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Abstract

There exists very few results on mixing for nonstationary processes. However, mixing

is often required in statistical inference for nonstationary processes, such as time-varying

ARCH (tvARCH) models. In this paper, bounds for the mixing rates of a stochastic pro-

cess are derived in terms the conditional densities of the process. These bounds are used

to obtain the α, 2-mixing and β-mixing rates of the nonstationary time-varying ARCH(p)

process and ARCH(∞) process. It is shown that the mixing rate of time-varying ARCH(p)

process is geometric, whereas the bounds on the mixing rate of the ARCH(∞) process de-

pends on the rate of decay of the ARCH(∞) parameters. We mention that the methodology

given in this paper is applicable to other processes.
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1 Introduction

Mixing is a measure of dependence between elements of a random sequence that has a wide range

of theoretical applications (see Bradley (2007) and below). One of the most popular mixing

measures is α-mixing (also called strong mixing), where the α-mixing rate of the nonstationary

stochastic process {Xt} is defined as a sequence of coefficients α(k) such that

α(k) = sup
t∈Z

sup
H∈σ(Xt,Xt−1,...)

G∈σ(Xt+k,Xt+k+1,...)

|P (G ∩H) − P (G)P (H)|. (1)
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{Xt} is called α-mixing if α(k) → 0 as k → ∞. If {α(k)} decays sufficiently fast to zero as

k → ∞, then, amongst other results, it is possible to show asymptotic normality of sums of

{Xk} (c.f. Davidson (1994), Chapter 24), as well as exponential inequalities for such sums (c.f.

Bosq (1998)). The notion of 2-mixing is related to strong mixing, but is a weaker condition as it

measures the dependence between two random variables and not the entire tails. 2-mixing is often

used in statistical inference, for example deriving rates in nonparametric regression (see Bosq

(1998)). The 2-mixing rate can be used to derive bounds for the covariance between functions of

random variables, say cov(g(Xt), g(Xt+k)) (see Ibragimov (1962)), which is usually not possible

when only the correlation structure of {Xk} is known. The 2-mixing rate of {Xk} is defined as

a sequence α̃(k) which satisfies

α̃(k) = sup
t∈Z

sup
H∈σ(Xt)

G∈σ(Xt+k)

|P (G ∩H) − P (G)P (H)|. (2)

It is clear that α̃(k) ≤ α(k). A closely related mixing measure, introduced in Volkonskii and

Rozanov (1959) is β-mixing (also called absolutely regular). The β-mixing rate of the stochastic

process {Xt} is defined as a sequence of coefficients β(k) such that

β(k) = sup
t∈Z

sup
{Hj}∈σ(Xt,Xt−1,...)

{Gj}∈σ(Xt+k,Xt+k+1,...)

∑

i

∑

j

|P (Gi ∩Hj) − P (Gi)P (Hj)|, (3)

where {Gi} and {Hj} are finite partitions of the sample space Ω. {Xt} is called β-mixing if

β(k) → 0 as k → ∞. It can be seen that this measure is slightly stronger than α-mixing (since

an upper bound for β(k) immediately gives a bound for α(k); β(k) ≥ α(k)).

Despite the versatility of mixing, its main drawback is that in general it is difficult to derive

bounds for α(k), α̃(k) and β(k). However the mixing bounds of some processes are known.

Chanda (1974), Gorodetskii (1977), Athreya and Pantula (1986) and Pham and Tran (1985) show

strong mixing of the MA(∞) process. Feigin and Tweedie (1985) and Pham (1986) have shown

geometric ergodicity of Bilinear processes (we note that stationary geometrically ergodic Markov

chains are geometrically α-mixing, 2-mixing and β-mixing - see, for example, Francq and Zaköıan

(2006)). More recently, Tjostheim (1990) and Mokkadem (1990) have shown geometric ergodicity

for a general class of Markovian processes. The results in Mokkadem (1990) have been applied

in Bousamma (1998) to show geometric ergodicity of stationary ARCH(p) and GARCH(p, q)

processes, where p and q are finite integers. Related results on mixing for GARCH(p, q) processes
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can be found in Carrasco and Chen (2002), Liebscher (2005), Sorokin (2006) and Lindner (2008)

(for an excellent review) and Francq and Zaköıan (2006) and Meitz and Saikkonen (2008) (where

mixing of ‘nonlinear’ GARCH(p, q) processes are also considered). Most of these these results

are proven by verifying the Meyn-Tweedie conditions (see Feigin and Tweedie (1985) and Meyn

and Tweedie (1993)), and, as mentioned above, are derived under the premise that the process is

stationary (or asymptotically stationary) and Markovian. Clearly, if a process is nonstationary,

then the aforementioned results do not hold. Therefore for nonstationary processes, an alternative

method to prove mixing is required.

The main aim of this paper is to derive a bound for (1), (2) and (3) in terms of the densities

of the process plus an additional term, which is an extremal probability. These bounds can be

applied to various processes. In this paper, we will focus on ARCH-type processes and use the

bounds to derive mixing rates for time-varying ARCH(p) (tvARCH) and ARCH(∞) processes.

The ARCH family of processes is widely used in finance to model the evolution of returns on

financial instruments: we refer the reader to the review article of Giraitis et al. (2005) for a

comprehensive overview of mathematical properties of ARCH processes, and a list of further

references. It is worth mentioning that Hörmann (2008) and Berkes et al. (2008) have considered

a different type of dependence, namely a version of the m-dependence moment measure, for

ARCH-type processes. The stationary GARCH(p, q) model tends to be the benchmark financial

model. However, in certain situations it may not be the most appropriate model, for example

it cannot adequently explain the long memory seen in the data or change according to shifts

in the world economy. Therefore, recently attention has been paid to tvARCH models (see,

for example, Mikosch and Stărică (2003), Dahlhaus and Subba Rao (2006), Fryzlewicz et al.

(2008) and Fryzlewicz and Subba Rao (2008)) and ARCH(∞) models (see Robinson (1991),

Giraitis et al. (2000), Giraitis and Robinson (2001) and Subba Rao (2006)). The derivations

of the sampling properties of some of the above mentioned papers rely on quite sophisticated

assumptions on the dependence structure, in particular their mixing properties.

We will show that due to the p-Markovian nature of the time-varying ARCH(p) process, the

α-mixing, 2-mixing and β-mixing bound has the same geometric rate. The story is different

for ARCH(∞) processes, where the mixing rates can be different and vary according to the

rate of decay of the parameters. An advantage of the approach advocated in this paper is that

these methods can readily be used to establish mixing rates of several time series models. This is

especially useful in time series analysis, for example, change point detection schemes for nonlinear
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time series, where strong mixing of the underlying process is often required. The price we pay for

the flexibility of our approach is that the assumptions under which we work are slightly stronger

than the standard assumptions required to prove geometric mixing of the stationary GARCH

process. However, the conditions do not rely on proving irreducibility (which is usually required

when showing geometric ergodicity) of the underlying process, which can be difficult to verify.

In Section 2 we derive a bound for the mixing rate of general stochastic processes, in terms of

the differences of conditional densities. In Section 3 we derive mixing bounds for time-varying

ARCH(p) processes (where p is finite). In Section 4 we derive mixing bounds for ARCH(∞)

processes. Proofs which are not in the main body of the paper can be found in the appendix.

2 Some mixing inequalities for general processes

2.1 Notation

For k > 0, let X t−k
t = (Xt, . . . , Xt−k); if k ≤ 0, then X t−k

t = 0. Let y
s

= (ys, . . . , y0). Let

‖ · ‖ denote the `1-norm. Let Ω denote the sample space. The sigma-algebra generated by

Xt, . . . , Xt+r is denoted as F t
t+r = σ(Xt, . . . , Xt+r).

2.2 Some mixing inequalities

Let us suppose {Xt} is an arbitrary stochastic process. In this section we derive some bounds

for α(k), α̃(k) and β(k). To do this we will consider bounds for

sup
H∈F

t−r1
t ,G∈Ft+k

t+k+r2

|P (G ∩H) − P (G)P (H)| and sup
{Hj}∈F

t−r1
t ,{Gi}∈F

t+k
t+k+r2

∑

i,j

|P (Gi ∩Hj) − P (Gi)P (Hj)|,

where r1, r2 ≥ 0 and {Gi} and {Hi} are partitions of Ω. In the proposition below, we give a

bound for the mixing rate in terms of conditional densities. Similar bounds for linear processes

have been derived in Chanda (1974) and Gorodetskii (1977) (see also Davidson (1994), Chapter

14). However, the bounds in Proposition 2.1 apply to any stochastic process, and it is this

generality that allows us to use the result in later sections, where we derive mixing rates for

ARCH-type processes.

