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Abstract. In this article, we discuss recent results on modelling and forecasting covariance
non-stationary stochastic processes using non-decimated wavelets.

1. Introduction

In this article, we are concerned with data generated by a univariate, discrete-time stochastic
process. We focus on the analysis of its covariance structure, and therefore we assume that
the process is zero-mean. Zero-mean processes arise, for example, when the global trend has
been removed from the data. Trend estimation is a well studied problem, and some recent
methods use wavelets.

The autocovariance function of a process Xt is denoted by cX

�
r� s � : � Cov

�
Xr � Xs � , and,

for stationary processes, it depends on the distance between r and s only, i.e. cX

�
r� s ��� cX

���
r �

s
� � . As it does not depend on any reference point in time, we say that the autocovariance

function of a stationary process is homogeneous over time. All stationary processes Xt have
the following Fourier representation:

Xt �	��
�
π � π � A � ω � exp

�
iωt � dZ

�
ω ��� t � Z � (1)

where A
�
ω � is the amplitude, and Z

�
ω � is a stochastic process with orthonormal increments

[1]. Correspondingly, under mild conditions, the autocovariance function can be expressed as
cX

�
τ ����� π�

π fX

�
ω � exp

�
iωτ � dω � where fX is the spectral density of Xt [1].

The assumption of stationarity leads to an elegant theory from the point of
view of both estimation and forecasting [1]. However, various studies based on
statistical tests of stationarity have shown that many observed processes have a non-
homogeneous autocovariance (spectral) structure [2, 3, 4]. Examples of such non-stationary
processes abound e.g. in econometrics (returns on stock indices), biomedical statistics
(electrocardiograms), meteorology (wind speed), and many other fields. The important
question of how to model and forecast non-stationary processes arises, and one of the
main motivations behind using wavelets here is that, being well-localised in both time
and frequency, they have the potential to naturally handle phenomena whose spectral
characteristics change over time.

2. The class of locally stationary wavelet processes and the wavelet spectrum

We now recall a definition of a class of zero-mean nonstationary processes built of non-
decimated discrete wavelets [5], rather than harmonics exp

�
iωt � like in (1).
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Definition 1 ([6]) A triangular stochastic array Xt � T �
t � 0 ������� � T � 1 � T � 0 � is in the class

of locally stationary wavelet (LSW) processes if there exists a mean-square representation

Xt � T � �
1

∑
j � ��� log2 T �

∞

∑
k � � ∞

w j � k;T ψ jk

�
t � ξ jk � (2)

where j and k are scale and location parameters, respectively, w j � k;T are real constants,�
ψ jk

�
t ��� jk is a non-decimated family of discrete compactly supported wavelets [5], ξ jk is

an orthonormal sequence of identically distributed zero mean random variables, and for each
j 		� 1, there exists a Lipschitz-continuous function W j

�
z � on 
 0 � 1 � such that

� ∑
�

1
j � � ∞ Wj

�
z � 2 � ∞ uniformly in z �
 0 � 1 � ;

� the Lipschitz constants L j satisfy ∑
�

1
j � � ∞ 2

�
jL j

� ∞;
� there exists a sequence of constants C j satisfying ∑

�
1

j � � ∞C j
� ∞, such that, for all T ,

sup
k � 0 � � � � � T � 1

�
w j � k;T � Wj

�
k � T � � 	 C j � T �

By analogy with Dahlhaus [7], the time-varying quantity W j

�
z � is defined in rescaled

time z � t � T ��
 0 � 1 � . As the non-decimated wavelet system is overcomplete, the “amplitudes”
w2

j � k;T are not uniquely defined and therefore not identifiable. However, due to the regularity

of Wj

�
z � in the rescaled time, the wavelet spectrum of Xt � T , defined by S j

�
z � : � Wj

�
z � 2, is

unique. S j

�
z � measures the power of the process at a particular scale j and location z, and can

be estimated by means of asymptotically unbiased multiscale estimators [6]. For stationary
processes, S j

�
z � is independent of z for all j. Here, j � � 1 denotes the finest scale.

