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Abstract

We propose a new methodology for denoising, variance-stabilizing and normalizing
signals whose both mean and variance are parameterized by a single unknown varying
parameter, such as Poisson or scaled chi-squared. Key to our methodology is the ob-
servation that the signed and square-rooted generalized log-likelihood ratio test for the
equality of the local means is approximately and asymptotically distributed as standard
normal under the null. We use these test statistics within the Haar wavelet transform
at each scale and location, referring to them as the likelihood ratio Haar (LRH) co-
efficients of the data. In the denoising algorithm, the LRH coefficients are used as
thresholding decision statistics, which enables the use of thresholds suitable for i.i.d.
Gaussian noise, despite the standard Haar coefficients of the signal being heteroscedas-
tic. In the variance-stabilizing and normalizing algorithm, the LRH coefficients replace
the standard Haar coefficients in the Haar basis expansion. To the best of our knowl-
edge, the variance-stabilizing and normalizing properties of the generalized likelihood
ratio test have not been interpreted or exploited in this manner before. We prove
the consistency of our LRH smoother for Poisson counts with a near-parametric rate,
and various numerical experiments demonstrate the good practical performance of our
methodology.

Key words: variance-stabilizing transform, Haar-Fisz, Anscombe transform, log trans-
form, Box-Cox transform, Gaussianization.

1 Introduction

Wavelets have become an established tool in data science and were recently used in tasks
as diverse as seizure detection and epilepsy diagnosis (Faust et al., 2015), reconstruction
of compressively sensed magnetic resonance images (Zhang et al., 2015), identification of
protein-protein binding sites (Jia et al., 2016), wind power forecast (Chitsaz et al., 2015),
and digital image watermarking (Agoyi et al., 2015). Their popularity and potential for
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useful applications in data analysis did not escape the attention of Peter Hall1, who wrote,
amongst others, on threshold choice in wavelet curve estimation (Hall and Patil, 1996a,b),
wavelet methods for functions with many discontinuities (Hall et al., 1996), wavelets for
regression with irregular design (Hall and Turlach, 1997) and block-thresholded wavelet
estimators (Hall et al., 1999).

In brief, traditional wavelet transformations are orthonormal transformations of the input
data (be it one-dimensional signals or images) into coefficients that carry information about
the local behaviour of the data at a range of dyadic scales and locations. The major
benefits of wavelet transforms is that they tend to offer sparse representation of the input
data, with a small number of wavelet coefficients often being able to encode much of the
energy of the input signal, and that they are computable and invertible in linear time via
recursive pyramid algorithms (Mallat, 1989; Daubechies, 1992). Excellent reviews of the
use of wavelets in statistics can be found, for example, in Vidakovic (1999) and Nason
(2008). Because of their sparsity and rapid computability properties, wavelets continue to
be a useful statistical tool also in the “big data” era.

One canonical task facilitated by wavelets is the removal of noise from signals, which usu-
ally proceeds by taking a wavelet transform of the data, thresholding away the (typically
many) wavelet coefficients that are small in magnitude, preserving those few that are large
in magnitude, and taking the inverse wavelet transform. Since the seminal paper by Donoho
and Johnstone (1994) in which the general idea was first proposed, several other methods
for wavelet smoothing of one-dimensional signals have appeared, including via block thresh-
olding (Cai, 1999) or using the empirical Bayes approach (Johnstone and Silverman, 2005).
The majority of works in this area, including those listed above, make the i.i.d. Gaussian
noise assumption. By contrast, the focus of this article is the treatment of signals in which
the variance of the noise is a function of the mean; this includes Poisson- or scaled-chi-
squared-distributed signals. (Throughout the paper, we refer to a distribution as a ‘scaled
chi-squared’, or simply ‘chi-squared’, if it takes the form σ2m−1χ2

m.)

The simplest example of a wavelet transform, and the focus of this article, is the Haar trans-
form, which can be described as a sequence of symmetric scaled differences of consecutive
local means of the data, computed at dyadic scales and locations and naturally forming a
binary tree consisting of ‘parents’ and ‘children’. Its local difference mechanism means that
it offers sparse representations for (approximately) piecewise-constant signals.

The starting point for this work is the observation that testing whether or not each Haar
coefficient of a signal exceeds a certain threshold (in the denoising task described above) can
be interpreted as the likelihood ratio test for the equality of the corresponding local means
of the signal in the i.i.d. Gaussian noise model. Our aim in this paper is to take this obser-
vation further and propose similar multiscale likelihood ratio tests for other distributions,
most notably those in which the variance is a function of the mean, such as Poisson or scaled
chi-squared. The proposed multiscale likelihood ratio tests will reduce to the traditional
thresholding of Haar wavelet coefficients for Gaussian data, but will take entirely different
and new forms for other distributions. This will lead to a new, unified class of algorithms
useful for problems such as e.g. Poisson intensity estimation, Poisson image denoising,
spectral density estimation in time series, or time-varying volatility estimation in finance.
(Although the focus of this article is on one-dimensional signals, extension of our methodol-

1This article is being submitted for publication in a special issue of Statistica Sinica in memory of Prof.
Peter Hall.
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ogy to images is as straightforward as the extension of the standard one-dimensional Haar
wavelet transform to two dimensions.)

The new multiscale likelihood ratio tests will naturally induce a new construction, likelihood
ratio (Haar) wavelets, which have the benefit of producing (equivalents of) Haar wavelet
coefficients that are asymptotically standard normal under the null hypothesis of the cor-
responding local means being equal, even for inhomogeneous non-Gaussian signals, such as
those listed above. This will (a) make it much easier to choose a single threshold parameter
in smoothing these kinds of data and (b) serve as a basis for new normalizing transfor-
mations for these kinds of data, which bring their distribution close to Gaussianity. This
article demonstrates both these phenomena. Speaking heuristically, the particular device
that enables these results is the Wilks’ theorem, according to which the signed square-
rooted likelihood ratio statistic will often be approximately distributed as standard normal,
an observation that is key to our results but that, to the best of our knowledge, has not
been explored in a variance-stabilization context before.

