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1 The different parts in the removal process of the solution path algorithm

The four different parts of the removal process applied in order to create the solution
path explained in Section 3.3 of the paper are very similar and are based on the idea
of removing change-points according to their contrast function values as well as their
distance to neighbouring estimates. We mention that if the algorithm proceeds from
Part 1 to Part 2 as below, then it is guaranteed that it will also proceed up to Part 4.
All events below occur with probability tending to one with T .

Part 1: With C∗ being a positive constant, the aim is to prune the estimates in S̃,
such that, for each true change-point, there are at most four and at least one estimated
change-point within a distance of C∗(log T )α. To achieve this, ∀j ∈ {1, 2, . . . , J}
and with r̃0 = 1, r̃J+1 = T , we collect triplets (r̃j−1, r̃j , r̃j+1) and we calculate
CS(r̃j) := C

r̃j
r̃j−1,r̃j+1

(X), with Cbs,e(X) being the relevant contrast function. For

m = argminj {CS(r̃j)}, firstly we check whether CS(r̃m) ≤ ˜̃C
√
log T , for ˜̃C > 0;

in the proofs of Theorems 3 and 4, ˜̃C = 2
√
2, but smaller values could be sufficient.

If CS(r̃m) ≤ ˜̃C
√
log T and also r̃j+1 − r̃j−1 ≤ 2C∗(log T )α, we remove r̃m from

S̃, reduce J by 1, relabel the remaining estimates (in increasing order) in S̃, and re-
peat this estimate removal process. We proceed to Part 2 when CS(r̃m) > ˜̃C

√
log T .

If this is not satisfied at any point of this part, then we conclude that there are no
change-points in the data sequence and we stop.

Part 2: The aim is to continue the pruning process of Part 1, in a way that at the
end of Part 2 there is at least one estimate within a distance of C∗(log T )α from
each true change-point, but also there are at most two estimates between any pair
of consecutive true change-points. For the relabelled estimates in S̃ after the com-
pletion of Part 1, if r̃j − r̃j−1 ≤ C∗(log T )α, then we remove r̃j , relabel the re-
maining estimates, and keep removing the estimates until there is no pair (r̃j−1, r̃j),
such that r̃j − r̃j−1 ≤ C∗(log T )α. We then calculate CS(r̃j) as in Part 1 and for

m = argminj {CS(r̃j)}, if CS(r̃m) ≤ ˜̃C
√
log T , then we remove r̃m and relabel

the remaining elements of S̃. This removal process is repeated and we proceed to Part
3 only when CS(r̃m) > ˜̃C

√
log T .
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Part 3: We need to ensure that once S̃ containsN estimates, then for j = 1, 2, . . . , N ,
each r̃j is within a distance of C∗ (log T )α from rj . To achieve this, for the re-
maining estimated change-points after Part 2, we use triplets (s̃j , r̃j , ẽj), with s̃j =

b(r̃j−1 + r̃j)/2c + 1 and ẽj = d(r̃j + r̃j+1)/2e. For m = argminjC
r̃j
s̃j ,ẽj

(X), if

C r̃ms̃m,ẽm(X) ≤ ˜̃C
√
log T , then we remove r̃m and relabel the remaining estimates

in S̃ in increasing order. We repeat this removal procedure until C r̃ms̃m,ẽm(X) >
˜̃C
√
log T , which is when we proceed to Part 4.

Part 4: For the estimated change-points that are in S̃ after Part 3 is completed, we
use again the triplets (r̃j−1, r̃j , r̃j+1) in order to find m = argminj {CS(r̃j)} and
then remove r̃m from S̃. This estimates removal approach is repeated until S̃ = ∅.

2 Models used in the simulation study of the paper

The characteristics of the test signals ft as well as the standard deviations σ of the
noise εt, which were used in the simulation study are given in the list below.

(M1) blocks: length 2048 with change-points at 205, 267, 308, 472, 512, 820, 902,
1332, 1557, 1598, 1659 with values between change-points 0, 14.64,−3.66, 7.32,
−7.32, 10.98, −4.39, 3.29, 19.03, 7.68, 15.37, 0. The standard deviation is σ =
10.

(M2) teeth: length 140 with change-points at 11, 21, 31, 41, 51, 61, 71, 81, 91, 101,
111, 121, 131 with values between change-points 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1. The standard deviation of the noise is σ = 0.4.

(M3) stairs: length 150 with change-points at 11, 21, 31, 41, 51, 61, 71, 81, 91, 101,
111, 121, 131, 141 with values between change-points 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15. The standard deviation of the noise is σ = 0.3.

(M4) middle-points: length 2000 with change-points at 1000 and 1020 with values be-
tween change-points 0, 1.5, 0. The standard deviation of the noise is σ = 1.

(M5) long teeth: length 20000 with 1999 change-points at 10, 20, . . . , 19990 with val-
ues between change-points 0, 3, 0, 3, . . . , 0, 3. The standard deviation is σ = 0.8.

(NC) constant signal: length 3000 with no change-points. The standard deviation is
σ = 1.

(W1) wave 1: piecewise-linear signal without jumps in the intercept, T = 1408, with
7 change-points at 256, 512, 768, 1024, 1152, 1280, 1344 with the corresponding
changes in slopes −1/64, 2/64,−3/64, 4/64,−5/64, 6/64,−7/64, starting in-
tercept f1 = 1 and slope f2 − f1 = 1/256. The standard deviation of the noise is
σ = 1.

(W2) wave 2: piecewise-linear signal without jumps in the intercept, T = 1500, with
99 change-points at 15, 30, . . . , 1485. The corresponding changes in the slope are
−1, 1,−1, . . . ,−1, while the starting intercept is f1 = −1/2 and the starting
slope is f2 − f1 = 1/40. The standard deviation is σ = 1.

(W3) smoother signal 1: piecewise-linear signal without jumps in the intercept, T =
200, with 9 change-points at 20, 40, . . . , 180 with the corresponding changes in
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slopes 1/6, 1/2,−3/4,−1/3,−2/3, 1, 1/4, 3/4,−5/4. The starting intercept is
f1 = 1 and slope f2 − f1 = 1/32. The standard deviation of the noise is σ = 0.3.

(W4) smoother signal 2: piecewise-linear signal without jumps in the intercept, T =
1000, with 19 change-points at 50, 100, . . . , 950 with the corresponding changes
in slopes −1/16,−5/16,−5/8, 1, 5/16, 15/32,−5/8,−7/32,−3/4, 13/16,
5/16, 19/32,−1,−5/8, 23/32, 1/2, 15/16,−25/16,−5/4, starting intercept f1 =
1 and slope 1/32. The standard deviation of the noise is σ = 0.6.

3 Improvement of ID in the case of big data

In this section, we show through simulations that applying ID on a fixed window
grid improves its speed in large data sets, without affecting its accuracy. We compare
the classic ID method as explained in Section 3.1 of the main paper with the new
window-grid-based version (WID) of Section 4.3 in the case of three data sequences
of length 105, each with standard Gaussian noise. We work under the scenario of
piecewise-constant mean. The three signals are

(D1) No change-points;
(D2) three change-points at 25000, 55000, 85000 and the values between change-

points are 0,3,-3,2;
(D3) seven change-points at 16000, 22000, 28000, 46000, 62000, 74000, 86000 and

the values between change-points are 0,4,-4,4,-4,4,-4,4.

We took the expansion parameter λT to be equal to 10 and the results are shown in
Table 1. As a measure of the accuracy of the detected locations, we provide Monte-

Carlo estimates of the mean squared error, MSE = T−1
∑T
t=1 E

(
f̂t − ft

)2
. The

scaled Hausdorff distance,

dH = n−1s max

{
max
j

min
k
|rj − r̂k| ,max

k
min
j
|rj − r̂k|

}
,

where ns is the length of the largest segment, is also given for (D2) and (D3); for
(D1), dH is not informative. In terms of accuracy, both methods exhibit excellent be-
haviour. However, in terms of speed, the advantage of the windows-based approach
is obvious. Note the decrease in the computational time of ID when the number of
change-points gets larger. This is expected because the worst case in terms of com-
putational complexity is when there are no change-points because ID will then be
forced to calculate the contrast function on quite large intervals, even on [1, T ], which
is computationally more expensive.
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Table 1 A comparison on the performance of WID and ID over 10 simulated time series of three different
models of length 105 each. The distribution of N̂ − N , as well as the average MSE, Hausdorff distance
and computational time for each method are provided

Method Model N̂ −N = 0 MSE dH Time (s)
WID 10 1.65× 10−5 - 2.39
ID (D1) 10 1.65× 10−5 - 79.40
WID 10 8.8× 10−5 3.8× 10−5 2.28
ID (D2) 10 11× 10−5 1.6× 10−5 13.06
WID 10 8.9× 10−5 0 2.17
ID (D3) 10 8.9× 10−5 0 6.34

4 A justification of the estimations in the example of Section 6.2

Here, we provide a possible explanation of the three most important (based on the
solution path) detected change-points by ID in the real data related to the COVID-19
outbreak in the UK. We focus on the signal obtained with respect to the daily number
of deaths (ID and ID.SDLL give exactly the same outcome), but similar conclusions
can be extracted for the daily number of cases. The three most important changes in
the behaviour of the data sequence have been detected on the 8th of April, the 12th

of July and the 19th of January. Some justification of these results is as follows:

– The change-point on the 8th of April, shows that the upward trend vanishes and a
negative slope takes its place leading to a vast decrease in the number of reported
deaths. There is an obvious connection of this change-point with the British Gov-
ernments important decision in late March to impose a general lockdown. On 9
April, the Secretary of State for Foreign Affairs stated that the UK was starting to
see the impact of the restrictions; our second detection is in full agreement with
the aforementioned date and statement.

– With respect to the change-point on the 12th of July, it indicates a stabilisation,
at a low level, for the number of deaths. This is, of course, expected because the
downward trend could not continue indefinitely.

– The last change-point on the 19th of January indicates that an upward trend on the
daily number of deaths, which was apparent for a period of almost 3.5 months,
vanishes and its place takes a significantly negative slope. There is an obvious
connection of this change-point with the vaccination programme in the country.
More specifically, on 8 January 2021, MRNA-1273 (commonly known as the
Moderna vaccine) was the third COVID-19 vaccine approved for use in the UK.

5 Additional simulation results

Here we present the results of simulations for various signals other than those pre-
sented in Section 5 of the main article. Tables 3-7 summarize the results for the fol-
lowing models.



5

(LS) long stairs: length 10000 with 499 change-points at 20, 40, . . . , 9980 with values
between change-points 0, 2, 4, 6, . . . , 996, 998. The standard deviation is σ = 1.

