006) (0.053) (0.046) (0.0001) (0.00025) (0.0004) (0.00056)

T = 3000 0.015 0.023 0.112 0.128 0.000753 0.000752 0.0017 0.00173
(0.0038) (0.0049) (0.037) (0.036) (0.000023) (0.000023) (0.00024) (0.00024)

Model (M5)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.211 0.222 1.63 1.66 0.0107 0.011 0.0129 0.0143

(0.017) (0.018) (0.072) (0.073) (0.00043) (0.00045) (0.00092) (0.0016)

T = 800 0.137 0.137 0.86 0.859 0.0042 0.00421 0.00535 0.00533
(0.013) (0.013) (0.055) (0.055) (0.00023) (0.00022) (0.00056) (0.00056)

T = 1500 0.101 0.104 0.729 0.736 0.00167 0.00171 0.0023 0.00223
(0.012) (0.013) (0.078) (0.078) (0.00011) (0.00012) (0.00034) (0.00034)

T = 3000 0.052 0.052 0.327 0.336 0.000343 0.00034 0.000757 0.000761
(0.0086) (0.0086) (0.054) (0.056) (0.000044) (0.000043) (0.00018) (0.00018)

Model (M6)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.378 0.4 2.27 2.29 0.0133 0.013 0.0229 0.0221

(0.022) (0.023) (0.054) (0.053) (0.00048) (0.00045) (0.0016) (0.0013)

T = 800 0.823 0.881 3.31 3.3 0.00909 0.009 0.0158 0.0152
(0.031) (0.035) (0.072) (0.071) (0.00029) (0.00027) (0.00099) (0.00097)

T = 1500 0.428 0.462 3.09 3.1 0.00342 0.00341 0.00676 0.00667
(0.025) (0.028) (0.1) (0.1) (0.00014) (0.00013) (0.00055) (0.00055)

T = 3000 0.533 0.644 3.57 3.52 0.00192 0.00178 0.00444 0.00394
(0.029) (0.038) (0.12) (0.11) (0.000084) (0.000064) (0.00045) (0.00038)

Table 5: Performance of AMAR using different qmax under (M4) – (M6), with estimated errors
given in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance
between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the mean
squared prediction errors of different models.
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A.1.2 The initial order of AR - p

We run the same experiments listed in the main manuscript, but use a fixed p = 25. The same
evaluation metrics are used. Results are given in Table 6 and Table 7. For the ease of comparison,
here we also recall the performance results of the default AMAR that uses p selected via SIC, for
which details can be founded in Section 3.1 of the main manuscript.

Here we carefully fixed p at 25, so that it is larger than the timescales among all cases. Here the
largest timescale is equal to ⌊30000.4⌋ = 24, from Model (M6) with T = 3000. It can be seen that
for most cases, both approaches perform similarly. Indeed, AMAR with a fixed p might lead to
some very moderate improvement over our current approach of selection via SIC in a few settings.
Still, not surprisingly, using a fixed p could be quite problematic when the chosen p is close to or
bigger than τqmax , as is evident in the setting of Model (M6) with T = 3000, where its performance
is more than 100% worse in every evaluation metric.

A.2 (More conventional) higher-order AR

In this part, we compare AMAR and conventional AR models (selected both by AIC and BIC) over
the data that are generated from more conventional high-order stationary AR models. In particular,
we consider the following settings, with τq = 16 and q = 16, 12, 8.

(M7) q = 16 and τi = i for i = 1, . . . , 16, with the corresponding AR coefficients

β = (0.2,−0.2, 0.2,−0.2, . . . , 0.2,−0.2)T .

(M8) q = 12 and {τ1, . . . , τ12} = {1, . . . , 16}\{2, 6, 10, 14}, with the corresponding AR coefficients

β = (0.2, 0, 0,−0.2, 0.2, 0, 0,−0.2, . . . , 0.2, 0, 0,−0.2)T .

(M9) q = 8 and τi = 2i for i = 1, . . . , 8, with the corresponding AR coefficients

β = (0.2, 0.2,−0.2,−0.2, . . . , 0.2, 0.2,−0.2,−0.2)T .

Here Model (M7) is a conventional high-order AR. Models (M8) and (M9) are also high-order, but
their AR coefficients are more structured (though τq = 16 and q are still at the same order). In
particular, all three models are stationary.

For these models, we run the experiments using the same settings as listed in the main manuscript,
but set qmax = 20 (as here q can be as high as 16). For the evaluation metrics, we look at the
accuracy of the estimated order of AR, denoted by |τ̂q̂ − τq|, the Euclidean distance between the
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Model (M1)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.172 0.196 0.593 0.738 0.0159 0.0178 0.0133 0.0147

(0.014) (0.016) (0.047) (0.07) (0.0008) (0.00091) (0.00093) (0.001)

T = 800 0.051 0.047 0.181 0.252 0.0035 0.00401 0.0046 0.00483
(0.0072) (0.0071) (0.03) (0.046) (0.00026) (0.00032) (0.00048) (0.00052)

T = 1500 0.018 0.02 0.085 0.073 0.00116 0.00115 0.00138 0.0014
(0.0042) (0.0046) (0.03) (0.027) (0.000088) (0.000084) (0.00024) (0.00025)

T = 3000 0.012 0.009 0.072 0.016 0.000546 0.000546 0.000662 0.000681
(0.0034) (0.003) (0.035) (0.0063) (0.000027) (0.000027) (0.00017) (0.00017)

Model (M2)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.303 0.235 1.33 1.67 0.02 0.0233 0.0281 0.0259

(0.018) (0.017) (0.072) (0.11) (0.0013) (0.0018) (0.01) (0.007)

T = 800 0.194 0.154 0.764 1.13 0.00635 0.00638 0.00852 0.00815
(0.014) (0.012) (0.06) (0.1) (0.00071) (0.00065) (0.0013) (0.0011)

T = 1500 0.108 0.122 0.921 0.821 0.00171 0.000986 0.00666 0.00386
(0.01) (0.011) (0.11) (0.092) (0.00038) (0.00019) (0.0038) (0.0019)

T = 3000 0.07 0.056 0.646 0.446 0.0000979 0.0000896 0.000793 0.000687
(0.0081) (0.0073) (0.099) (0.072) (0.000021) (0.000021) (0.0002) (0.00017)

Model (M3)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.711 0.314 1.37 1.17 0.0211 0.0187 0.0296 0.0297

(0.035) (0.024) (0.046) (0.057) (0.00076) (0.00072) (0.0016) (0.0017)

T = 800 0.344 0.146 0.643 0.481 0.00699 0.00571 0.00922 0.00825
(0.026) (0.015) (0.034) (0.036) (0.00031) (0.00029) (0.00075) (0.00069)

T = 1500 0.083 0.087 0.31 0.254 0.00203 0.0022 0.0034 0.00359
(0.011) (0.011) (0.043) (0.03) (0.00011) (0.00018) (0.0004) (0.00044)

T = 3000 0.054 0.055 0.219 0.126 0.000673 0.000685 0.0015 0.00147
(0.0082) (0.0091) (0.045) (0.023) (0.000041) (0.000041) (0.00023) (0.00023)

Table 6: Performance of AMAR under (M1) – (M3) with the initial AR order p either selected via
SIC, or fixed at p = 25. The estimated errors given in the brackets. Here q̂ is the number of the
fitted timescales, DH is the Hausdorff distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂}
and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean distance between the fitted parameter
vector and the true one, and MPSE is the mean squared prediction errors of different models.
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Model (M4)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.098 0.078 0.2 0.27 0.00892 0.0105 0.0145 0.0157

