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Summary

We consider a locally stationary model for financial log-returns whereby the returns are
independent and the volatility is a piecewise constant function with an unknown number
and location of jumps, defined on a compact interval to enable a meaningful estimation
theory. We demonstrate that the model explains well the common stylised facts of log-
returns. We propose a new wavelet thresholding algorithm for volatility estimation in this
model, where Haar wavelets are combined with the variance-stabilizing Fisz transform. The
resulting volatility estimator is mean-square consistent with a near-parametric rate, does not
require any pre-estimates, is rapidly computable and easy to implement. We also discuss
important variations on the choice of estimation parameters. We show that our approach
both gives a very good fit to selected currency exchange datasets, and achieves accurate long-
and short-term volatility forecasts in comparison to the GARCH(1,1) and moving window
techniques.

Some key words: GARCH models; Haar wavelets; Locally stationary models; Variance-
stabilizing transforms; Wavelet thresholding.
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1 Introduction

Log-returns on speculative prices, such as stock indices, currency exchange rates, share
prices, etc., often exhibit the following well known properties:

1. The sample mean of the observed series is close to zero.

2. The marginal distribution is roughly symmetric (or slightly skewed), has a peak at
zero, and is heavy-tailed.

3. The sample autocorrelations are “small” at almost all lags; however, the sample au-
tocorrelations of the absolute values and squares are significant for a large number of
lags.

4. Volatility is “clustered”, i.e. days of either large or small movements are likely to be
followed by days with similar characteristics.

To capture the above “stylised facts”, one needs to look beyond the stationary linear
framework, and in order to preserve stationarity, a large number of non-linear models have
been proposed. Among them, two branches are by far the most popular: the families of
ARCH (Engle, 1982) and GARCH (Bollerslev, 1986; Taylor, 1986) models, as well as the
family of “Stochastic Volatility” (SV) models, suggested by Taylor (1986) as an alternative
to ARCH/GARCH modelling. For a review of recent advances on ARCH, GARCH and SV
modelling, we refer the reader to the monograph of Fan & Yao (2003) and the review paper
of Giraitis et al. (2005).

Although stationarity is an attractive assumption from the estimation point of view,
some authors point out that the above stylised facts can be better explained by resorting
to non-stationary models; see for example Mikosch & Stărică (2004). Indeed, Kokoszka &
Leipus (2000) considered the problem of change-point detection in the ARCH model, whilst
Dahlhaus & Subba Rao (2006) proposed a locally stationary time-varying ARCH model
where the parameters were permitted to change over time in a “slow” fashion. Underlying
all these approaches is the observation that given the changing pace of the world economy,
it is unlikely that log-return series should stay stationary over long time intervals.

However, an interesting question which arises once one relaxes the assumption of station-
arity, is whether non-linearity is still needed to model log-returns accurately, or whether it
is sufficient to stick to linear models, the latter being conceptually simpler and better un-
derstood. Locally stationary linear models (Dahlhaus, 1997; Nason et al., 2000) seem to be
a particularly interesting option here, as they combine linearity with a modelling approach
whereby the time-varying parameters are modelled as “well-behaved” functions defined on
a compact interval, which enables a meaningful asymptotic estimation theory. Indeed, some
authors have applied the locally stationary linear framework to the modelling of log-returns;
see for example Clémençon & Slim (2004), who apply the locally stationary covariance es-
timation methodology of Donoho et al. (2003) to log-returns, or Fryzlewicz (2005), who
provides an exploratory analysis of log-returns in the framework of Nason et al. (2000).
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Motivated by the above discussion, we also follow the “locally stationary linear” avenue
and propose a simple non-stationary model for log-returns in which the time-varying volatil-
ity (= the log-return variance) is taken to be piecewise constant: this enables the modelling
of abrupt changes in the stochastic regime which are often expected to follow the arrival of
good or bad news in the market; in between the shocks, the volatility is modelled as constant.
Also, we assume that log-returns at different time points are independent. Our aims in this
paper are as follows:

� to show that the proposed piecewise-stationary model can accurately account for the
most commonly observed stylised facts of log-returns;

� to propose a new wavelet thresholding technique for estimating the piecewise con-
stant volatility: the proposed method powerfully combines the Haar wavelets and the
variance-stabilizing Fisz transform;

� to obtain mean-square consistency results which demonstrate the validity of our ap-
proach;

� to show that the proposed non-stationary model provides an accurate fit to a selection
of currency exchange rate datasets;

� to demonstrate that the proposed estimation approach yields accurate volatility fore-
casts.

2 The non-stationary model and motivation

In this section, we introduce the proposed non-stationary model and motivate it by arguing
that it is capable of explaining the most commonly observed stylised facts of log-returns.

2.1 The non-stationary model

Given a financial instrument {Pt,N}N
t=1 (for example, a stock index, a currency exchange

rate, a share price, etc.), our object of interest is the log-return series Xt,N := log(Pt,N) −
log(Pt−1,N). We propose the following non-stationary “stochastic triangular array” model
for {Xt,N}N

t=1:
Xt,N = σ(t/N)Zt, t = 1, 2, . . . , N, (1)

where σ(z) : [0, 1] 7→ R+ is a non-parametric function, and {Zt}t is a sequence of independent
and identically distributed random variables such that E(Zt) = 0, E(Z2

t ) = 1.

Here, σ(z) (or alternatively σ2(z)) can be viewed as a time-dependent “parameter” of
the proposed model (1), which needs to be estimated from a single stretch of observations
{Xt,N}. Note that σ(z) is defined over the (compact) interval [0, 1], which is common practice
in non-parametric regression and is done in order to enable the specification of regularity as-
sumptions for σ(z). Indeed, without such regularity assumptions, any attempts at estimating
σ(z) in a consistent manner would not be possible.
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As we are primarily interested in σ2(z) (the local variance, or volatility, of the process
{Xt,N}N

t=1) rather than σ(z) itself, we now specify the smoothness assumption for σ2(z) which
will be used throughout the paper.

Assumption 1. σ2(z) is a piecewise constant function, bounded from above and away
from zero, with a finite (but unknown) number of jumps.

Additional assumptions on the innovation process {Zt}t will be specified later.

Assumption 1 is not merely a “technical” assumption introduced in order that the theoret-
ical results of this paper (for example, mean-square consistency of the proposed estimators)
may hold. Piecewise stationarity is arguably the simplest type of departure from stationar-
ity. In the paper, we demonstrate that this simple type of non-stationarity is already flexible
and powerful enough to enable the successful modelling and forecasting of volatilities. We
achieve this both by theoretically verifying that the piecewise constant model captures the
commonly observed stylised facts (

�
2.2), and by demonstrating its good practical perfor-

mance (
���

4 and 5). We note that the piecewise constant modelling of volatilities has also
been considered by Mercurio & Spokoiny (2004) and Polzehl & Spokoiny (2004).