(LT2) long teeth 2: length 10000 with 249 change-points at 40, 80, . . . , 9960 with values
between change-points 0, 1.5, 0, 1.5, . . . , 0, 1.5. The standard deviation is σ = 1.

(ELT) extremely long teeth: length 100000 with 19999 change-points at 5, 10, . . . , 99995
with values between change-points 0, 2, 0, 2, . . . , 0, 2. The standard deviation is
σ = 0.3.

(NC2) constant signal 2: length 300 with no change-points. The standard deviation is
σ = 1.

(SW1) wave 5: piecewise-linear signal without jumps in the intercept, T = 2400, with
119 change-points at 20, 40, . . . , 2380 with the corresponding changes in slopes
2.5,−2.5, 2.5, . . . , 2.5, starting intercept f1 = 1, slope f2−f1 = 1.25 and σ = 3.

(SW2) wave 6: piecewise-linear signal without jumps in the intercept, T = 1500, with
29 change-points at 50, 100, . . . , 1450 with the corresponding changes in slopes
−1/7, 1/7,−1/7, . . . ,−1/7, starting intercept f1 = −1/2, slope f2− f1 = 1/24
and σ = 1.

(SW3) wave 7: piecewise-linear signal without jumps in the intercept, T = 840, with
119 change-points at 7, 14, . . . , 833 with the corresponding changes in slopes
−1, 1,−1, . . . ,−1, starting intercept f1 = −1/2 and slope f2 − f1 = 1/32. The
standard deviation is σ = 0.3.

The signals (LS), (LT2), (ELT), and (NC2) are treated under piecewise-constancy,
while (SW1), (SW2) and (SW3) under the continuous and piecewise-linear case.
FDR, WBSIC and S3IB are excluded from the comparative study for the extremely
long signal (ELT). For FDR, we had to interrupt the execution after 10 hours, while
for WBSIC and S3IB, in order to have a fair comparison of the methods with the
rest, we had to increase the default value of the maximum number of change-points
allowed to be detected to be greater than 20000. For a single iteration we had to stop
the execution for WBSIC and S3IB after 30 minutes.

Table 2 Distribution of N̂ − N over 100 simulated data sequences from the piecewise-constant signal
(LS). The average MSE, dH and computational time are also given

N̂ −N
Method ≤ −300 (−300,−100] (−100,−10) [−10, 10] > 10 MSE dH Time (s)
PELT 0 100 0 0 0 0.67 1.02 0.024
NP.PELT 100 0 0 0 0 9655.28 113.76 11.302
S3IB 0 13 87 0 0 0.44 1.01 111.143
CumSeg 100 0 0 0 0 87.11 15.08 0.323
CPM.l.500 0 0 0 100 0 0.19 0.75 0.002
CPM.l.10000 0 0 74 25 0 0.22 1 0.002
WBSC1 0 0 80 20 0 0.24 1 1.293
WBSIC 0 0 22 78 0 0.22 0.99 1.293
WBS2 0 0 29 58 13 0.22 0.99 1.293
NOT 100 0 0 0 0 9.31 5.27 4.330
FDR 0 0 2 98 0 0.19 0.83 -
TGUH 0 0 100 0 0 0.29 1 0.484
ID 0 0 14 86 0 0.21 1.00 0.460
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Table 3 Distribution of N̂ − N over 100 simulated data sequences from the piecewise-constant signal
(LT2). The average MSE, dH and computational time are also given

N̂ −N
Method ≤ −150 (−150,−50] (−50,−10) [−10, 10] > 10 MSE dH Time (s)
PELT 100 0 0 0 0 0.55 130.64 0.016
NP.PELT 0 12 88 0 0 0.21 4.95 0.496
S3IB 0 1 54 45 0 0.13 2.58 33.410
CumSeg 100 0 0 0 0 0.56 249 0.428
CPM.l.500 0 0 0 9 91 0.12 0.59 0.008
CPM.l.10000 0 0 0 100 0 0.12 1.21 0.008
WBSC1 0 84 16 0 0 0.27 4.22 0.631
WBSIC 7 0 0 88 5 0.16 15.92 1.051
NOT 100 0 0 0 0 0.56 240.08 0.610
FDR 0 0 0 99 1 0.11 0.72 -
TGUH 0 0 2 98 0 0.14 1.43 0.580
ID 0 0 0 100 0 0.11 0.76 0.139

Table 4 Distribution of N̂ − N over 100 simulated time series from the signal (ELT). Also the average
MSE and computational times for each method are given

N̂ −N
Method ≤ −17000 (−17000,−10) [−10, 10] MSE Time (s)
PELT 100 0 0 0.94 0.086
NP.PELT 100 0 0 1 136.154
CumSeg 100 0 0 1 4.831
CPM.l.500 100 0 0 1 59.936
WBSC1 100 0 0 0.92 6.346
NOT 100 0 0 1 2.873
TGUH 0 0 100 0.02 4.751
ID 0 10 90 0.02 3.693

Table 5 Distribution of N̂ − N over 100 simulated time series from (NC2). Also the average MSE and
computational times for each method are given

N̂ −N
Method 0 1 2 ≥ 3 MSE Time (ms)
PELT 100 0 0 0 28 ×10−4 12.3
NP.PELT 56 13 23 8 269 ×10−4 30.4
S3IB 95 3 2 0 57 ×10−4 35.7
CumSeg 100 0 0 0 28 ×10−4 19.3
CPM.l.500 54 11 15 20 294 ×10−4 1.5
WBSC1 17 16 19 48 578 ×10−4 62.7
WBSIC 95 3 1 1 59 ×10−4 61.3
NOT 99 0 0 1 39 ×10−4 37.6
FDR 90 7 2 1 66 ×10−4 -
TGUH 83 0 12 5 147 ×10−4 49.6
ID 95 4 1 0 60 ×10−4 1.1
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Table 6 Distribution of N̂ − N over 100 simulated time series of the signal (SW1). Also, the average
MSE, Hausdorff distance and computational time for each method are given

N̂ −N
Method ≤ −110 (−110,−1] 0 1 (1, 90) ≥ 90 MSE dH Time (s)
NOT 100 0 0 0 0 0 52.352 119 6.061
TF 0 0 0 0 0 100 107.463 0.381 2.309
CPOP 0 0 96 4 0 0 1.063 0.146 3.327
ID 0 0 90 10 0 0 1.781 0.254 0.041

Table 7 Distribution of N̂ − N over 100 simulated time series of the signal (SW2). Also, the average
MSE, Hausdorff distance and computational time for each method are given

N̂ −N
Method ≤ −10 (−10,−1) −1 0 1 2 (2, 10) ≥ 10 MSE dH Time (s)
NOT 0 5 1 1 1 3 25 64 0.24 0.95 0.412
TF 0 0 0 0 0 0 0 100 0.76 0.33 1.417
CPOP 0 0 0 97 3 0 0 0 0.05 0.17 8.728
ID 0 0 0 97 2 1 0 0 0.07 0.27 0.049

Table 8 Distribution of N̂ − N over 100 simulated data sequences of the continuous piecewise-linear
signal (SW3). The average MSE, dH and computational time for each method are also given

N̂ −N
Method ≤ −100 (−100,−1) −1 0 1 (1, 10] > 10 MSE dH Time (s)
NOT 100 0 0 0 0 0 0 1.063 119 0.485
TF 0 0 0 0 0 0 100 217868.2 0.324 0.632
CPOP 0 0 0 98 2 0 0 0.027 0.154 0.438
ID 0 0 0 100 0 0 0 0.039 0.210 0.055

In all examples, the ID methodology is within 10% of the best method. Once
again, it exhibits remarkable behaviour when it comes to very long signals with a
large number of frequently appearing change-points; see Tables 3, 4 and 6.

6 Investigation of the impact of different values of λT on accuracy

In this section, we provide a small-scale simulation study in order to examine the
behaviour of ID on different values of the expansion parameter λT . The simulation
set up is as in Section 5 of the main paper and the signals used are those explained in
Section 2 of the supplement. For the expansion parameter, we take λT ∈ {5, 20, 80}.
The results are in Tables 9 - 15 below.
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Table 9 Distribution of N̂ − N over 100 simulated data sequences from (NC). The average MSE and
computational times are also given

N̂ −N
Method 0 1 2 ≥ 3 MSE Time (s)
IDλT=5 100 0 0 0 31 ×10−5 0.116
IDλT=20 100 0 0 0 31 ×10−5 0.033
IDλT=80 100 0 0 0 31 ×10−5 0.012

Table 10 Distribution of N̂ − N over 100 simulated data sequences of the piecewise-constant signals
(M1)-(M3). The average MSE, dH and computational time are also given

N̂ −N
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH Time (ms)
IDλT=5 0 3 40 56 1 0 0 2.49 0.06 26.8
IDλT=20 (M1) 0 3 40 57 0 0 0 2.44 0.06 17.4
IDλT=80 2 8 47 43 0 0 0 2.92 0.08 11.6
IDλT=5 7 8 3 72 9 1 0 67 ×10−3 0.88 10.9
IDλT=20 (M2) 83 7 8 4 0 0 0 185 ×10−3 6.80 8.1
IDλT=80 91 2 0 7 0 0 0 212 ×10−3 8.75 5.7
IDλT=5 0 0 0 82 14 4 0 23 ×10−3 0.16 9.9
IDλT=20 (M3) 20 38 30 10 2 0 0 86 ×10−3 0.82 9.2
IDλT=80 100 0 0 0 0 0 0 784 ×10−3 2.73 5

Table 11 Distribution of N̂ − N over 100 simulated data sequences from the piecewise-constant signal
(M4). The average MSE, dH and computational time are also given

N̂ −N
Method −2 −1 0 1 ≥ 2 MSE dH Time (ms)
IDλT=5 12 0 87 1 0 7 ×10−3 0.13 31.5
IDλT=20 11 0 89 0 0 6 ×10−3 0.11 11.7
IDλT=80 28 0 72 0 0 11 ×10−3 0.29 5.8

Table 12 Distribution of N̂ − N over 100 simulated data sequences from the piecewise-constant signal
(M5). The average MSE, dH and computational time are also given

N̂ −N
Method ≤ −500 (−500,−50] (−50,−10) [−10, 10] > 10 MSE dH Time (s)
IDλT=5 0 0 0 100 0 0.14 0.99 0.772
IDλT=20 100 0 0 0 0 1.28 3.45 0.395
IDλT=80 100 0 0 0 0 1.53 10.34 0.308



9

Table 13 Distribution of N̂ −N over 100 simulated data sequences from the continuous piecewise-linear
signal (W1). The average MSE, dH and computational time for each method are also given

