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Abstract

We propose Combined Selection and Uncertainty Visualizer (CSUV), which vi-
sualises selection uncertainties for covariates in high-dimensional linear regression by
exploiting the (dis)agreement among different base selectors. Our proposed method
highlights covariates that get selected the most frequently by the different base vari-
able selection methods on subsampled data. The method is generic and can be
used with different existing variable selection methods. We demonstrate its per-
formance using real and simulated data. The corresponding R package CSUV is at
https://github.com/christineyuen/CSUV, and the graphical tool is also available
online via https://csuv.shinyapps.io/csuv.
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1 Introduction

Model and variable selection in high-dimensional regression settings have been widely dis-

cussed in the past decades, with techniques such as best subset selection (Beale et al.,

1967), Lasso (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005), Group Lasso (Yuan

and Lin, 2006), SCAD (Fan and Li, 2001), MCP (Zhang, 2010) and a handful of others hav-

ing gained widespread popularity. Fan and Lv (2010) provide a detailed review of different

variable selection methods in high-dimensional settings. On the uncertainty quantification

front, there has been a growing focus on post-selection inference. Van de Geer et al. (2014),

Zhang and Zhang (2014) and Javanmard and Montanari (2018) advocate the de-biasing

approach, which constructs confidence intervals for covariates by de-sparsifying the Lasso

estimators. Lee et al. (2016), Tibshirani et al. (2016) and Tibshirani et al. (2018) propose

a conditional approach which provides confidence intervals for the selected covariates using

the distribution of a post-selection estimator conditioning on the selection event. Chatter-

jee and Lahiri (2011) and Liu and Yu (2013) suggest using bootstrapping on some existing

variable selectors.

In this paper, we propose a simple approach to assessing and visualizing selection un-

certainty in the linear model. We assume that the observed data are the realization of:

Yi = β0 +

p∑
j=1

βjX
j
i + εi, i = 1, ..., n, (1)

where p is the number of covariates, n is the number of observations, and we potentially

have p > n. Xj
i is the jth covariate of the ith observation of X and X is a fixed n×p design

matrix. X is standardized with each covariate Xj has
∑n

i=1X
j
i /n = 0 and

∑n
i=1(X

j
i )

2/n =

1. ε is i.i.d. noise with mean zero and variance σ2. Furthermore, the model is assumed to

be sparse with the set of true covariates S = {j ∈ {1, ..., p} : βj 6= 0}, s = |S| � p.

Given a dataset, how to select the best variable selection method remains an open

and yet very important question to ask. Various theoretical performance guarantees are

available for a range of methods (e.g. the irrepresentable condition (Zhao and Yu, 2006)

is sufficient and almost necessary for the Lasso to be sign consistent) but many of them
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are not testable in practice; for instance, checking the irrepresentable condition usually

requires knowing the true set of covariates. Therefore, this type of theory can be of limited

practical use in method selection. To illustrate the uncertainty associated with method

selection, let us consider two real-life datasets in Examples 1 and 2.

Example 1 (Riboflavin data). The riboflavin dataset concerns the riboflavin (vitamin B2)

production by bacillus subtilis. The response is the logarithm of the riboflavin production

rate by bacillus subtilis and the p = 4088 covariates are the logarithms of the expression

levels of 4088 genes. The number of samples is n = 71� p. The dataset is available in the

R package hdi.

Example 2 (Prostate cancer data, Stamey et al., 1989). The prostate cancer dataset comes

from a study that examined the relationship between the level of prostate-specific antigen

and p = 8 clinical measures (logarithm of weight, age, Gleason score, among others) in

men who were about to receive a radical prostatectomy. The sample size is n = 97. The

dataset is available in the R package lasso2.

We process the datasets using five different variable selection methods: the Lasso,

Elastic Net, relaxed Lasso (Meinshausen, 2007), MCP and SCAD in R with default tuning

in the corresponding R packages (see Section 5 for more details). The selection results

are shown in Figures 1 and 2. Figure 1 shows that for the riboflavin dataset the sets of

Figure 1: Graphical illustration of selections by different variable selection methods (Lasso,
Elastic Net, relaxed Lasso, MCP and SCAD) with default tuning using the riboflavin
dataset from Example 1. Covariates that are not selected by any methods are not shown
in the graph for readability.

3



Figure 2: Graphical illustration of selections by different variable selection methods (Lasso,
Elastic Net, relaxed Lasso, MCP and SCAD) with default tuning using the prostate dataset
from Example 2.

covariates selected vary significantly among the methods, which makes it difficult to justify

the validity of the set of covariates selected using any one method. For the prostate cancer

dataset, even though there are only eight covariates to choose from, there is still selection

disagreement among the methods (Figure 2).