In contrast to the ARCH/GARCH modelling approach where the volatility is modelled as
a stationary stochastic process (more specifically, a function of the volatility is modelled as a
linear combination of certain functions of past volatilities and past squared log-returns), the
non-stationary, non-parametric, unconditional approach described by the simple model (1)
allows us to avoid the restrictions imposed by the parametric structures of ARCH/GARCH
models. Similarly to Stărică & Granger (2005), by modelling volatility as a non-parametric
function, we do not claim that random effects do not play any role in the volatility dynamics.
In our modelling approach, we express our belief that both past and future returns are
manifestations of an unspecified exogenous economic factor about which we only assume a
piecewise constant nature. Since no obvious candidates for explanatory exogenous variables
are at hand, we model the volatility as a non-parametric function.

We also observe that our approach is different to the use of a piecewise-constant noise
variance in threshold autoregressive models of Tong (1990). In the latter approach, different
autoregressive regimes are followed above and below a certain threshold, which introduces
nonlinear dependence in the process. In contrast to that approach, our model is linear (in-
deed, it is merely a sequence of independent variables) with a locally constant unconditional
variance.

2.2 Explanation of the common stylised facts

Below, we demonstrate that provided Assumption 1 holds, the non-stationary model (1) is
capable of explaining the most commonly observed stylised facts of log-returns, mentioned
in

�
1. We introduce the following notation:

X̄p
N =

1

N

N
∑

t=1

Xp
t,N ,
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γN
Xp(h) =

1

N

N−h
∑

t=1

Xp
t,NX

p
t+h,N −

(

X̄p
N

)2
.

The following proposition holds.

Proposition 1 Suppose that {Xt,N}N
t=1 follows model (1), and that Assumption 1 holds.

Assume further that E(Z8
t ) < ∞. Suppose {hN}N is a sequence such that hN > 0 and for

some β ≥ 0, hN/N → β as N → ∞. Then we have

X̄1
N → 0, (2)

in mean-square, as N → ∞,

X̄4
N

(

X̄2
N

)2 → E(Z4
t )

∫ 1

0
σ4(z)dz

{

∫ 1

0
σ2(z)dz

}2 , (3)

in probability, as N → ∞,

γN
X1(h) → 0, for a fixed h > 0, (4)

in mean-square, as N → ∞,

γN
X2(hN ) →

∫ 1−β

0

σ2(z)σ2(z + β)dz −
{

∫ 1

0

σ2(z)dz

}2

, (5)

in mean-square, as N → ∞.

Typically, upon assuming that our observations come from a stationary (not necessarily
linear) process, which is indeed often done in log-return analysis, we would use the quantities
on the left-hand sides of formulae (2) – (5) as measures of the mean, the kurtosis, the
autocovariance, and the autocovariance of the squares of the data, respectively. As mentioned
in

�
1, we would then in most cases observe (a) the sample mean of the data being close to

0, (b) the sample kurtosis being greater than 3 (3 being the kurtosis of a Gaussian variable),
(c) the sample autocovariance of the data at lag h > 0 being close to 0, (d) the sample
autocovariances of the squares of the data not decaying to 0, or decaying to 0 only very
slowly. Proposition 1 shows that these stylised facts can be well explained in our model:
indeed, formulae (2) – (5) provide a heuristic explanation for the above stylised facts (a) –
(d), respectively, even in the case of Zt being Gaussian. In particular, note that the ratio on
the right-hand side of formula (3) is always greater that 1, unless σ2(z) is constant when it
is equal to 1. Similarly, if hN = h > 0, then the integral on the right-hand side of formula
(5) is always positive, unless σ2(z) is constant when it is equal to 0.

The above discussion indicates that care must be taken when applying stationary, global
tools to the analysis of log-returns, as the true underlying model might well turn out to be
non-stationary, as is indeed the case here. In particular, Proposition 1 demonstrates that the
estimated sample autocovariance evaluated under the premise that the process is stationary
gives a misleading view as to the true dependence structure of the underlying process. More
precisely, it is clear that the true correlations of the process {X2

t,N}N
t=1 are zero. However

for all h > 0, it is straightforward to see from (5) that the autocovariance estimator γN
X2(h)

does not necessarily converge to zero as N → 0 and the correlations appear to persist for
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all values of h, thus giving the wrong impression that {X2
t,N}N

t=1 may be correlated, or even
have the long-memory property, when in fact they are independent.

We finally note that our model naturally captures the often observed clustering of volatil-
ity. Indeed, the piecewise-constant form of σ2(z) means that the local variance remains at
the same level for a number of time units, thus modelling the volatility clustering.

3 A Haar-Fisz estimation theory

In this section, we aim to estimate σ2(t/N) at time points t = 1, 2, . . . , N from a single
stretch of observations {Xt,N}N

t=1 from the non-stationary model (1). As we assume σ2(z) to
be piecewise constant, we base our estimator on Haar wavelets, which, being also piecewise
constant, are potentially good “building blocks” for this purpose. Our estimator uses the
principle of nonlinear wavelet shrinkage, thus being potentially well-suited for the estimation
of σ2(z) even if it is spatially inhomogeneous; in other words, if the regularity of σ2(z) varies
from one region to another. For an overview of wavelet methods in statistics, we refer the
reader to the monograph of Vidakovic (1999).

The starting point for these considerations is a reformulation of (1):

X2
t,N = σ2(t/N)Z2

t , t = 1, 2, . . . , N. (6)

Note that X2
t,N is an unbiased but inconsistent estimate of σ2(t/N), and thus needs to be

smoothed to achieve consistency. Obviously, (6) can be rewritten as:

X2
t,N = σ2(t/N) + σ2(t/N)(Z2

t − 1), t = 1, 2, . . . , N, (7)

so that the problem of estimating σ2(t/N) can be viewed as the problem of removing the
“noise” σ2(t/N)(Z2

t − 1) from {X2
t,N}N

t=1.

Neumann & von Sachs (1995) used a nonlinear wavelet estimation technique in a setting
similar to (7). However, their method involved finding an estimate of the local variance of
the “noise” (in our case: σ2(t/N)(Z2

t − 1)), which in our case would amount to finding a
pre-estimate of σ2(t/N) itself. This is an obvious drawback of the estimation procedure, and
can hamper the practical performance of the method (Fryzlewicz, 2005).

In order to avoid having to find a pre-estimate of σ2(t/N), an obvious step would be to
take the logarithmic transformation of (6):

logX2
t,N = log σ2(t/N) + logZ2

t , t = 1, 2, . . . , N. (8)

The logarithmic transformation transforms model (6) from multiplicative to additive, and
acts as a variance-stabilizer: note that the variance of the “noise” logZ2

t does not depend on
t. In the special case of {Zt}t being a sequence of independent and identically distributed
N(0, 1) random variables, this setting is similar to the representation of the log-periodogram
of a second-order stationary process considered by Wahba (1980). Several authors proposed
wavelet techniques for the estimation of the log-periodogram (for example Moulin, 1994;
Gao, 1997), and those techniques could be adapted to our framework. However, any wavelet
estimator in the setting specified by (8) would possess two undesirable properties:
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� Naturally enough, it would be an estimate of log σ2(t/N) (and not σ2(t/N) itself). Ex-
ponentiating this estimate would yield an estimate of σ2(t/N); however, the statistical
properties of the latter, such as mean-square consistency, would not be easy to estab-
lish (note that, generally, the existence of the second moment of a random variable Y
does not imply the existence of the second moment of exp(Y )).