N̂ −N
Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH Time (s)
IDλT=5 0 0 0 91 9 0 0 0.031 0.104 0.036
IDλT=20 0 0 0 92 8 0 0 0.027 0.099 0.020
IDλT=80 0 0 0 99 1 0 0 0.020 0.067 0.017

Table 14 Distribution of N̂ − N over 100 simulated data sequences of the continuous piecewise-linear
signal (W2). The average MSE, dH and computational time for each method are also given

N̂ −N
Method ≤ −90 (−90,−1) −1 0 1 (1, 60] > 60 MSE dH Time (s)
IDλT=5 0 0 0 97 3 0 0 0.227 0.272 0.690
IDλT=20 0 0 0 100 0 0 0 0.364 0.328 0.722
IDλT=80 100 0 0 0 0 0 0 4.730 98.955 0.102

Table 15 Distribution of N̂−N over 100 simulated time series of the continuous piecewise-linear signals
(W3) and (W4). The average MSE, dH and computational time are also given

N̂ −N
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH Time (s)
IDλT=5 0 0 0 94 6 0 0 0.020 0.122 0.014
IDλT=20 (W3) 0 0 0 99 1 0 0 0.009 0.067 0.012
IDλT=80 100 0 0 0 0 0 0 3.917 1.875 0.009
IDλT=5 0 0 0 77 22 1 0 0.055 0.134 0.040
IDλT=20 (W4) 0 0 0 98 2 0 0 0.029 0.106 0.032
IDλT=80 0 36 50 14 0 0 0 1.603 0.950 0.030

In terms of accuracy, we notice that in most cases, the best method is IDλT=5. In
addition, as long as the different values of λT are all less than the minimum distance,
δT , between two successive change-points, then the results are extremely similar (if
not identical); see for example Tables 9 and 13. On the other hand, when λT > δT
the accuracy is getting worse; compare for example the results for the three different
values of λT in Models (M2), (M3), (M5), (W2), and (W3). In terms of speed, as
expected, the larger the value of λT , the quicker the method in general.

7 Additional real-data example

In this section we explore the behaviour of our method and two competitors, CPOP
and NOT, to the daily closing stock prices of Samsung Electronics Co. from July
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2012 until June 2020. The data are available from https://finance.yahoo.
com/quote/005930.KS/history?p=005930.KS and they were accessed in
July 2020. We look for changes in a continuous piecewise-linear mean signal. Fig-
ure 8 shows the results for the ID, ID.SDLL, NOT and CPOP methods, which de-
tect 165, 134, 22, 239 change-points, respectively. From both the fit and the residuals
given in Figure 8, it is not easy to say which of the three methods gives the “best”
number of change-points.
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Fig. 8 Top row: From left to right, the fits for ID and ID.SDLL (on the same plot), NOT and CPOP,
respectively. Bottom row: The raw residuals εt = Yt − f̂t for each method.

ID can return a range of different fits providing users with the flexibility to choose
according to their preference. In Figure 9, we use the solution path and we obtain the
estimated signal and the raw residuals of ID for N̂ = 22 and N̂ = 239, which are
the estimated change-point numbers through NOT and CPOP, respectively. The fit is
similar to those obtained by the aforementioned methods as presented in Figure 8.
However, we note that both those competitors are significantly slower than ID; see
Tables 6 and 7 in the main paper and Tables 6 - 8 in the supplement for a compar-
ison. To conclude, apart from returning the estimated fit, the ID methodology can
directly, and without any extra effort, produce a series of estimated signals based on
the solution path defined in (10).
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Fig. 9 The estimated signals obtained by ID with 22 and 239 change-points. The solution path was em-
ployed in order to obtain these fits.

8 Proof of the theorems in the paper and of Corollary 1

From now on, the contrast vector ψb
s,e = (ψbs,e(1), ψ

b
s,e(2), . . . , ψ

b
s,e(T )) is defined

through the contrast function

ψbs,e(t) =


√

e−b
n(b−s+1) , t = s, s+ 1, . . . , b,

−
√

b−s+1
n(e−b) , t = b+ 1, b+ 2, . . . , e,

0, otherwise.

,

where s ≤ b < e. Notice that for any vector v = (v1, v2, . . . , vT ), we have that
〈v,ψb

s,e〉 = ṽbs,e. We first present Lemma 1, which is partly used for the proof of
Theorem 1,

Lemma 1 Suppose f = (f1, f2, . . . , fT )
ᵀ is a piecewise-constant vector. Pick any

interval [s, e] ⊂ [1, T ] such that [s, e − 1] contains exactly one change-point rj . Let
ρ = |rj − b|, ∆f

j =
∣∣frj+1 − frj

∣∣, ηL = rj − s+ 1 and ηR = e− rj . Then,

‖ψbs,e〈f ,ψb
s,e〉 −ψ

rj
s,e〈f ,ψrj

s,e〉‖22 =
(
f̃rjs,e

)2
−
(
f̃ bs,e

)2
.

In addition,

1. for any rj ≤ b < e,
(
f̃
rj
s,e

)2
−
(
f̃ bs,e

)2
= (ρηL/(ρ+ ηL))

(
∆f
j

)2
;

2. for any s ≤ b < rj ,
(
f̃
rj
s,e

)2
−
(
f̃ bs,e

)2
= (ρηR/(ρ+ ηR))

(
∆f
j

)2
;

Proof See Lemma 4 from Baranowski et al. (2019).

Brief discussion of the steps of the proof of Theorem 1
Before proceeding with the thorough mathematical proof, we give an informal expla-
nation of the main steps. In the main part of the proof, we derive results for the signal
ft. However, the consistency is concerned with the estimated number and locations
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of the change-points in the observed process {Xt}t=1,2,...,T . Therefore, in order to
be able to deduce consistency related to Xt from our ft-reliant proof, we need first to
show that for all 1 ≤ s ≤ b < e ≤ T , the observed quantity

∣∣∣X̃b
s,e

∣∣∣ is uniformly close

to the unobserved
∣∣∣f̃ bs,e∣∣∣; this is achieved in Step 1. In Step 2, for b1, b2 ∈ [s, e), we

control the distance between the noised
∣∣∣X̃b1

s,e

∣∣∣ − ∣∣∣X̃b2
s,e

∣∣∣ and its noiseless equivalent∣∣∣f̃ b1s,e∣∣∣−∣∣∣f̃ b2s,e∣∣∣ for all possible combinations of s, e, b1, b2. This allows us to transfer the

decision on whether b1 or b2 is more suitable as a change-point, from
∣∣∣f̃ b1s,e∣∣∣ − ∣∣∣f̃ b2s,e∣∣∣

to the calculable
∣∣∣X̃b1

s,e

∣∣∣− ∣∣∣X̃b2
s,e

∣∣∣. Step 3 is the main part of our proof, where we first
show that as the ID algorithm proceeds, each change-point will get isolated in an
interval where its detection will occur with high probability. Therefore, it suffices to
restrict our proof to a single change-point detection framework, and the convergence
rate is proved to hold for each estimated location. Because upon detection ID pro-
ceeds from the end-point (or start-point) of the interval where the detection occurred,
we also show that with probability one there is no change-point in those bypassed
points (between the detection and the new start- or end-point). Furthermore, in Step 3
it is shown that, the new start- and end-points are at places that allow the detection of
the next change-point. In Step 4, we conclude the proof by showing that after detect-
ing all change-points, then ID, with high probability, will terminate after scanning all
the remaining data. We mention that for our proof, we employ Lemma 1 given in the
online supplement.

Proof of Theorem 1. We will prove the more specific result

P
(
N̂ = N, max

j=1,2,...,N

(
|r̂j − rj |

(
∆f
j

)2)
≤ C3 log T

)
≥ 1− 1

6
√
πT

, (17)

which implies the result in (5).

Step 1: Allow us to denote by

AT =

{
max

s,b,e:1≤s≤b<e≤T

∣∣∣X̃b
s,e − f̃ bs,e

∣∣∣ ≤√8 log T

}
. (18)

We will show that P (AT ) ≥ 1 − 1/(12
√
πT ). From (3) and (4), simple steps yield

X̃b
s,e − f̃ bs,e = ε̃bs,e, where ε̃bs,e ∼ N (0, 1). Thus, for Z ∼ N (0, 1), using the Bonfer-

roni inequality we get that

P ((AT )
c) = P

(
max

s,b,e:1≤s≤b<e≤T

∣∣∣X̃b
s,e − f̃ bs,e

∣∣∣ >√8 log T

)
≤

∑
1≤s≤b<e≤T

P
(∣∣ε̃bs,e∣∣ >√8 log T

)
≤ T 3

6
P (|Z| >

√
8 log T )

=
T 3

3
P
(
Z >

√
8 log T

)
≤ T 3

3

φ(
√
8 log T )√
8 log T

≤ 1

12
√
πT

,

where φ(·) is the probability density function of the standard normal distribution.
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Step 2: For intervals [s, e) that contain only one true change-point rj , we denote by

BT =

 max
j=1,2,...,N

max
rj−1<s≤rj
rj<e≤rj+1

s≤b<e

∣∣〈ψb
s,e〈f ,ψb

s,e〉 −ψ
rj
s,e〈f ,ψrj

s,e〉, ε
〉∣∣

‖ψb
s,e〈f ,ψb

s,e〉 −ψ
rj
s,e〈f ,ψrj

s,e〉‖2
≤
√
8 log T

 .

(19)
Because

∣∣〈ψb
s,e〈f ,ψb

s,e〉 −ψ
rj
s,e〈f ,ψrj

s,e〉
〉∣∣ / (‖ψb

s,e〈f ,ψb
s,e〉 −ψ

rj
s,e〈f ,ψrj

s,e〉‖2
)

follows the standard normal distribution, then we use a similar approach as in Step 1,
to show that P ((BT )

c
) ≤ 1

12
√
πT

. Therefore, Steps 1 and 2 lead to

P (AT ∩BT ) ≥ 1− 1

6
√
πT

.

Step 3: This is the main part of our proof, where we explain in detail how to get the
result in (17). For ease of understanding, we split this step into two smaller parts.
From now on, we assume that AT and BT both hold. The constants we use are

C1 =
√
C3 +

√
8, C2 =

1√
6
− 2
√
2

C
,C3 = 2(2

√
2 + 4)2, (20)

where C is as in condition (A1).