Such disagreement among methods as shown in Figures 1 and 2 is not an exception

but a common observation. The distance heat maps in Appendix A.4 show that selection

disagreement manifests itself across different simulation settings. Having observed disagree-

ment, one possible way to proceed would be to rank the different models considered (e.g.

using cross-validation or an information criterion) and select the highest-ranked one. How-

ever, notwithstanding the usefulness of using a single, well-performing variable selection

method, it is tempting to ask whether more can be said regarding the uncertainty of vari-

able selection, based on the disagreement between the methods tested. The similarities and

disagreements among the different variable selectors, which is a piece of information not

typically used by any one of them, may provide us with some useful insight. For example, in

Figure 1 all of the methods select the first three covariates whereas the remaining covariates

are selected by some of the methods only. Does it mean that the first three covariates are

more likely to be the true covariates? This question is central to this paper, and motivates

our main development. In this paper, we propose a new tool for uncertainty visualization

associated with variable selection, termed Combined Selection and Uncertainty Visualizer

(CSUV). CSUV combines, in a particular way, a number of different base variable selection
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methods into the solution path of a new variable selector, and illustrates the output of this

new selector together with a graphical representation of its uncertainty. It makes use of sets

of covariates selected on different subsamples of the data with different variable selection

methods. A full description of the proposed method is in Section 3 and 4. The variable

selection part of the proposed procedure can be summarized as follows: first, split the data

into the training and test sets and fit different variable selection methods on the training

set over a grid of tuning parameter values. Estimate the performance of the fitted models

on the test set, and retain only the best-performing model. Repeat the process a number

of times and select the covariates that appear the most frequently in the collection of the

retained fitted models.

The goal of variable selection in our context is purely interpretative: we are interested

in visualising the uncertainty associated with including each individual covariate into any

model. The user aware of the data-analytic context can then make their own decision as

to whether or not to include each covariate, based on the task at hand (e.g. prediction).

This task is facilitated by our approach, as it returns what can be interpreted as a mea-

sure of importance of each covariate, and a natural ordering of the covariates according

to the certainty of their inclusion. Based on the output of the procedure, the user can

select a number of sets of covariates, if this is preferred – for example, by trying different

combinations of the ‘most certain’ variables.

An important component of CSUV is a graphical tool designed to visualize the selection

uncertainty by using disagreement among the different model fits. See Figure 3 for an

example of a graphical output of CSUV. The plot shows the frequency with which each

covariate is selected and the variability of the estimated coefficients.

The paper is organized as follows. In Section 2, we describe some related work. In

Section 3, we discuss the main ideas behind CSUV, and we present the solution path,

variable selection and coefficient estimation part of CSUV. In Section 4, we introduce

the graphical tool of CSUV to illustrate the disagreement in variable selection and the

variability in coefficient estimation. In Section 5, we present the simulation results.
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2 Related work

One possibility open to analysts when faced with competing fitted models is to select

one of them. For example, Chen and Chen (2008) propose eBIC, an extension of BIC to

high-dimensional data which takes into account both the number of unknown parameters

and the complexity of the model space. Zhang and Yang (2015) advocate the use of the

delete-n/2 cross-validation to select a method among all the candidate methods.

Model combination with subsampling has been used to improve variable selection per-

formance of a single variable selection method. For example, Bolasso (Bach, 2008) fits the

Lasso on each bootstrap sample and takes the intersection of all the selections. Wang et al.

(2014) propose the median selection subset aggregation estimation (MESSAGE) algorithm

which aims to perform variable selection on large-n datasets. The ranking-based variable

selection (Baranowski et al., 2020) algorithm uses subsampling to identify the set of con-

sistently highly-ranked covariates. Stability selection (Meinshausen and Bühlmann, 2010

and Shah and Samworth, 2013) provides control over the finite sample familywise type I

errors via subsampling.

Similarly to the methods above, CSUV, our proposal, fits variable selection methods on

subsampled data and selects the covariates that appear the most frequently. Unlike these

other approaches, however, CSUV makes use of different variable selection methods as we

observe that no one method outperforms all other methods in all settings. This brings

various advantages, including obtaining access to good model fits from different variable

selection methods, and being able to exploit disagreement between the selectors to evaluate

selection uncertainty. We elaborate on these points later.

One high-level difference between CSUV and stability selection is the output from both

procedures: CSUV is designed to visualise the uncertainty associated with the inclusion of

each covariate into (any) linear model, whereas stability selection does not have a similar

function. To this end, CSUV uses information from the disagreement between different

model fits, a point of view that is absent from stability selection. In addition, CSUV

has a mechanism for only considering the disagreement between ‘good’ model fits; this is

achieved by filtering out (predictively) ‘bad’ model fits. (Clearly, there would be little point
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in considering disagreement between a number of unsatisfactory model fits.) This point of

view is not present in stability selection, which does not automatically have a mechanism

for filtering out unsatisfactory base methods or model fits.

