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Abstract

In this article, we model financial log-return series in the Locally Stationary Wavelet
(LSW) framework proposed by Nason et al. (2000). We slightly alter the LSW setup to
include time-modulated white noise (TMWN) as a special case. We show that the LSW
model, being linear and non-stationary, adequately captures the most commonly observed
stylised facts.

Furthermore, we propose a new method for estimating time-varying second order quan-
tities in the LSW model, and provide an exploratory analysis of the daily FTSE 100 series
using the LSW toolbox. The example shows that the dependence structure of FTSE 100
varies over time, and that the LSW model is particularly well suited for modelling this
series.

Finally, by considering daily returns on the DJIA index, we demonstrate that financial
log-returns can be successfully forecast in the LSW framework.

Keywords: non-decimated wavelets, wavelet periodogram, stylised facts, non-stationarity,

adaptive forecasting.

1 Introduction

Financial log-return series, be it stock index returns or exchange rates, often exhibit the fol-

lowing well-known properties:

1. The sample mean of the series is close to zero.
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2. The marginal distribution is roughly symmetric (or only slightly skewed), has a peak at

zero, and is heavy-tailed.

3. (a) The sample autocorrelations of the series are “small” at almost all lags.

(b) The sample autocorrelations of the absolute values and squares of the series are

significant for a large number of lags.

4. Volatility is “clustered”, i.e. days of either large or small movements are followed by days

of similar characteristics.

Clearly, to capture the above stylised facts, one needs to look beyond the stationary linear
framework, and to preserve stationarity, a huge number of non-linear models have been pro-
posed. Among them, two branches seem to be the most popular: the family of Autoregressive
Conditionally Heteroscedastic (ARCH) models, and Stochastic Volatility (SV) models. The
ARCH model was proposed by Engle (1982) and Generalised ARCH (GARCH), its most pop-
ular extension — independently by Bollerslev (1986) and Taylor (1986). The SV model was
suggested by Taylor (1986) as an alternative to ARCH-type modelling. Literature on both these
families is massive, some recent recommendable monographs are Cox et al. (1996), Maddala
and Rao (1996) and Fan and Yao (2003). Giraitis et al. (2003) is a recent review article on

various aspects of ARCH modelling.

Even though the assumption of stationarity is attractive from the estimation point of view,
some authors point out that the stylised facts listed above can be better accounted for by the
possible non-stationarity of the series, see for example Mikosch and Starica (2003), Kokoszka
and Leipus (2000) (who look at the detection of change points in the ARCH model) or Hérdle
et al. (2000) (who introduce a time-varying SV model and look at the adaptive estimation of
its parameters). An attractive asymptotic framework for modelling non-stationary time series
was proposed by Dahlhaus (1996), who developed a theory of Locally Stationary Fourier (LSF)
processes. Some attempts have been made to apply Dahlhaus’s theory in finance: e.g. Kim
(1998) provides various statistical analyses of financial and macroeconomic data in the LSF

framework (however, he does not consider forecasting).

In this paper, we also adopt the “locally stationary” approach, and model log-returns in the
Locally Stationary Wavelet (LSW) framework of Nason et al. (2000). Essentially, this implies
that the log-return series is composed of discrete wavelet vectors at various scales, rather than

localised Fourier functions at various frequencies like in the LSF theory. There are two main
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initial motivations behind using wavelets, rather than Fourier functions, as building blocks in
the model. Firstly, many authors observe that various economic factors operate at different
time scales (see for example Calvet and Fisher (2001)), and wavelets are a commonly used
tool in the analysis of multiscale phenomena (see Vidakovic (1999) for an overview of wavelet
applications in statistics). Secondly, Fryzlewicz et al. (2003) developed a working algorithm for
forecasting LSW processes, which we are able to take advantage of and use in our context. To

our knowledge, no such algorithm has been proposed and tested for the LSF model.

On the other hand, our approach differs from GARCH/SV modelling in that both GARCH
and SV are nonlinear, but often stationary models, whereas the LSW model is linear, but only

locally stationary.

The aims of this paper are:

e to argue that the LSW model can accurately account for the most commonly observed

stylised facts,

e to propose a new (suitable for log-returns) method of estimating time-varying second

order quantities in the LSW model,

e to demonstrate the attractiveness of the LSW framework as a tool for the exploratory

analysis of log-return data,

e to demonstrate that log-returns can be successfully forecast using the adaptive forecasting

algorithm of Fryzlewicz et al. (2003).

We do not aim to demonstrate that the LSW methodology is uniformly superior to any other
method of analysis of financial data. Instead, we propose to treat it as yet another tool in the

toolbox, particularly useful for forecasting or exploring the local structure of log-return series.

All the theoretical results in the paper have been obtained for Gaussian LSW processes. The
following sections show that most stylised facts can be explained using this simple class; however,
we emphasize here that due to the simplicity of the (linear) LSW model, analogous theoretical

results can easily be obtained for other noise distributions.

Even though the examples provided in the paper use stock index returns only, the LSW method-

ology can also in principle be applied to other instruments, such as shares or exchange rates.

The paper is organised as follows: in Section 2, we motivate our methodology by arguing that

daily returns on the FTSE 100 index can be adequately modelled as Gaussian time-modulated
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white noise (TMWN). In Section 3, we recall the LSW model and show that Gaussian TMWN
is a special case of an LSW process. In Section 4, we provide theoretical evidence that LSW
processes can capture most of the stylised facts listed at the beginning of this section. In Section
5, we introduce a new (suitable for log-returns) estimation approach for LSW processes, and
demonstrate its superiority to the general method of Nason et al. (2000). In Section 6, we
provide an interesting example of exploratory data analysis using the LSW model. Finally, in
Section 7, we apply the adaptive forecasting algorithm of Fryzlewicz et al. (2003) to log-returns,

and provide a comparison with forecasts based on GARCH modelling. Section 8 concludes the

paper.

2 Motivation

In this section, we motivate our “linear non-stationary” approach by arguing that returns on the
daily closing values of the FTSE 100 index can be adequately modelled as Gaussian TMWN, i.e.
a process of the form X; = 01Z;, where o, is a deterministic sequence, and Z;’s are independent

N(0,1). In Section 3, we show that Gaussian TMWN is a special case of an LSW process.

