# THE DANTZIG SELECTOR IN COX'S PROPORTIONAL HAZARDS MODEL 

Anestis Antoniadis,<br>Laboratoire Jean Kuntzmann, Department de Statistique, Université Joseph Fourier, B.P. 53<br>38041 Grenoble CEDEX 9, France.<br>Piotr Fryzlewicz,<br>Department of Statistics, London School of Economics Columbia House, Houghton Street, London WC2A 2AE, UK. and Frédérique Letué,<br>Laboratoire Jean Kuntzmann, Department de Statistique, Université Pierre Mendès France, B.P. 53<br>38041 Grenoble CEDEX 9, France.

## 1 Appendix: Proofs

Proof of Theorem 1. To prove the result, we will also need the following Lemma which we state with no proof since it is a straightforward generalization of Lemma 3.1 in Candès \& Tao (2007).

Lemma 1.1 Let $A$ be an $n \times p$ matrix and suppose $T_{0} \subset\{1, \ldots, p\}$ is a set of cardinality $S$. For a vector $h \in \mathbb{R}^{p}$, let $T_{1}$ be the $S^{\prime}$ largest positions of $h$ outside of $T_{0}$ and put $T_{01}=T_{0} \cup T_{1}$.

Then

$$
\begin{aligned}
\left\|h_{T_{01}}\right\|_{2} & \leq \frac{1}{\delta_{S+S^{\prime}}}\left\|A_{T_{01}}^{T} A h\right\|_{2}+\frac{\theta_{S^{\prime}, S+S^{\prime}}}{\delta_{S+S^{\prime}}\left(S^{\prime}\right)^{1 / 2}}\left\|h_{T_{0}^{c}}\right\|_{1} \\
\|h\|_{2}^{2} & \leq\left\|h_{T_{01}}\right\|_{2}^{2}+\left(S^{\prime}\right)^{-1}\left\|h_{T_{0}^{c}}\right\|_{1}^{2} .
\end{aligned}
$$

To prove the Theorem we need to establish that $\left\|U\left(\beta_{0}\right)\right\|_{\infty} \leq \gamma$ implies that $\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|_{2}^{2} \leq 64 S\left(\frac{\gamma}{\delta_{2 S}-\theta_{S, 2 S}}\right)^{2}$. Assume that $\left\|U\left(\beta_{0}\right)\right\|_{\infty} \leq \gamma$ where

$$
\left\|U\left(\boldsymbol{\beta}_{0}\right)\right\|_{\infty}=\sup _{j}\left|\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} d M_{i}(u)\left[\sum_{k=1}^{n}\left\{Z_{i j}-Z_{k j}\right\} w_{k}(u)\right]\right| .
$$

Let us first prove the consistency of SDS. We prove it first for the non-zero components of $\boldsymbol{\beta}$, and then for the zero components of $\boldsymbol{\beta}$. Let $T_{0}$ be the support of $\boldsymbol{\beta}_{0}$.

- In this item, we work in the subset generated by the non-zero components of $\beta$, but we omit the $T_{0}$ index for the sake of readability. Recall that $U($.$) converges to$ some function $u($.$) , uniformly on any compact subset (Andersen \& Gill (1982))$ and that from our hypotheses, the limit $u$ admits a unique zero at point $\beta_{0}$. Hence, since the matrix $I\left(\beta_{0}, \tau\right)$ is positive definite, there exists some $\eta$ s.t. $\inf _{\beta \notin \mathcal{B}\left(\beta_{0}, \eta\right)}\|u(\boldsymbol{\beta})\|_{\infty}=\rho>0$, where $\mathcal{B}\left(\boldsymbol{\beta}_{0}, \eta\right)$ is the ball centered at $\beta$ with radius $\eta$. Let $\varepsilon<\eta$. For $n$ large enough, $\sup _{\beta}\|U(\boldsymbol{\beta})-u(\beta)\|_{\infty}<\rho / 2$. Therefore, for any $\beta$ outside the ball $\mathcal{B}\left(\beta_{0}, \varepsilon\right)$ and $n$ large enough, $\|U(\beta)\|_{\infty}>\rho / 2$. Finally, by definition, $\|U(\hat{\boldsymbol{\beta}})\|_{\infty}<\gamma<\rho / 2$, for $n$ large enough. Therefore, $\hat{\boldsymbol{\beta}} \in \mathcal{B}\left(\boldsymbol{\beta}_{0}, \varepsilon\right)$, for $n$ large enough, which proves the consistency for the non-zero components of $\boldsymbol{\beta}_{0}$.
- To prove the consistency of the zero-components, just remark that $\left\|h_{T_{0}}\right\|_{1}$ tends to zero when $n$ tends to infinity in inequality (16) of the initial paper.