Wavelet-based Poisson noise removal, with our without the use of a variance-stabilizing
and/or normalizing transform, has a long history. For a Poisson variable X, the Anscombe
(1948) transform 2(X + 3/8)1/2 brings its distribution to approximate normality with vari-
ance one. Donoho (1993) proposes to pre-process Poisson data via the Anscombe transform,
and then use wavelet-based smoothing techniques suitable for i.i.d. Gaussian noise. This
and a number of other wavelet-based techniques for denoising Poisson-contaminated signals
are reviewed and compared in Besbeas et al. (2004). These include the translation-invariant
multiscale Bayesian techniques by Kolaczyk (1999b) and Timmermann and Nowak (1997,
1999), shown to outperform earlier techniques in Kolaczyk (1997, 1999a) and Nowak and
Baraniuk (1999). Willett and Nowak (2003) propose the use of “platelets” in Poisson image
denoising. The Haar-Fisz methodology Fryzlewicz and Nason (2004), drawing inspiration
from earlier work by Fisz (1955) outside the wavelet context, proceeds by decomposing
the Poisson data via the standard Haar transform, then variance-stabilizing the Haar co-
efficients by dividing them by the MLE of their own standard deviation, and then using
thresholds suitable for i.i.d. Gaussian noise with variance one. Closely related ideas appear
in Luisier et al. (2010) and Reynaud-Bouret and Rivoirard (2010). Jansen (2006) extends
the Haar-Fisz idea to other wavelets. As an alternative to Anscombe’s transform, which is
known not to work well for low Poisson intensities, Zhang et al. (2008) introduce a more in-
volved square-root-type variance-stabilizing transform for (filtered) Poisson data. Hirakawa
and Wolfe (2012) propose Bayesian Haar-based shrinkage for Poisson signals based on the
exact distribution of the difference of two Poisson variates (the Skellam distribution).

In multiplicative set-ups, such as signals distrubuted as Xk = σ2km
−1χ2

m, the logarithmic
transform stabilizes the variance exactly, but does not bring the distribution of the trans-
formed Xk close to normality, especially not for small values of m such as 1 or 2. In the
context of spectral density estimation in time series, in which the signal is approximately
exponentially distributed, wavelet shrinkage for the logged (and hence variance-stabilized)
periodogram is studied, amongst others, in Moulin (1994), Gao (1997), Pensky et al. (2007)
and Freyermuth et al. (2010). An alternative route, via pre-estimation of the variance
of the wavelet coefficients (rather than via variance stabilization) is taken in Neumann
(1996). Haar-Fisz or wavelet-Fisz estimation for the periodogram or other (approximate)
chi-squared models is developed in Fryzlewicz et al. (2006), Fryzlewicz and Nason (2006)
and Fryzlewicz et al. (2008).
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In more general settings, wavelet estimation for exponential families with quadratic or
cubic variance functions is considered in Antoniadis and Sapatinas (2001), Antoniadis et al.
(2001) and Brown et al. (2010). The Haar-Fisz or wavelet-Fisz transformations for unknown
distributions are studied in Fryzlewicz (2008), Fryzlewicz et al. (2007), Motakis et al. (2006)
and Nason (2014). Variance-stabilizing transformations are reviewed in the (unpublished)
manuscript by Foi (2009).

Our approach departs from the existing literature in that our variance-stabilization and
normalization device does not involve either the pre-estimation of the variance (as, effec-
tively, in the Haar-Fisz transform) or the application of a Box-Cox-type transform (as in
the Anscombe variance stabilization for Poisson data or the logarithmic transform in mul-
tiplicative models). By contrast, our approach uses the entire likelihood for the purpose of
variance-stabilization and normalization. To this end, we exploit the “variance-stabilizing”
and “normalizing” properties of the generalized likelihood ratio test, which to our knowledge
have not been interpreted or employed in the literature in this way and with this purpose
before. As a result, and in contrast to much of the existing literature, the thresholding
decision in our proposed smoothing methodology is not based on the usual wavelet detail
coefficients, but on the newly-proposed likelihood ratio Haar coefficients. For complete-
ness, we mention that Kolaczyk and Nowak (2004) construct multiscale decompositions of
the Poisson likelihood, which leads them to consider binomial likelihood ratio tests for the
purpose of thresholding; however, this is done in a context that does not use the signed
and square-rooted generalized log-likelihood ratio tests or utilize their variance-stabilizing
or normalizing properties.

The paper is organized as follows. Section 2 motivates and introduces the concept of likeli-
hood ratio Haar coefficients and outlines our general methodology for smoothing and vari-
ance stabilization/normalization. Section 3 describes our method in two special cases, those
of the Poisson and the scaled chi-squared distribution. Section 4 formulates and discusses a
consistency result for the Poisson smoother. Section 5 compares and contrasts the likelihood
ratio Haar coefficients and the Fisz coefficients. Section 6 provides a numerical study illus-
trating the practical performance of our smoothing and variance stabilization/normalization
algorithms. Section 7 offers a further discussion, and the proof of our theoretical result is
in the appendix.

2 General methodology

We first describe the general setting. Let X1, . . . , Xn be a sequence of independent random
variables such that

Xk ∼ F (θk),

where F (θ) is a family of distributions parameterized by a single unknown scalar parameter
θ such that E(Xk) = θk. The reader is invited to think of our two running examples:
Xk ∼ Pois(λk), andXk ∼ σ2km−1χ2

m (throughout the paper, we refer to the latter example as
‘scaled chi-squared’ or simply ‘chi-squared’). Extensions to higher-dimensional parameters
are possible using similar devices to that described in this paper, although certain aspects
of the asymptotic normality are then lost, so we do not pursue this extension in the current
work.

We recall the traditional Haar transform and the fundamentals of signal smoothing via
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(Haar) wavelet thresholding. In the following, we assume that n = 2J , where J is an
integer. Extensions to non-dyadic n are possible, see e.g. Wickerhauser (1994). Given the
input data X = (X1, . . . , Xn), we define s0 = (s0,1, . . . , s0,n) = X. The Haar transform
recursively performs the following steps

sj,k = 2−1/2(sj−1,2k−1 + sj−1,2k), (1)

dj,k = 2−1/2(sj−1,2k−1 − sj−1,2k), (2)

for j = 1, . . . , J and k = 1, . . . , 2J−j . The indices j and k are thought of as “scale” and
“location” parameters, respectively, and the coefficients sj,k and dj,k as the “smooth” and
“detail” coefficients (respectively) at scale j, location k. It is easy to express sj,k and dj,k
as explicit functions of X:

sj,k = 2−j/2
k2j∑

i=(k−1)2j+1

Xi,

dj,k = 2−j/2

(k−1)2j+2j−1∑
i=(k−1)2j+1

Xi −
k2j∑

i=(k−1)2j+2j−1+1

Xi

 .

Defining dj = (dj,k)
2J−j
k=1 , the Haar transform H of X is then

H(X) = (d1, . . . ,dJ , sJ,1).