As recalled in the Introduction, the autocovariance function of a stationary process is the
Fourier transform of its spectral density. The next results shows an analogous link between the
autocovariance function of an LSW process Xt � T , defined by cT

�
z � τ ��� Cov

�
X � zT � � T � X � zT ��� τ � T � ,

and its wavelet spectrum S j

�
z � . We first define the autocorrelation wavelets Ψ j

�
τ � �

∑k ψ jk

�
0 � ψ jk

�
τ � . They are symmetric with respect to τ and satisfy Ψ j

�
0 � � 1 for all scales.

Also, like wavelets themselves, they enjoy good localisation properties.

Proposition 1 ([6]) Under the assumptions of Definition 1, � cT � c � L∞
� O � T

�
1 � , where

c
�
z � τ � � �

1

∑
j � � ∞

S j

�
z � Ψ j

�
τ ��� (3)

Function c
�
z � τ � is called the local autocovariance function (LACV) of Xt � T . Formula (3)

is a multiscale representation of the nonstationary autocovariance function c
�
z � τ � . The

representation is unique because the set
�
Ψ j � j is linearly independent, [6]. By way of

example, it can be proved [8] that ∑
�

1
j � � ∞ 2 jΨ j

�
τ � � δ0

�
τ � holds, which implies, in particular,

that the wavelet spectrum of (stationary) white noise is proportional to S j

�
z � � 2 j.

3. Forecasting

We now want to forecast an LSW process h steps ahead, basing on t observations
X0 � T ������� � Xt

�
1 � T . We set T � t � h and consider a linear predictor X̂t � h

�
1 � T �

∑t
�

1
s � 0 b



t � h �

t
�

1
�

s;T
Xs � T , where the coefficients b



t � h �

t
�

1
�

s
minimise the mean-square prediction error

E
�
X̂t � h

�
1 � T � Xt � h

�
1 � T � 2.
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Proposition 2 ([8]) Assume h � o
�
T � and let the length of ψ j be � j. Assume also:

∞

∑
τ � 0

sup
z

�
c
�
z � τ � � � ∞ ∑

j � 0

�
C j ��� jL j ��� j

� ∞ essinf
z �ω ∑

j � 0
S j

�
z � � ψ̂ j

�
ω � � 2 � 0 �

where ψ̂ j

�
ω ��� ∑∞

s � � ∞ ψ j0

�
s � exp

�
iωs � . The mean-square prediction error can be written as

b̃


t � h ��� B 
 t � h;T � b̃



t � h � � 1 � oT

�
1 � ��� (4)

where B


t � h;T �

m � n � c
� n � m

2T � n � m � , n � m � 0 ������� � t � 1 � h, and b̃


t � h � is the vector�

b


t � h �

t
�

1
������� � b 
 t � h �

0
� b 
 t � h ��

1
������� � b 
 t � h ��

h
� � with b



t � h ��
1
������� � b 
 t � h ��

h � 1
� 0 and b



t � h ��
h
� � 1.

In theory, the coefficients of b̃


t � h � (and therefore b



t � h � ) are now found by minimising (4).

In practice, however, the elements of B


t � h;T � need to be estimated. It is easily observed [8]

that Formula (3) suggests the following multiscale estimator of the LACV:

ĉ

�
k
T
� τ � � �

1

∑
j �m � ��� log2 T � A

�
1

m j � t
�

1

∑
s � 0

Xs � T ψmk

�
s �
	 2

Ψ j

�
τ ��� k � 0 ������� � t � 1 � (5)

where Am j � ∑τ Ψm
�
τ � Ψ j

�
τ � . The above estimator is asymptotically unbiased [8]. Also,

it can be shown by simulation, and by exact calculation in some particular cases, that
the above estimator enjoys better Mean-Square Error properties than other commonly used
(asymptotically) unbiased estimators of local covariance. However, it is not consistent (its
variance does not go to zero with T , [8]) and therefore has to be smoothed using e.g. a
Gaussian kernel smoother with bandwidth g. Moreover, in (4), we also require the values of
c
�
k � T � τ � for k � t ������� � t � h � 1. Motivated by its slow evolution, we extrapolate the LACV

by one-sided smoothing of the estimated autocovariances with the same bandwidth g. The
next section discusses a data-driven method for choosing the smoothing parameter g.