Proposition 2.1 Let us suppose that the conditional density of X t+k
t+k+r2

given X t−r1
t exists and
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denote it as f
Xt+k

t+k+r2
|X

t−r1
t

. For η = (η0, . . . , ηr1) ∈ (R+)r1+1, define the set

E = {ω; X t−r1
t (ω) ∈ E} where E = {(ν0, . . . , νr1); for all |νj| ≤ ηj}. (4)

Then for all r1, r2 ≥ 0 and η we have

sup
H∈F

t−r1
t ,G∈Ft+k

t+k+r2

|P (G ∩H) − P (G)P (H)|

≤ 2 sup
x∈E

∫

Rr2+1

∣

∣

∣fXt+k
t+k+r2

|X
t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣

∣ dy + 4P (Ec), (5)

and

sup
{Hj}∈F

t−r1
t ,{Gj}∈F

t+k
t+k+r2

∑

i,j

|P (Gi ∩Hj) − P (Gi)P (Hj)|

≤ 2

∫

Rr2+1

sup
x∈E

∣

∣

∣
f

Xt+k
t+k+r2

|X
t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣

∣
dy + 4P (Ec), (6)

where {Gi} and {Hj} are finite partitions of Ω. X t−r1
t . Let W t+1

t+k−1 be a random vector that is

independent of X t−r1
t and fW t+1

t+k−1
denote the density of W t+1

t+k−1, then we have

sup
H∈F

t−r1
t ,G∈Ft+k

t+k+r2

|P (G ∩H) − P (G)P (H)|

≤ 2

r2
∑

s=0

sup
x∈E

∫

fW (w)

{

sup
y

s−1
∈Rs

∫

R

Ds,k,t(ys|ys−1
, w, x)d ys

}

dw + 4P (Ec) (7)

and
sup

{Hj}∈F
t−r1
t ,{Gj}∈F

t+k
t+k+r2

∑

i,j

|P (Gi ∩Hj) − P (Gi)P (Hj)|

≤ 2

r2
∑

s=0

∫

fW (w)

{

sup
y

s−1
∈Rs

∫

R

sup
x∈E

Ds,k,t(ys|ys−1
, w, x)d ys

}

dw + 4P (Ec) (8)

where D0,k,t(y0|y−1
, w, x) =

∣

∣fs,k,t(ys|w, x) − fs,k,t(ys|w, 0)
∣

∣ and for s ≥ 1

Ds,k,t(ys|ys−1
, w, x) =

∣

∣fs,k,t(ys|ys−1
, w, x) − fs,k,t(ys

∣

∣y
s−1

, w, 0)|, (9)

with the conditional density of Xt+k given (W t+1
t+k−1, X

t−r1
t ) denoted as f0,k,t and the conditional

density of Xt+k+s given (X t+k
t+k+s−1,W

t+1
t+k−1, X

t−r1
t ), denoted as fs,k,t, x = (x0, . . . , x−r2) and
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w = (wk, . . . , w1).

PROOF. In Appendix A.1. ¤

Since the above bounds hold for all vectors η ∈ (R+)r1+1 (note η defines the set E; see (4)), by

choosing the η which balances the integral and P (Ec), we obtain an upper bound for the mixing

rate.

The main application of the inequality in (7) is to processes which are ‘driven’ by the inno-

vations (for example, linear and ARCH-type processes). If W t+1
t+k−1 is the innovation process,

often it can be shown that the conditional density of Xt+k+s given (X t+k
t+k+s−1,W

t+1
t+k−1, X

t−r1
t )

can be written as a function of the innovation density. Deriving the density of Xt+k+s given

(X t+k
t+k+s−1,W

t+1
t+k−1, X

t−r1
t ) is not a trivial task, but it is often possible. In the subsequent sec-

tions we will apply Proposition 2.1 to obtaining bounds for the mixing rates.

The proof of Proposition 2.1 can be found in the appendix, but we give a flavour of it here. Let

H = {ω; X t−r1
t (ω) ∈ H}, G = {ω; X t+k

t+k+r2
(ω) ∈ G}. (10)

It is straightforward to show that |P (G∩H)−P (G)P (H)| ≤ |P (G∩H ∩E)−P (G∩E)P (H)|+
2P (Ec). The advantage of this decomposition is that when we restrict X t−r1

t to the set E (ie.

not large values of X t−r1
t ), we can obtain a bound for |P (G ∩H ∩ E) − P (G ∩ E)P (H)|. More

precisely, by using the inequality

inf
x∈E

P
(

G
∣

∣X t−r1
t = x

)

P (H ∩ E) ≤ P (G ∩H ∩ E) ≤ sup
x∈E

P
(

G
∣

∣X t−r1
t = x

)

P (H ∩ E),

we can derive upper and lower bounds for P (G ∩H ∩ E) − P (G ∩ E)P (H) which depend only

on E and not H and G, and thus obtain the bounds in Proposition 2.1.

It is worth mentioning that by using (7) one can establish mixing rates for time-varying linear

processes (such as the tvMA(∞) process considered in Dahlhaus and Polonik (2006)). Using

(7) and similar techniques to those used in Section 4, mixing bounds can be obtained for the

tvMA(∞) process.

In the following sections we will derive the mixing rates for ARCH-type processes, where one of

the challanging aspects of the proof is establishing a bound for the integral difference in (9).
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3 Mixing for the time-varying ARCH(p) process

3.1 The tvARCH process

In Fryzlewicz et al. (2008) we show that the tvARCH process can be used to explain the com-

monly observed stylised facts in financial time series (such as the empirical long memory). A

sequence of random variables {Xt} is said to come from a time-varying ARCH(p) if it satisfies

the representation

Xt = Zt

(

a0(t) +

p
∑

j=1

aj(t)Xt−j

)

, (11)

where {Zt} are independent, identically distributed (iid) positive random variables, with E(Zt) =

1 and aj(·) are positive parameters. It is worth comparing (11) with the tvARCH process used in

the statistical literature. Unlike the tvARCH process considered in, for example, Dahlhaus and

Subba Rao (2006) and Fryzlewicz et al. (2008), we have not placed any smoothness conditions

on the time varying parameters {aj(·)}. The smoothness conditions assumed in Dahlhaus and

Subba Rao (2006) and Fryzlewicz et al. (2008) are used in order to do parameter estimation.

However, in this paper we are dealing with mixing of the process, which does not require such

strong assumptions. The assumptions that we require are stated below.

Assumption 3.1 (i) For some δ > 0, supt∈Z

∑p
j=1 aj(t) ≤ 1 − δ.

(ii) inft∈Z a0(t) > 0 and supt∈Z
a0(t) <∞.

(iii) Let fZ denote the density of Zt. For all a > 0 we have
∫

|fZ(u) − fZ(u[1 + a])| du ≤ K a,

for some finite K independent of a.

(iv) Let fZ denote the density of Zt. For all a > 0 we have
∫

sup0≤τ≤a |fZ(u) − fZ(u[1 + τ ])| du ≤
K a, for some finite K independent of a.

We note that Assumption 3.1(i,ii) guarantees that the ARCH process has a Volterra expansion

as a solution (see Dahlhaus and Subba Rao (2006), Section 5). Assumption 3.1(iii,iv) is a type

of Lipschitz condition on the density function and is satisfied by various well known distribu-

tions, including the chi-squared distributions. We now consider a class of densities which satisfy

Assumption 3.1(iii,iv). Suppose fZ : R → R is a density function, whose first derivative is
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bounded, after some finite point m, the derivative f ′ declines monotonically to zero and satisfies
∫

|yf ′
Z(y)|dy <∞. In this case

∫ ∞

0

sup
0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])| du

≤
∫ m

0

sup
0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])| du+

∫ ∞

m

sup
0≤τ≤a

|fZ(u) − fZ(u[1 + τ ])| du

≤ a
(

m2 sup
u∈R

|f ′
Z(u)| +

∫ ∞

m

u|f ′
Z(u)|du

)

≤ Ka,

for some finite K independent of a, hence Assumption 3.1(iii,iv) is satisfied.