The “pyramid” algorithm in formulae (1) and (2) enables the computation of H(X) in
O(n) operations. H(X) is an orthonormal transform of X and can easily be inverted by
undoing steps (1) and (2). If the mean signal Θ = (θ1, . . . , θn) is piecewise-constant, then
those coefficients dj,k that correspond to the locally constant segments of Θ, being local
differences of X, will be zero-centered. This justifies the following procedure for estimating
the mean vector Θ: take the Haar transform of X, retain those coefficients dj,k for which
|dj,k| > t for a certain threshold t and set the others to zero, then take the inverse Haar
transform of the thus-“hard”-thresholded vector.

In the i.i.d. Gaussian noise model, in which Xk = θk + εk, where ε ∼ N(0, σ2) with σ2

assumed known, the operation |dj,k| > t is exactly the likelihood ratio test for the local
constancy of Θ in the following sense.

1. Assume that the parameters (θi)
(k−1)2j+2j−1

i=(k−1)2j+1
are all constant and equal to θ(1). The

indices i are the same as those corresponding to the Xi’s with positive weights in dj,k.

2. Assume that the parameters (θi)
k2j

i=(k−1)2j+2j−1+1
are all constant and equal to θ(2).

The indices i are the same as those corresponding to the Xi’s with negative weights
in dj,k.

3. Test H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2); the Gaussian likelihood ratio test
reduces to |dj,k| > t, where t is naturally related to the desired significance level. Note
that H0 can alternatively be phrased as E(dj,k) = 0, and H1 – as E(dj,k) 6= 0.

Because under each H0, the variable dj,k is distributed as N(0, σ2) due to the orthonormality
of the Haar transform, the same t can meaningfully be used across different scales and
locations (j, k).
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In models other than Gaussian, the operation |dj,k| > t can typically no longer be interpreted
as the likelihood ratio test for the equality of θ(1) and θ(2). Moreover, the distribution of
dj,k will not generally be the same under each H0 but will, in many models, vary with the

local (unknown) parameters (θi)
k2j

i=(k−1)2j+1
, which makes the selection of t in the operation

|dj,k| > t challenging. This is, for example, the case in our running examples, Xk ∼ Pois(λk)
and Xk ∼ σ2km−1χ2

m, both of which are such that Var(Xk) is a non-trivial function of E(Xk),

which translates into the dependence of dj,k on the local means vector (θi)
k2j

i=(k−1)2j+1
, even

under the null hypothesis E(dj,k) = 0.

In the (non-Gaussian) model under consideration, this can be remedied by replacing the
operation |dj,k| > t with a likelihood ratio test for H0 : θ(1) = θ(2) against H1 : θ(1) 6= θ(2)

suitable for the distribution at hand. More specifically, denoting by L(θ |Xk1 , . . . , Xk2) the
likelihood of the constant parameter θ given the data Xk1 , . . . , Xk2 and by θ̂(1), θ̂(2) the
MLEs of θ(1), θ(2), respectively, we design a new Haar-like transform, in which we replace
the “test statistic” dj,k by

gj,k = sign(θ̂(1)−θ̂(2))

{
2 log

supθ(1) L(θ(1) |X(k−1)2j+1, . . . , X(k−1)2j+2j−1) supθ(2) L(θ(2) |X(k−1)2j+2j−1+1, . . . , Xk2j )

supθ L(θ |X(k−1)2j+1, . . . , Xk2j )

}1/2

,

(3)

the signed and square-rooted generalized log-likelihood ratio statistic for testing H0 against
H1. The rationale is that by Wilks’ theorem, under H0, this quantity will asymptotically be
distributed as N(0, 1) for a class of models that includes, amongst others, our two running
examples (Poisson and scaled chi-squared). We refer to gj,k as the likelihood ratio Haar
coefficient of X at scale j and location k.

By performing this replacement, we tailor the Haar transform to the distribution of the
input vector, rather than using the standard Haar transform, which as we argued earlier is
the most suitable for Gaussian input data.

2.1 General methodology for smoothing

We now outline the general methodology for signal smoothing (denoising) involving likeli-
hood ratio Haar wavelets. The problem is to estimate Θ from X. Let I be the indicator
function. The basic smoothing algorithm proceeds as follows.

1. With X on input, compute the coefficients sj,k, dj,k and gj,k as defined by (1), (2) and
(3), respectively.

2. Estimate each µj,k := E(dj,k) by

µ̂j,k =

{
0 j = 1, . . . , J0,
dj,kI(|gj,k| > t) j = J0 + 1, . . . , J.

(4)

3. Defining µ̂j = (µ̂j,k)
2J−j
k=1 , compute the inverse Haar transform of the vector (µ̂1, . . . , µ̂J , sJ,1)

and use it as the estimate Θ̂ of Θ.
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The reason for setting µ̂j,k = 0 at the finest scales is that a certain strong asymptotic
normality does not hold at these scales; see the proof of Theorem 4.1. This theorem also
specifies the permitted magnitude of J0.

The operation in the second line of (4) is referred to as hard thresholding; soft thresholding,
in which the surviving coefficients are shrunk towards zero, is also possible. The threshold
t is a tuning parameter of the procedure and we discuss its selection later. The above
algorithm differs from the standard smoothing using Haar wavelets and hard thresholding
in its use of the thresholding statistic: the standard Haar smoothing would use the decision
|dj,k| > t, whereas we use |gj,k| > t, as motivated in the introductory part of this section.

2.2 General methodology for variance stabilization and normalization

Due to the fact that gj,k will typically be distributed as close to N(0, 1) under each H0

(that is, for the majority of scales j and locations k), replacing the coefficients dj,k with gj,k
can be viewed as “normalizing” or “Gaussianizing” the input signal in the Haar wavelet
domain. The standard inverse Haar transform will then yield a normalized version of the
input signal. We outline the basic algorithm below.

1. With X on input, compute the coefficients sj,k and gj,k as defined by (1) and (3),
respectively.

2. Defining gj = (gj,k)
2J−j
k=1 , compute the inverse Haar transform of the vector (g1, . . . ,gJ , sJ,1)

and denote the resulting vector by G(X).

Throughout the paper, we will be referring to G(X) as the likelihood ratio Haar transform
of X.

Inverting the standard Haar transform proceeds by transforming each pair of coefficients
(sj,k, dj,k) into (sj−1,2k−1, sj−1,2k), hierarchically for j = J, . . . , 1 (note that s0,k = Xk).
Similarly, to demonstrate that the likelihood Haar transform is invertible, we need to show
that it is possible to transform (sj,k, gj,k) into (sj−1,2k−1, sj−1,2k). This will be shown for
the Poisson case in Section 3.1 and for the chi-squared case in Section 3.2.

An (invertible) variance-stabilization transformation such as G(X) is useful as it enables
the smoothing of X in a modular way: (i) apply G(X), (ii) use any smoother suitable for
i.i.d. standard normal noise, (iii) take the inverse of G(X) to obtain a smoothed version of
X.