(0.012) (0.012) (0.027) (0.041) (0.00065) (0.00074) (0.0011) (0.0012)

T = 800 0.044 0.039 0.092 0.172 0.00397 0.00446 0.00657 0.00653
(0.0085) (0.008) (0.019) (0.035) (0.0003) (0.0004) (0.0006) (0.00057)

T = 1500 0.035 0.039 0.291 0.158 0.00179 0.00194 0.00333 0.00324
(0.006) (0.0063) (0.059) (0.03) (0.00011) (0.00011) (0.0004) (0.00039)

T = 3000 0.023 0.024 0.129 0.077 0.000756 0.000753 0.0017 0.00162
(0.0051) (0.005) (0.033) (0.019) (0.000023) (0.000023) (0.00024) (0.00024)

Model (M5)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.217 0.265 1.64 2.29 0.0109 0.0123 0.0164 0.0159

(0.017) (0.02) (0.073) (0.1) (0.00045) (0.00051) (0.0028) (0.0014)

T = 800 0.133 0.144 0.858 1.05 0.00414 0.00447 0.00517 0.00588
(0.013) (0.014) (0.056) (0.073) (0.00022) (0.00026) (0.00055) (0.00065)

T = 1500 0.099 0.092 0.704 0.574 0.00167 0.00168 0.00237 0.0023
(0.012) (0.011) (0.076) (0.058) (0.00012) (0.00011) (0.00033) (0.00034)

T = 3000 0.052 0.049 0.331 0.271 0.000339 0.000346 0.000788 0.000746
(0.0086) (0.0082) (0.054) (0.042) (0.000043) (0.000043) (0.00017) (0.00017)

Model (M6)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.407 0.43 2.3 3.9 0.0133 0.015 0.023 0.0279

(0.024) (0.024) (0.054) (0.12) (0.00046) (0.00058) (0.0016) (0.0016)

T = 800 0.886 0.486 3.29 3.18 0.00902 0.00718 0.015 0.0129
(0.035) (0.026) (0.071) (0.083) (0.00028) (0.00023) (0.00098) (0.00086)

T = 1500 0.455 0.639 3.08 3.04 0.00336 0.0038 0.00668 0.00712
(0.028) (0.035) (0.1) (0.085) (0.00013) (0.00014) (0.00055) (0.00056)

T = 3000 0.642 2.04 3.52 6.8 0.00177 0.00392 0.00395 0.0071
(0.037) (0.063) (0.11) (0.12) (0.000064) (0.000096) (0.00038) (0.00055)

Table 7: Performance of AMAR under (M4) – (M6), with the initial AR order p either selected via
SIC, or fixed at p = 25. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance
between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the mean
squared prediction errors of different models.
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fitted parameter vector and the true one, denoted by ∥β̂ − β∥, and the mean squared prediction
errors (MSPE) of different models. Results are given in Table 8.

We see that with in Model (M7), unsurprisingly AR with order selected via BIC performs the best
among all the evaluation measures. However, the performance of AMAR is only slightly worse (and
better than AR with order selected via AIC). In particular, it tends to estimates the number of scales
(which is the same as the AR order) correctly when T is reasonably large, implying little efficiency
loss for using AMAR even when there is no meaningful AMAR-type structure in the parameter
vector of AR coefficients. On the other hand, as we move to Model (M8) and Model (M9) where
the AR parameter vectors have more structures embedded (though here τq and q are still at the
same order), AMAR tends to perform better than its competitors in terms of both the parameter
estimation and prediction accuracy. The improvement is more visible in the setting of Model (M9),
as it has less scales than Model (M8), so is intuitively more favourable to AMAR.

A.3 Non-stationary AR

Here we report the results from experiments with series simulated from non-stationary AR models
with unit roots. The scenarios we consider are similar to (M1) – (M6) listed in the main manuscript,
with their details outlined below.

(M1’) Same as (M1) but with α1 = 0.4, α2 = 0.6 (i.e. β = (0.6, 0.2, 0.2)T ).

(M2’) Same as (M2) but with α1 = 1.5, α2 = −0.5 (i.e. β = (0.65, 0.65,−0.1,−0.1,−0.1)T ).

(M3’) Same as (M3) but with α1 = 0.5, α2 = −1, α3 = 1.4 (i.e. β = (0.5,−0.1,−0.1,−0.1,−0.1, 0.1, . . . , 0.1)T ).

(M4’) Same as (M4) but with α1 = 1, α2 = −4.8, α3 = 10.2, α4 = −6.4 (i.e. β = (1, 0, . . . , 0, 0.8,−0.8)T ,
so εt = (1− 0.8B7)(1−B)Xt).

(M5’) Same as (M5) but with α1 = 1 (i.e. β = (0.1, . . . , 0.1)T ).

(M6’) Same as (M6) but with α1 = α2 = 0.5 (i.e. β = (0.5+0.5/⌊T 0.4⌋, 0.5/⌊T 0.4⌋ . . . , 0.5/⌊T 0.4⌋)T ).

Here we use AMAR with default choice of its tuning parameters outlined in Section 3.1. The
corresponding results are summarised in Table 9 and Table 10, where as before, we report the
estimates for |q − q̂|, with q̂ being the number of the fitted timescales, the Hausdorff distance DH

between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, the Euclidean

distance between the fitted parameter vector and the true one, denoted by ∥β̂ − β∥, and the ratio
between the mean squared prediction error (MPSE) using the fitted model and that with the oracle
over the next T ∗ = 100 unseen observations.
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Model (M7)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 6.73 0.877 12.6 0.577 0.051 0.543 0.204 0.0534 0.177

(0.14) (0.042) (0.17) (0.0038) (0.00084) (0.0068) (0.0031) (0.0018) (0.003)

T = 800 2.05 1.68 0.23 0.139 0.027 0.0293 0.0826 0.0274 0.0265
(0.1) (0.09) (0.055) (0.0053) (0.00053) (0.0023) (0.0026) (0.0012) (0.0016)

T = 1500 0.916 2 0.014 0.012 0.0148 0.0105 0.0124 0.0141 0.0114
(0.09) (0.11) (0.0037) (0.00026) (0.0004) (0.00014) (0.00074) (0.00079) (0.00071)

T = 3000 0.662 2.14 0.015 0.00582 0.00733 0.00532 0.00597 0.00701 0.00555
(0.077) (0.13) (0.0038) (0.00015) (0.00017) (0.000074) (0.00052) (0.00057) (0.00049)

Model (M8)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 2.93 0.895 7.45 0.151 0.0503 0.175 0.132 0.051 0.14

(0.085) (0.04) (0.21) (0.0019) (0.00075) (0.0038) (0.003) (0.0017) (0.0039)

T = 800 1.62 1.69 0.307 0.08 0.0263 0.025 0.0767 0.0281 0.0273
(0.034) (0.091) (0.041) (0.001) (0.00042) (0.00077) (0.002) (0.0011) (0.0014)

T = 1500 0.669 2.02 0.019 0.00969 0.014 0.0109 0.00957 0.0122 0.0102
(0.077) (0.12) (0.0052) (0.00029) (0.00025) (0.00015) (0.0007) (0.00075) (0.00068)

T = 3000 0.597 1.95 0.014 0.00401 0.00687 0.00533 0.00452 0.0062 0.00516
(0.077) (0.14) (0.004) (0.00011) (0.00013) (0.000068) (0.00041) (0.0005) (0.00045)

Model (M9)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 1.37 0.849 0.161 0.104 0.0499 0.0485 0.117 0.0493 0.0487

(0.015) (0.039) (0.022) (0.0011) (0.00082) (0.0012) (0.003) (0.0017) (0.0017)