� Any wavelet estimator in the model (8) would suffer from a bias of order E(logZ2
t ).

Since, as mentioned before, we do not assume any specific distributional form of the
innovation process {Zt}t, the magnitude of the bias correction factor would then be
unknown.

In contrast to those unwelcome features, the Haar-Fisz estimation technique which we
propose below enjoys the following properties: it uses a variance-stablizing step (which
eliminates the need for a local variance pre-estimation) and it yields an asymptotically
unbiased, mean-square consistent estimate of σ2(t/N), as opposed to log σ2(t/N) (which
removes the need for a bias correction factor). Moreover, as we demonstrate below, it is
conceptually simple, fast, easy to code, and performs well on several exchange rate datasets.

3.1 The Haar-Fisz estimation algorithm

The input to the algorithm is the vector {X2
t,N}N

t=1: here, we assume that N is an integer
power of two; techniques for adapting wavelet transforms to non-dyadic sample sizes are
described in Wickerhauser (1994). To simplify the notation, we drop the subscript N and
consider the sequence X2

t := X2
t,N . We denote J = log2N . The estimation algorithm

proceeds as follows:

1. Compute the Haar decomposition of {X2
t }N

t=1 using the following algorithm:

(a) Let sJ,k := X2
k , k = 1, 2, . . . , 2J .

(b) For each j = J − 1, J − 2, . . . , 0, recursively form vectors sj, dj and fj with
elements:

sj,k =
sj+1,2k−1 + sj+1,2k√

2

dj,k =
sj+1,2k−1 − sj+1,2k√

2

fj,k =
dj,k

sj,k

,

where k = 1, . . . , 2j.

2. For each j = J − 1, J − 2, . . . , 0 and k = 1, 2, . . . , 2j, denote µj,k := E(dj,k). For most
levels j (in a sense to be made precise later), estimate µj,k by

µ̂
(h)
j,k = sj,kfj,k I(|fj,k| > tj)

= dj,k I(|fj,k| > tj) (hard thresholding), (9)
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or by
µ̂

(s)
j,k = sj,k sgn(fj,k) (|fj,k| − tj)+ (soft thresholding), (10)

where I(·) and sgn(·) are the indicator and signum functions, respectively, and (x)+ =
max(0, x). In other words, we “kill” each dj,k if and only if the corresponding Haar-
Fisz coefficient fj,k does not exceed (in absolute value) a certain threshold tj (to be
specified later). Note that this is different to classical wavelet thresholding in that the
thresholded quantity dj,k and the “thresholding statistic” fj,k are different.

3. Invert the Haar decomposition in the usual way to obtain an estimate of σ2(t/N) at
time points t = 1, 2, . . . , N . Call the resulting estimate σ̂2

(h)(t/N) (for hard threshold-

ing) or σ̂2
(s)(t/N) (for soft thresholding). Explicit formulae for these two estimators are

given later in this section.

Asymptotic Gaussianity and variance stabilization for certain random variables of the
form (X − Y )/(X + Y ), where X, Y are nonnegative, independent random variables, were
studied by Fisz (1955): hence we label fj,k the “Haar-Fisz coefficients”. The main heuristic
idea here is that the variance of fj,k (for most j, k) does not depend on σ2(z). Consider the
following example: j = J − 1, k = 1. The Haar-Fisz coefficient fJ−1,1 has the form:

fJ−1,1 =
X2

1 −X2
2

X2
1 +X2

2

=
σ2(1/N)Z2

1 − σ2(2/N)Z2
2

σ2(1/N)Z2
1 + σ2(2/N)Z2

2

.

Suppose now that σ2(1/N) = σ2(2/N) (this is likely as σ2(z) is piecewise constant). We
then have fJ−1,1 = (Z2

1 − Z2
2 )/(Z2

1 + Z2
2 ), and the variance of fJ−1,1 does not depend on

σ2(z). Thus, the thresholds tj in (9) and (10) also do not need to depend on σ2(z), and can
therefore be selected more easily.

In the above example, if σ2(1/N) was not equal to σ2(2/N) (if a jump occurred between
times 1/N and 2/N), then the distribution of fJ−1,1 would depend on σ2(1/N) and σ2(2/N)
in a non-trivial way. In particular, we could expect fJ−1,1 to be significantly deviated from
zero, if the value of σ2(1/N) was much different from that of σ2(2/N). In that case, hopefully,
the corresponding coefficient dJ−1,1 would “survive” the process of thresholding.

Note that the Haar-Fisz transform for Poisson data, an algorithmic device for stabiliz-
ing the variance of Poisson data and bringing their distribution closer to normality, was
introduced by Fryzlewicz & Nason (2004).

We now give precise and explicit definitions of σ̂2
(h)(t/N) and σ̂2

(s)(t/N) in terms of Haar

wavelet vectors. For j = 0, . . . , J − 1 and k = 1, . . . , 2j, define the Haar wavelet vectors
{ψj,k(t)}2J

t=1 as

ψj,k(t) = 2(j−J)/2 I[t ∈ {(k − 1)2J−j + 1, . . . , (k − 1

2
)2J−j}]

− 2(j−J)/2 I[t ∈ {(k − 1

2
)2J−j + 1, . . . , k2J−j}].
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Fix δ ∈ (0, 1). For each N = 2J , define the set IN = {(j, k) : j < J∗}, with 2J∗

= O
(

N1−δ
)

.
The estimators σ̂2

(h)(t/N) and σ̂2
(s)(t/N) are defined as

σ̂2
(h)(t/N) = X̄2

N +
∑

(j,k)∈IN

µ̂
(h)
j,kψj,k(t) (11)

σ̂2
(s)(t/N) = X̄2

N +
∑

(j,k)∈IN

µ̂
(s)
j,kψj,k(t), (12)

where µ̂
(h)
j,k and µ̂

(s)
j,k are as in formulae (9) and (10), respectively, with

tj = 2−
J−j−1

2
√

(2 logN). (13)

Outside the set IN , we simply define µ̂
(h)
j,k = µ̂

(s)
j,k = 0. Denote

v := E(|Z2
t − 1|2), (14)

and consider the following assumption:

Assumption 2. The law of the random variable Z2
t has no atom at 0, and there exist

c > 0, γ ≥ 0 such that

E(|Z2
t − 1|n) ≤ cn−2(n!)1+γv, for all n ≥ 3. (15)

Remark 1. By elementary properties of the Gaussian and Laplace distributions (Johnson
& Kotz, 1970), Assumption 2 is satisfied, in particular, if Zt is standard Gaussian (with
v = 2, γ = 0) or standard Laplace (with v = 5, γ = 2). Assumption 2 can also accommodate
other distributions which are leptokurtic or possess a degree of skewness.