3 Specific examples: Poisson and chi-squared

3.1 The Poisson distribution

For Xi ∼ Pois(λ), we have P (Xi = k) = exp(−λ)λ
k

k! for k = 0, 1, . . ., and if Xs, . . . , Xe ∼
Pois(λ), then the MLE λ̂ of λ is X̄e

s = 1
e−s+1

∑e
i=sXi. This, after straightforward algebra,

leads to
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gj,k = sign(X̄
(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1)2j/2 (5)

×
{

log(X̄
(k−1)2j+2j−1

(k−1)2j+1
)X̄

(k−1)2j+2j−1

(k−1)2j+1
+ log(X̄k2j

(k−1)2j+2j−1+1)X̄k2j

(k−1)2j+2j−1+1 − 2 log(X̄k2j

(k−1)2j+1)X̄k2j

(k−1)2j+1

}1/2

,

using the convention 0 log 0 = 0.

We now show the invertibility of the Poisson likelihood ratio Haar transform. As men-
tioned in Section 2.2, this amounts to showing that (sj,k, gj,k) can be transformed into

(sj−1,2k−1, sj−1,2k). Denoting for brevity u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ig-

noring some multiplicative constants and the square-root operation in gj,k, which are irrele-
vant for invertibility, this amounts to showing that (u, v) can be uniquely determined from
(u+ v)/2 and sign(u− v){u log u+ v log v− (u+ v) log((u+ v)/2)}. The term sign(u− v)
determines whether u ≤ v or vice versa, so assume that u ≤ v w.l.o.g. Denoting by a
the known value of u + v, observe that the function (a − v) log(a − v) + v log v is strictly
increasing for v ∈ [a/2, a], which means that v can be determined uniquely and therefore
that the Poisson likelihood ratio Haar transform is invertible.

3.2 The chi-squared distribution

For Xi ∼ σ2im
−1χ2

m = Γ(m/2,m/(2σ2i )), if Xs, . . . , Xe ∼ Γ(m/2,m/(2σ2)), then the MLE
σ̂2 of σ2 is X̄e

s = 1
e−s+1

∑e
i=sXi. This, after straightforward algebra, leads to

gj,k = sign(X̄
(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1)2j/2 (6)

×
{
m

[
log(X̄k2j

(k−1)2j+1)− 1

2
log(X̄

(k−1)2j+2j−1

(k−1)2j+1
)− 1

2
log(X̄k2j

(k−1)2j+2j−1+1)

]}1/2

.

Up to the multiplicative factor m1/2, the form of the transform in (6) is the same for any
m, which means that the likelihood ratio Haar coefficients gj,k (computed with an arbitrary
m) also achieve variance stabilization if m is unknown (but possibly to a constant different
from one).

We now show the invertibility of the chi-squared likelihood ratio Haar transform. As in

Section 3.1, we denote u = X̄
(k−1)2j+2j−1

(k−1)2j+1
, v = X̄k2j

(k−1)2j+2j−1+1
and ignore some multiplica-

tive constants and the square-root operation in gj,k which are irrelevant for invertibility.
Assume that u ≤ v w.l.o.g. Denoting by a the known value of u + v, observe that the
function − log(a− v)− log v is strictly increasing for v ∈ [a/2, a), which means that v can
be determined uniquely and therefore that the chi-squared likelihood ratio Haar transform
is invertible.

In both the Poisson (formula (5)) and the chi-squared cases, gj,k is a function of the lo-

cal means X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
, which is unsurprising as these are sufficient

statistics for the corresponding population means in both these distributions.

Finally, we note that since these local means can be computed in computational time O(n)
using the pyramid algorithm in formulae (1) and (2), the likelihood ratio Haar coefficients
gj,k can be also computed in linear time.
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4 Theoretical analysis of the likelihood ratio Haar Poisson
smoother

In this section, we provide a theoretical mean-square analysis of the performance of the
signal smoothing algorithm involving likelihood ratio Haar wavelets, described in Section
2.1. Although we focus on the Poisson distribution, the statement of the result and the
mechanics of the proof will be similar for certain other distributions, including scaled chi-
squared. The following result holds.

Theorem 4.1 Let Λ = (λ1, . . . , λn) be a positive piecewise-constant vector, i.e. let there
exist up to N indices η1, . . . , ηN for which ληi 6= ληi−1. Let n = 2J , where J is a positive
integer. Assume Λ is bounded from above and away from zero, and denote Λ̄ := maxi λi,
Λ := mini λi, Λ′ = Λ̄−Λ and λ̄es = 1

e−s+1

∑e
i=s λi. Let Xk ∼ Pois(λk) for k = 1, . . . , n. Let

Λ̂ be obtained as in the algorithm of Section 2.1, using threshold t and with a fixed β ∈ (0, 1)
such that J0 = blog2 n

βc. Then, with dj,k and µj,k defined in the algorithm of Section 2.1
and with X̄e

s = 1
e−s+1

∑e
i=sXi, on set A ∩ B, where

A = {∀ j = J0 + 1, . . . , J, k = 1, . . . , 2J−j (λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| < t1},

B = {∀ j = J0, . . . , J, k = 1, . . . , 2J−j 2j/2(λ̄k2
j

(k−1)2j+1)
−1/2|X̄k2j

(k−1)2j+1 − λ̄
k2j

(k−1)2j+1| < t2},

whose probability approaches 1 as n → ∞ if t1 = C1 log1/2 n and t2 = C2 log1/2 n with
C1 > {2(1− β)}1/2 and C2 > {2(1− β)}1/2, if threshold t is such that

t ≥ t1

(1− t22−
J0+1

2 Λ−1/2)1/2
, (7)

we have

n−1‖Λ̂− Λ‖2 ≤
1

2
n−1N(Λ′)2(nβ − 1) + 2n−1N Λ̄1/2

{
(J − J0)(t2 + t21)Λ̄

1/2 + t2t2(2 + 21/2)n−β/2
}

+ n−1t21λ̄
n
1 ,

where ‖ · ‖ is the l2-norm of its argument.

Bearing in mind the magnitudes of t2 and J0, we can see that the term t22
−J0+1

2 Λ−1/2

becomes arbitrarily close to zero for large n, and therefore, from formula (7), the threshold
constant t can become arbitrarily close to t1. In particular, it is perfectly safe to set t to be
the “universal” threshold suitable for iid N(0, 1) noise (Donoho and Johnstone, 1994), that
is t = {2 log n}1/2. It is in this precise sense that our likelihood ratio Haar construction
achieves variance stabilization and normalization: in order to denoise Poisson signals in
which the variance of the noise depends on the local mean, it is now possible to use the
universal Gaussian threshold, as if the noise were Gaussian with variance one. Note that in
classical Haar wavelet thresholding, which uses the thresholding decision |dj,k| > t̃ rather
than our |gj,k| > t, the threshold t̃ would have to depend on the level of the Poisson intensity
Λ over the support of dj,k, which is unknown; our approach completely circumvents this.