For the purpose of this section, let X; denote 2158 consecutive observations of logged and
differenced daily closing values of the FTSE 100 index, from 22/23 October 1992 to 10/11 May

2001. The source of the data here, and throughout the rest of the paper, is
http://bossa.pl/notowania/daneatech/metastock

(page in Polish). X; is plotted in the top left subfigure of Figure 1. Superimposed on the plot is
an estimate 6; of the local standard deviation oy (the estimate was obtained by smoothing X?
using a Gaussian kernel with the bandwidth chosen by trial and error, and then square-rooting
the result; see Section 5 for automatic methods of estimation). Following down the left-hand
column, the next plot shows the sample autocorrelation of X;, and the plot below it — the
sample autocorrelation of X?2. The bottom left subfigure shows the Q-Q plot of X; against the

normal quantiles. From those plots, it is evident that X; obeys the well-known “stylised facts”.

The right-hand column provides evidence that X; can be modelled as Gaussian TMWN, which
is a linear, but non-stationary stochastic process. Indeed, the top plot shows Z; = X;/4;, and
the plots in the 2nd and 3rd rows — the sample acf of Z; and Z2, respectively. The bottom

right subfigure shows the Q-Q plot of Z; against the normal quantiles. From the inspection of



the sample autocorrelation functions of Z; and Z72, it appears that, as a first approximation, Z;
can be modelled fairly accurately as an i.i.d. sample of N (0, 1) variables. This in turn implies
that X; can be modelled as Gaussian TMWN: clearly, there exists a oy such that X; = 0:7;
with Z; i.i.d. ~ N(0,1).

One of the consequences of the non-stationarity of X; is the fact that the sample acf is simply
not an appropriate tool for computing the acf of X; or X?. We would submit, and will argue
this point later in the paper, that the “long memory” effect in squared log-returns on indices
is nothing else than a spurious effect of applying the sample acf to non-stationary data (see

Mikosch and Starica (2003) for similar considerations in the GARCH framework).

Having demonstrated that daily FTSE 100 can be modelled as Gaussian TMWN, we now
proceed to recall the LSW model and show that Gaussian TMWN is a special case of a general
LSW process. In Section 6, we come back to the example of FTSE 100 and model this series in
the general LSW framework. We show that, in this way, more local features of the FTSE 100

data can be picked up.

3 The model

Definition 3.1 (Nason et al. (2000)) An LSW process {X;1}i=o,1,..7—1, T = 27 > 2 s

defined as
-1

Xir= Y > wikrbik-ilik (1)

j=—J ke

where

1. The parameters j and k denote scale and location, respectively.

2. The random innovations &; have mean 0 and E(&; x, & ) = 0,510k 7, where 0 = 1 if

m =n and 0 otherwise.

3. The amplitudes wj .7 are real constants and Vj < —1 IW;:[0,1) = R such that W; is

Lipschitz with parameter L; and

S W< oo @)

j==o0

S 2L < o0 3)

j=o0
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Figure 1: Left-hand column, from top to bottom: X; with &, superimposed, acf of X;, acf of
X?, normal QQ plot of X;. Right-hand column, from top to bottom: Z;, acf of Z;, acf of Z2,
normal QQ plot of Z;. See Section 2 for a discussion.



H{Cj}jsfl\ka S |lwje;r — W;(k/T)| < Cy/T (4)

D Cj < oo (5)
J

4. The vectors ; = (Yj0,%j,15---3%je;) 7 = =1, =2, =J, Lj ~ M27i, M > 1, are

discrete wavelets.

For a mathematical introduction to wavelets, the reader is referred to Daubechies (1992), and
for an overview of their applications in statistics, to Vidakovic (1999). By way of example, we

recall the simplest discrete wavelet system: the Haar wavelets. They are defined by

Vi =20 g-imt 1y (k) =2PLp 51 55 1y(k) for j=-1,-2,... and ke€Z.
(6)
In the above, 5 = —1 is the finest scale, j = —2 is the second finest scale, etc. We can think
of (1) as an analogue of the traditional Cramér representation for stationary processes, where
a process is a linear combination of Fourier basis functions. Here, sines and cosines have been
replaced by more “localised” wavelets, therefore potentially allowing a successful modelling of

non-stationary series.

Condition (4) means that, for each j, the sequence {w; y.;7}x is “closer and closer” (as T' — oo)
to a Lipschitz function W;(z) defined on the interval [0,1). The “slow” evolution of the se-
quence {w; ;1 } makes it possible to establish an asymptotic framework which enables effective
estimation in the model. The rescaled time setup implies that letting 7' — oo does not mean
obtaining information about the future; instead, it means obtaining more and more information
about the local structure of the process. See also Nason et al. (2000) and Dahlhaus (1996) for

further discussion of the concept of rescaled time.

Nason et al. (2000) define the evolutionary wavelet spectrum of X,z as Sj(z) = W;(z)?. For

stationary processes, the spectrum is independent of time: we have wjz-,k;T = Wj2 = 5j.

In the classical theory the autocovariance function and the spectrum of a stationary process are
Fourier transforms of each other, and an analogous link can be established between the evolu-
tionary wavelet spectrum and the local autocovariance. The finite-sample local autocovariance

in the LSW model is defined as

cr (z7 T) = COV(X[ZT],Ta X[ZT]+T,T)'



Nason et al. (2000) show that cr(z,7) has an asymptotic limit as 7' — oo. Indeed, define the

autocorrelation wavelets as

Ti(r) = Y stk

k=—00

and define the local autocovariance as

(er) = 3 S;(2)050r). )

j=o0

Proposition 3.1 (Nason et al. (2000)) With the asymptotics of Definition 3.1, ||cr—cl|L,, =
o(T1).

The above Proposition says that the local autocovariance is the “autocorrelation wavelet” trans-

form of the evolutionary wavelet spectrum.

Theorem 1 in Nason et al. (2000) states that the evolutionary wavelet spectrum (and, therefore,
the local autocovariance), are uniquely defined given an LSW process. There is a one-to-one

correspondence between {S;(z)}; and {c(z,7)},, and an inverse formula to (7) can be derived.
The local variance is denoted by 02(2) := ¢(z,0).

Before looking at two important examples of LSW processes, we quote the following useful

lemma from Fryzlewicz et al. (2003).

Lemma 3.1 (FryzZlewicz et al. (2003)) Let {V;}; be the autocorrelation wavelets constructed
from Daubechies’ compactly supported wavelets of an arbitrary degree of smoothness (this in-

cludes Haar wavelets as a special case). We have
> 2W5(r) = do(),
j=—00

where do(k) =1 if k =0 and 0 otherwise.

Ezample 1 (white noise). By Lemma 3.1, if X, 7 = Z; where Z; is i.i.d. N(0,1), then X; 7 is
LSW with S; = 2.