Adaptive regression by mixing (ARM, Yang, 2001) and its variation, adaptive regression

by mixing with screening (ARMS, Yuan and Yang, 2005), aggregate fits from different

methods by estimating weights through subsampling. Variable selection deviation measures

(VSD, Nan and Yang, 2014) aim to provide a sense of how trustworthy a set of selected

covariates is. The VSD of a target model m is the weighted cardinality of the symmetric

difference between m and each candidate model. Nan and Yang (2014) suggests using the

sets of fitted models on the solution paths from the Lasso, SCAD and MCP as candidate

models and the weight of each candidate model is calculated based on information criteria or

ARM. The simulation results in Nan and Yang (2014) show that a large VSD compared to

the size of the target model means that the target model is not trustworthy, but a small VSD

does not necessarily mean that the target model is close to the true model. Yang and Yang

(2017) propose to select a set of covariates that minimizes the total Hamming distance with

all the candidate models in terms of VSD (we refer to this method as VSD-minimizing in

the remainder of the paper). The authors also propose using different thresholds, where the

threshold of 0.5 is equivalent to minimizing the standard Hamming distance. For variable

selection method combinations that do not involve subsampling, Tsai and Hsiao (2010),

Mares et al. (2016) and Pohjalainen et al. (2015) provide empirical results on combining

sets of selected covariates from different variable selection methods by intersection, union

and/or some other set operations.

Both our method and VSD use resampling and different variable selection methods to

provide an assessment of how good the final set of covariate selection is. VSD focuses

on the whole model fit. Our method focuses on the uncertainty of individual covariates

and a graphical tool is designed to illustrate these uncertainties. In terms of methodology

detail, our method combines the sets of covariates selected in resampling fits whereas VSD

combines sets of covariates selected on the solution path when fitting using all the data.

Resampling data is only used in VSD for calculating the weight of each set of covariates.
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In our simulation study we compare the variable selection performance of our method to

the VSD-minimizing method proposed by Yang and Yang (2017), as it is the method the

most similar to CSUV. The simulation results in Section 5 show that in general our method

outperforms the VSD-minimizing model.

Hahn and Carvalho (2015) provide an informative review of Bayesian approaches to

variable selection in linear models, a formalism in which the data-analytic output consists

of probabilities assigned to different models given data. Therefore, these approaches provide

natural measures of model uncertainty and should be seen as an alternative to the approach

taken in CSUV and other frequentist methods. As reviewed in Hahn and Carvalho (2015),

two potential weaknesses of the Bayesian approach in this context are: subjectivity in the

choices of the various priors, and the fact that posterior sampling is usually computationally

intensive. CSUV attempts to mitigate both these issues by minimising user involvement in

the selection of its parameters, and by using computationally efficient constituent methods.

3 CSUV solution path methodology

3.1 The CSUV algorithm

The first goal of this paper is to use the similarity of fits from different methods to obtain

the ranking of covariates, alternatively referred to as a solution path, which can then (if

desired) be used for the purpose of variable selection. CSUV achieves this by following the

simple aggregation principles below.

• Step 1: fit the data using different variable selection methods.

• Step 2: record the percentage of times a covariate Xj is selected among the different

methods. Denote it by θj.

• Step 3: rank the covariates according to decreasing θj’s. If variable selection is

required, select those that correspond to the highest θj’s, e.g. {Xj : θj ≥ 0.5}.

At the same time, CSUV uses the following additional mechanisms.
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• Only include the fitted models that exhibit good performance (see Section 3.2.2).

• Repeat the fitting on subsampled data.

This is done, respectively, to discourage CSUV from focusing on poorly-performing meth-

ods, and to incorporate the variability in selection caused by the variability in data.

Different variable selection methods optimize different objective functions. In the case

of regularized regression, the difference among methods is usually in terms of the penalty.

If a covariate is selected by the majority of methods, it means the covariate is chosen to

minimize many different objective functions. We expect that a true covariate j should have

a high θj, i.e. it should frequently be chosen regardless of the objective function used.

The CSUV solution path procedure, detailed in Algorithm 1, can be summarized as

follows. First, randomly split the data into training and test sets, and fit different variable

selection methods on the training set over a grid of regularization parameters (see Section

3.2.4 for more details). Then, use the test set to calculate the performance of the fitted

models and retain the best model (see Section 3.2.2 for more details on performance mea-

sures). Repeat the process many times. Order the covariates according to the relative same

sign frequency τj, which we now define.

Definition 1 (Relative same sign frequency τj). Assume a set of fitted models M. The

relative same sign frequency of covariate Xj is defined as:

τj =
1

|M|
max

( ∑
Mk∈M

1
β̂
Mk
j >0

,
∑

Mk∈M

1
β̂
Mk
j <0

)

where β̂Mk
j is the estimated coefficient of the jth covariate on the fitted model Mk ∈M, and

1x is the indicator function.
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Algorithm 1 CSUV solution path (and variable selection)

Input: variable selection methods A1, ...,AR with the corresponding generation of the

grid of regularization parameters; n observations with p covariates X and response

Y ; number of repetitions B; percentage of data used in training set w%; performance

measure; (for variable selection only) frequency threshold t.

Output: ranking of covariates; (for variable selection only) set of selected covariates Ŝ.