We use Assumption 3.1(i,ii,iii) to obtain the strong mixing rate (2-mixing and α-mixing) of the

tvARCH(p) process and the slightly stronger conditions Assumption 3.1(i,ii,iv) to obtain the

β-mixing rate of the tvARCH(p) process. We mention that in the case that {Xt} is a stationary,

ergodic time series, Francq and Zaköıan (2006) have shown geometric ergodicity, which they

show implies β-mixing, under the weaker condition that the distribution function of {Zt} can

have some discontinuities.

3.2 The tvARCH(p) process and the Volterra series expansion

In this section we derive a Volterra series expansion of the tvARCH process (see also Giraitis

et al. (2000)). These results allow us to apply Proposition 2.1 to the tvARCH process. We first

note that the innovations Z t+1
t+k−1 and X t−p+1

t are independent random vectors. Hence comparing

with Proposition 2.1, we are interested in obtaining the conditional density of Xt+k given Zt+1
t+k−1

and X t−p+1
t , (denoted f0,k,t) and the conditional density of Xt+k+s given X t+k

t+k+s−1, Z
t+1
t+k−1 and

X t−p+1
t (denoted fs,k,t). We use these expressions to obtain a bound for Ds,k,t (defined in (9)),

which we use to derive a bound for the mixing rate. We now represent {Xt} in terms of {Zt}.
To do this we define

At(z) =





















a1(t)zt a2(t)zt . . . ap(t)zt

1 0 . . . 0

0 1 . . . 0

. . . . . .
. . .

...

0 0 1 0





















, At = At(1) =





















a1(t) a2(t) . . . ap(t)

1 0 . . . 0

0 1 . . . 0

. . . . . .
. . .

...

0 0 1 0





















bt(z) = (a0(t)zt, 0, . . . , 0)
′ and X t−p+1

t = (Xt, Xt−1, . . . , Xt−p+1)
′. (12)
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Using this notation we have the relation X t+k−p+1
t+k = At+k(Z)X t+k−p

t+k−1 + bt+k(Z). We mention the

vector representation of ARCH and GARCH processes has been used in Bougerol and Picard

(1992), Basrak et al. (2002) and Straumann and Mikosch (2006) in order to obtain some proba-

bilistic properties for ARCH-type processes. Now iterating the relation k times (to get X t+k−p+1
t+k

in terms of X t−p+1
t ) we have

X t+k−p+1
t+k = bt+k(Z) +

k−2
∑

r=0

[ r−1
∏

i=0

At+k−i(Z)

]

bt+k−r−1(Z) +

[ k−1
∏

i=0

At+k−i(Z)

]

X t−p+1
t , (13)

where we set [
∏−1

i=0At+k−i(Z)] = Ip (Ip denotes the p× p dimensional identity matrix). We use

this expansion below.

Lemma 3.1 Let us suppose that Assumption 3.1(i) is satisfied. Then for s ≥ 0 we have

Xt+k+s = Zt+k+s {Ps,k,t(Z) + Qs,k,t(Z,X)} , (14)

where for s = 0 we have

P0,k,t(Z) = a0(t+ k) + [At+k

n−t−2
∑

r=0

r
∏

i=1

At+k−i(Z)bt+k−r−1(Z)]1

Q0,k,t(Z,X) =
[

At+k

k−1
∏

i=1

At+k−i(Z)X t−p+1
t

]

1
for n > t,

([·]1 denotes the first element of a vector), for 1 ≤ s ≤ p

Ps,k,t(Z) = (15)

a0(t+ k + s) +
s−1
∑

i=1

ai(t+ k + s)Xt+k+s−i +

p
∑

i=s

ai(t+ k + s)Zk+s−i

{

a0(t+ k + s− i) +

[At+k+s−i

k+s−i
∑

r=1

{
r
∏

d=0

At+k+s−i−d(Z)}bt+k+s−i−r(Z)]1

}

,

Qs,k,t(Z,X) =
[

p
∑

i=s

ai(t+ k + s)Zk+s−iAt+k+s−i{
k+s−i
∏

d=0

At+k+s−i−d(Z)X t−p+1
t }

]

1
,

and for s > p we have Ps,k,t(Z) = a0(t+k+s)+
∑p

i=1 ai(t+k+s)Xt+k+s−i and Qs,k,t(Z,X) ≡ 0.

We note that Ps,k,t and Qs,k,t are positive random variables, and for s ≥ 1, Ps,k,t is a function

of X t+k
t+k+s−1 (but this has been suppressed in the notation).
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PROOF. In Appendix A.2.

By using (14) we now show that the conditional density of Xt+k+s given X t+k
t+k+s−1, Z

t+1
t+k−1 and

X t−p+1
t is a function of the density of Zt+k+s. It is clear from (14) that Zt+k+s can be expressed

as Zt+k+s = Xt+k+s

Ps,k,t(Z)+Qs,k,t(Z,X)
. Therefore, it is straightforward to show that

fs,k,t(ys|ys−1
, z, x) =

1

Ps,k,t(z) + Qs,k,t(z, x)
fZ

(

ys

Ps,k,t(z) + Qs,k,t(z, x)

)

. (16)

3.3 Strong mixing of the tvARCH(p) process

The aim in this section is to prove geometric mixing of the tvARCH(p) process without appealing

to geometric ergodicity. Naturally, the results in this section also apply to stationary ARCH(p)

processes.

In the following lemma we use Proposition 2.1 to obtain bounds for the mixing rates. It is worth

mentioning that the techniques used in the proof below can be applied to other Markov processes.

Lemma 3.2 Suppose {Xt} is a tvARCH process which satisfies (11). Then for any η = (η0, . . . , η−p+1) ∈
(R+)p we have

sup
G∈Ft+k

∞ ,H∈F−∞
t

|P (G ∩H) − P (G)P (H)|

≤ 2

p−1
∑

s=0

sup
x∈E

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{∫

R

Ds,k,t(ys|ys−1
, z, x)dys

}

dz + 4

p−1
∑

j=0

P (|Xt−j| ≥ η−j+1), (17)

and

sup
{Hj}∈F

−∞
t ,{Gj}∈F t+k

∞

∑

i,j

|P (Gi ∩Hj) − P (Gi)P (Hj)|

≤ 2

p−1
∑

s=0

sup
x∈E

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{∫

R

sup
x∈E

Ds,k,t(ys|ys−1
, z, x)dys

}

dz + 4

p−1
∑

j=0

P (|Xt−j| ≥ η−j+1), (18)

where z = (z1, . . . , zk−1) and {Gi} and {Hj} are partitions of Ω.

PROOF In Appendix A.2. ¤

To obtain a mixing rate for the tvARCH(p) process we need to bound the integral in (17), then
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obtain the set E which minimises (17). We will start by bounding Ds,k,t, which, we recall, is

based on the conditional density fs,k,t (defined in (16)).

Lemma 3.3 Let Ds,k,t and Qs,k,t be defined as in (9) and (15) respectively.

(i) Suppose Assumption 3.1(i,ii,iii) holds, then for all x ∈ (R+)p we have

p−1
∑

s=0

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{∫

Ds,k,t(ys|ys−1
, z, x)dys

}

dz ≤ K
E[Qs,k,t(Z, x)]

inft∈Z a0(t)
≤ K(1 − δ̃)k‖x‖, (19)

where K is a finite constant and 0 < δ̃ ≤ δ < 1 (δ is defined in Assumption 3.1(i)).

(ii) Suppose Assumption 3.1(i,ii,vi) holds, then for any set E (defined as in (4)) we have

p−1
∑

s=0

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{∫

sup
x∈E

Ds,k,t(ys|ys−1
, z, x)dys

}

dz ≤ sup
x∈E

K(1 − δ̃)k‖x‖. (20)

PROOF. In Appendix A.2. ¤

We now use the lemmas above to show geometric mixing of the tvARCH process.

Theorem 3.1 (i) Suppose Assumption 3.1(i,ii,iii) holds, then

sup
G∈σ(Xt+k

∞ )

H∈σ(X−∞
t )

|P (G ∩H) − P (G)P (H)| ≤ Kαk,

(ii) Suppose Assumption 3.1(i,ii,iv) holds, then

sup
{Hj}∈σ(X−∞

t
)

{Gj}∈σ(Xt+k
∞ )

∑

i

∑

j

|P (Gi ∩Hj) − P (Gi)P (Hj)| ≤ Kαk,

for any
√

1 − δ < α < 1, and where K is a finite constant independent of t and k.