Ezample 2 (time-modulated white noise). Suppose that X, = o(t/T)Z; with Z; i.i.d. N(0,1).
By Lemma 3.1, if X; 7 was LSW, we would have to have S;(z) = 02(2)2’. However, we would
then have L; = L2//2 where L is the Lipschitz constant for o(z), and that would violate

condition (3). This shows that, without modifications, the LSW model cannot accommodate
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time-modulated white noise, which, as we saw in Section 2, is an essential basic model for
financial log-returns. To remedy this unwelcome situation, we slightly alter the definition of an

LSW process.

Definition 3.2 An LSW process {X¢1}ti=01,..7-1, T = 27 > 2, is defined as

geeey

—1
Xor= D> wikaik—ilik, (8)

j=—J k€L

where

1. The parameters j and k denote scale and location, respectively.
2. The random innovations &; j have mean 0 and B(&; k., & pr) = 05 10k k-

3. The amplitudes wj . are real constants and Vj < —1 3IW; € C([0,1)) such that S; :=

sz is Lipschitz with parameter L; and

sup 9;(2)277 = D < cc. 9)

2,J

-1

> 279L; = O(log(T)) (10)

j=—J
IH{Cj}tj< VT sup  |wjkr — W;(k/T)| < C5/T (11)
k=0,1,...T—1
ZCj < o0 (12)
J
4. The vectors 1; = (Yj0,%j,15---,%j8,), 3 = —1,-2,...,=J, L; ~ M279, M > 1, are

discrete wavelets.
It is now easy to verify that Gaussian TMWN with o Lipschitz satisfies the assumptions of
Definition 3.2 with w;xr = W;(k/T) = o(k/T)27/2.

Under the assumptions of Definition 3.2, the evolutionary wavelet spectrum S;(z) and the local
autocovariance c¢(z,7) remain uniquely defined. The proof of this statement is identical to

Nason et al. (2000), Theorem 1.
We are also in a position to prove the following proposition:
Proposition 3.2 With the asymptotics of Definition 3.2, |ler — c||1.. = O(T ‘log(T)).
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Figure 2: Left-hand plot: log-returns on daily closing values of Nikkei (5/6 Jan 1970 — 11-14
May 2001). Right-hand plot: log-returns on daily closing values of DJIA (3-4 Jan 1995 — 10/11
May 2001).

Throughout the rest of the paper, we will work with Definition 3.2, rather than Definition 3.1.

Innovations & . So far, we have considered &, i.i.d. N(0,1). Fryzlewicz and Nason (2003)
argue that Gaussian innovations in the LSW model account surprisingly well even for extreme
events such as those present in the Nikkei index (left-hand plot in Figure 2) or the DJIA index
(right-hand plot in Figure 2). Nevertheless, we believe that, occasionally, other distributions
of {; may need to be used: for example, a combination of skewed innovations and “skewed”
wavelets (i.e. such that >, ?,k # 0) would be able to pick up the often-observed skewness
of the log-return data. However, the emphasis in this article is on the non-stationarity of the
log-return series, and not on the possible non-Gaussianity of the innovations. Therefore, we
restrict ourselves to Gaussian innovations in the theoretical considerations, leaving an extension

to other distributions as an interesting direction for future study.

Trend. Throughout the paper, we assume E(X;r) = 0 (as is obvious from Definition 3.2). A
more thorough study would also incorporate trend p(¢/7) in the model. This trend could then
be estimated by wavelet methods, see e.g. von Sachs and MacGibbon (2000).
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4 Explanation of the stylised facts

In this section, we demonstrate that Gaussian LSW processes can successfully account for the

following stylised facts of financial log-returns:

heavy tails of the “marginal” distribution,

negligible sample autocorrelations,

non-negligible sample autocorrelations of the squares,

clustering of volatility.

Heavy tails of the “marginal” distribution. In this paragraph, we consider the sample second

moment and the sample kurtosis:

1 T-1

my (X) = T X7
t=0
1 T—-1

ml(X) = T Xir.
t=0

For stationary Gaussian series, we could expect that mJ (X)/(m3(X))? ~ 3. However, the
following demonstrates that this ratio is “spuriously” distorted if the variance 02(z) of Xir

varies over time.

snf(%) = 730 () + Otexr)/m
T—1 T—1 2 T—_1 2
15 (7() @) #(r5e ()

For the purpose of this paragraph, denote the first summand in the above formula by AZ.
Obviously, A% = 0 iff the variance of X1 is constant. Therefore, for a non-constant a(z), we

will have
mX) Ay
(m3(X))2  (m3(X))? '
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The above formula provides a heuristic explanation of the fact that the marginal distribution of
processes with a non-constant variance appears heavy tailed when the sample fourth moment

and the sample second moment are (incorrectly) applied to them.

Negligible sample autocorrelations. As in Mikosch and Starica (2003), we consider the sample

autocovariance function

| Toich ] T 2
1r(X,h) = 7 ; Xer Xevnr — (f ; Xt,T> ; (13)

and the sample autocorrelation function

(X, h

~—

X,h) = ———=. 14
pT( ’ ) ”YT(X,O) ( )
Also, we define the scalogram:
1 [t
=0
The following proposition holds:
Proposition 4.1 For an LSW process X; T, we have
E(yr (X, h)) Zs s ( (16)

By Lemma 3.1, the above quantity will be “close” to Cdy(h) if S; is “close” to C'2°. The examples
provided in Section 6 demonstrate that it is indeed often the case. This would explain the often

negligible sample autocorrelations of log-returns.

Non-negligible sample autocorrelations of the squares. The following proposition holds:

Proposition 4.2 For an LSW process X1, we have

okt =25 (o (1) - £ 5 (3)) #2350 (L) vo (MDY,

=0
(17)

For the purpose of this paragraph, denote the first summand of formula (17) by A2, and the sec-
ond one by B?(h). Two spurious effects can potentially be observed here. If the variance o?(z)

is non-constant, A? always gives a spurious positive contribution to the sample autocovariance.
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Note that A? is independent of h, which explains the fact that the sample autocovariance of
the squares often decays very slowly (a feature which cannot be picked up by classical GARCH
models, see again Mikosch and Starica (2003)). For extremely large h, the remainder O(h/T)

often makes the positive contribution of A? less pronounced.

The second spurious effect is due to B?(h), which distorts the information about the local
autocovariance by averaging it over time. Things are not rectified in the case of the sample
autocorrelation, either: as an example, consider again TMWN. For a non-constant o?(z) and

h # 0, we have
yr (X2, h) A2+ 0 S 0
yr(X2,0) A2+ B%(0) ©~ B?(0)

pT(Xzah) = =0,

while, obviously, we would expect a good estimate to return a value close to zero.
A similar mechanism works in the case of absolute values.

Clustering of volatility. The “clustering of volatility” or, in other words, a “slowly varying local

variance” is indeed one of the features of LSW modelling.