The following theorem demonstrates the mean-square consistency of σ̂2
(h)(z) and σ̂2

(s)(z).

Theorem 1 Suppose that {Xt,N}N
t=1 follows model (1), and that Assumptions 1 – 2 hold.

Let (e) be either one of: (h) and (s). Then we have

1

N

N
∑

t=1

E

{

σ̂2
(e)

(

t

N

)

− σ2

(

t

N

)}2

=
v

N2

N
∑

t=1

σ4

(

t

N

)

+
1

N

J−1
∑

j=0

2j
∑

k=1

E
(

µ̂
(e)
j,k − µj,k

)2

= O
(

N−min(1−δ, 2
v )

)

, (16)

where v is defined as in formula (14).

Remark 2. Note that, in the particular case of Zt being standard Gaussian (so that
v = 2), the mean-square error rate in (16) reduces to O(N−1+δ), which is arbitrarily close
to the parametric rate O(N−1). Intuitively, this is not surprising as our problem is “almost
parametric” in the sense that our target function is piecewise constant with a finite number
of jumps, but the exact number, locations or magnitudes of the jumps are not known. It is
clear from the proof of Theorem 1 that the exact parametric rate is impossible to obtain for
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our estimation procedure, due to the fact that we only use non-trivial estimators of µj,k in
the set IN , which is essential for a certain asymptotic normality effect to hold. This effect
holds for any choice of δ > 0, and thus, in theory, it is beneficial to choose δ to be “as
small as possible”. Employing the asymptotic normality as a tool, the rate is shown to be
O(N−1+δ) using the fact that the target function is piecewise constant.

3.2 Noise-free reconstruction

In this section, we consider the case when the errors Zt in (1) are standard Gaussian. We
construct an estimate of σ2(z) which possesses the following noise-free reconstruction prop-
erty: if the true function σ2(z) is a constant function of z, then, with high probability, our
estimate of σ2(z) is also constant and equal to the empirical mean of {X2

t,N}N
t=1.

The noise-free reconstruction property guarantees that estimates obtained using our
method have a visually appealing character and do not exhibit spurious “spikes”, even for
a non-constant σ2(z). This is achieved by requiring that, asymptotically, no pure “noise”
coefficients survive the thresholding procedure.

For the noise-free reconstruction property to hold, we require that the probability of any
fj,k exceeding t̃j should tend to 0 as N → ∞, or more precisely:

pr
{

∪J−1
j=0 ∪2j

k=1 (|fj,k| > t̃j)
}

→ 0, as N → ∞ (J = log2N), (17)

where fj,k is the Haar-Fisz coefficient of {Xt,N} and t̃j are appropriately chosen thresholds.
We note that the thresholds used in this case are different to those given in

�
3.1.

In order to derive the appropriate thresholds t̃j we use the following lemma.

Lemma 1 Let {Xi}2m
i=1 be a sequence of independent and identically distributed χ2

1 ran-
dom variables, and let X (1) =

∑m
i=1Xi and X (2) =

∑2m
i=m+1 Xi. Then, the ratio (X (1) −

X(2))/(X (1) + X(2)) is distributed as 2Y − 1, where Y follows a Beta distribution with pa-
rameters m/2 and m/2 (in other words, Y ∼ β(m/2, m/2)).

We now derive the thresholds t̃j. As the distribution of fj,k does not depend on k, we
can define αj(N) = pr(|fj,k| < t̃j). We have the following bound for (17) (note the use of
the Bonferroni inequality):

pr
{

∪J−1
j=0 ∪2j

k=1 (|fj,k| > t̃j)
}

≤
J−1
∑

j=0

2j{1 − αj(N)}. (18)

Our objective is to choose {αj(N)}J−1
j=0 such that

∑J−1
j=0 2j{1 − αj(N)} → 0, as N → ∞.

The choice of {αj(N)}J−1
j=0 will determine how fast

∑J−1
j=0 2j{1 − αj(N)} approaches zero

and thus the rate of convergence. Probably the simplest option is to mimick standard
universal thresholding in a classical independent and identically distributed Gaussian non-
parametric regression setting for wavelets, where the analogue of αj(N) is constant across
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Figure 1: Thresholds t̃j (solid line) and tj (dotted line) for J = 10 and j = 0, . . . , J − 1. See
discussion in

�
3.2.

scales (αj(N) = α(N)) and the rate of convergence to 0 of the probability corresponding to
(17) is equal to (πJ log 2)−1/2. To guarantee such a rate we choose α(N) such that:

pr
{

∪J−1
j=0 ∪2j

k=1 (|fj,k| > t̃j)
}

≤
J−1
∑

j=0

2j{1 − α(N)} =
1√

(πJ log 2)
,

which is uniquely solved by

α∗(N) = 1 − (2J − 1)−1(πJ log 2)−1/2. (19)

In the light of what was said above, α∗(N) guarantees the convergence of (17) to 0 at a rate
of at least (πJ log(2))−1/2.

By Lemma 1, fj,k has a 2 β(2J−j−2, 2J−j−2)−1 distribution, and t̃j’s are now easily found
numerically by solving α∗(N) = P (|fj,k| < t̃j). We note that noise free reconstruction is also
possible for random variables Zt which have distributions other than Gaussian, so long as
the exact distribution of (X (1) − X (2))/(X (1) + X(2)) is known, where X (1) =

∑m
i=1 Z

2
i and

X(2) =
∑2m

i=m+1 Z
2
i .

Fig. 1 compares the thresholds tj and t̃j for J = 10 and j = 0, . . . , J − 1. Note that
tj’s exceed 1 at the 4 finest scales, and therefore no coefficients at these scales survive the
thresholding (remember that |fj,k| is always bounded from above by 1).

In classical Gaussian wavelet regression, some authors argue that instead of modelling
the analogue of αj(N) as constant across scales, more accurate estimates are obtained by
allowing it to decrease from finer to coarser scales (Antoniadis & Fryzlewicz, 2006). For
simplicity, we consider a linear dependence of αj(N) on j:

αj(N) = αJ−1(N)
j

J − 1
+ α0(N)

J − 1 − j

J − 1
.
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The equation for (α0(N), αJ−1(N)) is:

cJ =

J−1
∑

j=0

2j

{

1 − αJ−1(N)
j

J − 1
− α0(N)

J − 1 − j

J − 1

}

,

where cJ ↓ 0 is the desired rate of convergence. This simplifies to

αJ−1(N){2J(J − 2) + 2} + α0(N)(2J − J − 1) = (2J − 1 − cJ)(J − 1).

One possibility is to set αJ−1(N) = α∗(N) and then solve for α0(N). As a special case, note
that setting αJ−1(N) = α∗(N) and cJ = (πJ log 2)−1/2 gives the solution α0(N) = α∗(N),
which implies that αj(N) = α∗(N) for all j; in this case, αj(N) does not depend on j.