PROOF. We use (17) to prove the (i). (19) gives a bound for the integral difference in (17),

therefore all that remains is to bound the probabilities in (17). To do this we first use Markov’s

inequality, to give
∑p−1

j=0 P (|Xt−j| ≥ η−j) ≤
∑p−1

j=0 E|Xt−j|η−1
−j . By using the Volterra expansion

of Xt (see Dahlhaus and Subba Rao (2006), Section 5) it can be shown that supt∈Z
E|Xt| ≤

11



(supt∈Z
a0(t))/ supt∈Z

(1−
∑p

j=1 aj(t))). Using these bounds and substituting (19) into (17) gives

for every η ∈ (R+)p the bound

sup
G∈σ(Xt+k

∞ )

H∈σ(X−∞
t )

|P (G ∩H) − P (G)P (H)| ≤ 2
K(1 − δ̃)k

∑p−1
j=0 η−j

inft∈Z a0(t)
+ 4K

p−1
∑

j=0

1

η−j

.

We observe the right hand side of the above is minimised when η−j = (1 − δ̃)k/2 (for 0 ≤ j ≤
(p− 1)), which gives the bound

sup
H∈σ(X−∞

t
)

G∈σ(Xt+k
∞ )

|P (G ∩H) − P (G)P (H)| ≤ K

√

(1 − δ̃)k.

Since the above is true for any 0 < δ̃ < δ, (ii) is true for any α which satisfies
√

1 − δ < α < 1,

thus giving the result.

To prove (ii) we use an identical argument but use the bound in (20) instead of (19), we omit

the details. ¤

Remark 3.1 We observe that K and α defined in the above theorem are independent of t,

therefore under Assumption 3.1(i,ii,iii) we have α(k) ≤ Kαk (α-mixing, defined in (1)) and

under Assumption 3.1(i,ii,iv) β(k) ≤ Kαk (β-mixing, defined in (3)) for all
√

1 − δ < α < 1.

Moreover, since σ(Xt+k) ⊂ σ(Xt+k, . . . , Xt+p−1) and σ(Xt) ⊂ σ(Xt, . . . , Xt−p+1) the 2-mixing

rate is also geometric with α̃(k) ≤ Kαk (α̃(k) defined in (2)).

4 Mixing for ARCH(∞) processes

In this section we derive mixing rates for the ARCH(∞) process, we first define the process and

state the assumptions that we will use.

4.1 The ARCH(∞) process

The ARCH(∞) process has many interesting features, which are useful in several applications.

For example, under certain conditions on the coefficients, the ARCH(∞) process can exhibit

‘near long memory’ behaviour (see Giraitis et al. (2000)). The ARCH(∞) process satisfies the

12



representation

Xt = Zt

(

a0 +
∞
∑

j=1

ajXt−j

)

, (21)

where Zt are iid postive random variables with E(Zt) = 1 and aj are positive parameters. The

GARCH(p, q) model also has an ARCH(∞) representation, where the aj decay geometrically

with j. Giraitis and Robinson (2001), Robinson and Zaffaroni (2006) and Subba Rao (2006)

consider parameter estimation for the ARCH(∞) process.

We will use Assumption 3.1 and the assumptions below.

Assumption 4.1 (i) We have
∑∞

j=1 aj < 1 − δ and a0 > 0.

(ii) For some ν > 1, E|Xt|ν <∞ (we note that this is fulfilled if [E|Zν
0 |]1/ν

∑∞
j=1 aj < 1).

Giraitis et al. (2000) have shown that under Assumption 4.1(i), the ARCH(∞) process has a

stationary solution and a finite mean (that is supt∈Z
E(Xt) < ∞). It is worth mentioning that

since the ARCH(∞) process has a stationary solution the shift t, plays no role when obtaining

mixing bounds, ie. supG∈σ(Xk+t),H∈σ(Xt) |P (G ∩ H) − P (G)P (H)| = supG∈σ(Xk),H∈σ(X0) |P (G ∩
H) − P (G)P (H)|. Furthermore, the conditional density of Xt+k given Zt+1

t+k−1 and X−∞
t is not

a function of t, hence in the section below we let f0,k denote the conditional density of Xt+k

given (Zt+1
t+k−1 and X−∞

t ) and for s ≥ 1, let fs,k denote the conditional density of Xt+k+s given

(X t+k
t+k+s−1, Z

t
t+k−1 and X−∞

t ).

4.2 The ARCH(∞) process and the Volterra series expansion

We now write Xk in terms of Z1
k−1 and X = (X0, X−1, . . .) and use this to derive the conditional

densities f0,k and fs,k. It can be seen from the result below (equation (22)) that in general the

ARCH(∞) process is not Markovian.

Lemma 4.1 Suppose {Xt} satisfies (21). Then

Xk = P0,k(Z)Zk + Q0,k(Z,X)Zk, (22)

where

13



P0,k(Z) =

[

a0 +
k
∑

m=1

∑

k=jm>...>j1>0

(

m−1
∏

i=1

aji+1−ji

)(

m−1
∏

i=1

Zji

)]

Q0,k(Z,X) =
k
∑

r=1

{

k
∑

m=1

∑

k=jm>...>j1=r

(

m−1
∏

i=1

aji+1−ji

)(

m−1
∏

i=1

Zji

)}

dr(X). (23)

Furthermore, setting Q0,k = 0, for k ≥ 1 we have that Q0,k(Z,X) satisfies the recursion

Q0,k(Z,X) =
∑k

j=1 ajQ0,k−j(Z,X)Zk−j + dk(X), where dk(X) =
∑∞

j=0 ak+jX−j (for k ≥ 1).

PROOF. In Appendix A.3 of the Technical report. ¤

We will use the result above to derive the 2-mixing rate. To derive α and β mixing we require

the density of Xk+s given Xk
k+s−1, Z

1
k−1 and X−∞

0 , which uses the following lemma.

Lemma 4.2 Suppose {Xt} satisfies (21). Then for s ≥ 1 we have

Xk+s = Zk+s {Ps,k(Z) + Qs,k(Z,X)} , (24)

where

Ps,k(Z) = a0 +
s
∑

j=1

ajXk+s−j +
∞
∑

j=s+1

ajZk+s−jP0,k+s−j(Z)

Qs,k(Z,X) =
k+s
∑

j=s+1

ajZk+s−jQ0,k+s−j(Z,X) + dk+s(X). (25)

PROOF. In Appendix A.3 of the Technical report.

Using (22) and (24) for all s ≥ 0 we have that Zk+s = Xk+s

Ps,k(Z)+Qs,k(Z,X)
, which leads to the

conditional densities

fs,k(ys|ys−1
, z, x) =

1

Ps,k(z) + Qs,k(z, x)
fZ

(

ys

Ps,k(z) + Qs,k(z, x)

)

. (26)

In the proofs below Q0,k(1k−1, x) plays a prominent role. By using the recursion in Lemma

4.1 and (25), setting x = X−∞
0 and noting that E(Qs,k(Z, x)) = Qs,k(1k−1, x) we obtain the

recursion Q0,k(1k−1, x) =
∑k

j=1 aj+sQ0,k−j(1k−j−1, x) + dk+s(x). We use this to obtain a solution

for Q0,k(1k−1, x) in terms of {dk(x)}k in the lemma below.

14



Lemma 4.3 Suppose {Xt} satisfies (21) and Assumption 4.1 are fulfilled. Then, there ex-

ists {ψj} such that for all |z| ≤ 1 we have (1 −∑∞
j=1 ajz

j)−1 =
∑∞

j=0 ψjz
j. Furthermore, if

∑

j |jαaj| <∞, then Hannan and Kavaliers (1986) have shown that
∑

j |jαψj| <∞. For k ≤ 0,

set dk(x) = 0 and Q0,k(1k−1, x) = 0, then for k ≥ 1, Q0,k(1k−1, x) has the solution

Q0,k(1k−1, x) =
∞
∑

j=0

ψjdk−j(x) =
k−1
∑

j=0

ψjdk−j(x) =
k−1
∑

j=0

ψj

{

∞
∑

i=0

ak−j+ix−i

}

, (27)

where x = (x0, x−1, . . .).