5 Estimation

To estimate the spectrum, Nason et al. (2000) use the wavelet periodogram:

2

Iip= , j=-1,-2....,—J, p=0,1,...,T -1, (18)

Z Xe1Vjp—t
t

where 1) is the same wavelet family which is used to build X; 7. In our altered setup of Definition

3.2, we will also use the statistic defined by (18). The following proposition holds.

Proposition 5.1 Let X; 1 satisfy Definition 3.2. We have

Bljp = 21: Si (%) A+ 0 (%) ; (19)

1=—00

where A is defined as in Nason et al. (2000):

Aij =Y Ti(r)Ty().
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In addition, if X; T is Gaussian, then

Var(;,) = 2 (Z s (%) AU> 2 +0 (%gm) . (20)

The form of the remainder in (19) suggests that the estimator is more accurate for finer scales,
le. —j L J.
Formula (19) suggests the following method of estimating the spectrum: we solve the system

of equations

Lik = SinAy (21)
7

to obtain an approximately unbiased estimator S of the spectrum S;(k/T) (see Nason et al.

(2000) for details).

However, formula (20) shows that the wavelet periodogram is not a consistent estimator and
needs to be smoothed to obtain consistency. We can either first solve (21), and then smooth
,SA'j,k, or first smooth I; 1, and then solve (21). Following Nason et al. (2000), we prefer the latter
option, as it is often easier to work out the distributional properties of I;; than those of Sj,k,

and therefore it is easier to justify the choice of smoothing parameters for I .

Smoothing the wavelet periodogram is by no means an easy task, due to an extremely low signal-
to-noise ratio (for Gaussian series, neglecting the remainders, we have EI;; / (VarIj,k)l/ 2 x
1/+/2), and also to a significant amount of autocorrelation present in I, ;. Nason et al. (2000)
propose an adaptive wavelet denoising method, which, however, does not perform particularly

well when applied to financial log-returns: this will be demonstrated in Section 5.4.

In Section 5.1, we propose an alternative general methodology for smoothing the wavelet peri-
odogram. Section 5.2 looks at two specific methods of smoothing, and Section 5.3 deals with

inverting (21) in an approximate manner to ensure the nonnegativity of the estimated spectrum.

5.1 General algorithm

The alternative approach which we propose here is based on the following observation. Denote
by {d;x}}_; the sequence of wavelet coefficients of X;r at scale j (so that I; ) = dg, i)- Often,

financial log-returns exhibit little serial correlation (e.g. see the example in Section 2), so, by
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orthogonality of the decimated wavelets, the sequence
d_1,0,d-1,2,d-1,4,-..,d—1,7—2

as well as the sequence

d_11,d13,d-15,...,d_1,17-1

are each sequences of approximately uncorrelated random variables. At scale j, the same

phenomenon is observed for sequences
dji, dj,i—|—2*ja . adj,z'+T—2*j, 1=0,1,...,277 — 1.

However, even if the original series X; 7 exhibits some form of autocorrelation, the decimated
sequences of wavelet coeflicients will often be much less correlated. This is the well-known

“whitening” property of wavelets, see e.g. Vidakovic (1999), Section 9.5.3.

If X;r is Gaussian, the lack of serial correlation in the decimated sequences also means lack
of dependence, which in turn implies that the corresponding decimated subsequences of the

wavelet periodogram
LisLijvo-iv- oy Lijyr 9-i, i=0,1,...,277 -1 (22)

are simply sequences of independent (gamma-distributed) random variables.

The above argument can only be made formal if X; 7 is Gaussian TMWN. This is obviously
a simplifying assumption, as clearly not every log-return sequence can be adequately modelled
as such. However, it turns out that in practice, the assumption of the lack of dependence
in the decimated subsequences of the wavelet periodogram leads to estimators which perform
better numerically (on simulated data) and are visually more appealing (on real data) than that
proposed by Nason et al. (2000). In other words, the departure from the TMWN setting often
turns out not to be significant enough to prevent us from treating the decimated subsequences

of I, as independent.

Having made the assumption of independence, we now proceed as follows:

1. Fix j.

15



2. For i =0,1,...,277 — 1, pick the decimated sequence
LiiyLjigo-is- s Ljipr—o-i

and smooth it using a preselected method, with the smoothing parameter(s) chosen by
cross-validation (CV). CV stands a chance of performing well here, due to the lack of
dependence between the variables. For example, the technique of Ombao et al. (2001)
can be applied, as we are also dealing with a sample of independent gamma, variates, like
in periodogram smoothing. In Section 5.2, we explore two other methods in which the

smoothing parameter is chosen by CV.

3. Interpolate the smoothed sequence at all the points 0,1,...,7 — 1 (e.g. using linear
interpolation). Denote the interpolated smoothed sequence by
(@) () 7(1)
Lo Ly Ly

4. Finally, compute the estimate of the wavelet periodogram as the average of the estimates

19, fori=0,1,...,277 — 1:
2-7-1

k=3 I
1=0

For coarser scales, where it is not possible to smooth the decimated sequences accurately as

they are too short, we estimate IAj,k by a constant: fj,k =1/T ZZT;OI L.

The estimates fj,k can now be substituted into the systems of linear equations
Iy = Z Sk Aij. (23)
i

CV for dependent data. CV “as it is” does not perform well when the errors are dependent and
some methods for correcting CV to this setting have been developed, see for example Altman
(1990). However, they all work for stationary noise and require an estimate of the autocovari-
ance. In our setting, finding such an estimate implies finding a pre-estimate of the signal itself.

To avoid this nuisance, we prefer to work with independent decimated subsequences.
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5.2 Smoothing the decimated periodogram

In step 2 of the algorithm of Section 5.1, we apply a smoothing procedure to the decimated
subsequences of the wavelet periodogram. In this section, we advertise the use of two smoothing
methods: cubic B-splines (see Hastie and Tibshirani (1990) for details) and translation-invariant

linear wavelet smoothing (see Donoho and Coifman (1995) and Nason and Silverman (1995)).

The advantages of using cubic B-splines are the following.

e The method performs well (see Section 5.4).

e Most statistical packages provide a fast implementation of this method. For example,
we use the S-Plus routine smooth.spline, which automatically selects the smoothing

parameter by cross-validation.

e Numerical examples suggest that the method is fairly robust to the misspecification of
the local variance of the noise. This feature is particularly attractive: in our setting, the
variance of the noise depends on the signal (see formulas (19) and (20)), and, therefore,
an accurate estimate of the variance would require an accurate estimate of the signal. In
practice, it seems sufficient to supply constant variance to smooth.spline, see the results

in Section 5.4.