4 Currency exchange rate examples

In this section, we exhibit the performance of various versions of our Haar-Fisz volatility
estimator on two currency exchange datasets: the logged and differenced daily exchange
rates between the US Dollar (USD) and the British Pound (GBP), as well as between the
USD and the Japanese Yen (JPY), both running from 01/01/1990 to 31/12/1999. The data
are available from the US Federal Reserve website

http://www.federalreserve.gov/releases/h10/Hist/default1999.htm

We have also tested our estimator on other exchange rate datasets available from the above
website but for lack of space we only provide graphical illustration of its performance on the
USD/GBP and USD/JPY series in this section. However, the discussion below applies to
all of the exchange rate time series available from the above website.

The length of both series is n = 2515, but as our estimators require the length of input
to be a power of two, we only consider the last N = 2048 observations in both series (so
that J = log2N = 11). Those are plotted in Fig. 2.

We now single out a few specific versions of our Haar-Fisz volatility estimator:

MS-H: Our Haar-Fisz algorithm with hard thresholding and thresholds tj (see formula (13))
which guarantee mean-square consistency. We take J ∗ = J − 1. See

�
3.1 for details.

NF-p-H(-TI): Our Haar-Fisz algorithm with hard thresholding and noise-free reconstruc-
tion thresholds t̃j chosen in such a way that αJ−1 = α∗ (see formula (19)) and
α0 = p

100
αJ−1, where p ≤ 100. See

�
3.2 for details. The suffix TI denotes the transla-

tion invariant version: in TI versions of wavelet-based denoising algorithms, the final
estimator is obtained as the average of the estimators obtained for all circular shifts
of the data. This is common practice in wavelet regression. The fast O(N logN) im-
plementation of TI wavelet thresholding algorithms uses the Non-Decimated Wavelet
Transform (NDWT) (Nason & Silverman, 1995).

12
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Figure 2: The last N = 2048 observations of the USD/GBP (left) and USD/JPY (right)
exchange rate series, running from 8 November 1991 to 31 December 1999.

NF-p-S(-TI): The same as above, but with soft thresholding.

We have tested several versions of our estimator by looking at the behaviour of empirical
residuals for each of the datasets. More specifically, let Xt,N = σ(t/N)Zt denote a series
of currency exchange log-returns, and let σ̂2(t/N) be any Haar-Fisz estimator of σ2(t/N).
We define the empirical residuals as Ẑt = Xt,N/σ̂(t/N). We are satisfied with the perfor-

mance of σ̂2(t/N) if the sequence Ẑt (a) looks “stationary”, and (b) displays only very little
autocorrelation in the squares, that is the p-value of the Ljung-Box test for lack of serial
correlation in Ẑ2

t is above a pre-specified threshold λ (in all of the examples in the paper,
we use λ = 0.05).

In an extensive empirical study which compared several parameter configurations for
several currency exchange datasets, we found that for p = 100, the corresponding estima-
tors NF-100-H, NF-100-S(-TI) often oversmoothed, in the sense that the empirical residuals
displayed significant dependence in the squares. The suitable value of p was then chosen as
follows: we decreased p over the grid 100, 99, 98, . . . until the Ljung-Box test indicated no
significant correlation in the squared empirical residuals. We found that either of the two
estimators: NF-98-S or NF-97-S, as well as their TI versions, performed well for most of
the datasets considered. On the other hand, the estimators NF-p-H for p < 100 were often
extremely “spiky”. Typically, NF-100-H-TI produced correctly behaved empirical residuals,
although the reconstructions were also often spiky. The price for using any translation-
invariant estimator was that, naturally enough, we lost the piecewise constant nature of the
reconstructions and increased the computational effort from O(N) to O(N logN).

Further, we found that the MS-H estimator typically gave slightly oversmoothed recon-
structions. This was due to the fact that, as mentioned in

�
3.2, the thresholds tj were

larger than 1 at the 4 finest scales which meant that no detail coefficients dj,k at those scales

13



survived the thresholding.

To summarise, NF-p-S, NF-p-S-TI and NF-p-H-TI were the preferred estimators. For
the USD/GBP series, the corresponding values of p for those estimators, selected by the
automatic procedure desribed above, were: p = 97, p = 97 and p = 100, respectively. The
respective p-values of the Ljung-Box test were 0.09, 0.06 and 0.82. For the USD/JPY series,
the selected values of p for the above three estimators were: p = 97, p = 98 and p = 100,
respectively. The respective p-values of the Ljung-Box test were 0.19, 0.18 and 0.94.

The left column of Fig. 3 shows the results for the USD/GBP series. The top plot shows
the NF-97-S-TI estimate and the middle plot shows the NF-100-H-TI estimate. The NF-97-S
estimate is a piecewise constant function whose breakpoints can be loosely interpreted as
“significant changes” in the volatility. The bottom plot shows the squared returns and the
locations of the breakpoints of NF-97-S. For clarity, we only plot the first 250 observations,
which roughly corresponds to one business year starting 8 November 1991. The right plot
shows the corresponding results for the USD/JPY series except that the top plot shows NF-
98-S-TI and the bottom plot shows the last 250 observations (which roughly corresponds
to one business years starting 1 January 1999). Note that TI estimates are not useful for
breakpoint detection as they are continuous.

Although the soft-thresholding TI estimates were smoother and thus more visually ap-
pealing than the hard-thresholding TI estimates, it was far from obvious that they should
be preferred, as the p-values for the latter ones were much higher. This might imply that
some of the spikes observed in the hard-thresholding estimates were not merely artefacts
from hard thresholding but served to explain significant transient features of the volatility
function. On the other hand, the low p-values produced by the soft-thresholding estimates
might be due to the occasional bias introduced by soft thresholding, which is a well-known
phenomenon in the classical Gaussian regression context.

5 Forecasting currency exchange rate volatility

In this section, we describe the outcome of an empirical study designed to assess the forecast-
ing ability of our model and compare it to that of the benchmark stationary GARCH(1,1)
process with Gaussian innovations, as well as a simple “moving window” procedure. Suppose
that we observe X2

1,N , X
2
2,N , . . . , X

2
t,N from model (1) and want to forecast the volatility at

times t+ 1, . . . , t+ h, where t + h ≤ N . The Mean-Square-optimal forecasts are given by:

σ2,HF

t|t+h,N := E(X2
t+h,N |X2

1,N , . . . , X
2
t,N) = σ2

(

t + h

N

)

.