PROOF. In Appendix A.3 of the Technical report. ¤

4.3 Mixing for ARCH(∞)-type processes

In this section we show that the mixing rates are not necessarily geometric and depend on the

rate of decay of the coefficients {aj} (we illustrate this in the following example). Furthermore

for ARCH(∞) processes the strong mixing rate and 2-mixing rate can be different.

Example 4.1 Let us consider the ARCH(∞) process, {Xt}, defined in (21). Giraitis et al.

(2000) have shown that if aj ∼ j−(1+δ) (for some δ > 0) and [E(Z2
t )]1/2

∑∞
j=1 aj < 1, then

|cov(X0, Xk)| ∼ k−(1+δ). That is, the absolute sum of the covariances is finite, but ‘only just’ if

δ is small. If Zt < 1, it is straightforward to see that Xt is a bounded random variable and by

using Ibragimov’s inequality (see Hall and Heyde (1980)) we have

|cov(X0, Xk)| ≤ C sup
A∈σ(X0),B∈σ(Xk)

|P (A ∩B) − P (A)P (B)|,

for some C <∞. Noting that |cov(X0, Xk)| = O(k−(1+δ)) this gives a lower bound of O(k−(1+δ))

on the 2-mixing rate. ¤

To obtain the mixing rates we will use Proposition 2.1, this result requires bounds on Ds,k =

|fs,k(ys|ys−1
, z, x) − fs,k(ys|ys−1

, z, 0)| and its integral.

Lemma 4.4 Suppose {Xt} satisfies (21), fZ is the density of Zt and let Ds,k and Q0,k(·) be
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defined as in (9) and (23). Suppose Assumptions 3.1(iii) and 4.1 are fulfilled, then

∫ k−1
∏

i=1

fZ(zi)
{

∫

|f0,k(y|z, x) − f0,k(y|z, 0)|dy
}

dz ≤ Q0,k(1k−1, x)

a0

=
k−1
∑

j=0

|ψj|
{

∞
∑

i=0

ak−j+ix−i

}

(28)

and for s ≥ 1

∫ k−1
∏

i=1

fZ(zi)
{

sup
y

s−1
∈Rs

∫

Ds,k(ys|ys−1
, z, x)dys

}

dz ≤ 1

a0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|
∞
∑

i=0

ak+s−j−l+ix−i +
∞
∑

i=0

ak+s+ix−i

}

,

(29)

Suppose Assumptions 3.1(iv) and 4.1 are fulfilled, and E is defined as in (4) then

∫ k−1
∏

i=1

fZ(zi)
{

sup
y

s−1
∈Rs

∫

sup
x∈E

Ds,k(ys|ys−1
, z, x)dys

}

dz

≤ 1

a0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|
∞
∑

i=0

ak+s−j−l+iη−i +
∞
∑

i=0

ak+s+iη−i

}

, (30)

where x = (x0, x−1, . . .) is a positive vector.

PROOF. In Appendix A.3 of the Technical report. ¤

We require the following simple lemma to prove the theorem below.

Lemma 4.5 Let us suppose that {ci}, {di} and {η−i} are positive sequences, then

inf
η

{

∞
∑

i=0

(ciη−i + diη
−ν
−i )
}

= (ν
1

1+ν + ν−
ν

ν+1 )
∞
∑

i=0

c
ν

ν+1

i d
1

ν+1

i . (31)

PROOF. In Appendix A.3 of the Technical report. ¤

In the following theorem we obtain α-mixing and β-mixing bounds for the ARCH(∞) process.

Theorem 4.1 Suppose {Xt} satisfies (21).
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(a) Suppose Assumptions 3.1(iii) and 4.1 hold. Then, we have

sup
G∈Fk

∞,H∈F−∞
0

|P (G ∩H) − P (G)P (H)|

≤ K(ν)
∞
∑

i=0

[

1

a0

∞
∑

s=0

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|ak+s−j−l+i +
1

a0

∞
∑

s=0

ak+s+i

] ν
ν+1

[E|X0|ν ]
1

ν+1 (32)

where K(ν) = 3(ν
1

1+ν + ν−
ν

ν+1 ).

(i) If the parameters of the ARCH(∞) process satisfy |aj| ∼ j−δ and the |ψj| ∼ j−δ

(defined in Lemma 4.3), then we have

sup
G∈Fk

∞,H∈F−∞
0

|P (G ∩H) − P (G)P (H)| ≤ K ·
[

k(k + 1)−δ̃+3 + (k + 1)−δ̃+2

]

,

where δ̃ = δ × ( ν
ν+1

).

(ii) If the parameters of the ARCH(∞) process satisfy |aj| ∼ δj and ψj ∼ δj, where

0 < δ < 1 (an example is the GARCH(p, q) process), then we have

sup
G∈Fk

∞,H∈F0
−∞

|P (G ∩H) − P (G)P (H)| ≤ C · k · δk/2

where C is a finite constant.

(b) Suppose Assumptions 3.1(iv) and 4.1 hold. Then, we have

sup
{Gi}∈Fk

∞,{Hj}∈F
−∞
0

∑

i

∑

j

|P (Gi ∩Hj) − P (Gi)P (Hj)|

≤ K(ν)
∞
∑

i=0

[

1

a0

∞
∑

s=0

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|ak+s−j−l+i +
1

a0

∞
∑

s=0

ak+s+i

] ν
ν+1

[E|X0|ν ]
1

ν+1 (33)

where {Gi} and {Hj} are partitions of Ω. We mention that the bounds for the α-mixing

rates for different orders of {aj} and {ψj} derived in (i) also hold for the β-mixing rate.

PROOF. We first prove (a). We use that

sup
G∈Fk

∞,H∈F−∞
0

|P (G ∩H) − P (G)P (H)| = lim
n→∞

sup
G∈Fk

k+n

H ∈ F−∞
0 |P (G ∩H) − P (G)P (H)|,
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and find a bound for each n. By using (5) to bound supG∈Fk
k+n

,H∈F−∞
0

|P (G ∩H) − P (G)P (H)|
we see that for all sets E (as defined in (4)) we have

sup
G∈Fk

k+n
,H∈F−∞

0

|P (G ∩H) − P (G)P (H)| (34)

≤ 2 sup
x∈E

n
∑

s=0

∫

Rk

k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{

∫

Ds,k(ys|ys−1
, z, x)dys

}

dz + 4P (X0 > η0 or . . . X−n > η−n).

To bound the integral in (34) we use (29) to obtain

sup
x∈E

n
∑

s=0

∫

Rk

k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

∫

R

Ds,k(ys|ys−1
, z, x)dysdz

=
1

a0

n
∑

s=0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|
∞
∑

i=0

ak+s−j−l+iη−i +
∞
∑

i=0

ak+s+iη−i

}

. (35)

Now by using Markov’s inequality we have that P (X0 > η0 or , . . . , X−n ≥ η−n) ≤
∑n

i=0
E(|Xi|

ν)
ην
−i

.

Substituting (35) and the above into (34) and letting n→ ∞ gives

sup
G∈Fk

∞,H∈F−∞
0

|P (G ∩H) − P (G)P (H)|

≤ inf
η

[

2

a0

∞
∑

s=0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|
∞
∑

i=0

ak+s−j−l+iη−i +
∞
∑

i=0

ak+s+iη−i

}

+ 4E|X0|ν
∞
∑

i=0

η−ν
−i

]

(36)

where η = (η0, η−1, . . .).

Now we use (31) to minimise (36), which gives us (33). The proof of (i) can be found in the

appendix. It is straightforward to prove (ii) using (31).

The proof of (b) is very similar to the proof of (a) but uses (30) rather than (29), we omit the

details. ¤

Remark 4.1 Under the assumptions in Theorem 4.1(a) we have a bound for the α-mixing rate,

that is α(k) ≤ ζ(k), where ζ(k) = K
[

1
a0

∑∞
s=0

∑k+s
j=s+1 aj

∑k+s−j
l=0 |ψl|ak+s−j−l+i+

1
a0

∑∞
s=0 ak+s+i

] ν
ν+1 .

Under the assumptions in Theorem 4.1(a) the β-mixing coefficient is bounded by β(k) ≤ ζ(k).

In the following theorem we consider a bound for the 2-mixing rate of an ARCH(∞) process.