T = 800 1.04 1.77 0.021 0.0738 0.0269 0.0199 0.0695 0.0253 0.0212
(0.0061) (0.093) (0.0048) (0.00069) (0.00051) (0.00029) (0.002) (0.0011) (0.001)

T = 1500 0.214 1.93 0.017 0.00469 0.0147 0.0107 0.00691 0.0131 0.011
(0.042) (0.12) (0.0041) (0.00039) (0.0003) (0.00016) (0.00067) (0.0008) (0.00073)

T = 3000 0.174 1.75 0.018 0.00215 0.00703 0.00528 0.00384 0.00646 0.00551
(0.041) (0.12) (0.0047) (0.00022) (0.00015) (0.000079) (0.00044) (0.00051) (0.00047)

Table 8: Performance of different methods under (M7) – (M9), with estimated errors given in the
brackets. Here |τ̂q̂− τq| is the difference between the estimated and true order of AR, ∥β̂−β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the mean
squared prediction errors of different models.
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Model (M1’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.469 1.21 2.31 18.6 0.0449 0.381 0.0268 38.6 28.7 32.5

(0.019) (0.049) (0.11) (0.042) (0.0022) (0.0014) (0.0008) (23) (1.2) (3.1)

T = 800 0.33 1.43 1.97 26.4 0.0347 0.398 0.0201 1.45 29 7.79
(0.016) (0.081) (0.11) (0.063) (0.0022) (0.001) (0.00068) (1.4) (1.3) (0.6)

T = 1500 0.367 2.13 4.47 36.1 0.0302 0.409 0.017 0.0231 26.9 1.95
(0.016) (0.14) (0.25) (0.088) (0.0022) (0.00073) (0.00059) (0.0018) (1.1) (0.16)

T = 3000 0.249 2.61 3.44 51.8 0.0192 0.42 0.0161 0.0148 29.8 0.536
(0.014) (0.18) (0.23) (0.094) (0.0019) (0.00026) (0.00063) (0.0016) (1.3) (0.043)

Model (M2’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.399 3.85 2.09 13.5 0.0254 0.609 0.116 0.0374 4.41 0.226

(0.019) (0.1) (0.075) (0.12) (0.00093) (0.0092) (0.0031) (0.0024) (0.14) (0.014)

T = 800 0.269 6.75 1.52 18.5 0.0134 0.69 0.0892 0.0175 6 0.0971
(0.017) (0.16) (0.073) (0.21) (0.00061) (0.0073) (0.0025) (0.0015) (0.2) (0.0055)

T = 1500 0.187 10 2.11 24.5 0.00572 0.733 0.0681 0.00601 7.33 0.0506
(0.013) (0.22) (0.16) (0.33) (0.00036) (0.0059) (0.0021) (0.00074) (0.25) (0.0024)

T = 3000 0.086 14.2 0.985 35.3 0.0018 0.774 0.0399 0.0023 8.7 0.0246
(0.009) (0.31) (0.12) (0.5) (0.0002) (0.0039) (0.0014) (0.00051) (0.25) (0.0013)

Model (M3’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.747 2.47 1.37 17.4 0.0246 0.297 0.0606 0.0351 0.766 17.4

(0.034) (0.058) (0.043) (0.13) (0.0011) (0.003) (0.00089) (0.0021) (0.022) (2.1)

T = 800 0.499 1.72 0.897 24.7 0.0201 0.318 0.0342 0.0365 0.767 3.76
(0.029) (0.089) (0.039) (0.11) (0.0015) (0.0027) (0.00059) (0.0036) (0.018) (0.34)

T = 1500 0.177 2.4 0.744 34.1 0.0047 0.323 0.0216 0.0104 0.788 0.954
(0.015) (0.16) (0.073) (0.13) (0.00076) (0.0031) (0.00043) (0.0019) (0.019) (0.09)

T = 3000 0.104 1.93 0.506 49.2 0.00336 0.339 0.0141 0.00609 0.854 0.288
(0.011) (0.16) (0.069) (0.15) (0.00073) (0.0027) (0.00035) (0.0015) (0.02) (0.028)

Table 9: Performance of different methods under (M1’) – (M3’), with estimated errors given in
the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance between
the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean
distance between the fitted parameter vector and the true one, and MPSE is the mean squared
prediction errors of different models.
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Model (M4’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.527 2.64 1.45 18.1 0.161 2.22 0.888 0.254 216 28.1

(0.021) (0.024) (0.07) (0.074) (0.013) (0.0019) (0.013) (0.021) (9.3) (2)

T = 800 0.27 2.55 0.702 25.4 0.21 2.24 0.84 0.295 227 7.28
(0.017) (0.026) (0.052) (0.11) (0.014) (0.00068) (0.012) (0.022) (10) (0.5)

T = 1500 0.225 2.4 2.02 34.2 0.124 2.25 0.847 0.189 267 2.79
(0.014) (0.041) (0.15) (0.17) (0.011) (0.00035) (0.011) (0.018) (13) (0.13)

T = 3000 0.175 2.97 1.69 48.2 0.0678 2.26 0.841 0.0921 293 1.4
(0.012) (0.092) (0.14) (0.22) (0.0085) (0.00026) (0.0096) (0.012) (14) (0.052)

Model (M5’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.354 0.575 1.94 9.74 0.0134 0.0461 0.0464 5.81 0.439 10

(0.022) (0.037) (0.077) (0.039) (0.00061) (0.00035) (0.00082) (4.5) (0.032) (0.89)

T = 800 0.322 1.33 1.44 17.5 0.00602 0.0591 0.0276 0.254 0.467 2.47
(0.02) (0.065) (0.074) (0.07) (0.00052) (0.00046) (0.00062) (0.19) (0.027) (0.19)

T = 1500 0.154 2.3 1.2 27.6 0.00212 0.069 0.0203 2.32 0.569 0.692
(0.013) (0.12) (0.11) (0.062) (0.0003) (0.00044) (0.0006) (2.2) (0.034) (0.064)

T = 3000 0.114 4.19 0.818 43.4 0.000744 0.0776 0.014 0.72 0.622 0.197
(0.01) (0.19) (0.088) (0.1) (0.00024) (0.00036) (0.00048) (0.54) (0.03) (0.022)

Model (M6’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.889 1.32 3.67 17.5 0.0177 0.234 0.0441 0.0251 0.762 10.4

(0.034) (0.064) (0.076) (0.11) (0.0007) (0.002) (0.00068) (0.0013) (0.038) (0.87)

T = 800 1.54 1.52 7.63 24.2 0.0184 0.228 0.0329 0.0336 0.631 3.37
(0.049) (0.11) (0.072) (0.17) (0.00073) (0.0022) (0.00041) (0.0015) (0.031) (0.3)

T = 1500 0.931 2.01 5.6 33.4 0.00501 0.23 0.0229 0.01 0.499 1.07
(0.04) (0.15) (0.13) (0.22) (0.00025) (0.0022) (0.00025) (0.00075) (0.018) (0.094)

T = 3000 2.09 2.95 12.4 47.9 0.00515 0.236 0.0159 0.0122 0.427 0.328
(0.066) (0.18) (0.13) (0.28) (0.00011) (0.0019) (0.00015) (0.00076) (0.012) (0.036)

Table 10: Performance of different methods under (M4’) – (M6’), with estimated errors given in
the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance between
the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean
distance between the fitted parameter vector and the true one, and MPSE is the mean squared
prediction errors of different models.
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We see that even in the setting of non-stationary observations, AMAR still performs much better
than its competitors in most settings, even though all methods seem to perform worse as compared
to the stationary settings. Unsurprisingly, here the reported results are associated with larger
estimation errors.