1: for b in {1, ..., B} do

2: Randomly assign w% of the observations as training data with labels Ibtrain and the

rest as test data with label Ibtest. Fit data with label Ibtrain using A1, ...,AR over grids of

K ′
r different values of the corresponding regularization parameters, r ∈ {1, ..., R}. For

each method Ar, denote the fitted models as M̃ b
r,1, ..., M̃

b
r,K′

r
and the set of covariates

selected by each fitted model as SM̃
b
r,k = {j : β̃j

M̃b
r,k 6= 0}, k ∈ {1, ..., K ′

r}.
3: Remove any duplication within each method in terms of variable selection to get

SM̃
b
r,1 , ..., SM̃

b
r,Kr such that for each r, SM̃

b
r,k 6= S

M̃b
r,k′ ∀k 6= k′ ∈ {1, ..., Kr}. Record the

sets of covariates selected by each fitted model SM̃
b
1,1 , ..., SM̃

b
1,K1 , ..., SM̃

b
R,1 , ..., S

M̃b
R,KR

and re-index as SM̃
b
1 , ..., SM̃

b
Kb , where Kb is the number of fitted models recorded.

4: If the number of selected covariates |SM̃b
k | < |Ibtrain|, refit the selected set of covariates

SM̃
b
k using ordinary least squares (OLS), to get the fitted models M̂ b

1 , ..., M̂
b
Kb with the

estimated coefficients β̂j
M̂b

k . Otherwise, set β̂j
M̂b

k = β̃j
M̃b

k .

5: Use data with label Ibtest to estimate the performance of each fitted model M̂ b
k from

Step (4) according to the given performance measure. Retain the best fitted model and

denote it as M̂ b
(1).

6: end for

7: Denote the set of retained fitted models by M = {M̂1
(1), . . . , M̂

B
(1)}.

8: Calculate the relative same sign frequency τj for each variable j, which defines the

ranking of covariates.

9: If variable selection is required, select the covariates Ŝ defined by

Ŝ = {j : τj ≥ t}.

Algorithm 1 involves repeated fits on subsamples of data, and this can be computation-
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ally expensive. Fortunately, the algorithm can easily be parallelized by running iterations

on different cores/machines, which makes it feasible for high-dimensional data analysis.

3.2 Specifications for CSUV variable selection

Algorithm 1 provides a general framework for the CSUV solution path and variable selection

approach. Here we discuss how its parameters should or may be set for practical use.

3.2.1 Coefficient estimation

If Algorithm 1 is tasked with variable selection, it only selects a set of covariates without

estimating the β coefficients. In our implementation we use ordinary least squares (OLS)

to estimate the β coefficients on the selected set Ŝ using the full set of data to form the final

fitted model. If the number of covariates selected is larger than the number of observations,

the default option in our code is to use ridge regression to estimate the coefficients by cross-

validation (with the default cross-validation setting from the glmnet R package); however,

this should be treated as an exception mode as the number of covariates selected is almost

always much smaller than the number of observations.

3.2.2 Performance measure

Step (5) of Algorithm 1 aims to select the fitted models based on their variable selection

performance. In general, in attempting to select fitted models or methods with good

variable selection performance, it is common to use prediction measures such as MSE

or information criteria such as BIC or eBIC. Theoretically, BIC is consistent in model

identification when p is fixed and eBIC is consistent in high-dimensional settings (Chen

and Chen, 2008). Our empirical experiments, however, show that when using BIC or eBIC

as performance measures in Algorithm 1, the resulting fitted models tend to select too few

covariates so the final selection by CSUV omits too many true covariates. By contrast, using

MSE as the performance measure in Algorithm 1 in our simulation settings provides good

variable selection performance. Although MSE measures prediction rather than variable

selection performance, MSE is often used for variable selection methods such as in selecting
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tuning parameter λ for SCAD (Fan and Li (2001)).

3.2.3 Percentage of data used in training

Following Yang (2001), Yuan and Yang (2005) and Zhang and Yang (2015), we use w% =

50% of the data for fitting and the remaining 50% for testing by default; this splitting

ratio attempts to ensure a sufficiently large sample size for both. Stability selection (Mein-

shausen and Bühlmann, 2010 and Shah and Samworth, 2013) also uses the same splitting

ratio although their rationale is that subsampling with such a ratio behaves similarly to

bootstrapping. Empirically, we found that departures from 50:50 were occasionally bene-

ficial; many procedures display at least some sensitivity to the training/test split, so this

phenomenon in our case is neither unique nor unexpected. For example, we applied CSUV

in a higher-dimensional case involving p = 1000 (with n = 100) and the 75:25 split was

preferred there – possibly because it was particularly important for the algorithm to max-

imise the size of the training sample when there were so many variables. On the other

hand, when n was large in relation to p (n = 1000 and p = 100), the performance of CSUV

with three different splits ratios (25:75, 50:50 and 75:25) was similar, with 25:75 and 50:50

performing slightly better than 75:25, quite possibly because with such a large n, even

25:75 was seen as sufficient for training.