Theorem 4.2 Suppose {Xt} satisfies (21) and Assumptions 3.1(iii) and 4.1 holds. Then we
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have

sup
G∈σ(Xk),H∈F−∞

0

|P (G ∩H) − P (G)P (H)| ≤ K(ν)
∞
∑

i=0

[

1

a0

k−1
∑

j=0

aj|ψj|ak−j+i

] ν
ν+1

[E|X0|ν ]
1

ν+1 (37)

where K(ν) = 3(ν
1

1+ν + ν−
ν

ν+1 ).

If the parameters of the ARCH(∞) process satisfy aj ∼ j−δ and |ψj| ∼ j−δ (ψj defined in Lemma

4.3), then we have

sup
G∈σ(Xk),H∈F−∞

0

|P (G ∩H) − P (G)P (H)| ≤ K · k(k + 1)−δ̃+1 (38)

where δ̃ = δ × ( ν
ν+1

).

PROOF. We use a similar proof to the proof of Theorem 4.1. The integral difference is replaced

with the bound in (28) and again we use Markov’s inequality, together they give the bound

sup
G∈σ(Xk),H∈F−∞

0

|P (G ∩H) − P (G)P (H)| ≤ inf
η

[

2
1

a0

k−1
∑

j=0

|ψj|
{

∞
∑

i=0

ak−j+iη−i

}

+ 4E|X0|ν
∞
∑

i=0

1

ην
−i

]

. (39)

Finally to obtain (37) and (38) we use (39) and a proof similar to Theorem 4.1(i) hence we omit

the details. ¤

Remark 4.2 Comparing (38) and Theorem 4.1(i) we see that the 2-mixing bound is of a smaller

order than the strong mixing bound.

In fact, it could well be that the 2-mixing bound is of a smaller order than Theorem 4.2(i). This

is because Theorem 4.2(i) gives a bound for supG∈σ(Xk),H∈σ(X0,X−1,...) |P (G ∩ H) − P (G)P (H)|
whereas the 2-mixing bound restricts the sigma-algebra of the left tail to σ(X0). However, we

have not been able to show this and this is a problem that requires further consideration.
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A Proofs

A.1 Proof of Proposition 2.1

We will use the following three lemmas to prove Proposition 2.1.

Lemma A.1 Let G ∈ F t+k
t+k+r2

= σ(X t+k
t+k+r2

) and H,E ∈ F t−r1
t = σ(X t−r1

t ) (where E is defined

in (4)), and use the notation in Proposition 2.1. Then we have

|P (G ∩H ∩ E) − P (G ∩ E)P (H)| (40)

≤ 2P (H) sup
x∈E

∣

∣

∣

∣

P (G|X t−r1
t = x) − P (G|X t−r1

t = 0)

∣

∣

∣

∣

+ inf
x∈E

P (G|X t−r1
t = x)

{

P (H)P (Ec) + P (H ∩ Ec)

}

.

PROOF. To prove the result we first observe that

P (G ∩H ∩ E) = P
(

X t+k
t+k+r2

∈ G, X t−r1
t ∈ (H ∩ E)

)

=

∫

H∩E

∫

G

dP (X t−r1
t ≤ y,X t+k

t+k+r2
≤ x)

=

∫

H∩E

{∫

G

dP (X t+k
t+k+r2

≤ y|X t−r1
t = x)

}

dP (X t−r1
t ≤ x)

=

∫

H∩E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)dP (X t−r1

t ≤ x). (41)

Therefore, by using the above and that P (H ∩ E) ≤ P (H) we obtain the following inequalities

inf
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (H ∩ E) ≤ P (G ∩H ∩ E) ≤ sup

x∈E
P (X t+k

t+k+r2
∈ G|X t−r1

t = x)P (H) (42)

inf
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (E) ≤ P (G ∩ E) ≤ sup

x∈E
P (X t+k

t+k+r2
∈ G|X t−r1

t = x)P (E). (43)

Subtracting (42) from (43) and using P (H ∩ E) = P (H) − P (H ∩ Ec) give the inequalities

P (G ∩H ∩ E) − P (G ∩ E)P (H) ≤ sup
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (H)

− inf
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (H) + P (Ec)P (H) (44)

P (G ∩H ∩ E) − P (G ∩ E)P (H) ≥ inf
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (H)

− sup
x∈E

P (X t+k
t+k+r2

∈ G|X t−r1
t = x)P (H) − P (Ec ∩H). (45)
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Combining (44) and (45) we obtain

|P (G ∩H ∩ E) − P (G ∩ E)P (H)| (46)

≤ P (H)
∣

∣ sup
x∈E

P (G|X t−r1
t = x) − inf

x∈E
P (G|X t−r1

t = x)
∣

∣+ inf
x∈E

P (G|X t−r1
t = x)

{

P (H)P (Ec) + P (H ∩ Ec)

}

.

Using the triangle inequality we have

∣

∣

∣

∣

sup
x∈E

P (G|X t−r1
t = x) − inf

x∈E
P (G|X t−r1

t = x)

∣

∣

∣

∣

≤ 2 sup
x∈E

∣

∣

∣

∣

P (G|X t−r1
t = x) − P (G|X t−r1

t = 0)

∣

∣

∣

∣

.

Substituting the above into (46) gives (40), as required. ¤

We now obtain a bound for the first term on the right hand side of (40).

Lemma A.2 Let f
Xt+k

t+k+r2
|X

t−r1
t

denote the density of X t+k
t+k+r2

given X t−r1
t and G and H be defined

as in (10), then

∣

∣P (G|X t−r1
t = x) − P (G|X t−r1

t = 0)
∣

∣ ≤
∫

G

D0,k,t(y|x)dy. (47)

Let W t+1
t+k−1 be a random vector which is independent of X t−r1

t and let fW denote the density of

W t+1
t+k−1. If G ∈ σ(Xt+k) then

∫

G

∣

∣f
Xt+k|X

t−r1
t

(y|x) − f
Xt+k|X

t−r1
t

(y|0)
∣

∣dy ≤
∫

Rk−1

fW (w)

{∫

G

D0,k,t(y|w, x)dy
}

dw (48)

and if G ∈ σ(X t+k
t+k+r2

) then

∫

G

∣

∣f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣dy ≤
r2
∑

s=0

∫

Rk−1

fW (w)

{

sup
y

s−1

∫

Gs

Ds,k,t(ys|ys−1
, w, x)dys

}

dw,(49)

where G = G1 ⊗ . . .⊗ Gn, and Gj ⊂ R.

PROOF. The proof of (47) is clear, hence we omit the details.

To prove (48) we first note that by independence ofW t+1
t+k−1 andX t−r2

t we have that f
W |X

t−r1
t

(w|x) =

fW (w), where f
W |X

t−r1
t

is the conditional density of W t+1
t+k−1 given X t−r1

t . Therefore we have

f
Xt+k|X

t−r1
t

(y|x) =

∫

Rk−1

f
Xt+k|W,X

t−r1
t

(y|w, x)fW (w)dw =

∫

Rk−1

f0,k,t(y|w, x)fW (w)dw.
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Now substituting the above into
∫

G

∣

∣f
Xt+k|X

t−r1
t

(y|x) − f
Xt+k|X

t−r1
t

(y|0)
∣

∣dy gives (48).

To prove (49) we note by using the same argument to prove (48) we have

f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) =

∫

Rk−1

fW (w)

r2
∏

s=0

fs,k,t(ys|ys−1
, w, x)dw. (50)

Now repeatedly subtracting and adding fs,k,t from the above gives

f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0) =

r2
∑

s=0

∫

Rk−1

fW (w)

{ s−1
∏

a=0

fa,k,t(ya|ya−1
, w, x)

}

×
{ r2
∏

b=s+1

fb,k,t(yb|yb−1
, w, 0)

}{

fs,k,t(ys|ys−1
, w, x) − fs,k,t(ys|ys−1

, w, 0)

}

dw. (51)

Therefore taking the integral of the above over G gives
∫

G

∣

∣f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣dy ≤
r2
∑

s=0

∫

Rk

fW (w)

{[ s−1
∏

a=0

∫

Ga

fa,k,t(ya|ya−1
, w, x)dya ×

r2
∏

b=s+1

∫

Gb

fb,k,t(yb|yb−1
, w, x)dyb

]

× sup
y

s−1

∫

Gs

∣

∣fs,k,t(ys|ys−1
, w, x) − fs,k,t(ys|ys−1

, w, 0)
∣

∣dys

}

dw. (52)

To obtain (49) we observe that since Gj ⊂ R and
∫

R
fs,k,t(ys|ys−1

, w, x)dys = 1 we have
(
∏s−1

a=0

∫

Ga
fa,k,t(ya|ya−1

, w, x)dya

)(
∏r2

b=s+1

∫

Gb
fb,k,t(yb|yb−1

, w, x)dyb

)

≤ 1. Finally substituting

the above upper bound into (52) gives (49). ¤

The following lemma will be used to show β-mixing and uses the above lemmas.