In addition, we note that the fused LASSO approach performs much worse than its competitors in
terms of MSPE, especially in (M1’) and (M4’). This is because the fused LASSO approach tends
to over-estimate the number of scales, resulting in less accurate β̂, which could greatly affect the
corresponding MSPE when the series is non-stationary.

B Additional real data example: well-log

We consider the well-log data from O Ruanaidh and Fitzgerald (1996). Prior to use, the data is
cleaned by removing outliers, taken here to be the observations that differ from the median-fliter
fit to the data (with span 25) by at least 7500. This retains 97.7% of the data points. The cleaned
data, denoted as {Xt}3956t=1 , is shown in the left plot of Figure 5.
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Figure 5: Left: the well-log data from O Ruanaidh and Fitzgerald (1996), cleaned as described in
the text. Right: the end part of the data, from time location 2730.

As summarised in Fearnhead and Clifford (2003), the data represents measurements of the nuclear
magnetic response of underground rocks. The underlying (unobserved) signal is assumed to be
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piecewise constant, with each constant segment representing a stratum of rock. The jumps occur
when a new rock stratum is met. The problem of detecting these change-points in the underlying
signal is of practical importance in oil drilling.

It is known (for instance, see Cho and Fryzlewicz (2021) and the references therein) that the problem
of multiple change-point detection in a piecewise-constant signal observed in noise is much more
challenging if the noise displays autocorrelation, as the natural fluctuations of the autocorrelated
process can be mistaken for change-points, and vice versa. This appears to be the case in the well-
log data: the right-hand plot of Figure 5 shows the end portion of the data, from the observation
after the last visually obvious change-point (at location 2729) to the end. As discussed earlier, the
visual appearance of the data fluctuations in this region of the dataset suggests that the AMAR
model may be appropriate. Our aim is therefore to: (a) estimate the appropriate AMAR model
on {X2730, . . . , X3956}, (b) fit the estimated model from the previous step on the entire dataset (i.e.
{X1, . . . , X3956}) to remove the autocorrelations in the data, and (c) estimate change-point locations
in the thus-decorrelated dataset using a method suitable for multiple change-point detection in
uncorrelated (Gaussian) noise.

We start with a preliminary time series analysis of {X2730, . . . , X3956}. The unconstrained AR fit
to this subset of the data, with the AR order chosen via AIC yields order 17, and the estimated
coefficients are shown in the left panel of Figure 6. The appearance of the vector of the estimated
coefficients suggests that a piecewise-constant model (as dictated by AMAR) may be suitable here.
The fitted AMAR model returns estimated scales 1, 9, 13, 16, 17 (see Figure 6).

Prior to fitting the estimated AMAR model to the entire dataset, however, we shrink the estimated
AMAR coefficients by a factor of ρ ∈ (0, 1), i.e. we replace each estimated AMAR coefficient α̂r

by ρα̂r. This is done because the original estimated AMAR coefficients sum up to practically 1
(0.9998), and therefore fitting such a “near-unit-root” AMAR model has a strong differencing effect,
which as well as successfully removing the autocorrelations, could also potentially remove too much
of the structure of the signal for successful detection of change-points in the levels.

We choose ρ as follows. Starting with ρ = 0, we increase ρ in steps of 0.01 until our selected proce-
dure(s) for change-point detection under lack of serial correlation do not indicate any change-points
after time t = 2730 (since we initially fitted an AMAR model on this portion of the data under the
assumption of stationarity there). This is first achieved for ρ = 0.78, for both Wild Binary Seg-
mentation (Fryzlewicz, 2014) and Narrowest-Over-Threshold (Baranowski et al., 2019), both with
model selection via the strengthened Schwarz Information Criterion, and using the implementation
from the R package breakfast (Anastasiou et al., 2021) with otherwise default parameters. These
two procedures indicate, respectively, 12 and 10 change-points in the signal. The change-point
locations estimated via Wild Binary Segmentation are shown in Figure 7. With the exception of
the possible double detection at times t = 1043, 1056, the estimated change-point locations visually
align with the signal very well.
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Figure 6: Top left: the unconstrained estimated AR coefficients for X2730:3956 (circles); extents of
estimated AMAR scales (dashed lines). Top right: unshrunk AMAR residuals. Bottom left: AMAR
residuals with ρ = 0.8. Bottom right: AMAR residuals with ρ = 0.6.
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Figure 7: The well-log data with the change-point locations estimated via the shrunk AMAR fit
with ρ = 0.78 and using WBS+sSIC on the residuals.

C Proofs

C.1 Proof of Proposition 2.1

For AR(p) processes, it has a stationary and causal solution if and only if all the roots of b(z) = 0
lie outside T.
For any AMAR(q) with α1, . . . , αq (and the corresponding AR parameters β1, . . . , βp),

∑q
j=1 |αj| < 1

under the AMAR framework is equivalent to

p∑
j=1

|βj| =
p∑

j=1

( ∑
k:τk≥j

|αk|
τk

)
=

|α1|
τ1

τ1 + · · ·+ |αq|
τq

τq < 1

in view of Equations (1) and (2) and (3). Now since
∑p

j=1 |βj| < 1, b(z) := 1− β1z − · · · − βpz
p ≥

1 − |β1|∥z∥ − · · · − |βp|∥z∥p ≥ 1 −
∑p

j=1 |βj| > 0 for any z ∈ T. As such, all the roots of b(z) = 0
lie outside T, which implies the existence of a causal stationary solution.

Next, given α1, . . . , αq ≥ 0, we have that β1, . . . , βp ≥ 0. The existence of a causal stationary
solution implies that all the roots of b(z) = 0 lie outside T. Since b(0) = 1 and b(·) is continuous,
one would necessarily require b(1) > 0. i.e. β1 + · · · + βp < 1. This condition under the AMAR
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framework is equivalent to

p∑
j=1

( ∑
k:τk≥j

αk

τk

)
=

α1

τ1
τ1 + · · ·+ αq

τq
τq < 1,

which is the same as
∑q

j=1 |αj| < 1 under non-negativity. □

C.2 Proof of Theorem 2.1

We write the AR(p) model as

Yt = BYt−1 + εtu, t = 1, . . . , T, (17)

where Yt = (Xt, Xt−1, ..., Xt−p+1)
′, the matrix of the coefficients

B =

(
β1 β2 · · · βp

Ip−1 0

)
(18)

and u = (1, 0, . . . , 0)′ ∈ Rp. We start with a few auxiliary results.

Lemma C.1 (Parseval’s identity, Theorem 1.9 in Duoandikoetxea (2001)) For any complex-
valued sequence {fk}k∈Z such that

∑
k∈Z |fk|2 < ∞, the following identity holds∑

k∈Z

|fk|2 =
∫
T
|f(z)|2dm(z), (19)

where f(z) =
∑

k∈Z fkz
k, T = {z ∈ C : |z| = 1}, dm(z) = d|z|

2π
.

Lemma C.2 (Cauchy’s integral formula) Let M ∈ Rp×p be a real- or complex- valued matrix.
Then for any curve Γ enclosing all eigenvalues of M and any j ∈ N the following holds

Mj =
1

2πi

∫
Γ

zj(zIp −M)−1dz =
1

2πi

∫
Γ

zj−1(Ip − z−1M)−1dz. (20)

Lemma C.3 Let B given by (18) be the matrix of coefficients of a stationary AR(p) process and
let v = (v1, . . . , vp)

′ ∈ Rp. For all z ∈ C such that
∑∞

i=0 | ⟨v,Biu⟩ ||zi| < ∞, we have

b(z)
∞∑
i=0

〈
v,Biu

〉
zi = b(z)

〈
v, (Ip − zB)−1u

〉
= v(z), (21)
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where v(z) = v1 + v2z + . . .+ vpz
p−1, and where b(z) is the AR polynomial.