Obviously, the true value of σ2( t+h
N

) is unknown at time t and “the best” that we can do is

to extrapolate it as σ2,HF

t|t+h,N = σ̂2(t/N), where σ̂2(t/N) is any of our Haar-Fisz estimates of

σ2(t/N). Note that contrary to the GARCH case (Bera & Higgins, 1993) our forecasts do
not depend on the forecasting horizon. In the examples below, we use the following versions
of our estimator to compute σ̂2(t/N) for the above forecasts: NF-98-S and NF-100-S. Both
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Figure 3: Empirical results for the USD/GBP (left column) and the USD/JPY (right col-
umn) series. Left column, top: NF-97-S-TI estimate; middle: NF-100-H-TI estimate; bot-
tom: 1st 250 observations of the squared series (dotted) and the corresponding breakpoints
of the NF-97-S estimate (dashed). Right column, top: NF-98-S-TI estimate; middle: NF-
100-H-TI estimate; bottom: last 250 observations of the squared series (dotted) and the
corresponding breakpoints of NF-97-S (dashed).
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estimates are computed on X2
t−1023,N , . . . , X

2
t,N . Then, for all h, the forecast σ2,HF

t|t+h,N is simply

obtained as the value of our estimate at the “last” time point t/N .

For GARCH-based forecasts, we forecast the volatility at time t + 1, . . . , t + h from
X2

1 , . . . , X
2
t using the following methods:

G-SCROLL: We fit the stationary GARCH(1,1) model with standard Gaussian innovations
to Xt−1023, . . . , Xt using the S-Plus routine garch, and then forecast the volatility using
the S-Plus routine predict.

G-NSCROLL: Like G-SCROLL, but the model is fitted to X1, . . . , Xt.

For the simple moving window procedure, labelled MW, the predicted volatility at times
t+ 1, . . . , t+ h is the empirical mean of the vector (X2

t−h+1, . . . , X
2
t ). Here, we use the “rule

of thumb” advocated by Hull (1997, p. 233) whereby the time period over which volatility
is estimated should be set equal to the time period h over which it is to be applied.

Let σ2
t|t+h denote a generic volatility forecast, computed using any of the above procedures.

For each of the currency exchange datasets tested (details are given below), we compute the
following error measure: for each t = 1024, . . . , N − 250 (where N is the length of each
dataset; this oscillates around 2500 but varies from one dataset to another), we compute
the quantity σ̄2

t|t+250 =
∑250

h=1 σ
2
t|t+h, and compare it to the “realised” volatility X̄2

t|t+250 =
∑250

h=1X
2
t+h, using the Average Squared Error

ASE250,1024,N =
1

N − 1273

N−250
∑

t=1024

(

σ̄2
t|t+250 − X̄2

t|t+250

)2
.

In other words, we forecast the volatility one business year (= 250 days) ahead: this is done
to compare the long-term forecasting ability of the competitors.

Our datasets are logged and differenced currency exchange rates between the USD and
a variety of other currencies, available from the web address given in

�
4. The other curren-

cies are: AUD (Australia Dollar), CAD (Canada Dollar), CHF (Switzerland Franc), DKK
(Denmark Kroner), GBP (United Kingdom Pound), HKD (Hong Kong Dollar), JPY (Japan
Yen), KRW (South Korea Won), NOK (Norway Kroner), NZD (New Zealand Dollar), SEK
(Sweden Kronor), SGD (Singapore Dollar), THB (Thailand Baht), TWD (Taiwan New Dol-
lar) and ZAR (South Africa Rand). Table 1 lists the (scaled by the number in the rightmost
column, and rounded) ASE’s attained by the competing methods for each currency. The
best results, and those within 10% of the best ones, are boxed.

The stationary GARCH(1,1) model failed to fit at several points of the USD/HKD,
USD/KRW, USD/THB, USD/TWD and USD/ZAR exchange rate series (this is marked by
the “bullets” in the table), producing forecasts which were extremely inaccurate. This was
due to the fact that the numerical maximiser of the likelihood in the S-Plus routine garch

failed to converge. Our NF-100-S method and the simple MW technique performed the best,
or nearly the best, for 7 out of 15 datasets, and are clearly the two preferred options here.
Either of our two methods performed the best, or nearly the best, for 10 out of 15 datasets.
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Currency G-NSCROLL G-SCROLL MW NF-98-S NF-100-S scaling

AUD 3122 3673 2944 2776 3095 108

CAD 1610 2280 2047 1955 1770 109

CHF 2844 2819 5168 4574 3541 108

DKK 2183 1658 2530 1697 1746 108

GBP 23139 15192 7796 6957 8645 109

HKD • • 3038 4740 3841 1013

JPY 1060 1006 1213 1130 1056 108

KRW 2826 • 1333 1938 1657 105

NOK 3634 2812 2173 2885 1846 108

NZD 14502 10414 9293 8847 10849 108

SEK 4451 3812 741 1309 1706 108

SGD 4709 142174 6414 5686 5122 108

THB • • 3806 4127 3580 106

TWD • • 4419 4773 3953 108

ZAR • • 2017 3321 2600 107

Table 1: ASE for long-term forecasts using the methods described in
�
5.

In practice, our recommendation is to use our forecasting technique based on our Haar-
Fisz estimation method with soft thresholding and noise-free reconstruction thresholds where
αJ−1 = α∗, and α0 is chosen from a pre-set grid {α0,l}L

l=1 by comparing the performance of
the method on the observed part of the series and choosing the value of α0,l which performs
the best. We have found that {α0,l}5

l=1 = {95+l
100

αJ−1}5
l=1 is a good practical choice for the

grid.

In our empirical study, we have also found that forecasts based on our Haar-Fisz estima-
tion technique with hard thresholding tend to be less accurate and therefore their use is not
recommended.

Short-term volatility forecasting. It is well known that the GARCH framework (even in
the simplest case of the stationary Gaussian GARCH(1,1) model) provides excellent short-
term volatility forecasts. In a brief simulation study, we have compared the performance of
our NF-98-S and NF-100-S algorithms to that of the G-NSCROLL technique in forecasting
one-day-ahead volatility of the above datasets (except USD/HKD, USD/KRW, USD/THB,
USD/TWD and USD/ZAR, for which GARCH(1,1) does not give a good fit as explained
above). We have found that the ratio of the ASE for the worse of our two algorithms
and the ASE of G-NSCROLL ranged between 0.99 and 1.09 for all of the datasets, which
demonstrates good performance of our technique also in the case of short-term forecasts.

Appendix 1
Explanation of the stylised facts

Proof of Proposition 1. We first show (5). Denote Kσ = maxz σ
2(z), and let TV(σ2) be
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the total variation of σ2(z). We have

E

{

1

N

N−hN
∑

t=1

X2
t,NX

2
t+hN ,N −

∫ (1−β)

0

σ2(z)σ2(z + β)dz

}2

≤

2E

{

1

N

N−hN
∑

t=1

σ2

(

t

N

)

σ2

(

t + hN

N

)

(

Z2
t Z

2
t+hN

− 1
)

}2

+

2

{

1

N

N−hN
∑

t=1

σ2

(

t

N

)

σ2

(

t + hN

N

)

−
∫ (1−β)

0

σ2(z)σ2(z + β)dz

}2

=: I + II.