If the number N of change-points does not increase with the sample size n, then the domi-
nant term in the mean-square error is of order O(nβ−1). This suggests that β should be set
to be “arbitrarily small”, in which case the MSE becomes arbitrarily close to the parametric
rate O(n−1).
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5 Links between likelihood ratio Haar wavelets and the Haar-
Fisz methodology

This section compares the likelihood ratio Haar coefficients gj,k, defined in the general, Pois-
son and chi-squared cases in formulae (3), (5) and (6), respectively, to the Fisz coefficients
fj,k (Fryzlewicz and Nason, 2004), which the above work defines as the Haar coefficients
dj,k divided by the maximum likelihood estimates of their own standard deviation under
the null hypothesis E(dj,k) = 0. We start with the Poisson case and note that by Fryzlewicz
and Nason (2004), fj,k is then expressed as

fj,k = 2j/2−1
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1√
X̄k2j

(k−1)2j+1

.

We first note that sign(gj,k) = sign(fj,k) and that Lemma A.2, used with f(u) = u log u; f(0) =
0 in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, since the inequality in
Lemma A.2 arises as a simple application of Jensen’s inequality to the convex function f(·),
it is intuitively apparent that the less convexity in f(·), the closer gj,k will be to fj,k. Noting
that f ′′(u) = u−1 and therefore the degree of convexity in f(u) decreases as u increases,
it can heuristically be observed that gj,k and fj,k should be closer to each other for larger

values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
(i.e. for high Poisson intensities), and further

apart otherwise.

To illustrate this phenomenon and other interesting similarities and differences between
the Fisz and the likelihood ratio Haar coefficients in the Poisson case, consider the fol-

lowing two numerical examples, in which we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1

and X̄k2j

(k−1)2j+2j−1+1
and compute the corresponding 1000 realisations of {g(i)j,k}

1000
i=1 and

{f (i)j,k}
1000
i=1 .

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As is apparent from

Figure 1, the values of g
(i)
j,k − f

(i)
j,k are close to zero. Figure 2 provides further evidence

that the empirical distributions of f
(i)
j,k and g

(i)
j,k are difficult to distinguish by the

naked eye. Q-q plots (not shown) exhibit good agreement for both g
(i)
j,k and f

(i)
j,k

with the normal distribution, and we have V̂ar(g
(i)
j,k) = 1.06 and V̂ar(f

(i)
j,k) = 1.05,

which provides evidence that both the likelihood ratio Haar coefficients and the Fisz
coefficients achieve good variance stabilization in this high-intensity case.

• j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. Figures 3 and 4 demon-

strate that in this low-intensity case, the distributions of f
(i)
j,k and g

(i)
j,k are now further

apart. The Fisz coefficients and the likelihood ratio Haar coefficients seem to be simi-

larly close to the normal distribution, with the empirical skewness and kurtosis for f
(i)
j,k

being 0.39 and 2.52 (respectively) and those for g
(i)
j,k being 0.35 and 2.53 (respectively).

However, the likelihood ratio Haar coefficients achieve far better variance stabilization

in this low-intensity example: we have V̂ar(g
(i)
j,k) = 0.92 versus V̂ar(f

(i)
j,k) = 0.68.
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Figure 1: The Poisson case. Histogram of the empirical distribution of {|g(i)j,k| − |f
(i)
j,k |}

1000
i=1

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 2: The Poisson case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left) and

{f (i)j,k}
1000
i=1 (right) with j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5.
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Figure 3: The Poisson case. Histogram of the empirical distribution of {|g(i)j,k| − |f
(i)
j,k |}

1000
i=1

with j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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Figure 4: The Poisson case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left) and

{f (i)j,k}
1000
i=1 (right) with j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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We now turn to the chi-squared distribution. The Fisz coefficients for the σ2χ2
1 distribution

are derived in Fryzlewicz et al. (2006), those for the exponential distribution (σ22−1χ2
2)

appear in Fryzlewicz et al. (2008) and the general case σ2m−1χ2
m is covered in Fryzlewicz

(2008). In the general case of the σ2m−1χ2
m distribution, using the notation from the current

paper, the Fisz coefficients fj,k are expressed as

fj,k = 2
j−3

2 m1/2
X̄

(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

X̄k2j

(k−1)2j+1

. (8)

As in the Poisson case, we obviously have sign(gj,k) = sign(fj,k). Lemma A.2, used with
f(u) = − log u in the notation of that lemma, reduces to |gj,k| ≥ |fj,k|. Moreover, by the
same convexity argument as in the Poisson case, gj,k and fj,k will be closer to each other

for larger values of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
.

A major difference between the Poisson and the chi-square cases is that in the chi-square
case, fj,k is a compactly supported random variable (see formula (8)), whereas gj,k is not.
This difference does not apply in the Poisson case, in which neither fj,k nor gj,k are com-
pactly supported. This has implications for how quickly fj,k and gj,k approach the normal
distribution (with increasing j or m) in the chi-square case, and we illustrate this numeri-
cally below.

As before, we simulate 1000 realisations of X̄
(k−1)2j+2j−1

(k−1)2j+1
and X̄k2j

(k−1)2j+2j−1+1
and compute

the corresponding 1000 realisations of {g(i)j,k}
1000
i=1 and {f (i)j,k}

1000
i=1 . We consider the following

four cases.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. In this case,

the likelihood ratio Haar coefficients provide far better variance stabilization and

normalization than the Fisz coefficients. For f
(i)
j,k , we have the following empirical

values: variance 0.67, skewness 0.03, kurtosis 1.81. For g
(i)
j,k, we have variance 1.29,

skewness 0.03, kurtosis 3.06. Figure 5 confirms the superiority of the likelihood ratio
Haar coefficients over the Fisz coefficients as regards their closeness to the normal
distribution.

• m = 1, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. This low-sigma case

differs from the previous one mainly in that both the likelihood ratio Haar coefficients
and the Fisz coefficients are skewed to the right, although the Fisz coefficients (much)

more so. For f
(i)
j,k , we have the following empirical values: variance 0.59, skewness 0.89,

kurtosis 2.70. For g
(i)
j,k, we have variance 1.23, skewness 0.46, kurtosis 3.1. Figure 6

provides further visual evidence of the higher degree of symmetry in the likelihood
ratio Haar coefficients and its closeness to the normal distribution.

• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) = 10.5. As m increases,

both the likelihood ratio Haar coefficients and the Fisz coefficients move closer towards
variance-one normality, although again the likelihood ratio Haar coefficients beat Fisz.

For f
(i)
j,k , we have the following empirical values: variance 0.81, skewness 0.05, kurtosis

2.19. For g
(i)
j,k, we have variance 1.16, skewness 0.03, kurtosis 2.97. Figure 7 shows

both empirical distributions.
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• m = 2, j = 2, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7. In this low-sigma

case also, the likelihood ratio Haar coefficients appear to be far closer to variance-one

normality than the Fisz coefficients. For f
(i)
j,k , we have the following empirical values:

variance 0.57, skewness 1.15, kurtosis 4.08. For g
(i)
j,k, we have variance 1.04, skewness

0.45, kurtosis 3.64. Figure 8 shows both empirical distributions.

Overall, our empirical observations from the above (and other unreported) numerical ex-
ercises are as follows. For fine scales (i.e. those for which j is small) and for low degrees
of freedom m, the likelihood ratio Haar coefficients are much closer to a normal variable
with variance one than the corresponding Fisz coefficients. From the properties of the chi-
squared distribution, the effect of increasing j while keeping m constant is similar to the
effect of increasing m while keeping j constant. As m or j increases, the likelihood ratio
Haar coefficients appear to move closer to the normal distribution with variance one. How-

ever, for the same to happen with Fisz coefficients, the two means, E(X̄
(k−1)2j+2j−1

(k−1)2j+1
) and

E(X̄k2j

(k−1)2j+2j−1+1
), need to be relatively close to each other. The latter phenomenon can

also be observed in the Poisson case for increasing j. This is not unexpected as the results
from Fisz (1955) suggest that the asymptotic normality with variance one arises when the
two means approach each other asymptotically; no results are provided in Fisz (1955) on
the case in which the two means diverge.

We end this section with an interesting interpretation of Lemmas A.2 and A.4 in the case
of the Poisson distribution. Note that together, they imply

2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
2

1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+ 1

X̄k2j

(k−1)2j+2j−1+1

≥ |gj,k| ≥ 2j/2−1

∣∣∣X̄(k−1)2j+2j−1

(k−1)2j+1
− X̄k2j

(k−1)2j+2j−1+1

∣∣∣√
1
2

(
X̄

(k−1)2j+2j−1

(k−1)2j+1
+ X̄k2j

(k−1)2j+2j−1+1

) ,
on in other words, the magnitude of the likelihood ratio Haar coefficient is bounded from
below by the magnitude of the corresponding Fisz coefficient and from above by the magni-
tude of a “Fisz-like” coefficient in which the arithmetic mean in the denominator has been
replaced by the harmonic mean.

6 Practical performance

6.1 Likelihood ratio Haar smoothing

In Section 5, we demonstrated that the likelihood ratio Haar coefficients appeared to offer
better normalization and variance stabilization than the Fisz coefficients. In this section, we
show that this translates into better MSE properties of the likelihood ratio Haar smoother
than the analogous Haar-Fisz smoother, in both the Poisson and the exponential models,
on the examples considered. For comprehensive comparison of the performance of the Haar-
Fisz smoother to that of other techniques, see Fryzlewicz and Nason (2004), Besbeas et al.
(2004) and Fryzlewicz (2008), among others.

Our test signals are [1] Donoho and Johnstone’s (1994) blocks and [2] bumps functions,
scaled to have (min, max) of [1] (0.681, 27.029) and [2] (1, 12.565), both of length n = 2048.
We consider the following models:
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Figure 5: The chi-squared case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left)

and {f (i)j,k}
1000
i=1 (right) with m = 1, j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) =

10.5.
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Figure 6: The chi-squared case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left)

and {f (i)j,k}
1000
i=1 (right) with m = 1, j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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Figure 7: The chi-squared case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left)

and {f (i)j,k}
1000
i=1 (right) with m = 2, j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 10, E(X̄k2j

(k−1)2j+2j−1+1
) =

10.5.
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Figure 8: The chi-squared case. Boxplots of the empirical distributions of {g(i)j,k}
1000
i=1 (left)

and {f (i)j,k}
1000
i=1 (right) with m = 2, j = 2, E(X̄

(k−1)2j+2j−1

(k−1)2j+1
) = 0.2, E(X̄k2j

(k−1)2j+2j−1+1
) = 0.7.
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Method \Model (1a) (1b) (2a) (2b)

Haar-Fisz 0.615 8.647 0.357 1.053
Likelihood ratio Haar 0.605 7.958 0.341 0.905

Table 1: MSE over 1000 simulations for the two methods and four models described in
Section 6.1.

(1a), (2a): Poisson models, in which the signals [1], [2] (respectively) play the role of the
Poisson intensity Λ, so that Xk ∼ Pois(λk).

(1b), (2b): Exponential models, in which the signals [1], [2] (respectively) play the role of
the exponential mean σ2, so that Xk ∼ σ2k Exp(1) = σ2k2

−1χ2
2.

For all models, we compare the MSE performance of “like-for-like” likelihood ratio Haar and
Haar-Fisz smoothers, both constructed as described in Section 2.1, except the Haar-Fisz
smoother uses the corresponding coefficients fj,k in place of gj,k. We use the non-decimated
(translation invariant, stationary, maximum overlap) Haar transform (Nason and Silverman,
1995) to achieve fast averaging over all possibly cyclic shifts of the input data (note that
the classical decimated Haar transform as described in Section 2 is not invariant to cyclic
shifts). For better comparison of the effects of thresholding, we use J0 = 0 (i.e. we do
not enforce any fine-scale coefficients to be zero other than via thresholding). We use the
universal threshold t = {2 log n}1/2. Figures 9–12 shows sample reconstructions for the
likelihood ratio Haar method.

Table 1 shows that the likelihood ratio Haar smoother outperforms Haar-Fisz across all
the models considered. For the Poisson models, the improvement is fairly modest (2%
for blocks, 4% for bumps) but for the exponential models, it is more significant (8% for
blocks, 14% for bumps). One important reason for this improved performance is that as
demonstrated earlier, the likelihood ratio Haar coefficients have a higher magnitude than the
corresponding Fisz coefficients, and therefore more easily survive thresholding. This implies
that the likelihood ratio Haar smoother lets through “more signal” compared to the Haar-
Fisz smoother if both use the same threshold, however chosen. Another possible reason is
that as shown in Section 5, the likelihood ratio Haar coefficients are closer to variance-one
normality than the Fisz coefficients and therefore the use of thresholds designed for standard
normal noise may be more suitable for them.