The advantages of using translation-invariant linear wavelet smoothing are as follows.

e The method performs well (see Section 5.4).

e The only smoothing parameter to be chosen is the “primary resolution”, above which all
the wavelet coefficients are set to zero, see Nason and Silverman (1995). As there are only
logy(T') primary resolution levels to choose from, the choice is potentially easier than the
choice of bandwidth in kernel smoothing. We perform the selection by “leave-half-out”
cross-validation as in Nason (1996), except that we choose the primary resolution rather

than the threshold.

e The method is fast, as in practice we choose the primary resolution for the wavelet peri-
odogram at the finest scale j = —1, and then use the same primary resolution for all the

coarser scales j = —2,—-3,...,—J.

Adaptive methods allowing the detection of abrupt changes in the wavelet periodogram would
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clearly be an attractive alternative. The method proposed by Fryzlewicz and Nason (2003),

based on the Haar-Fisz transform, seems to be particularly promising in this context.

5.3 Estimating the spectrum with guaranteed nonnegativity

The evolutionary wavelet spectrum S;(z) is a nonnegative quantity so it would also be desirable
if S’j,k was guaranteed to be nonnegative. This can be achieved, for example, by replacing the

system of equations (23) by a Linear Complementarity Problem (LCP; see e.g. Murty (1988)):

ASy,

v

I

Sy 0

v

(Ask._ik)sk _—

The above LCP can be solved using e.g. successive over-relaxation.

Let S'JEEP denote the estimate of S;(k/T) obtained using the LCP formulation, and ,SA']IBICV —
using the simple inversion of formula (23). By (7), we estimate the local variance o2(k/t) in

each case by

-1

5’2(k/T)(LCP) — Z A;_J,EP
j=—J
-1
kTN = Y RV
j=—J

In practice, 62(k/T)NV) is often a much more accurate estimator of the local variance. In
order to combine this feature with the guaranteed nonnegativity of the spectrum, we rescale

the LCP-based estimator to yield the final estimators of S;(k/T) and o?(k/T):

INV SLSP

Q — ~2 >

Sj,k: = O(k/T)( )W (24)
-1

Fk/T) = Y G (25)

j=—J

As explained in Sections 5.1 and 5.2, S’j,k depends on the method used for smoothing the wavelet
periodogram. The next section compares the estimators based on cubic B-splines and linear

wavelet denoising to that proposed by Nason et al. (2000).
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Figure 3: Left-hand plot: sample path from Gaussian TMWN model with time-varying standard
deviation superimposed. Right-hand plot: time-varying variance (solid), its estimate using
splines (dot-dashed), its estimate using linear wavelet scheme (dotted), and its estimate using
the method of Nason et al. (2000) with default parameters (dashed).

5.4 Estimation — numerical results

The left-hand plot in Figure 3 shows a sample path from the Gaussian TMWN model with the
superimposed contrived time-varying standard deviation. We estimate the time-varying local
variance (the square of the time-varying standard deviation) by adding up estimators of the
Haar wavelet spectrum over scales (see formula (25)). The right-hand plot shows the time-
varying variance (solid line), the estimate obtained using spline smoothing (dot-dashed line),
the estimate obtained using translation-invariant linear wavelet smoothing with Daubechies’
least asymmetric wavelet with 10 vanishing moments (dotted line), and the estimate obtained

using the adaptive method of Nason et al. (2000) with default parameters (dashed line).

While the estimates using our two methods almost coincide with each other and with the true
time-varying variance, the default estimate by Nason et al. (2000) oversmooths. This is due to
the fact that the primary resolution (PR) in the latter method is not chosen in a data-driven

way but instead a fixed PR is used.

For the same Gaussian TMWN process, we assessed the performance of our two methods and

the method by Nason et al. (2000) basing on 25 simulated sample paths. We used two criterion
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default | splines | TI wavelets
mean of d 2 1197 189 162
mean of dg 460 227 232

Table 1: Values of the criterion functions averaged over 25 simulations. “Default” is the method
of Nason et al. (2000), “splines” is our method using spline smoothing and “TT wavelets” is our
method using translation-invariant linear wavelet scheme.

functions — one for the Haar spectrum:

. 10t A s £\\?
ds(S,S) = T Z Z ( i (T) — Si (f)) ; (26)
i=—J t=0
and the other for the variance:
. il [t £\ 2
i) = |3 (#*(5) -+ (7)) 27
t=0

The values in Table 1 confirm our observation that the two estimators in which the choice of

the smoothing parameter is performed by cross-validation give very similar results.

6 Exploratory data analysis

In this section, we look at two examples of data analysis using the LSW methodology (the
examples are related to each other). The first one uses the Haar scalogram (see formula (15)),

and the other — the full evolutionary Haar wavelet spectrum.

Scalogram. In this example, we compute the Haar scalogram for four series:

o X; 7: the last 1024 observations of the artificial simulated Gaussian TMWN of Figure 3,

k]

e F;7: the last 1024 observations of the FTSE 100 series of Figure 1,

e N, r: the last 1024 observations of the Nikkei series of Figure 2,

I

e D, p: the last 1024 observations of the Dow Jones TA series of Figure 2.

I

Figure 4 shows logged scalograms for X; r, Fy 7, Ny 7 and Dy 7 (solid lines), plotted against —j =
1,2,...,10. Dotted lines are theoretical log-scalograms of corresponding time-modulated white
noise processes with the same time-varying variances. As X;7 actually is a time-modulated

white noise process, and its log-scalogram is substantially deviated from the corresponding
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Figure 4: Solid lines: log-scalograms of X, r (top left), F; 7 (top right), Ny (bottom left) and
D1 (bottom right), plotted against —j. Dottes lines: theoretical scalograms if the processes
were (time-modulated) white noise (not necessarily Gaussian). Dashed lines: —j = 3,5 (see
text for discussion).
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dotted straight line for scales —6,—7,...,—10, and slightly deviated for scales —4,—5, we
suspect that for a series of length 1024, the scalogram is a relatively reliable estimator for scales
—1,-2,...,—5 (hence the vertical line at —j = 5), and a very reliable one for scales —1, —2, —3

(hence the vertical line at —j = 3).

Looking at the 3 finest scales (—j = 1,2,3), it seems that Dow Jones and Nikkei are, on
average, reasonably close to TMWN. However, FTSE 100, which was “provisionally” modelled
as Gaussian TMWN in Section 2, shows a substantial deviation from this setting, especially at
scale j = —2, where the mean spectrum is clearly greater than what it should be if FTSE 100
were to be close to TMWN. Indeed, to assess the validity of this statement, we have simulated
1000 independent sample paths of the standard white noise, and computed the Haar scalogram
for each of them. In each case, the empirical scalogram for j = —1 was larger than that for
j = —2, unlike the FTSE 100 case. The outcome of this experiment seems to confirm our initial

judgement that the deviation of FTSE 100 from the TMWN setting is significant.