3.2.4 Constituent variable selection methods

CSUV is designed to be generic so that any variable selection methods can be used as the

constituent methods A1, ...,AR in CSUV. Ideally, all the methods Ar should have good

variable selection performance, and there should be some variability among the methods

in terms of false selection. The base methods should also be computationally efficient they

are fitted on subsampled data multiple times. In this paper, we choose the Lasso, MCP

and SCAD to be the default constituent methods as they are optimizing different objective

functions. Methods like Elastic Net or relaxed Lasso are not used by default as they are

relatively similar to Lasso. Our default base methods are also computationally feasible

in high-dimensional settings with efficient fitting algorithms available, and there is also a
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default way to compute the grid of regularization parameters to consider. For example,

the R package ncvreg for MCP and SCAD by default computes a sequence of parameters

λ with equal spacing on the log scale and of length 100, starting from the smallest value

0.001. We do not consider two-stage methods such as the adaptive Lasso (Zou, 2006)

as they are relatively slow, or methods without default parameter tuning in R (e.g. the

Dantzig selector, Candes and Tao, 2007) as they make comparison with other methods like

delete-n/2 cross-validation more complicated.

CSUV can tolerate duplicated or very similar methods, although it is not recommended

due to the computational time. In our experience, including duplicated or very similar

methods tends not to affect the variable selection performance. In our simulations, when

methods that usually select similar sets to the Lasso (such as the Elastic Net or relaxed

Lasso) are included, the performance of CSUV does not change much.

A suggestion made by a referee is to incorporate a randomised method (or a selection

thereof) as a constituent variable selector in CSUV, to increase the diversity of the con-

stituent methods. In a randomised method, each model uses a random subset of variables,

chosen according to a particular recipe (akin to a Bayesian stochastic search). However, it

is not obvious to us how to select reasonable random models in a computationally efficient

way, and we therefore leave this interesting idea for future work.

3.2.5 Number of repetitions

The number of repetitions B should be large enough to stabilize the value of τj and at the

same time it should not be too large so that Algorithm 1 can be run within a reasonable

time. We use B = 100 in our experiments.

3.2.6 Frequency threshold

The frequency threshold t features in Step (9) of Algorithm 1 and is used when variable

selection is required. The CSUV method described by Algorithm 1 and using t = 1/2

is denoted by CSUV-m, where the “m” in CSUV-m stands for median, because selecting

covariates with τj ≥ 1/2 is equivalent to selecting covariates with a non-zero median in
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M. The choice t = 1/2 is optimal in the sense of minimising certain distance functions;

the details are in Propositions 1 and 2 in the Appendix. Empirically, even though CSUV-

m strikes a good balance between false inclusion and false omission, compared to other

variable selection methods it usually includes many fewer false covariates, with the trade

off being that it occasionally omits some true covariates. When the analyst’s focus is on

performance criteria other than variable selection, for example on prediction, they may

want to select more covariates. This can be done by considering other thresholds t on the

sign frequency τj, or a threshold on the model size which we introduce next.

3.3 Solution path and alternative variable selection

Algorithm 1 generates a solution path (formally defined below) by ordering covariates from

the highest to the lowest relative same sign frequency τj. This solution path can be regarded

as a series of nested sets of covariates with increasing model sizes.

Definition 2 (CSUV solution path). The CSUV solution path orders covariates so that

Rj < Rj′ if τj > τj′ or (τj = τj′ and | ¯̂βj| > | ¯̂βj′|)

where Rj is the position of covariate j on the solution path, τj is the relative same sign

frequency calculated in Step (9) of Algorithm 1 and
¯̂
βj is the average of the estimated

coefficients in M in Step (7) of Algorithm 1.

The standardization of the design matrix in Equation (1) ensures the comparison of the

size of the estimated coefficients is meaningful. The nested character of the solution path

makes it easy to entertain alternatives to CSUV-m. In particular, consider replacing line

(9) of Algorithm 1 by Ŝ = {j : Rj ≤ s}, where s is a given size thresholds which specifies

the model size. In the particular implementation of CSUV described in this paper, we

set the size threshold s equal to the median size of the selected sets in M in Step (7) of

Algorithm 1 and we define CSUV with this threshold as CSUV-s.
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4 CSUV visualization of uncertainty

4.1 Graphical component of CSUV

Figure 3: CSUV graphical tool, riboflavin data from Example 4 (modified Example 1). Box
plots: empirical distributions of the estimated coefficients; whiskers: their 5% and 95%
percentiles. Ordering of the covariates according to the CSUV solution path. Numbers
at the bottom of the graph (black): τj times 100; shade in the background: level of τj
with ranges as in the legend. Numbers at the bottom of the graph (blue): percentage
proportion of user-provided methods (here: Lasso, Elastic Net, relaxed Lasso, MCP, SCAD)
that select the corresponding covariate. Red (full) dots: coefficients estimated by CSUV-
m; empty dots: coefficients estimated by a single user-provided method (here: delete-n/2
cross-validation). Solid vertical line (green): cut-off of CSUV-m; dotted vertical line (blue):
cut-off of CSUV-s. Remaining covariates not shown for readability.