Step 3.1: For ease of presentation, we take λT ≤ δT /3; see Remark 1 for comments
in regards to the general case of λT ≤ δT /m, for an m > 1. Allow us now ∀j ∈
{1, 2, . . . , N}, to define the intervals

IRj =

[
rj +

δT
3
, rj + 2

δT
3

)
, ILj =

(
rj − 2

δT
3
, rj −

δT
3

]
. (21)

In order for IRj and ILj to have at least one point, we actually implicitly require that
δT > 3, which is the case for sufficiently large T ; see assumption (A1). Since the
length of the intervals in (21) is equal to δT /3 and λT ≤ δT /3, then ID ensures that
for K = dT/λT e and k,m ∈ {1, 2, . . . ,K}, there exists at least one crk = kλT and
at least one clm = T − mλT + 1 that are in IRj and ILj , ∀j = 1, 2, . . . , N . At the
beginning of our algorithm, s = 1, e = T and depending on whether r1 ≤ T − rN
then r1 or rN will get isolated in a right- or left-expanding interval, respectively.
W.l.o.g., assume that r1 ≤ T − rN . As already mentioned, ID naturally ensures that
∃k ∈ {1, 2, . . . ,K} such that crk ∈ IR1 . There is no other change-point in [1, crk] apart

from r1. We will show that for b̃ = argmax1≤t<crk

∣∣∣X̃t
1,crk

∣∣∣, then
∣∣∣X̃ b̃

1,crk

∣∣∣ > ζT . Using
(18), we have that ∣∣∣X̃ b̃

1,crk

∣∣∣ ≥ ∣∣∣X̃r1
1,crk

∣∣∣ ≥ ∣∣∣f̃r11,crk ∣∣∣−√8 log T . (22)
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But,∣∣∣f̃r11,crk ∣∣∣ =
∣∣∣∣∣
√
crk − r1
r1crk

r1fr1 −
√

r1
crk(c

r
k − r1)

(crk − r1)fr1+1

∣∣∣∣∣ =
√

(crk − r1)r1
crk

∆f
1

=

√
(crk − r1)r1

(crk − r1) + r1
∆f

1 ≥

√
(crk − r1)r1

2max {crk − r1, r1}
∆f

1 =

√
min {crk − r1, r1}

2
∆f

1 .

(23)

By the definition of δT and from our notation of r0 = 0, we know that r1 ≥ δT . In
addition, since crk ∈ IR1 , then δT /3 ≤ crk − r1 < 2δT /3, meaning that

min {crk − r1, r1} ≥
δT
3
. (24)

The result in (22), the assumption (A1) and the application of (24) in (23) yield∣∣∣X̃ b̃
1,crk

∣∣∣ ≥√δT
6
∆f

1 −
√

8 log T ≥
√
δT
6
f
T
−
√
8 log T

=

(
1√
6
− 2
√
2 log T√
δT fT

)√
δT fT ≥

(
1√
6
− 2
√
2

C

)√
δT fT

= C2

√
δT fT > ζT .

Therefore, there will be an interval of the form [1, cr
k̃
], with cr

k̃
> r1, such that [1, cr

k̃
]

contains only r1 and max1≤b<cr
k̃

∣∣∣X̃b
1,cr

k̃

∣∣∣ > ζT . Let us, for k∗ ∈ {1, 2, . . . ,K},
to denote by crk∗ ≤ cr

k̃
the first right-expanding point where this happens and let

b1 = argmax1≤t<cr
k∗

∣∣∣X̃t
1,cr

k∗

∣∣∣ with
∣∣∣X̃b1

1,cr
k∗

∣∣∣ > ζT . Our aim now is to find γT > 0

such that for any b∗ ∈ {1, 2, . . . , crk∗ − 1} with |b∗ − r1|
(
∆f

1

)2
> γT , we have that(

X̃r1
1,cr

k∗

)2
>
(
X̃b∗

1,cr
k∗

)2
. (25)

Proving (25) and using the definition of b1 we can conclude that |b1 − r1|
(
∆f

1

)2
≤

γT . Now, since Xt = ft + εt, then (25) can be expressed as(
f̃r11,cr

k∗

)2
−
(
f̃ b

∗

1,cr
k∗

)2
>
(
ε̃b

∗

1,cr
k∗

)2
−
(
ε̃r11,cr

k∗

)2
+ 2

〈
ψb∗

1,cr
k∗ 〈f ,ψ

b∗

1,cr
k∗ 〉 −ψ

r1

1,cr
k∗
〈f ,ψr1

1,cr
k∗
〉, ε
〉
.

(26)

W.l.o.g. assume that b∗ ≥ r1 and a similar approach as below holds when b∗ < r1.
Lemma 1, gives for the left-hand side of the inequality in (26) that(

f̃r11,cr
k∗

)2
−
(
f̃ b

∗

1,cr
k∗

)2
=
|b∗ − r1| r1
|b∗ − r1|+ r1

(
∆f

1

)2
:= Λ. (27)
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For the terms on the right-hand side of (26), using (18) we obtain that(
ε̃b

∗

1,cr
k∗

)2
−
(
ε̃r11,cr

k∗

)2
≤ max
s,e,b:s≤b<e

(
ε̃bs,e
)2−(ε̃r11,cr

k∗

)2
≤ max
s,e,b:s≤b<e

(
ε̃bs,e
)2 ≤ 8 log T,

while from (19) and Lemma 1,

2
〈
ψb∗

1,cr
k∗ 〈f ,ψ

b∗

1,cr
k∗ 〉 −ψ

r1

1,cr
k∗
〈f ,ψr1

1,cr
k∗
〉, ε
〉

≤ 2‖ψb∗

1,cr
k∗ < f ,ψ

b∗

1,cr
k∗ > −ψ

r1

1,cr
k∗
< f ,ψr1

1,cr
k∗
> ‖2

√
8 log T = 2

√
Λ
√
8 log T .

Therefore (26) is satisfied if the stronger inequality Λ > 8 log T + 2
√
Λ
√
8 log T is

satisfied, which has solution

Λ > (2
√
2 + 4)2 log T.

From (27) and since (|b∗ − r1| r1)/(|b∗ − r1| + r1) ≥ min {|b∗ − r1| , r1} /2, we
deduce that (25) is implied by

min {|b∗ − r1| , r1} >
2(2
√
2 + 4)2 log T(
∆f

1

)2 =
C3 log T(
∆f

1

)2 . (28)

However,

min {r1, crk∗ − r1} > C3
log T(
∆f

1

)2 (29)

and this is because if we assume that min {r1, crk∗ − r1} ≤ C3 log T/
(
∆f

1

)2
, then

∣∣∣X̃b1
1,cr

k∗

∣∣∣ ≤ ∣∣∣f̃r11,cr
k∗

∣∣∣+√8 log T =

√
(crk∗ − r1)r1

crk∗
∆f

1 +
√
8 log T

≤
√
min {crk∗ − r1, r1}∆

f
1 +

√
8 log T ≤

(√
C3 +

√
8
)√

log T

= C1

√
log T ≤ ζT .

This comes to a contradiction to
∣∣∣X̃b1

1,cr
k∗

∣∣∣ > ζT . Therefore, (29) holds and (28) is

restricted to |b∗ − r1|
(
∆f

1

)2
> C3 log T , which implies (25). Thus, we conclude

that necessarily,

|b1 − r1|
(
∆f

1

)2
≤ C3 log T. (30)

So far, for λT ≤ δT /3 we have proven that working under the assumption that AT
and BT hold, there will be an interval [1, crk∗ ], with

∣∣∣X̃b1
1,cr

k∗

∣∣∣ > ζT , where b1 =

argmax
1≤t<cr

k∗

∣∣∣X̃t
1,cr

k∗

∣∣∣ is an estimation of r1 that satisfies (30).
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Step 3.2: After detecting the first change-point, ID follows the same process as in
Step 3.1 but in the set [crk∗ , T ], which contains r2, r3, . . . , rN . This means that we
bypass, without checking for possible change-points, the interval [b1 + 1, crk∗) and
we need to prove that:

(S.1) There is no change-point in [b1 + 1, crk∗), apart from maybe the already detected
r1;

(S.2) crk∗ is at a location which allows for detection of r2.

For (S.1): We will split the explanation into two cases with respect to the location of
b1.
Case 1: b1 < r1 < crk∗ . Using (30) and imposing the condition

δT > 3C3
log T(
∆f

1

)2 , (31)

then since cr
k̃
∈ IR1 , we have that

crk∗ − b1 ≤ crk̃ − b1 = cr
k̃
− r1 + r1− b1 < 2

δT
3

+ r1− b1 ≤ 2
δT
3

+
C3 log T(
∆f

1

)2 < δT .

Since r2 − r1 ≥ δT and r1 is already in [b1 + 1, crk∗), then there is no other change-
point in [b1+1, crk∗) apart from r1. Actually, the result in (31) is not an extra assump-
tion and we will briefly explain the reason at the end of our proof.
Case 2: r1 ≤ b1 < crk∗ . Since cr

k̃
∈ IR1 , then crk∗ − r1 ≤ cr

k̃
− r1 < 2δT /3, which

means that apart from r1 there is no other change-point in [r1, c
r
k∗). With r1 ≤ b1,

then [b1 + 1, crk∗) does not have any change-point.
Cases 1 and 2 above show that no matter the location of b1, there is no change-

point in [b1 + 1, crk∗) other than possibly the previously detected r1. Similarly to the
approach in Step 3.1, our method applied now in [crk∗ , T ], will first isolate r2 or rN
depending on whether r2−crk∗ is smaller or larger than T −rN . If T −rN < r2−crk∗
then rN will get isolated first in a left-expanding interval and the procedure to show
its detection is exactly the same as for the detection of r1 in Step 3.1. Therefore, for
the sake of showing (S.2) let us assume that r2 − crk∗ ≤ T − rN .

For (S.2): With Rs,e as in (2), there exists crk2 ∈ Rcr
k∗ ,T such that crk2 ∈ I

R
2 , with IRj

defined in (21). We will show that r2 gets detected in [crk∗ , c
r
k∗2
], for k∗2 ≤ k2 and its

detection is b2 = argmaxcr
k∗≤t<crk∗

2

∣∣∣∣X̃t
cr
k∗ ,c

r
k∗
2

∣∣∣∣, which satisfies |b2 − r2|
(
∆f

2

)2
≤

C3 log T . Following similar steps as in (23), we have that for b̃2 = argmax
cr
k∗≤t<crk2

∣∣∣X̃t
cr
k∗ ,c

r
k2

∣∣∣,
∣∣∣X̃ b̃2

cr
k∗ ,c

r
k2

∣∣∣ ≥ ∣∣∣f̃r2cr
k∗ ,c

r
k2

∣∣∣−√8 log T ≥

√
min

{
crk2 − r2, r2 − c

r
k∗ + 1

}
2

∆f
2−
√
8 log T .