Recall here that for any consistent estimator $\tilde{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}_{0}$, we may write:

$$
\begin{align*}
J(\tilde{\boldsymbol{\beta}}, \tau)-I\left(\boldsymbol{\beta}_{0}, \tau\right)= & \int_{0}^{\tau}\left(V_{n}(\tilde{\boldsymbol{\beta}}, u)-v(\tilde{\boldsymbol{\beta}}, u)\right) \frac{d \bar{N}(u)}{n}  \tag{1}\\
& +\int_{0}^{\tau}\left(v(\tilde{\boldsymbol{\beta}}, u)-v\left(\boldsymbol{\beta}_{0}, u\right)\right) \frac{d \bar{N}(u)}{n}  \tag{2}\\
& +\int_{0}^{\tau} v\left(\boldsymbol{\beta}_{0}, u\right) \frac{d \bar{M}(u)}{n}  \tag{3}\\
& +\int_{0}^{\tau} v\left(\boldsymbol{\beta}_{0}, u\right)\left(\frac{S_{n}\left(\boldsymbol{\beta}_{0}, u\right)}{n}-s\left(\boldsymbol{\beta}_{0}, u\right)\right) \alpha_{0}(u) d u \tag{4}
\end{align*}
$$

where $V_{n}(\boldsymbol{\beta}, u)=\frac{S_{n}^{2}}{S_{n}}(\boldsymbol{\beta}, u)-\left(\frac{S_{n}^{1}}{S_{n}}\right)^{\otimes 2}(\boldsymbol{\beta}, u)$ and $v(\boldsymbol{\beta}, u)=\frac{s^{2}}{s}(\boldsymbol{\beta}, u)-\left(\frac{s^{1}}{s}\right)^{\otimes 2}(\boldsymbol{\beta}, u)$. Since $\beta_{0}$ is a nonzero $S$-sparse vector with $S$ independent of $n$ and since the true information matrix $\mathcal{I}\left(\boldsymbol{\beta}_{0}, \tau\right)$ is positive definite at $\boldsymbol{\beta}_{0}$, for any $\boldsymbol{\beta}^{*}$ in an Euclidian ball $B_{r}=B\left(\boldsymbol{\beta}_{0}, r\right)$ centered at $\beta_{0}$ and of radius at most $r=8 \sqrt{S} \frac{\gamma}{\delta_{2 S}-\theta_{S, 2 S}}$, the regularity conditions of Theorem 3.4 in Huang (1996) hold and it follows that

$$
\begin{equation*}
\sup _{\tilde{\beta} \in B_{r}}\left\|J\left(\boldsymbol{\beta}^{\star}, \tau\right)-I\left(\boldsymbol{\beta}_{0}, \tau\right)\right\|_{\infty}=O_{P}\left(n^{-1 / 2}\right) \tag{5}
\end{equation*}
$$

as $n$ tends to $\infty$.
Define $h=\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}$. According to Lemma 1 of the initial paper, we have $\|\hat{\boldsymbol{\beta}}\|_{1} \leq$ $\left\|\boldsymbol{\beta}_{0}\right\|_{1}$ and this inequality implies that $\left\|h_{T_{0}^{c}}\right\|_{1} \leq\left\|h_{T_{0}}\right\|_{1}$, which yields, by Cauchy inequality,

$$
\begin{equation*}
\left\|h_{T_{0}^{c}}\right\|_{1} \leq\left\|h_{T_{0}}\right\|_{1} \leq S^{1 / 2}\left\|h_{T_{0}}\right\|_{2} \tag{6}
\end{equation*}
$$

By assumption, we have $\left\|U\left(\beta_{0}\right)\right\|_{\infty} \leq \gamma$ and by construction of the estimator, $\|U(\hat{\boldsymbol{\beta}})\|_{\infty} \leq \gamma$. Adding up the two inequalities (triangle inequality)

$$
\|U(\boldsymbol{\beta})-U(\hat{\boldsymbol{\beta}})\|_{\infty} \leq 2 \gamma
$$