By formula (16), a large scalogram at scale j = —2 implies a significant contribution of the
summand S ¥ 5(h) to the sample autocovariance. For Haar wavelets, ¥ 5(-) is supported on
h = -3,...,3, and is plotted in the left plot of Figure 5. It is positive for h = +1 and negative
for h = £2,43. Therefore, if the contribution of the spectrum at scale j = —2 is significant
enough, we can expect that the sample autocorrelation of F; r will be significant positive for
h =1, and significant negative for h = 2,3. The right-hand plot in Figure 5 shows that this is

indeed the case! The shape of the acf function of F; r is very similar to the structure of ¥_s.

Figure 1 shows that the same pattern is present is the sample autocorrelation of the whole
FTSE 100 series, and not only in F;r (= the last 1024 observations of FTSE 100). However,
the pattern is much less visible in the sample autocorrelation of the standardised FTSE 100
(series Z; in Figure 1). This may suggest, for example, that this autocorrelation structure
(positive dependence at lag 1, negative at lags 2 and 3), may be present in a stretch of high
volatility, which has a significant contribution to the sample autocorrelation of FTSE 100 (or,
alternatively, to the scalogram). In Z;, the “standardised” periods of high volatility contribute
less to the sample autocorrelation than in the original FTSE 100 series, which would explain
why the sample autocorrelation of Z; exhibits a different dependence structure: it only indicates

slight positive dependence at lag 1, but no significant negative dependence at lags 2 or 3.

The above discussion clearly indicates the need for a local analysis of the FTSE 100 data. By

looking at the full evolutionary Haar spectrum of FTSE 100, we are able to find out where and
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how the local autocovariance structure changes over time.
Full evolutionary Haar spectrum analysis.

Figure 7 shows the estimated evolutionary Haar spectrum of Ft',T = the 2048 last observations
of the FTSE 100 index (plotted in Figure 1). It seems that scale j = —2 dominates from time
2o ~ 0.6 onwards (this corresponds, roughly, to time ¢t = 1200, ...,2048). In particular, there
is a huge bump centred at z; ~ 0.67: it is clearly the most visible feature in the “spectrum
landscape” of FTSE 100. Judging by the magnitude of the bump, it seems likely that even
though scale j = —2 dominates over part of the time horizon only, “global” tools (such as the
scalogram or the sample autocovariance computed for the whole sample) will also be affected,
which will give the false impression that scale j = —2 dominates all the way through. Indeed,
if we compute the acf of Fy 1, Fy 1, ..., Fiyg0 1, it turns out that the effect of the sample acf
resembling the Haar autocorrelation function at scale 5 = —2, now disappears! The acf of the
first 1200 observations of Ft',T is plotted is the left-hand plot of Figure 6. Right-hand plot of
Figure 6 shows the acf of the remaining part of Ft”T, where scale j = —2 seems to dominate.

This is reflected in the shape of the sample acf at lags 1,2, 3.

The LSW model with the Haar basis seems to be ideally suited for modelling the FTSE 100
series on the interval z € (0.6,1), as it provides a sparse representation of the local covariance

in that region: most of the “energy” of the series is concentrated at scales j = —1 and —2.

The above demonstrates how important it is to analyse the log-return data locally, rather that
using global tools. There is no economic reason why log-return series should stay stationary
over long periods, and the above wavelet-based analysis shows that, indeed, they do not. The
LSW framework provides appropriate tools not only for the local analysis of the log-return

data, but also for forecasting. This will be demonstrated in Section 7.

7 Forecasting

7.1 Adaptive forecasting algorithm

A comparison of forecasting methods for daily Sterling exchange rates is provided by Brooks
(1997), who concludes that forecasts based on GARCH modelling are the most reliable. Leung
et al. (2000) find that probabilistic neural networks (Wasserman (1993)) outperform other

methods when applied to stock index returns. However, the input variables in their model
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Figure 5: Left-hand plot: ¥_y(h) for Haar wavelets for h = 0,1,...,5. Right-hand plot:
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include, apart from the past data, a variety of other macroeconomic factors. In this section,
we only consider forecasts based on past values of the series, and compare our methodology
to forecasting based on GARCH modelling (for an overview of the latter methodology, see e.g.
Bera and Higgins (1993)).

A general algorithm for forecasting LSW processes was introduced by Fryzlewicz et al. (2003),

and we shall now briefly discuss it in our setting.

Suppose that X; 7 is a log-return series which we model as an LSW process and observe up to
time ¢. As the LSW model is linear, it makes perfect sense to consider the n-step-ahead linear

predictor

t
Xt—f—n,T = Z bgt’n)Xs,T- (28)
s=0

For simplicity of presentation, we only consider n = 1, and denote b( ). b(t+n) As in Brockwell
and Davis (1987), we find the coefficients b by minimising the Mean-Square Prediction Error
(MSPE):
. . 2
MSPE (Xt—l—l,Ta Xt—i—l,T) =E (Xt-',-l,T - Xt+1,T) .

Asymptotically, this minimisation problem is equivalent to solving the system of equations

t
mz_:ob <m+n,m—n): (t;—Tn t— ), (29)
forn=0,1,...,t (see Section 4.3 in Fryzlewicz et al. (2003)). Obviously, the local autocovari-
ance ¢ needs to be estimated from the data. This can be done using the algorithm of Section
5, but it seems that we can obtain more accurate forecasts by estimating ¢ using the principle
of adaptive forecasting: the estimators of Section 5 naturally suffer from edge effects and it is
at the right edge where we require the estimates to be particularly accurate in order that the

forecasting algorithm perform well.

More precisely, we start with the unsmoothed estimate of the local autocovariance (see Section

5.1 in Fryzlewicz et al. (2003)):

&z, 1) = Z (ZA 1 ZT) (7). (30)

j=—J %

We will later smooth this estimate using Gaussian kernel with an appropriately selected band-

width.
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As recalled in Fryzlewicz et al. (2003), Section 5.2, in theory, the best one-step-ahead linear pre-
dictor of X; 1 7 is given by (28), where b; = {b@}s:o,l,___,t solves (29). In practice, we estimate
each of the prediction coefficients b;. As we incorporate more and more past observations into
the linear predictor (e.g. in (28) we incorporate the whole history of the process), the overall
error in estimating the prediction coefficients potentially increases, due to the non-stationarity
of the process. On the other hand, the theoretical prediction error MSPE(X}H,T,XH_LT) de-

creases. In order to strike a balance between these two types of error, Fryzlewicz et al. (2003)

propose to clip the linear predictor at some lag in the past, i.e. to consider

t
Xt(—zr—)l,T - Z bgt)Xs,T- (31)
s=t—p+1
This is reminiscent of the classical idea of AR(p — 1) approximation for stationary processes
— here, p = 1 loosely corresponds to TMWN, p = 2 to time-varying AR(1), and so on (the
fact that p corresponds to AR(p — 1) and not to AR(p) is due to the specific form of the

autocovariance estimator ¢).