In this section, we introduce the graphical component of CSUV, a tool designed to

illustrate the variable selection and estimation uncertainty. An example of a plot is shown

in Figure 3 and the graphical tool is available interactively at https://csuv.shinyapps.

io/csuv and in the R package CSUV (Yuen, 2021). It has the following ingredients.
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Box plots that visualize the estimated coefficient uncertainty. Each box plot corresponds to

a covariate Xj and shows the lower and the upper quartiles of the empirical distributions

of the estimated coefficients. Figure 3 shows the unconditional distributions for each co-

variate. The CSUV package also has a conditional option, in which the box plots show the

distributions conditional on the estimated coefficients being non-zero. In addition, users

desiring more details of the empirical distribution of estimated coefficients are able to su-

perimpose the corresponding violin plots on the box plots in the CSUV package. The extent

of the whiskers, set by default to the 5 and 95 percentiles of each estimated coefficient, can

be adjusted in the CSUV package. The median value of each estimated coefficient is shown

as a horizontal line in each box (blue in the color version). The box plots are ordered

according to the solution path (Definition 2).

Shaded background representing τj. The background behind each box plot is shaded ac-

cording to the relative same sign frequency τj of the corresponding covariate. The darker

the color, the higher the value of b100%τj/10c. The actual value of τj is displayed in black

underneath the box plots.

Lines showing the cut-off points for variable selection by the various versions of CSUV.

CSUV-m selects all covariates to the left of the solid vertical line; CSUV-s selects all those

to the left of the dotted vertical line.

Figure 3 illustrates (dis)agreement between the constituent variable selectors, in the

sense of showing the range of estimates for each linear parameter obtained for each sub-

sample, for each method that wins a prediction competition on that sub-sample. This

ensures that only ‘good’ methods are evaluated (there is little point in including less ade-

quate methods for the purpose of uncertainty visualisation, if a better method can be run

instead). If the chosen ‘good’ methods exhibit large variation in terms of the parameter

value associated with a given covariate, this can be viewed as a sign of high uncertainty

as to whether the covariate should enter any linear model for the data (given that various

well-performing predictive methods disagree as to its value).

The CSUV package users wishing to compare the results returned by CSUV with any
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individual variable selection procedures of their choice (as long as their outputs are in a

compatible format stated in the R package documentation) are able to produce an enhanced

CSUV plot, showing all of the above, and with addition of the items below, which also

appear in Figure 3.

Graphical representation of the selection by a group of user-provided variable selection meth-

ods. The number (blue in the color version) in the bottom part of the graph shows the

percentage of user-provided methods that have selected the corresponding covariate when

fitting with all the observations.

Graphical representation of the selection by any single user-provided method. The coefficient

estimates by the given method are shown as empty circles (white circles with a blue outline

in the color version).

5 Simulation study

5.1 Settings

In this section, we evaluate the variable selection performance of CSUV. We consider CSUV

with different sets of constituent methods: (1) Lasso, MCP and SCAD (default); (2) Lasso,

Elastic Net, relaxed Lasso, MCP and SCAD; (3) Lasso, Elastic Net, relaxed Lasso, MCP,

SCAD and trees; (4) MCP only. The first set is our primary interest. When we mention

CSUV without specifying the corresponding constituent methods, we implicitly assume

that this set of methods is used. The second and the third combinations are used to verify

the claim that adding some similar or inappropriate methods does not affect the perfor-

mance too much. The fourth set is used to verify the claim that using more constituent

methods in general provides better results. We use MCP here because in the majority of

the simulation settings it has the best variable selection performance among the individual

variable selection methods in terms of the F-measure and the number of false classifications.

We use publicly available R packages for the implementation of the constituent methods

(Lasso, Elastic Net, relaxed Lasso, MCP, SCAD, tree) used in CSUV. Further details are
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in Section A.6.1. We use eBIC and delete-n/2 cross-validation as the major competitors

to CSUV. We use eBIC instead of BIC as eBIC is designed for high-dimensional data. We

also include the simulation results of each constituent method (Lasso, Elastic Net, relaxed

Lasso, MCP and SCAD), VSD-minimizing method (Yang and Yang, 2017) and BIC for

readers’ reference. Further details are in Section A.6.2.

For the datasets for which we know the true sets of covariates (i.e. simulated data and

the modified real datasets), we compare the variable selection performance among different

methods by the F-measure, the number of false positives (FP), number of false negatives

(FN) and the total number of variable selection error (FP+FN). Although our main focus is

variable selection performance, we also compute the prediction mean square errors (MSE)

on test set data and the coefficient estimation error (l1 and l2) for CSUV and the comparing

methods. Further details are in Section A.6.3.