Lemma A.3 Suppose that {Gi} ∈ F t+k
t+k+r2

, {Hj} ∈ F t−r1
t and {Gi} and {Hj} are partitions of

Ω. Then we have

∑

i,j

|P (Gi ∩Hj ∩ E) − P (Gi ∩ E)P (Hj)|

≤ 2
∑

i

sup
x∈E

|P (Gi|X t−r1
t = x) − P (Gi|X t−r1

t = 0)| + 2P (Ec)

and
∑

i,j

|P (Gi ∩Hj ∩ Ec) − P (Gi ∩ Ec)P (Hj)| ≤ 2P (Ec). (53)
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PROOF. Substituting the inequality in (40) into
∑

i,j |P (Gi ∩Hj ∩E)− P (Gi ∩E)P (Hj)| gives

∑

i,j

|P (Gi ∩Hj ∩ E) − P (Gi ∩ E)P (Hj)|

≤ 2
∑

j

P (Hj)
∑

i

sup
x∈E

∣

∣P (Gi|X t−r1
t = x) − P (Gi|X t−r1

t = 0)
∣

∣+

∑

i,j

inf
x∈E

P (Gi|X t−r1
t = x)

{

P (Hj)P (Ec) + P (Hj ∩ Ec)
}

. (54)

The sets {Hj} are partitions of Ω, hence
∑

i P (Hj) = 1 and
∑

i P (Hj ∩ Ec) ≤ 1. Using these

observations together with (54) gives (53).

(53) immediately follows from the fact that {Hj} and {Gi} are disjoint sets gives (53). ¤

Using the above three lemmas we can now prove Proposition 2.1.

PROOF of Proposition 2.1 equation (5) It is straightforward to show that

∣

∣P (G ∩H) − P (G)P (H)
∣

∣ ≤
∣

∣P (G ∩H ∩ E) − P (G ∩ E)P (H)
∣

∣+
∣

∣P (G ∩H ∩ Ec) − P (G ∩ Ec)P (H)
∣

∣.

Now by substituting (47) into Lemma A.1 and using the above gives

∣

∣P (G ∩H) − P (G)P (H)
∣

∣ ≤ 2 sup
x∈E

∫

G

∣

∣f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣dy +

inf
x∈E

P (G|X t−r1
t = x)

{

P (H)P (Ec) + P (H ∩ Ec)
}

+ P (G ∩H ∩ Ec) + P (G ∩ Ec)P (H).

Finally by using that G ⊂ R
r2+1, P (G ∩ H ∩ Ec) ≤ P (Ec), P (G ∩ Ec)P (H) ≤ P (Ec) and

infx∈E P (G|X t−r1
t = x) ≤ 1 we obtain (5). ¤

PROOF of Proposition 2.1 equation (6) It is worth noting that the proof of (6) is similar

to the proof of (5). Using (53) and the same arguments as in the proof of (5) we have

∑

i,j

|P (Gi ∩Hj) − P (Gi)P (Hj)| ≤ 2
∑

i

sup
x∈E

∫

Gi

∣

∣

∣

∣

f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)

∣

∣

∣

∣

dy + 4P (Ec)

≤ 2
∑

i

∫

Gi

sup
x∈E

∣

∣

∣

∣

f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣

∣

∣

dy + 4P (Ec) (55)

≤ 2

∫

Rr2+1

sup
x∈E

∣

∣

∣

∣

f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣

∣

∣

dy + 4P (Ec),

where Hj = {ω; X t−r1
t (ω) ∈ Hj} and Gi = {ω; X t+k

t+k+r2
(ω) ∈ Gi}, which gives (6). ¤
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PROOF of Proposition 2.1 equation (7). To prove (7) we note that
∫

Gs
Ds,k,t(ys|ys−1

, w, x)dys ≤
∫

R
Ds,k,t(ys|ys−1

, w, x)dys. Now by substituting this inequality into (49) and what results into (5)

gives (7). ¤

PROOF of Proposition 2.1 equation (8). To prove (8) we use (49) and that for all positive

functions f ,
∑

i

∫

Gs,i
f(u)du ≤

∫

R
f(u)du we have

∑

i

∫

Gi

sup
x∈E

∣

∣f
Xt+k

t+k+r2
|X

t−r1
t

(y|x) − f
Xt+k

t+k+r2
|X

t−r1
t

(y|0)
∣

∣dy

≤
∑

i

r2
∑

s=0

∫

Rk

fW (w) sup
y

s−1
∈(R+)s

{∫

Gs,i

sup
x∈E

Ds,k,t(ys

∣

∣y
s−1

, w, x)dys

}

dw

≤
r2
∑

s=0

∫

Rk

fW (w) sup
y

s−1
∈(R+)s

{∫

R

sup
x∈E

Ds,k,t(ys

∣

∣y
s−1

, w, x)dys

}

dw

where Gs = Gs,1 ⊗ . . . ⊗ Gs,n and Gs,i ⊂ R. Finally substituting the above into the right hand

side of (6) gives (8). ¤

A.2 Proofs in Section 3

PROOF of Lemma 3.2 We first note that since {Xt} satisfies a tvARCH(p) representation

(p < ∞) it is p-Markovian, hence for any r2 > p the sigma-algebras generated by X t+k
t+k+r2

and

Zt+k+p
t+k+r2

, X t+k+p−1
t+k are the same. Moreover, by using that for all τ > t, Zτ is independent of Xτ

we have

sup
G∈Ft+k

∞ ,H∈F−∞
t

|P (G ∩H) − P (G)P (H)| = sup
G∈Ft+k

t+k+p−1,H∈Ft−p+1
t

|P (G ∩H) − P (G)P (H)|. (56)

Now by using the above, Proposition 2.1, equation (7), and that Z t+1
t+k−1 and X t−p+1

t are inde-

pendent, for any set E (defined as in (4)) we have

sup
G∈Ft+k

t+k+p−1,H∈Ft−p+1
t

|P (G ∩H) − P (G)P (H)|

≤ 2 sup
x∈E

p−1
∑

s=0

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{

∫

Ds,k,t(ys|ys−1
, z, x)dys

}

dz + 4P (Xt > η0 or . . . Xt−p+1 > η−p+1).

(57)
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Finally using that P (Xt > η0 or Xt−1 > η−1 . . . Xt−p+1 > η−p+1) ≤
∑p−1

j=0 P (Xt−j > η−j) gives

(17).

The proof of (18) uses a similar proof as that given above, but uses (8) instead of (7), we omit

the details. ¤

PROOF of Lemma 3.1 We first prove (14) with s = 0. Suppose k ≥ 1 and focusing on the

first element of X t+k−p+1
t+k in (13) and factoring out Zt+k gives

Xt+k = Zt+k

{

a0(t+ k) + [At+k

k−2
∑

r=0

r
∏

i=1

At+k−i(Z)bt+k−r−1(Z)]1 + [At+k{
k−1
∏

i=1

At+k−i(Z)}X t−p+1
t ]1

}

,

which is (14) (with s = 0). To prove (14) for 1 ≤ s ≤ p, we notice by using the tvARCH(p)

representation in (11) and (14) for s = 0 gives

Xt+k+s = Zt+k+s

{

a0(t+ k + s) +
s−1
∑

i=1

ai(t+ k + s)Xt+k+s−i +

p
∑

i=s

ai(t+ k + s)Xt+k+s−i

}

= Zt+k+s {Ps,k,t(Z) + Qs,k,t(Z,X)} ,

where Ps,k,t and Qs,k,t are defined in (15). Hence this gives (14). Since aj(·) and Zt are positive,

it is clear that Ps,k,t and Qs,k,t are positive random variables. ¤

We require the following simple lemma to prove Lemmas 3.3 and 4.4.