(32)
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By construction, crk2 − r2 ≥ δT /3 and

r2 − crk∗ + 1 ≥ r2 − crk̃ + 1 = r2 − r1 − (cr
k̃
− r1) + 1 ≥ δT − (cr

k̃
− r1) + 1

> δT − 2
δT
3

+ 1 >
δT
3
,

which means that min
{
crk2 − r2, r2 − c

r
k∗ + 1

}
≥ (δT /3) and therefore continuing

from (32),

∣∣∣X̃ b̃2
cr
k∗ ,c

r
k2

∣∣∣ ≥√δT
6
∆f

2 −
√
8 log T ≥

(
1√
6
− 2
√
2
√
log T√

δT fT

)√
δT fT

≥

(
1√
6
− 2
√
2

C

)√
δT fT = C2

√
δT fT > ζT .

Therefore, for a cr
k̃2
∈ Rcr

k∗ ,T we have shown that there exists an interval of the form

[crk∗ , c
r
k̃2
], with maxcr

k∗≤b<crk̃2

∣∣∣∣X̃b
cr
k∗ ,c

r
k̃2

∣∣∣∣ > ζT . Let us denote by crk∗2 ∈ Rcr
k∗ ,T the

first right-expanding point where this occurs and let b2 = argmaxcr
k∗≤t<crk∗

2

∣∣∣∣X̃t
cr
k∗ ,c

r
k∗
2

∣∣∣∣
with

∣∣∣∣X̃b2
cr
k∗ ,c

r
k∗
2

∣∣∣∣ > ζT .

We will now show that |b2 − r2|
(
∆f

2

)2
≤ C3 log T . Following exactly the same

process as in Step 3.1 and assuming now w.l.o.g. that b2 < r2, we have that for
b∗ ∈

{
crk∗ , . . . , c

r
k∗2
− 1
}

,

(
X̃r2
cr
k∗ ,c

r
k∗
2

)2

>

(
X̃b∗

cr
k∗ ,c

r
k∗
2

)2

(33)

is implied by min
{
|b∗ − r2| , crk∗2 − r2

}
> C3 log T/

(
∆f

2

)2
. In the same way as

in Step 3.1 and by contradiction we can show that min
{
crk∗2
− r2, r2 − crk∗ + 1

}
>

C3 log T/
(
∆f

2

)2
and (33) is implied by |b∗ − r2|

(
∆f

2

)2
> C3 log T . Therefore

|b2 − r2|
(
∆f

2

)2
> C3 log T would mean that

∣∣∣∣X̃r2
cr
k∗ ,c

r
k∗
2

∣∣∣∣ > ∣∣∣∣X̃b2
cr
k∗ ,c

r
k∗
2

∣∣∣∣, which is not

true by the definition of b2. Having said this, we conclude that |b2 − r2|
(
∆f

2

)2
≤

C3 log T . Having detected r2, then our algorithm will proceed in the interval [s, e] =
[crk∗2

, T ] and all the change-points will get detected one by one since Step 3.2 will be
applicable as long as there are undetected change-points in [s, e].

Denoting by r̂j the estimation of rj as we did in the statement of the theorem, then

we conclude that all change-points will get detected one by one and |r̂j − rj |
(
∆f
j

)2
≤

C3 log T, ∀j ∈ {1, 2, . . . , N}. In addition, as one can see from (31), our process
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imposes that δT > 3C3 log T/
(
∆f
j

)2
,∀j ∈ {1, 2, . . . , N}, which, by the definition

of f
T

, is implied by

δT > 3
C3 log T

f2
T

. (34)

We will now explain why (34) is not actually an extra assumption but it is implied by
our assumption (A1), which requires δT ≥ C2 log T/f2

T
. Proving that C >

√
3C3

would mean that indeed (A1) implies (34). Due to C1

√
log T ≤ ζT < C2

√
δT fT ,

we require C to be such that CC2 > C1. Simple steps yield

CC2 > C1 ⇔ C

(
1√
6
− 2
√
2

C

)
>
√
C3+

√
8⇔ C >

√
6
(√

C3 + 4
√
2
)
. (35)

We conclude that C >
√
3C3, meaning that (34) is something already satisfied due

to (A1).

Step 4: The arguments given in Steps 1-3 hold in AT ∩ BT . At the beginning of
the algorithm, s = 1, e = T and for N ≥ 1, there exist k1 ∈ {1, 2, . . . ,K} such
that sk1 = s, ek1 ∈ IR1 and k2 ∈ {1, 2, . . . ,K} such that sk2 ∈ ILN , ek2 = e.
As in our previous steps, w.l.o.g. assume that r1 ≤ T − rN and r1 gets isolated
and detected first in an interval [s, crk∗ ], where crk∗ ∈ R1,T and it is less than or
equal to ek1 . Then, r̂1 = argmaxs≤t<cr

k∗
|X̃t

s,cr
k∗
| is the estimated location for r1 and

|r1 − r̂1|
(
∆f

1

)2
≤ C3 log T . After this, the method continues in [crk∗ , T ] and keeps

detecting all the change-points as explained in Step 3. There will not be any double
detection issues because naturally, at each step of the algorithm, the new interval [s, e]
does not include any previously detected change-points. Once all the change-points
have been detected one by one, then [s, e] will contain no other change-points. ID
will keep checking for possible change-points in intervals of the form

[
s, cr

k̃1

]
and[

cl
k̃2
, e
]

for cr
k̃1
∈ Rs,e and cl

k̃2
∈ Ls,e. We denote by [s∗, e∗] any of these intervals.

ID will not detect anything in [s∗, e∗] since ∀b ∈ [s∗, e∗),∣∣∣X̃b
s∗,e∗

∣∣∣ ≤ ∣∣∣f̃ bs∗,e∗ ∣∣∣+√8 log T =
√
8 log T < C1

√
log T ≤ ζT .

After not detecting anything in all intervals of the above form, then the algorithm
concludes that there are not any change-points in [s, e] and stops. �

Remark 1 It is interesting to explore what happens when instead of λT ≤ δT /3, we
use the more general case of λT ≤ δT /m, for m > 1. The adjustments need to be
made are

(Adj.1) Instead of the definition in (21), we now have

IRj =

[
rj +

(m− 1)δT
2m

, rj +
(m+ 1)δT

2m

)
ILj =

(
rj −

(m+ 1)δT
2m

, rj −
(m− 1)δT

2m

]
.
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Note that the length of the above intervals is δT /m, meaning that with proba-
bility one there will be at least one left and one right expanding point in each
of them because the distance between two consecutive right (left) expanding
points is λT ≤ δT /m.

(Adj.2) Instead of C2 as in (20), we should now use that C2 =
√
(m− 1)/4m −

2
√
2/C. This is easy to prove and it will not be shown here.

(Adj.3) In (35), we give a lower bound for C. Following similar steps, this now be-
comes

C >

√
4m

m− 1

(√
C3 + 4

√
2
)
.

We see from (Adj.3) that the higher the value of m, the smaller the lower bound will
be, meaning that the assumption on C gets possibly relaxed for larger values of m.
On the other hand, the results above hold for an expanding level of λT ≤ δT /m
and thus, we notice that the smaller the value of m, the larger the upper bound for
the acceptable λT -values. Our choice of m = 3 gives a more symmetric aspect to
our approach as the length of the intervals IRj and ILj is the same as the minimum
distance of their start- and end-points from possible change-points, which is δT /3.

We now proceed to prove the result in Theorem 2. For the continuous piecewise-
linear case, the contrast function values at b for the observed data, the signal, and
the noise are denoted by Cbs,e(X), Cbs,e(f) and Cbs,e(ε), respectively. We have ∆f

j =∣∣2frj − frj−1 − frj+1

∣∣ and as in the case of piecewise-constancy, f
T
= min
j=1,2,...,N

∆f
j .

The contrast vector φb
s,e = (φbs,e(1), φ

b
s,e(2), . . . , φ

b
s,e(T )) is defined through the

contrast function

φbs,e(t) =


αbs,eβ

b
s,e

[
(e+ 2b− 3s+ 2)t− (be+ bs− 2s2 + 2s)

]
, t = s, . . . , b,

−α
b
s,e

βb
s,e

[
(3e− 2b− s+ 2)t− (2e2 + 2e− be− bs)

]
, t = b+ 1, . . . , e,

0, otherwise,

where αbs,e = (6/[n(n2 − 1)(1 + (e− b+ 1)(b− s+ 1) + (e− b)(b− s))])1/2 and
βbs,e = ([(e− b+ 1)(e− b)]/[(b− s+ 1)(b− s)])1/2, with n = e− s+ 1. For any
vector v = (v1, v2, . . . , vT ), we have that∣∣〈v,φb

s,e〉
∣∣ = Cbs,e(v).

Towards the proof of Theorem 2, we use Lemmas 2 and 3 given below.

Lemma 2 Suppose f = (f1, f2, . . . , fT )
ᵀ is piecewise-linear vector and r1, . . . , rN

are the locations of the change-points. Suppose 1 ≤ s < e ≤ T , such that rj−1 ≤
s < rj < e ≤ rj+1, for some j = 1, 2, . . . , N . Let η = min {rj − s, e− rj}. Then,

Crjs,e(f) = max
s<b<e

Cbs,e(f)

{
≥ 1√

24
η

3
2∆f

j ,

≤ 1√
3
(η + 1)

3
2∆f

j , .

Proof See Lemma 5 from Baranowski et al. (2019).
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Lemma 3 Suppose f = (f1, f2, . . . , fT )
ᵀ is piecewise-linear vector. With r1, r2, . . . , rN

the locations of the change-points, suppose that 1 ≤ s < e ≤ T , such that rj−1 ≤
s < rj < e ≤ rj+1 for some j = 1, 2, . . . , N . Let ρ = |rj−b|,∆f

j =
∣∣2frj − frj−1 − frj+1

∣∣,
ηL = rj − s and ηR = e− rj . Then,

‖φbs,e〈f ,φb
s,e〉 − φ

rj
s,e〈f ,φrj

s,e〉‖22 =
(
Crjs,e(f)

)2 − (Cbs,e(f))2 .
Furthermore,

1. for any rj ≤ b < e,
(
C
rj
s,e(f)

)2 − (Cbs,e(f))2 ≥ (1/63)min(ρ, ηL)
3
(
∆f
j

)2
;

2. for any s < b ≤ rj ,
(
C
rj
s,e(f)

)2 − (Cbs,e(f))2 ≥ (1/63)min(ρ, ηR)
3
(
∆f
j

)2
.

Proof See Lemma 7 from Baranowski et al. (2019), where the approach is similar as
to the one for Lemma 1.

The steps we follow for the proof of Theorem 2 are the same as those explained for
the proof of Theorem 1.

Proof of Theorem 2. We will prove the more specific result

P
(
N̂ = N, max

j=1,2,...,N

(
|r̂j − rj |

(
∆f
j

) 2
3

)
≤ C3(log T )

1
3

)
≤ 1− 1

6
√
πT

, (36)

which implies the result in (8).
Steps 1 and 2: As in Theorem 1, let

A∗T =

{
max

s,b,e:1≤s≤b<e≤T

∣∣Cbs,e(X)− Cbs,e(f)
∣∣ ≤√8 log T

}
.