We end this section with two remarks:

1. We use the simple universal threshold only to be able to demonstrate and explain the
difference between both techniques in clear terms. It is likely that their performance
can be improved further if more elaborate thresholding techniques suitable for i.i.d.
Gaussian data are applied instead. Their selection can be combined with a suitable
choice of J0 (rather than simply setting J0 = 0, as is done here.)

2. We use the non-decimated Haar transform for better MSE performance. This, how-
ever, uses “circular” boundary conditions, meaning that the value of the signal at the
left edge is assumed to equal that at the right edge. If accuracy at the right edge is
important (e.g. for the purpose of forecasting or extrapolating into the future), the
standard decimated Haar transform may be used instead.
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Figure 9: Sample likelihood ratio Haar reconstruction in model (1a), see Section 6.1 for
details.
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Figure 10: Sample likelihood ratio Haar reconstruction in model (1b), see Section 6.1 for
details.
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Figure 11: Sample likelihood ratio Haar reconstruction in model (2a), see Section 6.1 for
details.
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Figure 12: Sample likelihood ratio Haar reconstruction in model (2b), see Section 6.1 for
details.
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6.2 Likelihood ratio Haar transform

In this section, we briefly illustrate the normalizing and variance-stabilizing properties of
the likelihood ratio Haar transform G(·) described in Section 2.2, using data simulated from
models (1a) and (1b) of Section 6.1 (i.e. the blocks signal with Poisson and exponential
noise, respectively). As in that section, we use the non-decimated version of the Haar
transform.

Figures 13 and 14 illustrate the results. In both the Poisson and the exponential examples,
the likelihood ratio Haar transform is a very good normalizer and variance-stabilizer: the
transformed data minus the transformed signal shows good agreement with an i.i.d. normal
sample; its sample variance equals 1.07 for the Poisson model and 1.14 for the exponential
model. Particularly for the exponential model, the likelihood ratio Haar transform is a
significantly better normalizer than the Haar-Fisz transform (not shown here).

6.3 California earthquake data

In this section, we revisit the Northern California earthquake dataset, analysed in Fryzlewicz
and Nason (2004) and available from http://quake.geo.berkeley.edu/ncedc/catalog-search.html.
We analyze the time series Nk, k = 1, . . . , 1024, where Nk is the number of earthquakes
of magnitude 3.0 or more which occurred in the kth week, the first week under consid-
eration starting April 22nd, 1981 and the final ending December 5th, 2000. We assume
Nk ∼ Pois(λk) and estimate Λ using our likelihood ratio Haar smoother, used as described
in Section 6.1.

The estimate and the data are shown in Figure 15. The appearance of the estimator reveals
an interesting phenomenon, not necessarily easily seen in the noisy data: for many of the
intensity spikes observed in this dataset, the intensity in the time period just before the
spike appears to be much lower than the intensity in the period following the spike, which
may point to a degree of persistence in the seismic activity following the major spikes in
activity observed in these data.

7 Additional discussion

For unknown distributions, the idea of using empirical likelihood ratio tests (to construct
empirical likelihood ratio Haar coefficients) may seem tempting at first glance, but it is
well known that their computation can be tedious, and therefore they appear to be of little
practical use in our context. A more attractive option may be to attempt to estimate,
nonparametrically, the function f ′′ (in the notation of Lemmas A.1–A.4), noting that it
is the reciprocal of the function linking the variance to the mean of the distribution in
question. This estimation could be carried out e.g. as described in Fryzlewicz (2008). From
this, one could attempt to construct an estimate of the function f itself, which could be
used in the computation of the coefficients gj,k.

To generalize our likelihood ratio Haar methodology to wavelets other than Haar, one could
possibly resort to lifting schemes (Sweldens, 1996), in which the ‘predict’ step could be
modified from simple linear prediction to likelihood-based one.
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Figure 13: The Poisson model. Top left: Poisson intensity Λ (red) and simulated data X
(black). Top right: the likelihood ratio transform G(Λ) (red) and G(X) (black). Middle left:
G(X)−G(Λ). Middle right: Q-Q plot of G(X)−G(Λ) against the normal quantiles. Bottom
left: sample acf plot of G(X)−G(Λ). Bottom right: sample acf plot of (G(X)−G(Λ))2.
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Figure 14: The exponential model. Top left: exponential mean σ2 (red) and simulated
data X (black). Top right: the likelihood ratio transform G(σ2) (red) and G(X) (black).
Middle left: G(X) − G(σ2). Middle right: Q-Q plot of G(X) − G(σ2) against the normal
quantiles. Bottom left: sample acf plot of G(X)−G(σ2). Bottom right: sample acf plot of
(G(X)−G(σ2))2.
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Figure 15: Northern California earthquake data: Nk (dashed) and the likelihood ratio Haar
estimate (thick solid). See Section 6.3 for details.

A Technical results

Lemma A.1 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
continuous on (u, v). There exists a point ξ ∈ (u, v) such that

f(u)− 2f

(
u+ v

2

)
+ f(v) =

(u− v)2

4
f
′′
(ξ).

Proof. Let z = (u+ v)/2 and δ = (v − u)/2, then

f(u)− 2f

(
u+ v

2

)
+ f(v) = f(z − δ)− 2f(z) + f(z + δ).

Defining g(x) = f(z − x)− 2f(z) + f(z + x), Taylor’s theorem yields

g(δ) = g(0) + δg′(0) +
δ2

2
g′′(ξ′) =

δ2

2
g′′(ξ′) =

δ2

2
{f ′′(z + ξ′) + f ′′(z − ξ′)}, (9)

where ξ′ ∈ (0, δ). By the intermediate value theorem, there exists a ξ ∈ (z−ξ′, z+ξ′) ⊂ [u, v]
such that {f ′′(z + ξ′) + f ′′(z − ξ′)}/2 = f ′′(ξ), which by (9) completes the result.

Lemma A.2 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on (u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≥ (u− v)2

4
f
′′
(
u+ v

2

)
.
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Proof. Straightforward from the convexity of f ′′ and (9).

Lemma A.3 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
nonincreasing on [u, v). Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′
(
u+ v

2

)
+ f ′′(u)

}
.

Proof. Straightforward from (9) and the fact that f ′′ is nonincreasing on [u, v).

Lemma A.4 Let function f : [u, v] → R be such that f ′ is continuous on [u, v] and f
′′

is
convex on [u, v]. Then

f(u)− 2f

(
u+ v

2

)
+ f(v) ≤ (u− v)2

8

{
f ′′(v) + f ′′(u)

}
.