Our simulations involving synthetic data use five different linear models, details of which

are in Section A.6.4. Our real datasets are described below.

Example 3 (Boston housing data, Harrison Jr and Rubinfeld, 1978). The dataset consists

of the median value of owner-occupied homes as response and p = 13 covariates (crime rate,

proportion of residential land, etc). Number of observations is n = 506. The dataset is

publicly available in R with the MASS package. For each simulation, half of the observations

(randomised) are used as the training data and the other half are used as the test set;

m = 100 repetitions.

Example 4 (Modified riboflavin data). Here we re-examine the riboflavin dataset intro-

duced in Example 1. In order to assess the variable selection performance, we randomly

permute all but 10 of the 4088 covariates in the riboflavin dataset across all the observations.

The same permutation is used for all permuted covariates to keep the original dependence

structure among them. The set of 10 unpermuted covariates is chosen randomly among the

200 covariates with the highest marginal correlation with the response. In the simulation

results, we refer the 10 unpermuted covariates as the “true” covariates. We repeat the

process m = 100 times with random selection of the 10 unpermuted covariates.
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5.2 Results

The simulation results are summarized in Tables 1–3 and also Tables 3–19 in the Appendix

A.7. A qualitative summary is provided below.

methods f FP+FN FP FN pred.err l1.diff l2.diff size

lasso 0.39 25.02 24.45 0.57 2.83 4.48 1.12 30.95
elastic net 0.33 32.64 32.14 0.5 3.01 5.32 1.24 38.71
relaxed lasso 0.58 12.29 11.35 0.94 2.87 3.98 1.09 17.48
mcp 0.7 4.86 3.32 1.54 2.93 3.2 1.13 8.84
scad 0.63 8.04 6.79 1.25 2.91 3.05 1.09 12.6
vsd 0.72 3.2 0.48 2.72 3.9 3.38 1.32 4.82
bic 0.64 10.18 8.98 1.2 2.85 3.29 1.06 14.85
ebic 0.71 5.4 4.02 1.37 2.87 3.04 1.08 9.71
cv 0.54 17.25 16.61 0.64 2.72 3.74 1.01 23.03
csuv.m 0.77 2.7 0.65 2.05 3.23 2.76 1.1 5.66
csuv.s 0.7 5.92 4.69 1.23 2.82 3.2 1.04 10.52
csuv.m.25 0.56 4.35 0.09 4.26 5.25 4.36 1.74 2.9
csuv.m.75 0.79 2.98 1.77 1.22 2.73 2.55 0.95 7.61
csuv.m.all 0.77 2.75 0.78 1.97 3.16 2.75 1.09 5.88
csuv.m.mcp 0.68 3.34 0.15 3.19 4.31 3.47 1.38 4.02
csuv.m.with.tree 0.77 2.75 0.77 1.98 3.18 2.75 1.09 5.85

Table 1: Model summary: performance of CSUV and methods it compares with. Variable
selection performance in terms of F-measure (f), total error (FP+FN), false positives (FP)
and false negatives (FN), prediction error in terms of mse (pred.err), estimation error in
terms of l1 and l2 distance (l1.diff and l2.diff) and average model size (size) are shown.
The numbers are based on 100 simulations. The last 7 rows are the performance of CSUV
with different parameters (e.g. csuv.m.mcp corresponds to CSUV with MCP as constituent
method, and csuv.m.25 corresponds to CSUV with splitting ratio 25:75). Bold numbers:
best result among delete-n/2 cross validation, eBIC and CSUV using Lasso, MCP and
SCAD; underlined numbers: worst among those. Standard errors are shown inside the
parentheses.

CSUV-m vs CSUV-s. In general CSUV-m has better variable selection performance in

terms of the F-measure with our synthetic datasets. CSUV-s usually has a better prediction

performance, which is also more stable (not too far off from the best method when CSUV

is not performing particularly well) in terms of MSE than CSUV-m. This may because

CSUV-s selects a larger set of covariates than CSUV-m. For the real dataset Riboflavin,

the reverse is observed.

MCP only vs three different methods. CSUV using MCP only in general has worse perfor-

mance than CSUV using three different constituent methods; sometimes by a large margin

(e.g. model 3 with parameter settings 7 and 8) in terms of both prediction and variable
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methods pred.err size

lasso 26.08 (0.39) 12.39 (0.09)
elastic net 26.12 (0.4) 12.38 (0.1)
relaxed lasso 26.53 (0.42) 11.21 (0.14)
mcp 26.23 (0.39) 11.31 (0.17)
scad 26.14 (0.39) 11.56 (0.13)
vsd 28.54 (0.43) 5.98 (0.17)
bic 26.27 (0.4) 10.92 (0.16)
ebic 26.27 (0.4) 10.92 (0.16)
cv 26.08 (0.39) 12.36 (0.09)
csuv.m 26.59 (0.4) 10.04 (0.16)
csuv.s 26.65 (0.4) 9.98 (0.16)
csuv.m.25 28.47 (0.41) 6.52 (0.19)
csuv.m.75 26.49 (0.4) 10.17 (0.16)
csuv.m.all 26.63 (0.4) 9.99 (0.17)
csuv.m.mcp 26.38 (0.4) 10.46 (0.16)
csuv.m.with.tree 26.66 (0.4) 9.94 (0.17)

Table 2: Boston data: performance of CSUV and methods it compares with. See caption
to Table 1 for explanatory details.

selection.