B∗T =

 max
j=1,2,...,N

max
rj−1<s≤rj
rj<e≤rj+1

s≤b<e

∣∣〈φb
s,e〈f ,φb

s,e〉 − φ
rj
s,e〈f ,φrj

s,e〉, ε
〉∣∣

‖φb
s,e〈f ,φb

s,e〉 − φ
rj
s,e〈f ,φrj

s,e〉‖2
≤
√

8 log T

 .

The same reasoning as in the proof of Theorem 1 leads to P (A∗T ) ≥ 1−1/(12
√
πT )

and P (B∗T ) ≥ 1− 1/(12
√
πT ). Therefore, Steps 1 and 2 lead to

P (A∗T ∩B∗T ) ≥ 1− 1

6
√
πT

.

Step 3: This is the main part of our proof, where we explain in detail how to get the
result in (36). From now on, we assume that A∗T and B∗T both hold. The constants we
use are

C1 =

√
2

3
C

3
2
3 +
√
8, C2 =

1

3
√
72
− 2
√
2

C∗
, C3 = 63

1
3 (2
√
2 + 4)

2
3 ,

where C∗ is as in assumption (A2).

Step 3.1: First, ∀j ∈ {1, 2, . . . , N}, we define IRj and ILj as in (21). At the begin-
ning of our algorithm, s = 1, e = T and depending on whether r1 ≤ T − rN then
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r1 or rN will get isolated first, respectively. W.l.o.g., assume that r1 ≤ T − rN .
Our aim is to first show that there will be at least an interval of the form [1, cr

k̃
],

for k̃ ∈ {1, 2, . . . ,K}, which contains only r1 and no other change-point, such
that max1≤b<cr

k̃
Cb1,cr

k̃
> ζT . Due to ID’s nature, for K = dT/λT e, then ∃k̃ ∈

{1, 2, . . . ,K} such that cr
k̃

= k̃λT ∈ IR1 and there is no other change-point in
[1, cr

k̃
] apart from r1. We will now show that for b̃1 = argmax1<t<cr

k̃
Ct1,cr

k̃
(X),

then C b̃11,cr
k̃

(X) > ζT . Firstly, we have that

C b̃11,cr
k̃

(X) ≥ Cr11,cr
k̃

(X) ≥ Cr11,cr
k̃

(f)−
√

8 log T . (37)

From Lemma 2, we know thatCr11,cr
k̃

(f) ≥ 1/(
√
24)
(
min

{
r1 − 1, cr

k̃
− r1

})3/2
∆f

1 .
Now, r1−1 = r1−r0−1 ≥ δT −1 > δT /3, because for continuous piecewise-linear
signals we have that δT ≥ 2 for identifiability purposes. In addition, since cr

k̃
∈ IR1 ,

then cr
k̃
− r1 ≥ δT /3, meaning that

min
{
cr
k̃
− r1, r1 − 1

}
≥ δT

3
. (38)

The result in (37), the assumption (A2) and (38) yield

C b̃11,cr
k̃

(X) ≥ 1√
24

(
δT
3

)3/2

∆f
1 −

√
8 log T ≥ 1√

24

(
δT
3

)3/2

f
T
−
√
8 log T

= δ
3/2
T f

T

(
1

3
√
72
− 2
√
2 log T

δ
3/2
T f

T

)
≥

(
1

3
√
72
− 2
√
2

C∗

)
δ
3/2
T f

T

= C2δ
3/2
T f

T
> ζT . (39)

Therefore, there will be an interval of the form [1, cr
k̃
], with cr

k̃
> r1, such that [1, cr

k̃
]

contains only r1 and max1≤b<cr
k̃
Cb1,cr

k̃
> ζT . Let us, for k∗ ∈ {1, 2, . . . ,K}, de-

note by crk∗ ≤ cr
k̃

the first right-expanding point where this happens and let b1 =

argmax1≤t<cr
k∗
Ct1,cr

k∗
with Cb11,cr

k∗
> ζT . Note that b1 can not be an estimation of

any other change-point as [1, crk∗ ] includes only r1.
Our aim now is to find γ̃T > 0 such that for any b∗ ∈ {1, 2, . . . , crk∗ − 1} with

|b∗ − r1|
(
∆f

1

)2/3
> γ̃T , we have(

Cr11,cr
k∗
(X)

)2
>
(
Cb

∗

1,cr
k∗
(X)

)2
. (40)

Proving (40) and using the definition of b1 we can conclude that |b1−r1|
(
∆f

1

)2/3
≤

γ̃T . Since Xt = ft + εt, then (40) can be expressed as(
Cr11,cr

k∗
(f)
)2
−
(
Cb

∗

1,cr
k∗
(f)
)2

>
(
Cb

∗

1,cr
k∗
(ε)
)2
−
(
Cr11,cr

k∗
(ε)
)2

+ 2
〈
φb∗

1,cr
k∗ 〈f ,φ

b∗

1,cr
k∗ 〉 − φ

r1

1,cr
k∗
〈f ,φr1

1,cr
k∗
〉, ε
〉
.

(41)
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W.l.o.g. assume that b∗ ≥ r1 and a similar approach as below holds when b∗ < r1.
We denote by

Λ :=
(
Cr11,cr

k∗
(f)
)2
−
(
Cb

∗

1,cr
k∗
(f)
)2

and for the terms in the right-hand side of (41), we get that(
Cb

∗

1,cr
k∗
(ε)
)2
−
(
Cr11,cr

k∗
(ε)
)2
≤ max
s,e,b:s≤b<e

(
Cbs,e(ε)

)2 − (Cr11,crk(ε))2 ≤ 8 log T,

while from Lemma 3,

2
〈
φb∗

1,cr
k∗ 〈f ,φ

b∗

1,cr
k∗ 〉 − φ

r1

1,cr
k∗
〈f ,φr1

1,cr
k∗
〉, ε
〉

≤ 2‖φb∗

1,cr
k∗ < f ,φ

b∗

1,cr
k∗ > −φ

r1

1,cr
k∗
< f ,φr1

1,cr
k∗
> ‖2

√
8 log T

= 2
√
Λ
√

8 log T .

Therefore (41) is satisfied if the stronger inequality

Λ > 8 log T + 2
√
Λ
√

8 log T

is satisfied, which has solution

Λ > (2
√
2 + 4)2 log T. (42)

Using Lemma 3, we have that (42) is implied by

1

63
(min {|r1 − b∗| , r1 − 1})3

(
∆f

1

)2
>
(
2
√
2 + 4

)2
log T

⇔ min {|r1 − b∗| , r1 − 1} > (63 log T )
1/3

(2
√
2 + 4)2/3(

∆f
1

)2/3 =
C3 (log T )

1/3(
∆f

1

)2/3 .

(43)

However,

min {r1 − 1, crk∗ − r1} > 21/3C3
(log T )

1/3(
∆f

1

)2/3 − 1 (44)

and this is because if we assume that

min {r1 − 1, crk∗ − r1} ≤ 21/3C3 (log T )
1/3

/
(
∆f

1

)2/3
− 1

yields

Cb11,cr
k∗
(X) ≤ Cr11,cr

k∗
(f) +

√
8 log T ≤ 1√

3
(min {r1 − 1, crk∗ − r1}+ 1)

3/2
∆f

1 +
√
8 log T

≤ 1√
3

21/3C3
(log T )

1/3(
∆f

1

)2/3


3/2

∆f
1 +

√
8 log T =

√
2

3
C

3/2
3

√
log T +

√
8 log T

=

(√
2

3
C

3/2
3 +

√
8

)√
log T = C1

√
log T ≤ ζT .
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This comes to a contradiction to Cb11,cr
k∗
(X) > ζT . Therefore, (44) holds and for

sufficiently large T ,

min {r1 − 1, crk∗ − r1} > 21/3C3
(log T )

1/3(
∆f

1

)2/3 − 1 > C3
(log T )

1/3(
∆f

1

)2/3 . (45)

From (45) we deduce that (43) is restricted to

|r1 − b∗| > C3
(log T )

1/3(
∆f

1

)2/3 ,
which implies (40). Therefore, necessarily,

|b1 − r1|
(
∆f

1

)2/3
≤ C3(log T )

1/3. (46)

So far, for λT ≤ δT /3 we have proven that working under the sets A∗T and B∗T , there
will be an interval of the form [1, crk∗ ], with Cb11,cr

k∗
> ζT , where b1 = argmax

1≤t<cr
k∗

Ct1,cr
k∗

is an estimation of r1 that satisfies (46).

Step 3.2: After detecting the first change-point, ID follows the same process as in
Step 3.1 in the set [crk∗ , T ], which contains r2, r3, . . . , rN . This means that we do not
check for possible change-points in the interval [b1 + 1, crk∗). Therefore, we need to
prove that:

(S.1) There is no other change-point in [b1 + 1, crk∗), apart from possibly the already
detected r1;

(S.2) crk∗ is at a location which allows for detection of r2.

For (S.1): The approach is the same as the one in Step 3.2 in the proof of Theorem 1
and will not be repeated here.

Similarly to the approach in Step 3.1, our method applied now to [crk∗ , T ], will
first detect r2 or rN depending on whether r2− crk∗ is smaller or larger than T − rN .
If T − rN < r2 − crk∗ then rN will get isolated first and the procedure to show
its detection is exactly the same as in Step 3.1 where we explained the detection
of r1. Therefore, w.l.o.g. and also for the sake of showing (S.2) let us assume that
r2 − crk∗ ≤ T − rN .

For (S.2): With Rs,e as in (2), there exists crk2 ∈ Rcr
k∗ ,T such that crk2 ∈ IR2 . We

will show that r2 gets detected in [crk∗ , c
r
k∗2
], for k∗2 ≤ k2 and its detection is b2 =

argmaxcr
k∗≤t<crk∗

2

Ctcr
k∗ ,c

r
k∗
2

(X), which satisfies |b2 − r2|
(
∆f

2

)2/3
≤ C3(log T )

1/3.

Using again Lemma 3 and for b̃2 = argmaxcr
k∗≤t<crk2

Ctcr
k∗ ,c

r
k2

, we have that

C b̃2cr
k∗ ,c

r
k2

(X) ≥ Cr2cr
k∗ ,c

r
k2

(X) ≥ Cr2cr
k∗ ,c

r
k2

(f)−
√
8 log T

≥ 1√
24

(
min

{
r2 − crk∗ , crk2 − r2

})3/2
∆f

2 −
√

8 log T . (47)
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By construction,

crk2 − r2 ≥
δT
3

r2 − crk∗ ≥ r2 − crk = r2 − r1 − (crk − r1) ≥ δT − (crk − r1) > δT − 2
δT
3

=
δT
3
,

which means that min
{
crk2 − r2, r2 − c

r
k∗

}
≥ δT /3. Therefore, continuing from

(47) and using the exact same calculations as in (39), we have that

C b̃2cr
k∗ ,c

r
k2

(X) ≥ C2δ
3/2
T f

T
> ζT .