Proof. Straightforward from the convexity of f ′′ and (9).

Lemma A.5 The Poisson distribution satisfies Cramer’s conditions.

Proof. The Poisson distribution is log-concave, and Schudy and Sviridenko (2011), Lemma
7.4, show that all log-concave random variables Z are central moment bounded with real
parameter L > 0, that is, satisfy for any integer i ≥ 1,

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1.

Moreover, again by Schudy and Sviridenko (2011), Lemma 7.5, we have

L = 1 + max(E(|Z − E(Z)| | Z ≥ E(Z)), E(|Z − E(Z)| | Z < E(Z))),

which for the Pois(λ) distribution gives L = O(λ1/2). But

E|Z − E(Z)|i ≤ i LE|Z − E(Z)|i−1

≤ i!Li−2E(Z − E(Z))2,

which completes the proof of the lemma.

Proof of Theorem 4.1.

We first show that P (A ∩ B)→ 1. We have

P (Ac) ≤
J∑

j=J0+1

2J−j∑
k=1

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1). (10)

Since by Lemma A.5, the Poisson distribution satisfies Cramer’s conditions, Λ is bounded
from above and away from zero, and 2J0 = O(nβ) for β ∈ (0, 1), the strong asymptotic
normality from the Corollary underneath the proof of Theorem 1 in Rudzkis et al. (1978)
can be used, which in our context implies that if t1 = O(log1/2 n), then

P ((λ̄k2
j

(k−1)2j+1)
−1/2|dj,k − µj,k| ≥ t1) ≤ CΦ(t1), (11)
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where Φ(·) is the cdf of the standard normal distribution and C is a universal constant.
Using (11), Mills’ ratio inequality and the fact that t1 = C1 log1/2 n, we bound (10) from
above by C̃ log−1/2 n n1−β−C

2
1/2, where C̃ is a constant, which proves that P (A)→ 1. The

proof that P (B)→ 1 is identical.

We now turn to the estimator. Due to the orthonormality of the Haar transform, we have

n−1‖Λ̂− Λ‖2 = n−1
J∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 + n−1(sJ,1 − λ̃)2, (12)

where λ̃ = n−1/2
∑n

k=1 λk.

We first consider scales j = 1, . . . , J0, for which µ̂j,k = 0. At each scale j, there are at
most N indices k for which µj,k 6= 0. From the definition of dj,k, for those µj,k, we have
µj,k ≤ 2j/2−1Λ′, which gives

J0∑
j=1

2J−j∑
k=1

(µ̂j,k − µj,k)2 ≤ N(Λ′)2
J0∑
j=1

2j−2 = N(Λ′)2(2J0−1 − 1

2
). (13)

We now consider the remaining scales j = J0 + 1, . . . , J and first take an arbitrary index
(j, k) for which λi is not constant for i = (k − 1)2j + 1, . . . , k2j . For such a (j, k), we have
(using Lemma A.2 in the second inequality)

(µ̂j,k − µj,k)2 = (dj,kI(|gj,k| > t)− µj,k)2

≤ 2d2j,kI(|gj,k| ≤ t) + 2(dj,k − µj,k)2

≤ 2d2j,kI(|dj,k| ≤ t(X̄k2j

(k−1)2j+1)
1/2) + 2(dj,k − µj,k)2

≤ 2t2X̄k2j

(k−1)2j+1 + 2(dj,k − µj,k)2

≤ 2t2(λ̄k2
j

(k−1)2j+1 + t22
−j/2(λ̄k2

j

(k−1)2j+1)
1/2) + 2t21λ̄

k2j

(k−1)2j+1.

Summing the bound over the at most N indices k within each scale for which λi is not
constant for i = (k − 1)2j + 1, . . . , k2j , as well as over scales j = J0 + 1, . . . , J , and noting
that λ̄k2

j

(k−1)2j+1
≤ Λ̄, gives the upper bound of

2N Λ̄1/2
{

(J − J0)(t2 + t21)Λ̄
1/2 + t2t2(1 + 2−1/2)2

−J0+1
2

}
. (14)

We finally consider again the scales j = J0 + 1, . . . , J and those indices (j, k) for which λi is
constant for i = (k− 1)2j + 1, . . . , k2j , which implies µj,k = 0. For each such (j, k), we have

(µ̂j,k)
2 = d2j,kI(|gj,k| > t).

Consider the following sequence of inequalities, with the first one being implied by Lemma
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A.4, and the second using the fact that λ̄
(k−1)2j+2j−1

(k−1)2j+1
= λ̄k2

j

(k−1)2j+2j−1+1
= λ̄k2

j

(k−1)2j+1
.

|gj,k| > t ⇒ |dj,k|2−1/2
∣∣∣∣∣∣ 1

X̄
(k−1)2j+2j−1

(k−1)2j+1

+
1

X̄k2j

(k−1)2j+2j−1+1

∣∣∣∣∣∣
1/2

> t

⇒
|dj,k|

(λ̄k2
j

(k−1)2j+1
− δ)1/2

> t ∨ |X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ

∨ |X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥ δ

⇔
|dj,k|

(λ̄k2
j

(k−1)2j+1
)1/2

> t

(
1− δ

λ̄k2
j

(k−1)2j+1

)1/2

∨ 2j/2(λ̄
(k−1)2j+2j−1

(k−1)2j+1
)−1/2|X̄(k−1)2j+2j−1

(k−1)2j+1
− λ̄(k−1)2

j+2j−1

(k−1)2j+1
| ≥ δ2j/2(λ̄(k−1)2

j+2j−1

(k−1)2j+1
)−1/2

∨ 2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2|X̄k2j

(k−1)2j+2j−1+1 − λ̄
k2j

(k−1)2j+2j−1+1| ≥

δ2j/2(λ̄k2
j

(k−1)2j+2j−1+1)
−1/2. (15)

Let us set δ = t22
−j/2(λ̄k2

j

(k−1)2j+1
)1/2, then if

t1 ≤ t(1− t22−j/2(λ̄k2
j

(k−1)2j+1)
−1/2)1/2, (16)

then the right-hand side of the implication (15) is negated on A∩B, which implies that so
is the left-hand side, and therefore µ̂j,k = 0. Note (16) is satisfied if (7) holds.

Putting together (13) and (14) and noting that n−1(sJ,1 − λ̃)2 ≤ n−1t21λ̄
n
1 on A, we bound

(12) by

1

2
n−1N(Λ′)2(nβ−1)+2n−1N Λ̄1/2

{
(J − J0)(t2 + t21)Λ̄

1/2 + t2t2(2 + 21/2)n−β/2
}

+n−1t21λ̄
n
1

on condition that (7) holds, which completes the proof.
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