Proof. As
∑∞

i=0 | ⟨v,Biu⟩ ||zi| < 0, we can change the order of summation in the left-hand side of
(21)

(1− β1z − . . .− βpz
p)

∞∑
i=0

〈
v,Biu

〉
zi =

〈
v,

(
∞∑
i=0

(1− β1z − . . .− βpz
p)ziBi

)
u

〉
.

Define β0 = −1, βk = 0 for k > p. By direct algebraic manipulation,

∞∑
i=0

(1− β1z − . . .− βpz
p)ziBi = −

∞∑
i=0

(
i∑

k=0

βkB
i−k

)
zi := −

∞∑
i=0

Diz
i.

The characteristic polynomial of B is given by ϕ(z) =
∑p

k=0 βkz
p−k. From the Cayley–Hamilton

theorem, B is a root of ϕ, and, consequently for i ≥ p,

Di = Bi−p

i∑
k=0

βkB
p−k = Bi−p

p∑
k=0

βkB
p−k = 0.

It remains to demonstrate that ⟨v,Diu⟩ = −vi+1 for i = 0, . . . , p− 1, which we show by induction.
For i = 0, ⟨v,Diu⟩ = β0 ⟨v,u⟩ = −v1. When i ≥ 1, matrices Di satisfy Di = BDi−1 + βiIp,
therefore

⟨v,Diu⟩ = ⟨v,BDi−1u⟩+ βi ⟨v,u⟩ = ⟨B′v,Di−1u⟩+ βi ⟨v,u⟩
= ⟨v1(β1, . . . , βp)

′ + (0, v2, . . . , vp)
′,Di−1u⟩+ βi ⟨v,u⟩ = −v1βi − vi+1 + v1βi

= −vi+1,

which completes the proof. □

Lemma C.4 Let Z1, Z2, . . . be a sequence of i.i.d. N (0, 1) random variables. Then for any integers
l ̸= 0 and k > 0, the following exponential probability bound holds for any x > 0:

P

(∣∣∣∣∣
k∑

t=1

ZtZt+l

∣∣∣∣∣ > kx

)
≤ 2 exp

(
−1

8

kx2

4 + x

)
. (22)

Proof. We will show that P
(∑k

t=1 ZtZt+l > kx
)
≤ exp

(
−1

8
kx2

4+x

)
, which would then imply (22) by
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symmetry. By Markov’s inequality, for any x > 0 and λ > 0, it holds that

P

(
k∑

t=1

ZtZt+l > kx

)
≤ exp (−kxλ) E exp

(
λ

k∑
t=1

ZtZt+l

)
.

By the convexity of y 7→ exp (λy) for any λ > 0, Theorem 1 in Vershynin (2011) implies

E exp

(
λ

k∑
t=1

ZtZt+l

)
≤ E exp

(
4λ

k∑
t=1

ZtZ̃t

)
,

where Z̃1, . . . , Z̃k are independent copies of Z1, . . . , Zk. Using the independence and by direct
computation (see also Craig (1936)), we get

E exp

(
4λ

k∑
t=1

ZtZ̃t

)
=
(
E exp

(
4λZ1Z̃1

))k
=
(
E exp

(
8λ2Z̃2

1

))k
=
(
1− 16λ2

)− 1
2
k

provided that 0 < λ < 1
4
, therefore P

(∑k
t=1 ZtZt+l > kx

)
≤ exp

(
−kxλ− k

2
log (1− 16λ2)

)
. Taking

λ = −2+
√
4+x2

4x
minimises the right-hand side of this inequality. With this value of λ and using

log(x) ≤ x− 1, we have

P

(
k∑

t=1

ZtZt+l > kx

)
≤ exp

(
k

4

(
2−

√
x2 + 4 + 2 log

(
1

4

(√
x2 + 4 + 2

))))
≤ exp

(
k

4

(
2−

√
x2 + 4 +

1

2

(√
x2 + 4 + 2

)
− 2

))
= exp

(
k

8

(
2−

√
x2 + 4

))
= exp

(
−1

8

kx2

2 +
√
x2 + 4

)
≤ exp

(
−1

8

kx2

4 + x

)
,

which completes the proof. □

Lemma C.5 (Lemma 1 in Laurent and Massart (2000)) Let Z1, Z2, . . . be a sequence of i.i.d.
N (0, 1) random variables. For any integer k > 0 and x > 0, the following exponential probability
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bounds hold

P

(
k∑

t=1

Z2
t ≥ k + 2

√
kx+ 2x

)
≤ exp (−x) , (23)

P

(
k∑

t=1

Z2
t ≤ k − 2

√
kx

)
≤ exp (−x) . (24)

Proof of Theorem 2.1. For CT =
∑T−1

t=1 YtY
′
t and AT =

∑T−1
t=1 εt+1Yt, we have β̂−β = C−1

T AT .

Here the distribution of β̂ − β is invariant to the value of σ. As such, in the following, we assume
σ = 1 for notational convenience. Consequently,∥∥∥β̂ − β

∥∥∥ ≤ λmax(C
−1
T ) ∥AT∥ = λ−1

min(CT ) ∥AT∥ , (25)

where λmin(M) and λmax(M) denote, respectively, the smallest and the largest eigenvalues of a

symmetric matrix M. To provide an upper bound on
∥∥∥β̂ − β

∥∥∥ given in Theorem 2.1, we will bound

λmin(CT ) from below and ∥AT∥ from above, working on a set whose probability is large.

In the calculations below, we will repeatedly use the following representation of Yt, which follows
from applying (17) recursively:

Yt = BtY0 +
t∑

j=1

εt−j+1B
j−1u, t = 1, . . . , T. (26)

In addition, to improve the presentational aspect of the proof, here we shall take Y0 = 0. All
the results would go through (with minor modifications to handle the extra terms) if one instead
assumes that Y0 is a realization from a stationary solution.

In the arguments below, we will show result more specific than (9), i.e.

∥AT∥ ≤
(
32b−2

√
1 + ∥β∥2

)
p log(T )

√
(1 + log(T + p))T , (27)

λmin(CT ) ≥ b
−2
(
T − p(1 + 32 log(T )

√
T )
)
, (28)

on the event

ET = E (1)
T ∩ E (2)

T ∩ E (3)
T , (29)

18



where

E (1)
T =

⋂
1≤i<j≤p


∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|i−j|

∣∣∣∣∣∣ < 32 log(T )
√
T −max(i, j)

 ,

E (2)
T =

T⋂
j=1

{∣∣∣∣∣
T−j∑
t=1

εtεt+j

∣∣∣∣∣ < 32 log(T )
√
T − j

}
,

E (3)
T =

{
T−p∑
t=1

ε2t > T − p− 2
√

log(T )(T − p)

}
.

Finally, we will demonstrate that ET satisfies

P (ET ) ≥ 1− 5

T
. (30)

Thus, (25), (27), (28) and (30) combined together imply the statement of Theorem 2.1. The
remaining part of the proof is split into three parts, in which we show (27), (28) and (30) in turn.