Therefore, for a cr
k̃2
∈ Rcr

k∗ ,T we have shown that there exists an interval of the form
[crk∗ , c

r
k̃2
], with maxcr

k∗≤b<crk̃2

Cbcr
k∗ ,c

r
k̃2

> ζT . Let us denote by crk∗2 ∈ Rcr
k∗ ,T the

first right-expanding point where this occurs and let b2 = argmaxcr
k∗≤t<crk∗

2

Ctcr
k∗ ,c

r
k∗
2

with Cb2cr
k∗ ,c

r
k∗
2

> ζT . We will now show that |b2 − r2|
(
∆f

2

)2/3
≤ C3 (log T )

1/3.

Following the same process as in Step 3.1 and assuming now that b2 < r2, we have
that for b∗ ∈

{
crk∗ , c

r
k∗ + 1, . . . , crk∗2

− 1
}

,

(
Cr2cr

k∗ ,c
r
k∗
2

(X)

)2

>

(
Cb

∗

cr
k∗ ,c

r
k∗
2

(X)

)2

(48)

is implied by min
{
|b∗ − r2| , crk2 − r2

}
> C3 (log T )

1/3
/
(
∆f

2

)2/3
. However, fol-

lowing the same procedure as in Step 3.1 we can show that for sufficiently large T ,

min
{
crk2 − r2, r2 − c

r
k

}
> C3

(log T )
1/3(

∆f
2

)2/3 .
Thus, (48) is implied by |b∗ − r2|

(
∆f

2

)2/3
> C3(log T )

1/3. Therefore,

|b2 − r2|
(
∆f

2

)2/3
> C3(log T )

1/3 would necessarily mean that Cr2cr
k∗ ,c

r
k∗
2

(X) >

Cb2cr
k∗ ,c

r
k∗
2

(X), which is not true by the definition of b2. Having said this, we conclude

that |b2 − r2|
(
∆f

2

)2/3
≤ C3 (log T )

1/3.

Having detected r2, then our algorithm will proceed in the interval [s, e] = [crk∗2
, T ]

and all the change-points will get detected one by one since Step 3.2 will be applica-
ble as long as there are previously undetected change-points in [s, e]. Denoting by r̂j
the estimation of rj as we did in the statement of the theorem, then we conclude that
all change-points will first get isolated and then detected one by one and

|r̂j − rj |
(
∆f
j

)2/3
≤ C3 (log T )

1/3
, ∀j ∈ {1, 2, . . . , N} .
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Step 4: The arguments given in Steps 1-3 hold in A∗T ∩ B∗T . At the beginning of the
algorithm, s = 1, e = T and for N ≥ 1, there exist k1 ∈ {1, 2, . . . ,K} such that
sk1 = s, ek1 ∈ IR1 and k2 ∈ {1, 2, . . . ,K} such that sk2 ∈ ILN , ek2 = e. As in our
previous steps, w.l.o.g. assume that r1 ≤ T − rN + 1, meaning that r1 gets isolated
and detected first in an interval [s, crk∗ ], where crk∗ ∈ R1,T and it is less than or equal
to ek1 . Then, r̂1 = argmaxs≤t<cr

k∗
Cts,cr

k∗
(X) is the estimated location for r1 and

|r1 − r̂1|
(
∆f

1

)2/3
≤ C3 (log T )

1/3. After this, the algorithm continues in [crk∗ , T ]

and keeps detecting all the change-points as explained in Step 3. It is important to
note that there will not be any double detection issues because naturally, at each
step of the algorithm, the new interval [s, e] does not include any previously detected
change-points.

Once all the change-points have been detected one by one, then [s, e] will have
no other change-points in it. Our method will keep interchangeably checking for
possible change-points in intervals of the form

[
s, cr

k̃1

]
and

[
cl
k̃2
, e
]

for cr
k̃1
∈ Rs,e

and cl
k̃2
∈ Ls,e. Allow us to denote by [s∗, e∗] any of these intervals. Our algorithm

will not detect anything in [s∗, e∗] since ∀b ∈ [s∗, e∗),

Cbs∗,e∗(X) ≤ Cbs∗,e∗(f) +
√

8 log T =
√

8 log T < C1

√
log T ≤ ζT .

After not detecting anything in all intervals of the above form, then the algorithm
concludes that there are not any change-points in [s, e] and stops. �

Brief discussion of the steps of the proof of Theorem 3
Before the thorough mathematical proof of Theorem 3, we provide an informal expla-
nation of the three main steps in our proof. The notation is as in the main paper with S̃
denoting the ordered set with the remaining and relabelled estimated change-points,
r̃k, after each estimation is removed. At the beginning of the change-point removal
approach, S̃ = [r̃1, r̃2, . . . , r̃J ]. In Step 1 of the proof, we show that for each true
change-point rj , j ∈ {1, 2, . . . , N}, there is at least one and at most four estimated

change-points, r̃k, k ∈ {1, 2, . . . , J} within a distance equal to C̃(log T )α/
(
∆f
j

)2
,

where C̃ > 0. In Step 2, we show that there are at most two estimated change-points
between two consecutive true change-points. In Step 3, we prove that as the algorithm
proceeds, then ∀j ∈ {1, 2, . . . , N}, the only remaining change-point for rj is within

a distance of C1(log T )
α/
(
∆f
j

)2
from rj and it cannot be removed whilst there are

still more than N estimated change-points in S̃. Step 4 shows that the sSIC penalty
as defined in (11), proposes a solution with N̂ = N estimated change-points.

Proof of Theorem 3
Allow us first to denote by

DT =

{
max

s,b,e:1≤b≤e≤T

∣∣∣∣∣ 1√
e− b+ 1

e∑
t=b

εt

∣∣∣∣∣ ≤√6 log T

}
. (49)
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We will show that P (DT ) ≥ 1−
√
2/(
√
πT ). ForZ ∼ N (0, 1), using the Bonferroni

inequality we get that

P ((DT )
c) = P

(
max

s,b,e:1≤b≤e≤T

∣∣∣∣∣ 1√
e− b+ 1

e∑
t=b

εt

∣∣∣∣∣ >√6 log T

)
≤

∑
1≤b≤e≤T

P
(
|Z| >

√
6 log T

)
≤ T 2P (|Z| >

√
6 log T )

= 2T 2P
(
Z >

√
6 log T

)
≤ 2T 2φ(

√
6 log T )√
6 log T

≤
√
2√
πT

,

where φ(·) is the probability density function of the standard normal distribution.
Therefore, P (DT ) ≥ 1 −

√
2/(
√
πT ). With AT as in (18), the work that follows is

valid on the set AT ∩DT with P (AT ∩DT ) ≥ 1− 1/(12
√
πT )−

√
2/(
√
πT ). We

take ˜̃C from the main paper to be equal to 2
√
2.

Step 1: When the algorithm moves from Part 1 to Part 2, as described in Subsection
3.3, then we are under a structure described by the following three characteristics:

(P1) For C̃ > 0, there is at least one estimation within a distance of C̃(log T )α/
(
∆f
j

)2
from rj , ∀j ∈ {1, 2, . . . , N}. We know that this is true at the beginning of Part
1 due to calling the ID algorithm with threshold ζT . This continues to be the case
when the algorithm proceeds to Part 2, because if r̃k is the last estimation within

C̃(log T )α/
(
∆f
j

)2
from rj , then r̃k+1−r̃k−1 > 2C̃(log T )α/

(
∆f
j

)2
= 2C∗(log T )α

and r̃k cannot be removed in Part 1.
(P2) For each j = 1, 2, . . . , N , there are at most four estimated change-points within

a distance of C̃(log T )α/
(
∆f
j

)2
from rj . We can not have more than four estima-

tions as if this was the case then at least three of them, let’s denote them by p1, p2, p3,
would be either on the right or the left of rj , which would then mean that both

CS(p2) ≤ 2
√
2 log T and p3−p1 ≤ C̃(log T )α/

(
∆f
j

)2
= C∗(log T )α are satisfied

and therefore p2 would have been removed in Part 1 of the algorithm as explained in
Subsection 3.3 of the paper.
(P3) There is an unknown, possibly large, number of estimated change-points (which
tends to infinity as T goes to infinity) between any two true change-points, namely
rj and rj+1. This issue is solved in Part 2 of the algorithm.

Step 2: We are now in Part 2 of the algorithm as explained in Subsection 3.3, which
guarantees that the minimum distance between two estimated change-points is
C∗(log T )α, and also that there exists C ≥ C̃, such that there is at least one estima-

tion within a distance of C(log T )α/
(
∆f
j

)2
from rj . After that, in Part 2 we collect

the triplets (r̃j−1, r̃j , r̃j+1) and we calculate CS(r̃j) and form = argminj {CS(r̃j)},
if CS(r̃m) ≤ 2

√
2 log T , then r̃m is removed and the process is repeated for the re-

maining estimated change-points. By doing this it is easy to see that, first of all,
between rj and rj+1, j = 0, 1, . . . , N there will be at most two estimated change-
points, since if there were more, then we would have triplets (r̃j−1, r̃j , r̃j+1) with
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CS(r̃j) ≤ 2
√
2 log T and r̃j would have been removed. Secondly, for each j =

1, 2, . . . , N there is still at least an estimation within a distance ofC(log T )α/
(
∆f
j

)2
from rj . If there is exactly one estimated change-point in the area rj±C(log T )α/

(
∆f
j

)2
,

namely r̃k, then this cannot be removed in Part 2 of the algorithm because
min {r̃k − r̃k−1, r̃k+1 − r̃k} > C∗(log T )α and therefore for C4 > 0,∣∣∣X̃ r̃k

r̃k−1,r̃k+1

∣∣∣ ≥ ∣∣∣f̃ r̃kr̃k−1,r̃k+1

∣∣∣− 2
√
2 log T

≥ C4(log T )
α/2 − 2

√
2 log T ,

which for sufficiently large T is greater than 2
√
2 log T . Therefore, r̃k will not be

removed and there is at least one estimation within a distance of C(log T )α/
(
∆f
j

)2
from rj , ∀j = 1, 2, . . . , N . This estimation will be in the set S̃ of estimated change-
points that continue in Part 3 of the algorithm.