Elementary approximation theory implies that II = O(TV (σ2)/N + |hN/N − β|). Denoting
S = {t− hN , t, t+ hN}∩ {1, . . . , N − hN} and using the independence of the sequence {Zt}t

and that E(Z2
t ) = 1, we have

I =
2

N2

N−hN
∑

t=1

∑

s∈S

σ2

(

t

N

)

σ2

(

t + hN

N

)

σ2
( s

N

)

σ2

(

s+ hN

N

)

E
{

(Z2
t Z

2
t+hN

− 1)(Z2
sZ

2
s+hN

− 1)
}

≤ CK4
σ

N
,

where C is a finite constant. We now turn to
(

X̄2
N

)2
. It is easily seen that

E

[

(

X̄2
N

)2 −
{∫ 1

0

σ2(z)dz

}2
]2

≤

2E





(

X̄2
N

)2 −
{

1

N

N
∑

t=1

σ2

(

t

N

)

}2




2

+ 2





{

1

N

N
∑

t=1

σ2

(

t

N

)

}2

−
{

∫ 1

0

σ2(z)dz

}2




2

=: III + IIII.

Again, elementary approximation theory implies that IIII = O(N−2). Also, by Cauchy
inequality, we have

III = 2E





{

X̄2
N − 1

N

N
∑

t=1

σ2

(

t

N

)

}2 {

X̄2
N +

1

N

N
∑

t=1

σ2

(

t

N

)

}2
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E

{

1

N

N
∑

t=1

σ2

(

t

N

)

(

Z2
t − 1

)

}4




1/2 

E

{

1

N

N
∑

t=1

σ2

(

t

N

)

(

Z2
t + 1

)

}4




1/2

=: 2 III
1/2
1 · III1/2

2 .

Note that III2 = O(1). We now compute

III1 =
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1

N4
E





{

N
∑

t=1

σ4

(

t

N

)

(Z2
t − 1)2

}2

+ 4
N

∑

t=1

∑

s6=t

σ4

(

t

N

)

σ4
( s

N

)

(Z2
t − 1)2(Z2

s − 1)2





= O(N−2).

Hence (5) follows.

We now show (2), (3) and (4). Since the proofs of (2) and (4) use exactly the same
technique, we omit the details. For (3), note that, using the same technique as above, it is
easy to show that

X̄4
N → E(Z4

t )

∫ 1

0

σ4(z)dz and
(

X̄2
N

)2 →
{

∫ 1

0

σ2(z)dz

}2

,

in mean-square as N → ∞, which also imply convergence in probability. Thus, Slutsky’s
theorem yields (3). This completes the proof of Proposition 1. �

Appendix 2
Properties of the Haar-Fisz estimator

Proof of Theorem 1 (for (e) = (h)). The first of the two equalities in (16) is due to
the orthonormality of the discrete Haar transform. Note that the term vN−2

∑N
t=1 σ

4(t/N)
arises because of the inclusion of the term X̄2

N in the estimator (11). We now show the
second equality. For notational clarity, denote d1,j,k = sj+1,2k−1/

√
2 and d2,j,k = sj+1,2k/

√
2,

so that dj,k = d1,j,k − d2,j,k and sj,k = d1,j,k + d2,j,k. Denote further µi,j,k = E(di,j,k) and
w2

i,j,k = var(di,j,k) for i = 1, 2. Finally, denote w2
j,k = var(dj,k).

For the reader’s convenience, we now give explicit formulae for d1,j,k and d2,j,k:

d1,j,k = 2
j−J

2

2J−j(k−1/2)
∑

i=2J−j (k−1)+1

X2
i ,

d2,j,k = 2
j−J

2

2J−jk
∑

i=2J−j (k−1/2)+1

X2
i .

We now compute the risk of µ̂
(h)
j,k for (j, k) ∈ IN .

1. Case σ2(i/N) := constant := σ2, for i = 2J−j(k − 1) + 1, . . . , 2J−jk (so that µ1,j,k =
µ2,j,k). Without loss of generality, consider k = 1 to shorten the notation.

E
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(d1,j,1 − d2,j,1)I
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Note that by symmetry arguments, for any i 6= l, we have

E
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2
l − Z2

l+2J−j−1)I
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which simplifies (20) to
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, (21)

where Cr = [E{(Z2
1 − Z2

1+2J−j−1)
2r}]1/r, and the last but one step above uses Hölder’s in-

equality with r > 1 but otherwise arbitrary. Simple algebra gives

pr
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(Z2
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>
tj2

J−j
2

√{v(1 + t2j)}



 .

(22)

Since the condition of Theorem 1 from Rudzkis et al. (1978) holds due to our Assumption
2, we are able to apply the Corollary to Theorem 1 from Rudzkis et al. (1978). Recalling

that tj = 2
−J+j+1

2
√

(2 logN), that tj → 0 on IN , and that 2j < 2J∗

= O(N1−δ), it is easy to
see that

tj2
J−j

2

√{v(1 + t2j)}
= o











2
J−j

2

√{v(1+t2j )}
1+tj

2 max{c,√v}







ν

 , as N → ∞,

for any positive ν. Therefore, by the Corollary to Theorem 1 from Rudzkis et al. (1978), we
bound (22) from above by

2C pr

{

N(0, 1) >
tj2

J−j
2

√{v(1 + t2j)}

}

. (23)
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Recalling again that tj = 2
−J+j+1

2
√

(2 logN) and denoting by Φ(·) the cumulative distribution
function of a N(0, 1) random variable, we now bound (23) from above using Mill’s ratio
inequality (Shorack & Wellner, 1986, p. 850):

2C

[

1 − Φ

{

2
√

(logN)√{v(1 + t2j)}

}]

≤ C exp

{

− 4 logN

2v(1 + t2j)

}

= C N
− 2

v(1+t2
j
) . (24)

Plugging (24) into (21), we obtain

σ4

2
Cr pr

( |d1,j,1 − d2,j,1|
d1,j,1 + d2,j,1

> tj

)1−1/r

≤ σ4C̃rN
− 2(1−1/r)

v(1+t2
j
) , (25)

for some appropriate positive C̃r. Noting that tj ≤ tJ∗ = O(N−δ/2
√

(logN)) uniformly on IN ,

it is easy to show by direct comparison that N−2(1−1/r)/(v+vt2j ) = O(N−2(1−1/r)/v) as N → ∞.

Upon choosing r = 2(vδ)−1, we obtain the final bound for (25) as C̃δ supz σ
4(z)N− 2

v
+δ.