Including similar or inappropriate methods. The results of CSUV using three different

constituent methods (Lasso, MCP and SCAD), five different methods (Lasso, Elastic Net,

relaxed Lasso, MCP and SCAD, for which the Lasso, Elastic Net and relaxed Lasso are

relatively similar) and with an additional method inappropriate for the linear regression

setting (trees) are very similar.

Training:test split ratio. CSUV with higher training:test ratios performs better than that

with the lower ratio of 25:75 on the synthetic datasets and the Riboflavin data. When

p� n, CSUV with the 75:25 split has the best performance, but the opposite is true when

p is relatively small in comparison with n.

CSUV vs other final model selection procedures. In the majority of settings, CSUV-m has

a better variable selection performance than eBIC, delete-n/2 cross-validation and VSD in

terms of FP+FN and the F-measure, and a better coefficient estimation performance in

terms of the l1 loss. For example, out of the 48 simulation settings in which we know the

true set of covariates, CSUV-m has a higher F-measure in, respectively, 45, 41 and 32 of the

settings compared to delete-n/2 cv, eBIC and VSD. CSUV-m usually selects the smallest
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methods f FP+FN FP FN size

lasso 0.46 (0.01) 19.96 (1.45) 16.88 3.08 23.8 (1.48)
elastic net 0.45 (0.01) 22.59 (1.51) 20.44 2.15 28.29 (1.53)
relaxed lasso 0.56 (0.02) 10.15 (0.81) 5.85 4.3 11.55 (0.97)
mcp 0.45 (0.01) 8.83 (0.19) 2.53 6.3 6.23 (0.24)
scad 0.48 (0.02) 12.34 (0.59) 7.69 4.65 13.04 (0.49)
vsd NaN (NA) 10 (0) 0 10 0 (0)
bic 0.42 (0.01) 16.38 (1.48) 11.17 5.21 15.96 (1.67)
ebic 0.44 (0.01) 11.21 (1.18) 5.05 6.16 8.89 (1.31)
cv 0.45 (0.01) 19.54 (1.44) 16.09 3.45 22.64 (1.53)
csuv.m 0.45 (0.01) 7.12 (0.13) 0.02 7.1 2.92 (0.13)
csuv.s 0.64 (0.01) 5.59 (0.19) 1 4.59 6.41 (0.33)
csuv.m.25 0.18 (0) 9.92 (0.03) 0 9.92 0.08 (0.03)
csuv.m.75 0.59 (0.01) 5.95 (0.14) 0.37 5.58 4.79 (0.16)
csuv.m.all 0.49 (0.01) 6.74 (0.14) 0.02 6.72 3.3 (0.14)
csuv.m.mcp 0.28 (0.01) 8.61 (0.09) 0 8.61 1.39 (0.09)
csuv.m.with.tree 0.48 (0.02) 6.77 (0.14) 0.02 6.75 3.27 (0.14)

Table 3: Riboflavin data with permutation: performance of CSUV and methods it compares
with. See caption to Table 1 for explanatory details. VSD did not execute correctly.

set of covariates when compared with eBIC, delete-n/2 cross-validation and the individual

variable selection methods. In some cases like model 4 parameter setting 6, it selects a much

smaller set of covariates than the truth. While this worsens the prediction performance of

CSUV-m and we may view it as its limitation, it may be due to the limitation of variable

selection as a whole: other methods which select much larger sets of covariates usually

include a few more true covariates but inevitably also many more false ones. They may

perform better than CSUV-m in terms of prediction, but CSUV-m in general outperforms

them in terms of variable selection.

The performance of CSUV-s is more difficult to draw conclusions on. Overall, CSUV-s

appears better than delete-n/2 cross-validation in terms of variable selection, but roughly

comparable to eBIC.

One encouraging result about CSUV is that in many simulation settings like model 2,

CSUV-m outperforms not only the final model selection procedures, but also all individual

constituent methods in terms of the F-measure and FP+FN. In some simulation settings,

CSUV performs better than the best individual variable selection method in terms of both

prediction and the F-measure. For example in model 2, there are several parameter settings

(e.g. 2) in which the MSE of CSUV is lower and the F-measure is higher than all individual

variable selection methods.
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For the variable selection performance on the real data, both versions of CSUV perform

very well on the riboflavin data example. CSUV-s has the best performance in terms of

the F-measure and the total variable selection error.

SUPPLEMENTARY MATERIAL

Appendix: Some optimality results on CSUV-m; heat maps to illustrate selection dis-

agreement; CSUV assessment of uncertainty; further details of simulation results.
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