Upper bound for ∥AT∥. The Euclidean norm satisfies ∥AT∥ = supv:∈Rp,∥v∥=1 | ⟨v,AT ⟩ |, therefore
we consider inner products ⟨v,AT ⟩ where v ∈ Rp is any unit vector. By (26),

⟨v,AT ⟩ =
T−1∑
t=1

⟨v,Yt⟩ εt+1 =
T−1∑
t=1

t∑
j=1

〈
v,Bj−1u

〉
εt−j+1εt+1

=
T−1∑
j=1

〈
v,Bj−1u

〉
aj,

where aj =
∑T−1

t=j εt−j+1εt+1 =
∑T−j

t=1 εtεt+j.
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Lemma C.2 and Lemma C.3 applied to the right-hand side of the above equation yield

T−1∑
j=1

〈
v,Bj−1u

〉
aj =

1

2πi

∫
T

(
T−1∑
j=1

zj−1aj

)〈
v, (zIp −B)−1u

〉
dz

=
1

2πi

∫
T

(
T−1∑
j=1

zj−1aj

)(
p∑

j=1

zp−jvj

)
q(z)dz

=
1

2πi

∫
T

(
T+p−1∑
j=0

zjcj

)
q(z)dz,

where q(z) = (zpb(z−1))−1 and cj =
∑j

i=0 ai+1vp−j+i. Integrating by parts, we get

1

2πi

∫
T

(
T+p−1∑
j=0

zjcj

)
q(z)dz = − 1

2πi

∫
T

(
T+p−1∑
j=0

zj+1 cj
j + 1

)
q′(z)dz,

where q′(·) is the derivative of q(·). Combining the calculations above and using the fact that
T = {z ∈ C : |z| = 1}, Cauchy’s inequality and Lemma C.1, we obtain∣∣∣∣∣

T−1∑
j=1

〈
v,Bj−1u

〉
aj

∣∣∣∣∣ ≤
√√√√T+p−1∑

j=0

(
cj

j + 1

)2
√∫

T
|q′(z)|2dm(z), (31)

where we recall that dm(z) = d|z|
2π

. To further bound the first term on the right-hand side of (31),

we recall that on the event ET coefficients |aj| ≤ 32 log(T )
√
T , hence√√√√T+p−1∑

j=0

(
cj

j + 1

)2

=

√√√√T+p−1∑
j=0

1

(j + 1)2

(
j∑

i=0

ai+1vp−j+i

)2

≤ max
j=0,...,T+p−1

|aj|

√√√√T+p−1∑
j=0

1

(j + 1)2

(
j∑

i=0

|vp−j+i|

)2

≤ 32 log(T )
√
T

√√√√T+p−1∑
j=0

j + 1

(j + 1)2

≤ 32 log(T )
√
(1 + log(T + p))T .
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For the second term in (31), we calculate the derivative

q′(z) = −
pzp−1 −

∑p
j=1(p− j)βjz

p−j−1

(zpb(z−p))2

and use Lemma C.1 to bound√∫
T
|q′(z)|2dm(z) =

√√√√∫
T

∣∣∣∣∣pzp−1 −
∑p

j=1(p− j)βjzp−j

(zpb(z−p))2

∣∣∣∣∣
2

dm(z)

≤

√∫
T

∣∣∣pzp−1 −
∑p

j=1(p− j)βjzp−j

∣∣∣2 dm(z)

min|z|=1 |(zpb(z−p))|2

= b−2

√√√√(p2 + p∑
j=1

(p− j)2β2
j

)
≤ b−2p

√
1 + ∥β∥2.

Combining the bounds on the two terms, we obtain

T−1∑
j=1

〈
v,Bj−1u

〉
aj ≤

(
32b−2

√
1 + ∥β∥2

)
p log(T )

√
(1 + log(T + p))T .

Taking supremum over v ∈ Rp such that ∥v∥ = 1 proves (27).

Lower bound for λmin(CT ). Let v = (v1, . . . , vp)
′ be a unit vector in Rp. We begin the proof by

establishing the following inequality

⟨v,CTv⟩ ≥ b
−2

p∑
i,j=1

vivj

T−1∑
t=1

εt−j+1εt−i+1, (32)

where εt = 0 for t ≤ 0 and b = maxz∈T |b(z)|. By Lemma C.1 and (26), we rewrite the quadratic
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form on the left-hand side of (32) to

⟨v,CTv⟩ =
T−1∑
t=1

⟨v,Yt⟩2 (33)

=

∫
T

∣∣∣∣∣
T−1∑
t=1

〈
v,

t∑
j=1

εjB
t−ju

〉
zt

∣∣∣∣∣
2

dm(z) (34)

=

∫
T

∣∣∣∣∣
T−1∑
t=1

T−1∑
j=1

εjωt−jz
t

∣∣∣∣∣
2

dm(z) (35)

where ωj = ⟨v,Bju⟩ for j ≥ 0, ωj = 0 for j < 0. Changing the order of summation and by a simple
substitution we get

T−1∑
t=1

T−1∑
j=1

εjωt−jz
t =

T−1∑
j=1

εjz
j

T−1∑
t=1

ωt−jz
t−j =

T−1∑
j=1

εjz
j

T−j−1∑
t=0

ωtz
t. (36)

Using the definition of ωj, the fact that all eigenvalues of B have modulus strictly lower than one
and Lemma C.3, (36) simplifies to

T−1∑
j=1

εjz
j

T−j−1∑
t=0

ωtz
t =

T−1∑
j=1

εjz
j
〈
v, (Ip − (Bz)T−j)(Ip −Bz)−1u

〉
=

T−1∑
j=1

εj
(
zj
〈
v, (Ip −Bz)−1u

〉
− zT

〈
BT−jv, (Ip −Bz)−1u

〉)
= b(z)−1

T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)
,

where v(z) =
∑p

k=1 vkzk−1 and wj(z) =
∑p

k=1(B
T−jv)kz

k−1 for j = 0, . . . , T − 1. The equation
above, (33) and (36) combined together imply the following inequality

⟨v,CTv⟩ =
∫
T

∣∣∣∣∣b(z)−1

T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣
2

dm(z)

≥ b
−2
∫
T

∣∣∣∣∣
T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣
2

dm(z).
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Observe that
∑T−1

j=1 εj
(
zjv(z)− zTwj(z)

)
=
∑T−1

j=1 εj
(
zjv(z)− zTwj(z)

)
=
∑T+p−1

t=1 ctz
t is a trigono-

metric polynomial, therefore by Lemma C.1 and simple algebra∫
T

∣∣∣∣∣
T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣ dm(z) =

T+p−1∑
t=1

|ct|2 ≥
T−1∑
t=1

|ct|2 =
T−1∑
t=1

(
p∑

j=1

vjεt−j+1

)2

=

=

p∑
i,j=1

vjvi

T−1∑
t=1

εt−j+1εt−i+1,

which proves (32).

We are now in a position to bound ⟨v,CTv⟩ from below. Rearranging terms in (32) yields

⟨v,CTv⟩ ≥ b
−2

 p∑
i=1

v2i

n−i∑
t=1

ε2t +
∑

1≤i<j≤p

vivj

T−max(i,j)∑
t=1

εtεt+|j−i|


≥ b

−2

T−p∑
t=1

ε2t

p∑
i=1

v2i − max
1≤i<j≤p

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|j−i|

∣∣∣∣∣∣
( p∑

i=1

|vi|

)2

−
p∑

i=1

v2i


≥ b

−2

T−p∑
t=1

ε2t − (p− 1) max
1≤i<j≤p

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|j−i|

∣∣∣∣∣∣
 .

Recalling the definition of ET , we conclude that on this event

⟨v,CTv⟩ ≥ b
−2
(
T − p− 2

√
log(T )(T − p)− (p− 1)32 log(T )

√
T
)

≥ b
−2
(
T − p(1 + 32 log(T )

√
T )
)
.