By Andersen \& Gill (1982), formula (2.6), we have, Taylor-expanding the LHS of the above,

$$
\begin{equation*}
\left\|J\left(\boldsymbol{\beta}^{*}, \tau\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|_{\infty} \leq 2 \gamma, \tag{7}
\end{equation*}
$$

where $\boldsymbol{\beta}^{*}$ lies within the segment between $\hat{\boldsymbol{\beta}}$ and $\boldsymbol{\beta}_{0}$.
Now, using the consistency of SDS and our remark (5) on the behavior of the matrix $I\left(\boldsymbol{\beta}_{0}, \tau\right)$ at the neighborhood of $\boldsymbol{\beta}_{0}$ we have

$$
\begin{aligned}
\left\|I\left(\boldsymbol{\beta}_{0}, \tau\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|_{\infty} & \leq\left\|\left(J\left(\boldsymbol{\beta}^{*}, \tau\right)-I\left(\boldsymbol{\beta}_{0}, \tau\right)\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|_{\infty}+\left\|J\left(\boldsymbol{\beta}^{*}, \tau\right)\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|_{\infty} \\
& \leq D n^{-1 / 2}\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|_{1}+2 \gamma \\
& \leq 4 \gamma
\end{aligned}
$$

for $n$ large enough, since $\left\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right\|_{1} \leq\|\hat{\boldsymbol{\beta}}\|_{1}+\left\|\boldsymbol{\beta}_{0}\right\|_{1} \leq 2\left\|\boldsymbol{\beta}_{\mathbf{0}}\right\|_{1}$. Hence, if $A=$ $I\left(\beta_{0}, \tau\right)^{1 / 2}$ denotes the squared root of the (semi)definite positive matrix $I\left(\beta_{0}, \tau\right)$, we have

$$
\|A A h\|_{\infty} \leq 4 \gamma
$$

This, again by Cauchy inequality, implies $\left\|A_{T_{01}}^{T} A h\right\|_{2} \leq 4\left(S+S^{\prime}\right)^{1 / 2} \gamma$. Take $S^{\prime}=S$. By the first inequality of Lemma 1.1 and inequality (6), we have

$$
\begin{aligned}
\left\|h_{T_{01}}\right\|_{2} & \leq \frac{4}{\delta_{2 S}}(2 S)^{1 / 2} \gamma+\frac{\theta_{S, 2 S}}{\delta_{2 S} S^{1 / 2}} S^{1 / 2}\left\|h_{T_{0}}\right\|_{2} \\
& \leq \frac{4}{\delta_{2 S}}(2 S)^{1 / 2} \gamma+\frac{\theta_{S, 2 S}}{\delta_{2 S}}\left\|h_{T_{01}}\right\|_{2}
\end{aligned}
$$

Rearranging for $\left\|h_{T_{01}}\right\|_{2}$, we get

$$
\begin{aligned}
\left\|h_{T_{01}}\right\|_{2}\left(1-\frac{\theta_{S, 2 S}}{\delta_{2 S}}\right) & \leq \frac{4}{\delta_{2 S}}(2 S)^{1 / 2} \gamma \\
\left\|h_{T_{01}}\right\|_{2} & \leq \frac{4}{\delta_{2 S}-\theta_{S, 2 S}}(2 S)^{1 / 2} \gamma
\end{aligned}
$$

By the second inequality of Lemma 1.1 and inequality (6), we have

$$
\|h\|_{2}^{2} \leq\left\|h_{T_{01}}\right\|_{2}^{2}+S^{-1} S\left\|h_{T_{0}}\right\|_{2}^{2} \leq 2\left\|h_{T_{01}}\right\|_{2}^{2} \leq 64 S\left(\frac{\gamma}{\delta_{2 S}-\theta_{S, 2 S}}\right)^{2}
$$

which completes the proof of the Theorem.

## References

Andersen, P. K. \& Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. Annals of Statistics 10, 1100-1120.

Candès, E. \& Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$. Annals of Statistics 35, 2313-2351.

Huang, J. (1996). Efficient estimation for the Cox model with interval censoring. Annals of Statistics 24, 540-568.

