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1 Appendix: Proofs

Proof of Theorem 1. To prove the result, we will also need the following Lemma

which we state with no proof since it is a straightforward generalization of Lemma 3.1

in Candès & Tao (2007).

Lemma 1.1 Let A be an n× p matrix and suppose T0 ⊂ {1, . . . , p} is a set of cardinality S.

For a vector h ∈ Rp, let T1 be the S′ largest positions of h outside of T0 and put T01 = T0 ∪ T1.
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Then

‖hT01‖2 ≤
1

δS+S′
‖AT

T01
Ah‖2 +

θS′,S+S′

δS+S′(S′)1/2‖hTc
0
‖1

‖h‖2
2 ≤ ‖hT01‖

2
2 + (S′)−1‖hTc

0
‖2

1.

To prove the Theorem we need to establish that ‖U(β0)‖∞ ≤ γ implies that

‖β̂− β0‖2
2 ≤ 64S( γ

δ2S−θS,2S
)2. Assume that ‖U(β0)‖∞ ≤ γ where

‖U(β0)‖∞ = sup
j

∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(u)

]∣∣∣∣∣ .

Let us first prove the consistency of SDS. We prove it first for the non-zero components

of β, and then for the zero components of β. Let T0 be the support of β0.

• In this item, we work in the subset generated by the non-zero components of β,

but we omit the T0 index for the sake of readability. Recall that U(.) converges to

some function u(.), uniformly on any compact subset (Andersen & Gill (1982))

and that from our hypotheses, the limit u admits a unique zero at point β0.

Hence, since the matrix I(β0, τ) is positive definite, there exists some η s.t.

infβ/∈B(β0,η) ‖u(β)‖∞ = ρ > 0, where B(β0, η) is the ball centered at β with radius

η. Let ε < η. For n large enough, supβ ‖U(β) − u(β)‖∞ < ρ/2. Therefore, for

any β outside the ball B(β0, ε) and n large enough, ‖U(β)‖∞ > ρ/2. Finally, by

definition, ‖U(β̂)‖∞ < γ < ρ/2, for n large enough. Therefore, β̂ ∈ B(β0, ε), for

n large enough, which proves the consistency for the non-zero components of β0.

• To prove the consistency of the zero-components, just remark that ‖hT0‖1 tends

to zero when n tends to infinity in inequality (16) of the initial paper.

Recall here that for any consistent estimator β̃ of β0, we may write:

J(β̃, τ)− I(β0, τ) =
∫ τ

0
(Vn(β̃, u)− v(β̃, u))

dN̄(u)
n

(1)

+
∫ τ

0
(v(β̃, u)− v(β0, u))

dN̄(u)
n

(2)

+
∫ τ

0
v(β0, u)

dM̄(u)
n

(3)

+
∫ τ

0
v(β0, u)(

Sn(β0, u)
n

− s(β0, u))α0(u)du, (4)
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where Vn(β, u) = S2
n

Sn
(β, u)− (S1

n
Sn
)⊗2(β, u) and v(β, u) = s2

s (β, u)− ( s1

s )
⊗2(β, u). Since

β0 is a nonzero S-sparse vector with S independent of n and since the true information

matrix I(β0, τ) is positive definite at β0, for any β∗ in an Euclidian ball Br = B(β0, r)

centered at β0 and of radius at most r = 8
√

S γ
δ2S−θS,2S

, the regularity conditions of

Theorem 3.4 in Huang (1996) hold and it follows that

sup
β̃∈Br

‖J(β?, τ)− I(β0, τ)‖∞ = OP(n−1/2) (5)

as n tends to ∞.

Define h = β̂ − β0. According to Lemma 1 of the initial paper, we have ‖β̂‖1 ≤
‖β0‖1 and this inequality implies that ‖hTc

0
‖1 ≤ ‖hT0‖1, which yields, by Cauchy

inequality,

‖hTc
0
‖1 ≤ ‖hT0‖1 ≤ S1/2‖hT0‖2. (6)

By assumption, we have ‖U(β0)‖∞ ≤ γ and by construction of the estimator,

‖U(β̂)‖∞ ≤ γ. Adding up the two inequalities (triangle inequality)

‖U(β)−U(β̂)‖∞ ≤ 2γ

By Andersen & Gill (1982), formula (2.6), we have, Taylor-expanding the LHS of the

above, ∥∥∥J(β∗, τ)(β̂− β0)
∥∥∥

∞
≤ 2γ, (7)

where β∗ lies within the segment between β̂ and β0.

Now, using the consistency of SDS and our remark (5) on the behavior of the matrix

I(β0, τ) at the neighborhood of β0 we have∥∥∥I(β0, τ)(β̂− β0)
∥∥∥

∞
≤

∥∥∥(J(β∗, τ)− I(β0, τ))(β̂− β0)
∥∥∥

∞
+
∥∥∥J(β∗, τ)(β̂− β0)

∥∥∥
∞

≤ Dn−1/2
∥∥∥β̂− β0

∥∥∥
1
+ 2γ,

≤ 4γ,

for n large enough, since
∥∥∥β̂− β0

∥∥∥
1
≤
∥∥∥β̂
∥∥∥

1
+ ‖β0‖1 ≤ 2 ‖β0‖1. Hence, if A =

I(β0, τ)1/2 denotes the squared root of the (semi)definite positive matrix I(β0, τ), we

have

‖AAh‖∞ ≤ 4γ.
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This, again by Cauchy inequality, implies ‖AT
T01

Ah‖2 ≤ 4(S + S′)1/2γ. Take S′ = S.

By the first inequality of Lemma 1.1 and inequality (6), we have

‖hT01‖2 ≤
4

δ2S
(2S)1/2γ +

θS,2S

δ2SS1/2 S1/2‖hT0‖2

≤ 4
δ2S

(2S)1/2γ +
θS,2S

δ2S
‖hT01‖2.

Rearranging for ‖hT01‖2, we get

‖hT01‖2

(
1− θS,2S

δ2S

)
≤ 4

δ2S
(2S)1/2γ

‖hT01‖2 ≤
4

δ2S − θS,2S
(2S)1/2γ.

By the second inequality of Lemma 1.1 and inequality (6), we have

‖h‖2
2 ≤ ‖hT01‖

2
2 + S−1S‖hT0‖

2
2 ≤ 2‖hT01‖

2
2 ≤ 64S(

γ

δ2S − θS,2S
)2,

which completes the proof of the Theorem.
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