Taking infimum over v ∈ Rp such that ∥v∥ = 1 in the inequality above proves (28).
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Lower bound for P (ET ). Recalling (29) and using a simple Bonferroni bound, we get

P (Ec
T ) ≤ p2 max

1≤i<j≤p
P

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|i−j|

∣∣∣∣∣∣ ≥ 32 log(T )
√
T −max(i, j)


+ T max

1≤j≤T
P

(∣∣∣∣∣
T−j∑
t=1

εtεt+j

∣∣∣∣∣ < 32 log(T )
√
T − j

)

+ P

(
T−p∑
t=1

ε2t > T − p− 2
√

log(T )(T − p)

)
:= p2 max

1≤i<j≤p
P

(1)
i,j + T max

1≤j≤T
P

(2)
j + P (3).

Lemma C.4 implies that

P
(1)
i,j ≤ 2 exp

(
−1

8

(32 log(T ))2

4 + (
√

T −max(i, j))−132 log(T )

)
≤ 2 exp (−2 log(T )) =

2

T 2
,

P
(2)
j ≤ 2 exp

(
−1

8

(32 log(T ))2

4 + (
√
T − j)−132 log(T )

)
≤ 2 exp (−2 log(T )) =

2

T 2
.

Moreover, by Lemma C.5, P (3) ≤ exp (− log(T )) = 1
T
, hence, given that p2 < T , we have P (Ec

T ) ≤ 5
T
,

which completes the proof. □

C.3 Proof of Theorem 2.2

In the proof below, we shall focus on the case where FM
T consists of randomly drawn intervals (which

is what Algorithm 2 does when p is large). For the case where all sub-intervals of [1, p] are used, the
same arguments would go through, because Algorithm 2 then produces a larger set FM

T compared
to the approach of random drawing.

We now split the proof into four steps.

Step 1. Consider the event

{∥∥∥β̂ − β
∥∥∥ ≤ κ1(b/b)

2 ∥β∥ p log(T )
√

log(T+p)
√
T−κ2p log(T )

}
where κ1, κ2 are as in The-

orem 2.1. Assumption (A3) implies that b/b and ∥β∥ are bounded from above by constants. Fur-
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thermore, by Assumption (A2), p ≤ c1T
θ, which implies that

κ1(b/b)
2 ∥β∥

p log(T )
√
log(T + p)√

T − κ2p log(T )
≤ c3T

θ−1/2(log(T ))3/2 = c3λT =: λT (37)

for some constant c3 > 0 and a sufficiently large T . Define now

AT =
{∥∥∥β̂ − β

∥∥∥ ≤ λT

}
(38)

By Theorem 2.1,

P (AT ) ≥ P

(∥∥∥β̂ − β
∥∥∥ ≤ κ1(b/b)

2 ∥β∥
p log(T )

√
log(T + p)√

T − κ2p log(T )

)
≥ 1− κ3T

−1, (39)

for some constant κ3 > 0.

Step 2. For j = 1, . . . , q, define the intervals

IL
j = (τj − δT/3, τj − δT/6) (40)

IR
j = (τj + δT/6, τj + δT/3) (41)

Recall that FM
T is the set of M randomly drawn intervals with endpoints in {1, . . . , p}. Denote by

[s1, e1], . . . , [sM , eM ] the elements of FM
T and let

DM
T =

{
∀j = 1, . . . , q, ∃k ∈ {1, . . . ,M}, s.t. sk × ek ∈ IL

j × IR
j

}
. (42)

We have that

P
(
(DM

T )c
)
≤

q∑
j=1

ΠM
m=1

(
1− P

(
sm × em ∈ IL

j × IR
j

) )
≤ q

(
1− δ2T

62p2

)M

≤ p

δT

(
1− δ2T

36p2

)M

.

Therefore, P
(
AT ∩DM

T

)
≥ 1− κ3T

−1 − pδ−1
T (1− δ2Tp

−2/36)M → 1. Note that the same conclusion
still holds if FM

T contains all the intervals with endpoints in {1, . . . , p}. In the remainder of the
proof, assume that AT and DM

T all hold.

Note that Assumption (A4) implies that there exists c > 0 such that δ
1/2
T αT > cλT for all sufficiently
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large T . We are now in the position to specify the constants explicitly as

C1 = 2
√

C3 + c3, C2 =
1√
6
− 1

c
, C3 = (4

√
2 + 6)c23,

where c3 is in Equation (37).

Step 3. We focus on a generic interval [s, e] such that

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. [sk, ek] ⊂ [s, e] and sk × ek ∈ IL
j × IR

j . (43)

Fix such an interval [s, e] and let j ∈ {1, . . . , q} and k ∈ {1, . . . ,M} be such that (43) is satisfied. Let

b∗k = argmaxsk≤b≤ek
Cb
sk,ek

(
β̂
)
. By construction, [sk, ek] satisfies τj−sk+1 ≥ δT/6 and ek−τj > δT/6.

Let

Ms,e =
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}
,

Os,e = {m ∈ Ms,e : max
sm≤b<em

Cb
sm,em

(
β̂
)
> ζT}.

Our first aim is to show that Os,e is non-empty. This follows from Lemma 2 in Baranowski et al.
(2019), the Cauchy–Schwarz inequality, and the calculation below, as

Cb∗k
sk,ek

(
β̂
)
≥ Cτj

sk,ek

(
β̂
)

≥ Cb∗k
sk,ek (β)− λT ≥

(
δT
6

)1/2

|αjτ
−1
j | − λT ≥

(
δT
6

)1/2

αT − λT

=

(
1√
6
− λT

δ
1/2
T αT

)
δ
1/2
T αT ≥

(
1√
6
− 1

c

)
δ
1/2
T αT = C2δ

1/2
T αT > ζT .

Letm∗ = argminm∈Os,e
(em−sm+1) and b∗ = argmaxsm∗≤b<em∗ Cb

sm∗ ,em∗

(
β̂
)
. Observe that [sm∗ , em∗)

must contain at least one change in β̂. Indeed, if this were not the case, we would have Cb
sm∗ ,em∗ (β) =

0 and

Cb∗

sm∗ ,em∗

(
β̂
)
= |Cb∗

sm∗ ,em∗

(
β̂
)
− Cb∗

sm∗ ,em∗ (β) | ≤ λT <
C1

c3
λT = C1λT ≤ ζT ,

which contradicted Cb∗
sm∗ ,em∗

(
β̂
)
> ζT . On the other hand, [sm∗ , em∗) cannot contain more than one

change-points, because em∗ − sm∗ + 1 ≤ ek − sk + 1 ≤ δT .
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Without loss of generality, assume τj ∈ [sm∗ , em∗). Let ηL = τj − sm∗ + 1, ηR = em∗ − τj and
ηT = (C1/c3 − 1)2α2

jτ
−2
j λ2

T . We claim that min(ηL, ηR) > ηT , because otherwise min(ηL, ηR) ≤ ηT
and Lemma 2 in Baranowski et al. (2019) would have implied

Cb∗

sm∗ ,em∗

(
β̂
)
≤ Cb∗

sm∗ ,em∗ (β) + λT ≤ Cτj
sm∗ ,em∗ (β) + λT ≤ η

1/2
T |αjτ

−1
j |+ λT

= (C1/c3 − 1 + 1)λT = C1λT < ζT ,

which contradicted Cb∗
sm∗ ,em∗

(
β̂
)
> ζT .