4. The forecasting algorithm

As mentioned before, we estimate the entries of B


t � h;T � using (5) smoothed over k � T to

achieve consistency. For simplicity, we choose the same bandwidth g for all τ . In this section
and next, we only consider one-step-ahead forecasts.

Also, in practice, we only incorporate p past observations into the predictor, instead of
the whole history of the process, which corresponds to only considering the bottom-right
corner of B



t � h;T � . The motivation behind this is that the “clipped” predictor often performs

much better in practice, while also being less computationally expensive.
We select

�
g � p � by adaptive forecasting, i.e. we gradually update

�
g � p � according to

the success of prediction. We first move backwards by s observations and choose the initial
parameters

�
g0 � p0 � for forecasting Xt

�
s � T . Next, we forecast Xt

�
s � T using not only

�
g0 � p0 �

but also the 8 neighbouring pairs
�
g0 � δεg � p0 � εp � , for εg � εp � � � 1 � 0 � 1 � and δ fixed. As

we already know the true value of Xt
�

s � T , we compare the 9 forecasts using a pre-selected
criterion, and update

�
g � p � to be equal to the pair which gave the best forecast. We now

use this updated pair, as well as its 8 neighbours, to forecast Xt
�

s � 1 � T , and continue in the
same manner until we reach Xt

�
1 � T . The updated pair

�
g1 � p1 � is used to perform the actual

prediction, and can itself be updated later if we wish to forecast Xt � T � Xt � 1 � T �������
Various criteria can be used to compare the quality of the pairs of parameters at each step.

Denote by X̂t
�

i � T � g � p � the predictor of Xt
�

i � T computed using pair
�
g � p � , and by Pt

�
i � T � g � p �
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the length of the corresponding prediction interval. In [8], we propose the following criterion:
choose the pair which minimises

�
Xt
�

i � T � X̂t
�

i � T � g � p � � � Pt
�

i � T � g � p � . We suggest that the
length s of the “training segment” be chosen in such a way that Xt

�
s
�

p ������� � Xt
�

1 does not
contain any apparent breakpoints observed after a visual inspection. To avoid dependence on
the initial values

�
p0 � g0 � , the algorithm can be iterated a few times along the training segment,

e.g. until at least 95% of the observations fall within their 95% prediction intervals.

5. Example

We apply the algorithm to forecast the wind anomaly index (denoted here by Xt), plotted on
http://www.stats.bris.ac.uk/˜mapzf/g24/wind.html. This time series has
been studied in meteorology in order to understand the El Niño effect in a specific region of
the Pacific. The length of the series is T � 910. By trial and error, we have found that the
pair

�
g0 � p0 ��� �

70 � 910 � 7 � produces accurate one-step-ahead forecasts for many segments of
the series. However, the results for the segment X801 ������� � X840 using

�
g0 � p0 � are extremely

bad (only 5% of the observations fall within the 95% prediction intervals). Suppose that we
want to forecast X841 � X842 ������� . As we have no reason to believe that

�
g0 � p0 � has a chance of

performing well here, we run the algorithm of the previous section with s � 40, δ � 1 � 910,
and the criterion described in the previous section. Three iterations along the training segment
(with the “new”

�
g0 � p0 � always being set to the

�
g1 � p1 � obtained in the previous iteration) are

sufficient to obtain 95% coverage of the 95% prediction intervals. The updated parameters are�
g1 � p1 � � �

114 � 910 � 14 � . Indeed, they do an excellent job in forecasting X841 ������� � X848 one-
step-ahead: over this segment, all the true values of Xt lie within their prediction intervals,
and the main gain from using our procedure here is that the prediction intervals themselves
are more than 15% narrower than those obtained from optimally fitted stationary ARMA
models. A similar effect has been observed at several other points of the series. For other
examples and more details, the reader is referred to [8].
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