2. Case σ2(i/N) 6= constant, for i = 2J−j(k − 1) + 1, . . . , 2J−jk (so that possibly µ1,j,k 6=
µ2,j,k).

E

{

(d1,j,k − d2,j,k)I

( |d1,j,k − d2,j,k|
d1,j,k + d2,j,k

> tj

)

− (µ1,j,k − µ2,j,k)

}2

≤

2E

{

(d1,j,k − d2,j,k − (µ1,j,k − µ2,j,k))I

( |d1,j,k − d2,j,k|
d1,j,k + d2,j,k

> tj

)}2

+

2 (µ1,j,k − µ2,j,k)
2pr

( |d1,j,k − d2,j,k|
d1,j,k + d2,j,k

< tj

)

≤

2w2
j,k + 2(µ1,j,k − µ2,j,k)

2pr

( |d1,j,k − d2,j,k|
d1,j,k + d2,j,k

< tj

)

. (26)

If µ1,j,k = µ2,j,k then the second summand disappears. Assume, without loss of generality,
that µ1,j,k > µ2,j,k. Noting that w2

i,j,k ≤ v supz σ
4(z)/2, we bound (26) from above by

2v sup
z
σ4(z) + 2(µ1,j,k − µ2,j,k)

2pr

(

d1,j,k − d2,j,k

d1,j,k + d2,j,k
< tj

)

=

2v sup
z
σ4(z) + 2(µ1,j,k − µ2,j,k)

2pr{(d1,j,k − µ1,j,k)(tj − 1) + (d2,j,k − µ2,j,k)(tj + 1) +

+ 2µ1,j,ktj > (1 + tj)(µ1,j,k − µ2,j,k)} ≤ [Markov’s inequality]

2v sup
z
σ4(z) +

2

(1 + tj)2

{

(1 − tj)
2w2

1,j,k + (1 + t2j)w
2
2,j,k + 4µ2

1,j,kt
2
j

}

≤

4v sup
z
σ4(z) + 8 sup

z
σ4(z) logN = 4 sup

z
σ4(z) (v + 2 logN) .

We now move on to the last step of the proof: evaluation of the full L2 risk. Define the set

NN = {(j, k) : σ2(i/N) := constant, for i = 2J−j(k − 1) + 1, . . . , 2J−jk}
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(see Case 1 above). Denote by M the number of jumps in σ2(z). At each scale j, at most
M indices (j, k) are in N

c
N . We have

1

N

J−1
∑

j=0

2j
∑

k=1

E
(

µj,k − µ̂
(h)
j,k

)2

=

1

N

∑

(j,k)∈IN∩NN

E
(

µj,k − µ̂
(h)
j,k

)2

+
1

N

∑

(j,k)∈IN∩Nc
N

E
(

µj,k − µ̂
(h)
j,k

)2

+
1

N

∑

(j,k)∈Ic
N

µ2
j,k ≤

1

N

∑

(j,k)∈IN∩NN

C̃δ sup
z
σ4(z)N− 2

v
+δ +

MJ∗

N
4 sup

z
σ4(z) (v + 2 logN) +

+
M

N

J−1
∑

j=J∗

2J−j

4

{

sup
z
σ2(z) − inf

z
σ2(z)

}2

≤

N−12J∗

C̃δ sup
z
σ4(z)N− 2

v
+δ +

MJ∗

N
4 sup

z
σ4(z) (v + 2 logN) +

+
M

2

{

sup
z
σ2(z) − inf

z
σ2(z)

}2
2J−J∗ − 1

N
=

O
(

N− 2
v

)

+O
(

N−1 log2N
)

+O
(

N−(1−δ)
)

= O
(

N−min(1−δ, 2
v )

)

, as N → ∞.

This completes the proof of Theorem 1 for (e) = (h). �

Proof of Theorem 1 (for (e) = (s).) The first of the two equalities in (16) is due to the
orthonormality of the discrete Haar transform. Note that the term vN−2

∑N
t=1 σ

4(t/N) arises
because of the inclusion of the term X̄2

N in the estimator (12). We now show the second
equality. Throughout the proof, we use the notation from the proof of Theorem 1 for (e) =
(h). As in the latter, we first assume that (j, k) ∈ IN and consider two cases:

1. Case σ2(i/N) := constant := σ2, for i = 2J−j(k − 1) + 1, . . . , 2J−jk (so that µj,k = 0).
Without loss of generality, consider k = 1 to shorten the notation.

Noting that
(

µ̂
(s)
j,k

)2

≤
(

µ̂
(h)
j,k

)2

, we have

E
(

µ̂
(s)
j,k − µj,k

)2

= E
(

µ̂
(s)
j,k

)2

≤ E
(

µ̂
(h)
j,k

)2

≤ C̃δ sup
z
σ4(z)N− 2

v
+δ,

where the last step uses the bound obtained in the proof of Theorem 1 for (e) = (h).

2. Case σ2(i/N) 6= constant, for i = 2J−j(k−1)+1, . . . , 2J−jk (so that possibly µj,k 6= 0).

Using the bound from the proof of Theorem 1 for (e) = (h), we obtain

E
(

µ̂
(s)
j,k − µj,k

)2

= E
(

µ̂
(s)
j,k − µ̂

(h)
j,k + µ̂

(h)
j,k − µj,k

)2

≤

2E
(

µ̂
(s)
j,k − µ̂

(h)
j,k

)2

+ 2E
(

µ̂
(h)
j,k − µj,k

)2

≤ 2E
(

µ̂
(s)
j,k − µ̂

(h)
j,k

)2

+ 8 sup
z
σ4(z)(v + logN).

We now bound 2E
(

µ̂
(s)
j,k − µ̂

(h)
j,k

)2

. Using the representation µ̂
(h)
j,k = sj,kfj,kI(|fj,k| > tj), it is

easy to see by direct comparison that |µ̂(s)
j,k− µ̂

(h)
j,k | ≤ sj,ktj, which, using the explicit definition
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of sj,k, the formula for tj, and the bounds for w2
i,j,k and µ2

i,j,k, leads to

2E
(

µ̂
(s)
j,k − µ̂

(h)
j,k

)2

≤ 2 t2jE (sj,k)
2 = 2 t2j

{

w2
1,j,k + w2

2,j,k + (µ1,j,k + µ2,j,k)
2}

≤ 8 logN sup
z
σ4(z)

(

v2j−J + 1
)

≤ 8 logN sup
z
σ4(z) (v + 1) .

This yields E(µ̂
(s)
j,k − µj,k)

2 ≤ 8 supz σ
4(z) {(v + 2) logN + v}. The remaining part of the

proof is completely analogous to the last part of the proof of Theorem 1 for (e) = (h),
leading to the same rate. We omit the details. This completes the proof of Theorem 1 for
(e) = (s). �

Proof of Lemma 1. Denote U = (X (1) −X (2))/(X (1) +X(2)). We have

FU(t) = pr(U < t) = pr

(

X(1)

X(2)
<

1 + t

1 − t

)

= pr

(

Z <
1 + t

1 − t

)

= FZ

(

1 + t

1 − t

)

,

where Z ∼ F (m,m). Therefore, after some simple algebra,

fU(t) = fZ

(

1 + t

1 − t

)

2

(1 − t)2
= 21−m Γ(m)

Γ(1
2
m)Γ(1

2
m)

(1 + t)m/2−1(1 − t)m/2−1,

which is the desired density. This completes the proof of Lemma 1. �
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