We are now in the position to prove |b∗ − τj| ≤ C3λTα
−2
T . Our aim is to find ϵT such that for any

b ∈ {sm∗ , sm∗ + 1, . . . , em∗ − 1} with |b− τj| > ϵT , we always have{
Cτj
sm∗ ,em∗

(
β̂
)}2

−
{
Cb
sm∗ ,em∗

(
β̂
)}2

> 0. (44)

This would then imply that |b∗ − τj| ≤ ϵT . By expansion and rearranging the terms, we see that
(44) is equivalent to

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 > ⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2

+ 2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
. (45)

Here ψb
s,e (with 1 ≤ s < b < e ≤ p) is a p-dimensional vector, with its s-th to b-th component being√
e−b

(e−s+1)()b−s+1
, its b + 1-th to e-th component being

√
b−s+1

(e−s+1)(e−b)
, and the remaining elements

being 0. In the following, we assume that b ≥ τj. The case that b < τj can be handled in a similar
fashion. By Lemma 4 in Baranowski et al. (2019), we have

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 = (Cτj
s∗,e∗ (β))

2 − (Cb
sm∗ ,em∗ (β))

2

=
|b− τj|ηL

|b− τj|+ ηL
(αjτ

−1
j )2 =: κ.

In addition, since we assume event AT ,

⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2 ≤ λ2
T ,

2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
≤ 2∥ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩∥2λT = 2κ1/2λT ,

where the final equality is also implied by Lemma 4 in Baranowski et al. (2019). Consequently, (45)
can be deducted from the stronger inequality κ − 2λTκ

1/2 − λ2
T > 0. This quadratic inequality is
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implied by κ > (
√
2 + 1)2λ2

T , and could be restricted further to

2|b− τj|ηL
|b− τj|+ ηL

≥ min(|b− τj|, ηL) > (4
√
2 + 6)(αjτ

−1
j )−2λ2

T = C3(αjτ
−1
j )−2λ2

T . (46)

But since

ηL ≥ ηT = (C1/c3 − 1)2(αjτ
−1
j )−2λ2

T = (2
√
C3/c3)

2(αjτ
−1
j )−2λ2

T > C3(αjτ
−1
j )−2λ2

T ,

we see that (46) is implied by |b − τj| > C3(αjτ
−1
j )−2λ2

T . To sum up, |b∗ − τj| > C3(αjτ
−1
j )−2λ2

T

would result in (44), a contradiction. So we have proved that |b∗ − τj| ≤ C3(αjτ
−1
j )−2λ2

T .

Step 4. With the arguments above valid on the event AT ∩ BT ∩ DM
T , we can now proceed with

the proof of the theorem. At the start of Algorithm 1, we have s = 1 and e = p and, provided that
q ≥ 1, condition (43) is satisfied. Therefore the algorithm detects a change-point b∗ in that interval
such that |b∗ − τj| ≤ C3(αjτ

−1
j )−2λ2

T . By construction, we also have that |b∗ − τj| < 2/3δT . This in
turn implies that for all l = 1, . . . , q such that τl ∈ [s, e] and l ̸= j we have either IL

l , IR
l ⊂ [s, b∗]

or IL
l , IR

l ⊂ [b∗ + 1, e]. Therefore (43) is satisfied within each segment containing at least one
change-point. Note that before all q change points are detected, each change point will not be
detected twice. To see this, we suppose that τj has already been detected by b, then for all intervals
[sk, ek] ⊂ [τj−C3(αjτ

−1
j )−2λ2

T +1, τj−C3(αjτ
−1
j )−2λ2

T +2/3δT +1]∪[τj+C3(αjτ
−1
j )−2λ2

T −2/3δT , τj+

C3(αjτ
−1
j )−2λ2

T ], Lemma 2 in Baranowski et al. (2019), together with the definition of AT , guarantee
that

max
sk≤b<e

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb
sk,ek

(β) + λT

≤
√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j +

√
C3(αj+1τ

−1
j+1)

−2λ2
Tαj+1τ

−1
j+1 + λT

< (2
√
C3/c3 + 1)λT = C1λT < ζT .

Once all the change-points have been detected, we then only need to consider [sk, ek] such that

[sk, ek] ⊂ [τj − C3(αjτ
−1
j )−2λ2

T + 1, τj+1 + C3(αj+1τ
−1
j+1)

−2λ2
T ]

for j = 1, . . . , q. For such intervals, we have, by Lemmas 2 and 3 of Baranowski et al. (2019)

max
sk≤b<ek

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb
sk,ek

(β) + λT

≤
√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j +

√
C3(αj+1τ

−1
j+1)

−2λ2
Tαj+1τ

−1
j+1 + λT ≤ C1λT < ζT .
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Hence no further scales is detected and the algorithm terminates. □

C.4 Proof of Theorem 2.3

The proof of Theorem 2.3 is similar to that of Theorem 2.2. In the following, we shall still divide
the proof into four steps as before, but focus on the main differences.

Step 1. Let {ρh : h ∈ Z} the true auto-correlation function of {Xt} and ρ̂h be its sample version
(without de-meaning). Let ρ = (ρ0, . . . , ρp)

′. First, we note that for α > 2, the distribution of
the innovations has finite second moment. It then follows from Anderson and Walker (1964) that
ρ̂− ρ = Op(T

−1/2). The least-square estimator for AR(p) can be written as

β̂ =


∑T−1

i=p X2
i . . .

∑T−1
i=p XiXi−p+1

. . .∑T−p
i=1 XiXi+p−1 . . .

∑T−p
i=1 X2

i


−1

p×p


∑T−1

i=p XiXi+1

...∑T−p
i=1 XiXi+p

 .

This is asymptotically equivalent to ρ̂0 . . . ρ̂p−1

. . .

ρ̂p−1 . . . ρ̂0


−1 ρ̂p...

ρ̂1

 ,

which converges to β at Op(T
−1/2) in view of the Yule–Walker equations. Now for 0 < α ≤ 2, despite

infinite second moment in the innovations thus the time series, the auto-correlation function is still
well-defined, in the sense of Davis and Resnick (1986). It follows from Hannan and Kanter (1977)
that for any sufficiently small ϵ > 0, T 1/α−ϵ∥β̂−β∥ → 0 in probability. See also Yohai and Maronna
(1977) and Davis and Resnick (1986). In conclusion, we have that Tmax(1/2,1/α)−ϵ∥β̂ − β∥ → 0 in
probability.

Steps 2 and 3. The following arguments are simpler, due to the fact that p is fixed. Be-
cause we go through all the intervals [s, e] over {1, . . . , p}, we could see that under the event
that Tmax(1/2,1/α)−ϵ∥β̂ − β∥∞ < 1 (N.B. here the norm does not matter, as p is fixed), for any
j = 1, . . . , q, and taking C1 =

√
p and C2 = 1/2,

max
τj≤b<τj+1

Cb
τj ,τj+1(β) ≥ αT/

√
2− 2∥β̂ − β∥∞ > C2αT .

On the other hand, for all the intervals [s, e] that do not include any of the change-points {τ1, . . . , τq},

max
s≤b<e

Cb
s,e(β) ≤

√
p∥β̂ − β∥∞ < C1T

−max(1/2,1/α)+ϵ.
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Step 4. We shall now proceed with the proof under the event that Tmax(1/2,1/α)−ϵ∥β̂ − β∥∞ < 1,
which happens with probability one as T → ∞. At the start of Algorithm 1, we have s = 1
and e = p. Since we pick the threshold ζT < C2αT , and we consider only the narrowest intervals
with the corresponding contrasts (i.e. CUSUM-type statistic) over the threshold, we would end up
considering all [τj, τj +1] for j ∈ {1, . . . , q}. Notice that before all the q change-points are detected,
we would not consider other longer intervals, because of the nature of Algorithm 1. In addition, we
will not consider intervals without any change because their corresponding contrast values would
be below the threshold, as proved in the previous step. Once all the changes are detected, we
then only need to consider the intervals located in between consecutive change-points, which all
have corresponding contrast values smaller than C1T

ϵ−max(1/2,1/α), thus the threshold ζT . Hence the
algorithm would terminate with no further scales detected.
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