Therefore, in order for the forecasting algorithm to work, we have to choose two “nuisance”

parameters: lag p and bandwidth A for the local autocovariance smoothing.

The choice is performed using the adaptive forecasting algorithm of Fryzlewicz et al. (2003).
Suppose that we observe the series up to time ¢ and want to forecast X;;1 7, using an appropriate
pair (p, h). We move back by s observations, pretending that only X7, X1 7,..., X;—s 7 have
been observed, and we choose the initial pair of parameters (pg, ho). Then, we forecast X;_s11.7
using not only (po, ho), but also the 8 neighbouring pairs of parameters: (pg+1,ho+£4), (po, hotx
d), (po £ 1, hg), for a fixed value of §. Since we know the actual value of X; 11 7, we are able
to use a preset criterion to compare the 9 results obtained, and we set (p1,h1) to be the pair
which gave the best forecast out of the 9. In the next step, we use the pair (p1,h1), as well
as its 8 neighbours, to forecast X; ;.2 7, and then we repeat the update step. In this way,
we continue until we reach X; 7, when we obtain the pair (ps, hs) which we use to perform the
actual prediction.

A variety of criteria can be used to compare the performance of the pairs of parameters at each
step. Denote by X ,(f%(h) the estimate of X}, 7 obtained using the pair (p, k). To fine-tune the

parameters for the accurate forecasting of the series X; r itself, a natural choice would be to
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choose the pair that minimises
di(X,p, h) = X — XT)(h)] . (32)

However, in order to give preference to forecasts which lie comfortably withing the corresponding
prediction intervals, an alternative possibility would be to choose, for example, the pair which

minimises

Xk — A/?,)%(h)

dz(X,p, h’) = ) (33)

PP (h)

3

where P,gf’%(h) is the length of the corresponding prediction interval. We used d; in the simu-

lation study reported below.

Provided that the “training” segment X; s, 1 r,...,X; 7 is long enough, (ps,hs) should not
depend significantly on the initial parameters (pg, ho). Fryzlewicz et al. (2003) propose to set s
to the length of the largest segment at the end of the series which does not contain any visible

breakpoints or “spikes”.

The updating step in is accordance with the principle of local stationarity: if a given pair
was good at forecasting X} 7, we can expect that the same pair, or one of its neighbours, will
also perform well in forecasting X1 7. Also, once the parameters have been fine-tuned on
the training set, the forecasting can be performed “online”. Indeed, when observation X; 1 7
becomes available, we only need to update the pair (ps, hs) without having to perform the whole

of the “training” step on the past s observations.

The algorithm can be modified by allowing more that one update of parameters at each step.
Also, prior knowledge can be incorporated into the model by restricting or penalising certain

regions of the parameter space for (p, h).

7.2 Dow Jones example

In this section, we demonstrate the usefulness of the approach by comparing our forecasting
methodology to forecasting based on GARCH modelling, on a fragment of the Dow Jones TA
series (denoted by Dy in Section 6 and plotted in Figure 2). This brief simulation study does
not aim to show that our approach is superior to GARCH. Instead, we attempt to demonstrate

a few interesting features of LSW forecasting.

Suppose that we have already observed 1105 values of the series, and want to perform one-
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step-ahead prediction of the series along the segment D106, .., D1205 7. In order to do so,
we employ the LSW methodology with Haar wavelets. We make an initial guess at the values
of p and h: we set (p,h) = (1,30) (default initial values in our software package, see Section 8
for details on how to obtain the package). Further, we set the criterion function to di, and we

allow one parameter update at each time point.

Also, we limit the parameter space for p to the set {1,2}, having empirically found that the
forecasting algorithm performs best on the given stretch of the series when the upper limit for
p is set to 2. As mentioned in Section 7.1, this roughly corresponds to “switching” between
TMWN and time-varying AR(1) at each time point, depending which model produces locally

more accurate forecasts.

We compare our method to forecasts obtained by modelling D; 1 as

e AR(1) + GARCH(1,1) — since AR(1) roughly corresponds to the upper limit for p being
equal to 2,

e AR(16) + GARCH(1,1) — since the AIC criterion indicates that the order of D, along
the segment £ = 1105,...,1204 is equal to 16.

The parameters (1, 1) of the GARCH part were selected ad hoc; however, they have no influence
on the point forecasts. The models were fitted using routine garch from the S-Plus garch

module with default parameters.

The results of the experiment are presented in Figure 8. The top left plot shows the actual
series D1106,7, - - - , D1205,7 (dotted line), the corresponding one-step-ahead forecasts (thick solid
line), and 95% prediction intervals (assuming Gaussianity; dashed lines), for the AR(1) +
GARCH(1,1) model. The top right plot shows the same for the AR(16) + GARCH(1,1) model,
and the bottom left plot — the same for the LSW model. The bottom right plot in Figure 8
shows the actual series scaled by the factor of 2000 (dotted line), as well as the corresponding
values h of the bandwidth used to forecast the series. The bandwidth was allowed to change
by £1 or remain the same. The fact that it increases steadily beginning from ¢ = 1160 may

suggest that the time-varying second order structure of D; 7 evolves more slowly in that region.

In the LSW forecasting, the stretches where p = 1 wins over p = 2 are indicated by one-step-
ahead forecasts equal to zero (as in TMWN forecasting). Non-zero forecasts indicate that p = 2
is used to perform prediction. The LSW model does an impressive job in picking up the spike

at t = 1112, and also at capturing the local structure around ¢ = 1135. The Mean Squared
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Figure 8: Top left, top right and bottom left: the actual series (dotted line), one-step-ahead
forecasts (solid line) and 95% prediction intervals (dashed lines) for AR(1) + GARCH(1,1),
AR(16)+GARCH(1,1) and LSW, respectively. Bottom right: actual series x2000 and the
evolution of bandwidth .
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AR(1)+GARCH(1,1) | AR(16)+GARCH(1,1) | LSW

Mean SPE 878 857 | 839
Median SPE 404 375 | 298
Table 2: Mean Squared Prediction Error and Median Squared Prediction Error (x107 and
rounded) in forecasting Di106,7,-- -, D1205,7 one step ahead, for the three methods tested in
Section 7.2.