Step 3: We are in Part 3 of the algorithm as explained in Subsection 3.3. In this
step, we will show that with m = argminr̃k∈S̃ CS(r̃k), then once CS(r̃m) >

2
√
2 log T we will be at the stage where S̃ contains N estimated change-points;

one estimated change-point within a distance of C1(log T )
α/
(
∆f
j

)2
from each rj ,

∀j ∈ {1, 2, . . . , N}, where C1 > 0. W.l.o.g. let r̃m be between rj and rj+1. From
Step 2 we know that there is a finite number (no more than four) of estimated change-
points in [rj−1, rj+1]. It is straightforward that at the beginning of Part 3 we have at
most 2N estimations and either of the following two cases is possible:
Case 1: r̃m is not the closest change-point to either the true change-point on its
left (rj for a j ∈ {1, 2, . . . , N}) or the true change-point on its right (rj+1). Since,
s̃m = b(r̃m−1 + r̃m) /2c + 1 and ẽm = d(r̃m + r̃m+1) /2e, it is straightforward to
see that necessarily s̃m is on the right of rj and ẽm is on the left of rj+1. This means
that there are not any true change-points in [s̃m, ẽm] and because we are working in
the set AT , we have that

CS (r̃m) =
∣∣∣X r̃m

s̃m,ẽm

∣∣∣ = ∣∣∣X r̃m
s̃m,ẽm

− f r̃ms̃m,ẽm
∣∣∣ ≤ 2

√
2 log T .

Therefore, r̃m will be removed from the set S̃.
Case 2: r̃m is the closest change-point to a true change-point, namely rj for a j ∈
{1, 2, . . . , N}, and from what has been discussed in Steps 1 and 2, r̃m is within

a distance of C(log T )α/
(
∆f
j

)2
. If CS(r̃m) ≤ 2

√
2 log T , then there is at least

another estimated change-point within a distance of Cm(log T )α/
(
∆f
j

)2
from r̃m

(and therefore from rj too), where Cm is a constant that does not depend on T . If this
was not the case, then since we are working under AT ,∣∣∣X̃ r̃m

s̃m,ẽm

∣∣∣ ≥ ∣∣∣f̃ r̃ms̃m,ẽm ∣∣∣− 2
√

2 log T

≥ C∗m(log T )α − 2
√
2 log T > 2

√
2 log T
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for a constant C∗m and for sufficiently large T . Therefore, r̃m would not get removed.
Since there are at most 2N estimations, then the constants Cm are upper bounded by
a general constant C1 and therefore, when Part 3 terminates, each true change-point

will have only one estimated change-point within the distance ofC1(log T )
α/
(
∆f
j

)2
.

This is exactly the stage in our algorithm, where J = N , with J denoting the number
of estimated change-points in the set S̃. There are not any change-point identifiability
issues, because (log T )α = o

(
δT f

2

T

)
and for T large enough

2C1(log T )
α < δT f

2

T
.

The algorithm will then proceed to Part 4 explained in Subsection 3.3 and each of the
remaining estimated change-points will be removed one by one until S̃ is the empty
set.

Step 4: In this last step we will prove that the sSIC penalty indicates the solution
obtained when Part 3 terminates, where the number of estimated change-points is
equal toN . We have already explained in Section 3.3 of the paper that in the scenario
of piecewise-constant mean signals,

sSIC(j) =
T

2
log σ̂2

j + (j + 1)(log T )α, (50)

where for any candidate model Mj , j = 0, 1, . . . , J , we have
f̂ jt = (r̂j+1− r̂j)−1

∑r̂j+1

k=rj+1Xj , for r̂j+1 ≤ t ≤ r̂j+1, and σ̂2
j = T−1

∑T
t=1(Xt−

f̂ jt )
2 is the maximum likelihood estimator of the residual variance associated with

modelMj . It has also been proven in Fryzlewicz (2014) that in an interval [s, e],

σ̂2
j−1 − σ̂2

j =

(
X̃d
s,e

)2
T

,

where d ∈ {s, s+ 1, . . . , e− 1}. With j = 0, 1, . . . , J the number of estimated
change-points related to Mj , if j > N , it means that all the change-points have

been detected (see explanation in Step 2) and therefore
∣∣∣X̃d

s,e

∣∣∣ ≤ 2
√
2 log T since

we are working under AT . Therefore, σ̂2
j−1 − σ̂2

j ≤ 8 log T/T . In addition, since we
are working in the set DT , we have that

∣∣σ̂2
N − σ2

∣∣ ≤ C∗ log T/T , for a positive
constant C∗. Using these results, the definition of sSIC(j) in (50), and a first order
Taylor expansion, we conclude that

sSIC(j)− sSIC(N) =
T

2
log

σ̂2
j

σ̂2
N

+ (j −N)(log T )α

=
T

2
log

(
1−

σ̂2
N − σ̂2

j

σ̂2
N

)
+ (j −N)(log T )α

≥ −T
2
(1 + w)

σ̂2
N − σ̂2

j

σ̂2
N

+ (j −N)(log T )α

≥ −K1 log T + (j −N)(log T )α, (51)
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where K1 and w are positive constants. The lower bound in (51) is positive for T
large enough. Now, if j < N , then from the proof of Theorem 1, we know that in the
interval [s, e], we have that

∣∣∣X̃d
s,e

∣∣∣ ≥ C̃2

√
δT fT , leading to σ̂2

j−1− σ̂2
j ≥ C̃2

2δtf
2

T
/T .

Therefore,

sSIC(j)− sSIC(N) =
T

2
log

σ̂2
j

σ̂2
N

+ (j −N)(log T )α

=
T

2
log

(
1 +

σ̂2
j − σ̂2

N

σ̂2
N

)
+ (j −N)(log T )α

≥ −T
2
(1− w2)

σ̂2
j − σ̂2

N

σ̂2
N

+ (j −N)(log T )α

≥ K2δT f
2

T
+ (j −N)(log T )α, (52)

where K2 and w2 are positive constants. The lower bound in (52) is positive for T
large enough because (log T )α = o

(
δT f

2

T

)
. The results in (51) and (52) show that

for T large enough and on the set AT ∩DT , we have that sSIC(j) > sSIC(N), for
j 6= N . Therefore, sSIC(j) is minimized for j = N , showing that N̂ = N . �

Proof of Corollary 1. From now on, we denote by

ε̃bs,e =

√
e− b

n(b− s+ 1)

b∑
t=s

εt −

√
b− s+ 1

n(e− b)

e∑
t=b+1

εt,
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where 1 ≤ s ≤ b < e ≤ T and n = e − s + 1. Using also the notation in (14), we
have

∃s,b,e
{(
ε̃bs,e
)2
> 3γ

}
⇐⇒ ∃s,b,e

{
e− b
n

(
˜̃εs,b
)2

+
b− s+ 1

n

(
˜̃εb+1,e

)2
−2{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > 3γ

}
=⇒ ∃s,b,e

{
e− b
n

(
˜̃εs,b
)2

+
b− s+ 1

n

(
˜̃εb+1,e

)2
+2
{(e− b)(b− s+ 1)}1/2

n
|˜̃εs,b||˜̃εb+1,e| > 3γ

}
=⇒ ∃s,b,e

{
e− b
n

(
˜̃εs,b
)2
>
e− b
n

2γ

}
∨ ∃s,b,e

{
b− s+ 1

n

(
˜̃εb+1,e

)2
>
b− s+ 1

n
2γ

}
∨ ∃s,b,e

{
2
{(e− b)(b− s+ 1)}1/2

n
|˜̃εs,b||˜̃εb+1,e| > γ

}
=⇒ ∃s,b

{(
˜̃εs,b
)2
> 2γ

}
∨ ∃b,e

{(
˜̃εb+1,e

)2
> 2γ

}
∨ ∃s,b,e

{
2
{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

}
∨ ∃s,b,e

{
−2{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

}
. (53)

Define
γ′ =

γn

2{(e− b)(b− s+ 1)}1/2
,

and consider any straight line in the (˜̃εs,b, ˜̃εb+1,e)-plane, defined by the equation
α˜̃εs,b + β˜̃εb+1,e = λ, that is tangent to the curve ˜̃εs,b˜̃εb+1,e = γ′ in the quadrant
(˜̃εs,b, ˜̃εb+1,e) > (0, 0). By elementary calculus, which we do not repeat here, the
tangency is attained when λ = 2{γ′αβ}1/2. By elementary geometry,

˜̃εs,b˜̃εb+1,e > γ′ =⇒ |α˜̃εs,b + β˜̃εb+1,e| > 2{γ′αβ}1/2. (54)

Consider the particular values of (α, β) given by

α =

{
b− s+ 1

n

}1/2

β =

{
e− b
n

}1/2

,

and note that by the definition of ˜̃εs,e we have

α˜̃εs,b + β˜̃εb+1,e =

{
b− s+ 1

n

}1/2

˜̃εs,b +

{
e− b
n

}1/2

˜̃εb+1,e = ˜̃εs,e. (55)
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Therefore, from the definitions of γ′, α and β, the implication in (54) and the identity
in (55), we have

2
{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ ⇐⇒ ˜̃εs,b˜̃εb+1,e > γ′

=⇒ |˜̃εs,e| > 2{γ′αβ}1/2 ⇐⇒ |˜̃εs,e| > {2γ}1/2 ⇐⇒
(
˜̃εs,e
)2
> 2γ. (56)

Considering again (53), this implies

∃s,b,e
{(
ε̃bs,e
)2
> 3γ

}
=⇒ ∃s,b

{(
˜̃εs,b
)2
> 2γ

}
∨ ∃s,b,e

{
−2{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

}
.

(57)

By (15), we have

P

(
∃s,b,e

{
−2{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

})
≤ P

(
∃s,b,e

{
2
{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

})
. (58)

From (56), we have

P

(
∃s,b,e

{
2
{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

})
≤ P

(
∃s,e

(
˜̃εs,e
)2
> 2γ

)
(59)

Therefore, from (57), and using (58) and (59) in turn, we have

P (∃s,b,e
(
ε̃bs,e
)2
> 3γ) ≤ P (∃s,e

(
˜̃εs,e
)2
> 2γ)

+ P

(
∃s,b,e

{
2
{(e− b)(b− s+ 1)}1/2

n
˜̃εs,b˜̃εb+1,e > γ

})
≤ 2P (∃s,e

(
˜̃εs,e
)2
> 2γ), (60)

Now, for any δ > 0, taking γ = σ2(1 + δ) log T , we have that

P
(
∃s,b,e

(
ε̃bs,e
)2
> 3σ2(1 + δ) log T

)
≤ 2P

(
∃s,e

(
˜̃εs,e
)2
> 2σ2(1 + δ) log T

)
,

and the statement is a consequence of Lemma 1 in Yao (1988). �
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