Prediction Errors and the Median Squared Prediction Errors for the three methods are given

in Table 2: the LSW method outperforms the other two.

For the LSW method, 92% of observations fall within the corresponding one-step-ahead 95%
prediction intervals, whereas the analogous ratios for the AR(1) + GARCH(1,1) and AR(16) +
GARCH(1,1) methods are 94% and 93%, respectively. Our slightly worse performance is due
to the fact that the d; criterion only minimises the distance between the predicted value and
the actual one, and does not take into account the prediction intervals. A modification of the
comparison criterion would almost certainly lead to an improvement over the (already good)

ratio of 92%.

However, it must be mentioned that the prediction intervals in the LSW model are narrower
than the minimum of those in the AR(1) + GARCH(1,1) model and those in the AR(16) +
GARCH(1,1) model in 71% of the cases.

8 Conclusion

In this article, we have provided theoretical and empirical evidence that stock index returns can
be successfully modelled and forecast in the Locally Stationary Wavelet (LSW) framework of
Nason et al. (2000). Starting from a motivating example of the FTSE 100 series being modelled
as a Time-Modulated White Noise (TMWN), we have slightly altered the definition of an LSW

process to allow TMWN as a special case of a general LSW process.

We have provided theoretical evidence that the LSW model, being linear and non-stationary,
can capture the most commonly observed stylised facts. In particular, we have argued that the
heavy tails of the marginal distribution, negligible sample autocorrelations, and non-negligible
sample autocorrelations of the squares, are all effects which can possibly be caused by applying
stationary, global tools (such as the sample autocorrelation) to the analysis of non-stationary

data.
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Furthermore, we have proposed a new general algorithm for estimating time-varying second-
order quantities in the LSW model. We have shown that our new algorithm, specifically de-
signed for financial log-returns, significantly outperforms the default algorithm proposed by

Nason et al. (2000) for general non-stationary time series.

Also, we have provided two interesting examples of exploratory data analysis using the LSW
toolbox. By using the (global) scalogram and the (local) evolutionary Haar spectrum, we have
found that the daily FTSE 100 index displays a significant local departure from the TMWN
setting. Also, by examining the Haar spectrum, and the shape of the autocovariance function
of FTSE 100 over a certain region, we have discovered that the Haar wavelet basis is ideally
suited for the sparse modelling of FTSE 100 on that interval. The example has powerfully
demonstrated that the financial log-return data need to analysed using local tools as all of their

second order characteristics, and not only variance, can vary over time.

Finally, we have provided evidence that financial log-returns can be successfully forecast in
the LSW framework using the adaptive forecasting algorithm proposed by Fryzlewicz et al.
(2003). We have compared the forecasts obtained by the adaptive algorithm to those obtained
using GARCH modelling. Again, we have found that the adaptive method has the potential
to accurately forecast some important local features of non-stationary log-return data. In
the example analysed (a fragment of the Dow Jones IA index), the LSW-based technique has
outperformed two GARCH-based methods.

Future ideas. In future research, we intend to examine other distributions of innovations &;
(also combined with “skewed wavelets”), as well as looking at the problem of forecasting volatil-
ity in the LSW framework. After completing this work, we were made aware of the recent article
by Drees and Starica (2002) in which the authors propose a simple non-stationary model for
stock returns which also uses the idea of a time-varying unconditional variance. It would be of
interest to investigate the possibility of combining the most attractive features of both models

to obtain a further improved linear framework for modelling financial log-returns.

Reproducible research. The S-Plus routines written and used by the author, the data sets
analysed in the paper, as well as the contrived standard deviation function of Figure 3 can be

downloaded from the associated web page

http://www.ma.imperial.ac.uk/ “pzf/fints/fints.html
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A Proofs

Proof of Proposition 3.2.

ler(k/T,7) = c(k/T,7)| =
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Now, using assumptions (9) — (12) and Cauchy inequality, we get
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0 (logj(ﬂﬂ) 10 _Z_ 9| =0 (logIET)) Lo(T) =0 (10%1(?)) .

Lemma A.1 With the assumptions of Lemma 3.1, we have

—~1
Z 214, = 1.

1=—00

Proof. Using Lemma 3.1,
221 ,]_2212\11 Z‘SO

Proof of Proposition 4.1. Very similar to the proof of Proposition 4.2 (see below).
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Proof of Proposition 4.2. Define a(z) = 5 _c2(z,7). By Assumption (9) and Lemma A.1,

we have

=33 8i(2) 85 (2)Ti( = Si(2)Si(2) Aiir < DZS ) < D2 (34)

T 4,0 1,1

L Tolch = 2
T Z XtTXt+hT (fZXtZ,T> =

Proof of Proposition 5.1 We use the orthonormality of £, the fact that L; ~ M277,

assumptions (9) — (12), and Lemma A.1.
2
E (Z Xt,ij,p_t> -5 (F) A
t i
2 4
Si (%)‘ (Z %,k—ﬂﬁj,pt) + ) S (%) Aij <
t

1=—00

i=—J k

-1 ; ; —J-1
L;M(27'V279) + C;

P ‘s {5 ()27} 30 24y <

1=—J 1=—00

L ;M2 LiM27% + C; 2!

DRI LTI SELE

= T
i=j+1 i=—J 1=—00

—j —J-1 )
7 ( ap (527} 3 Py e (A} 3 L +0)+’3222Aﬂ-—

t=—1,—2,...,— i=j+1 i=—J 1=—00
2—j —J-1 )
7 (0(10g(T)) + O(log(T) + 1)) + D 3~ 2Ay;.

1=—00
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Let us now turn to the speed of convergence of Z;:J:; 2t Ajj.

Haar wavelets. By Theorem 2 of Nason et al. (2000), we have A;; = 2¢(2° %1 + 1), as i < j.
Therefore, Z;:J:olo 204, = 0((277/T)?).
Other Daubechies’ compactly supported wavelets. There is a strong evidence that he above rate

is also achieved for other Daubechies’ compactly supported wavelets, see Remark 7 in Nason

et al. (2000).

Thus, we finally obtain

2 iy
E (Z Xt,quj,p_t> -5 (B) ay|=0 <%g(T)> .
t %

Now, if X; 7 is Gaussian, then

it 2,71 (55 (5) a0 (280

-2z (2) Az-j)Q o (22s)

as

<D

Z Si(p/T)Ai

by Assumption (9).

Non-Gaussian processes. To extend Proposition 5.1 to non-Gaussian processes, one possibility
would be to use Isserlis theorem and the method of cumulants, see Vidakovic (1999), Section

9.4 for details and further references.
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