Lemma A.4 Suppose that Assumption 3.1(iii) is satisfied, then for any positive A and B we

have

∫

R

| 1

A+B
fZ(

y

A+B
) − 1

A
fZ(

y

A
)|dy ≤ K(

B

A
+

B

A+B
). (58)

Suppose that Assumption 3.1(iv) is satisfied, then for any positive A, positive continuous function

B : R
r2+1 → R and set E (defined as in (4)) we have

∫

R

sup
x∈E

| 1

A+B(x)
fZ(

y

A+B(x)
) − 1

A
fZ(

y

A
)|dy ≤ K sup

x∈E
(
B(x)

A
+

B(x)

A+B(x)
). (59)

PROOF. To prove (58) we observe that

∫

R

| 1

A+B
fZ(

y

A+B
) − 1

A
fZ(

y

A
)|dy = I + II
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where I =

∫

R

1

A+B
|fZ(

y

A+B
) − fZ(

y

A
)|dy and II =

∫

R

( 1

A+B
− 1

A
)fZ(

y

A
).

To bound I, we note that by changing variables with u = y/(A + B) and under Assumption

3.1(iii) we get

I ≤
∫

R

∣

∣fZ

(

u
)

− fZ

(

u(1 +
B

A
)
)∣

∣du ≤ K
B

A
.

It is straightforward to show II ≤ B
A+B

. Hence the bounds for I and II give (58).

The proof of (59) is the same as above, but uses Assumption 3.1(iv) instead of Assumption

3.1(iii), we omit the details. ¤

PROOF of Lemma 3.3. We first show that

sup
y

s−1
∈Rs

∫

Ds,k,t(ys|ys−1
, z, x)dys ≤ K

inft∈Z a0(t)
Qs,k,t(z, x) (60)

and use this to prove (19). We note that when x = 0, Qs,k,t(z, 0) = 0 and

fs,k,t(ys|ys−1
, z, 0) = Ps,k,t(z)

−1fZ( ys

Pt+k+s,t+k(z)
). Therefore using (16) gives

Ds,k,t(ys|ys−1
, z, x) =

∣

∣

∣

∣

1

Ps,k,t(z) + Qs,k,t(z, x)
fZ

( ys

Ps,k,t(z) + Qs,k,t(z, x)

)

− 1

Ps,t,k(x)
fZ

( ys

Ps,k,t(z)

)

∣

∣

∣

∣

.

Now recalling that Ps,k,t and Qs,k,t are both positive and setting A = Ps,k,t(z) and B = Qs,k,t(z, x)

and using (58) we have

∫

R

Ds,k,t(ys|ys−1
, z, x)dys ≤ K

(Qs,k,t(z, x)

Ps,k,t(z)
+

Qs,k,t(z, x)

Ps,k,t(z) + Qs,k,t(z, x)

)

.

Finally, since Ps,k,t(z) > inft∈Z a0(t) we have
∫

R
Ds,k,t(ys|ys−1

, z, x)dys ≤ K
Qs,k,t(z,x)

inft∈Z a0(t)
, thus giving

(60). By using (60) we now prove (19). Substituting (60) into the integral on the left hand side

of (19) and using that E[Qs,k,t(Z, x)] = Qs,k,t(1k−1, x), using this and substituting (60) into (17)

gives

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{

∫

R

Ds,k,t(ys|ys−1
, z, x)dys

}

dz ≤ K
E[Qs,k,t(Z, x)]

inft∈Z a0(t)
= K

Qs,k,t(1k−1, x)

inft∈Z a0(t)
. (61)

We now find a bound for Qs,k,t. By definition of Qs,k,t in (15) and using the matrix norm
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inequality [Ax]1 ≤ K‖A‖spec‖x‖ (‖ · ‖spec is the spectral norm) we have

Qs,k,t(1k−1, x) =

p
∑

i=s+1

ai(t+ k + s)
[

At+k+s−i

k+s−i
∑

r=1

{
k+s−i
∏

d=0

At+k+s−i−d}x
]

1

≤ K

inft∈Z a0(t)

p
∑

i=s

ai(t+ k + s)
∥

∥At+k+s−i{
k−1
∏

d=0

At+k+s−i−d}
∥

∥

spec
‖x‖.

To bound the above, we note that by Assumption 3.1(i), supt∈Z

∑p
j=1 aj(t) ≤ (1 − δ), therefore

there exists a δ̃, where 0 < δ̃ < δ < 1, such that for all t we have ‖At+k+s−i{
∏k−1

d=0 At+k+s−i−d}‖spec ≤
K(1 − δ̃)k+1, for some finite K. Altogether this gives

Qs,k,t(1k−1, x) ≤
K

inft∈Z a0(t)

p
∑

i=s

ai(t+ k + s)
∥

∥At+k+s−i{
k+s−i
∏

d=0

At+k+s−i−d}
∥

∥

spec
‖x‖

≤ K

inft∈Z a0(t)

p
∑

i=s

ai(t+ k + s)(1 − δ̃)k+s−i‖x‖. (62)

Substituting the above into (61) gives (19).

We now prove (20). We use the same proof to show (60), but apply (58) instead of (59) to obtain

sup
y

s−1
∈Rs

∫

sup
x∈E

Ds,k,t(ys|ys−1
, z, x)dys ≤

K

inft∈Z a0(t)
sup
x∈E

Qs,k,t(z, x).

By substituting the above into (18) and using the same proof to prove (19) we obtain

p−1
∑

s=0

∫ k−1
∏

i=1

fZ(zi) sup
y

s−1
∈Rs

{

∫

R

sup
x∈E

Ds,k,t(ys|ys−1
, z, x)dys

}

dz ≤ K
E[supx∈E Qs,k,t(Z, x)]

inft∈Z a0(t)
. (63)

Since Qs,k,t(Z, x) is a positive function and supx∈E Qs,k,t(Z, x) = Qs,k,t(Z, η) we have E[supx∈E Qs,k,t(Z, x)] ≤
supx∈E E[Qs,k,t(Z, x)] = supx∈E Qs,k,t(1k−1, x), hence by using (62) we have

E[supx∈E Qs,k,t(Z, x)]

inft∈Z a0(t)
≤ K(1 − δ̃)k‖x‖

inft∈Z a0(t)
.

Substituting the above into (63) gives (20). ¤
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A.3 Proofs in Section 4

PROOF of Lemma 4.1 We first observe from (21) and the definition of dk that

Xk = Zk

[

a0 +
k−1
∑

j=1

ajXk−j + dk(X)
]

. (64)

Therefore X1 = Z1 [a0 + d1(X)], which we use to obtain X2 = Z2[a0 + a1X1 + d2(X)] = Z2[a0 +

a0a1Z1 + a1Z1d1(X) + d2(X)]. Continuing the iteration we get the general expansion in (22). To

prove the recursion

Q0,k(Z,X) =
k
∑

j=1

ajQ0,k−j(Z,X)Zk−j + dk(X), (65)

, we substitute the representation Xk = P0,k(Z)Zk + Q0,k(Z,X)Zk into (64). By using proof by

induction it is straightforward to show that Q0,k(Z,X) satisfies the recursion. ¤

PROOF of Lemma 4.2 Using (21) and (22) we have

Xk+s = Zk+s

[

a0 +
s
∑

j=1

ajXk+s−j +
k+s−1
∑

j=s+1

ajXk+s−j + dk+s(X)

]

= Zk+s

{

a0 +
s
∑

j=1

ajXk+s−j +
∞
∑

j=s+1

ajZk+s−jP0,k+s−j(Z)

+
k+s
∑

j=s+1

ajZk+s−jQ0,k+s−j(Z,X)] + dk+s(X)

}

= Zk+s {Ps,k(Z) + Qs,k(Z,X)} ,

where Qs,k and Ps,k are defined in (25), thus giving us the desired result. ¤

PROOF of Lemma 4.3. We first prove

(1 −
∞
∑

j=1

ajz
j)−1 =

∞
∑

j=0

ψjz
j.. (66)

Let a(z) = 1−
∑∞

j=1 ajz
j, since the coefficients of a(z) are absolutely summable, a(z) is analytic.

Because
∑∞

j=1 aj < 1 − δ, for all |z| ≤ 1 we have |
∑∞

j=1 ajz
j| ≤ 1 − δ, thus |a(z)| ≥ 1 −

|∑∞
j=1 ajz

j| ≥ δ > 0, which means that a(z) is not zero inside the unit circle. This means
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that for |z| ≤ 1, a(z) has a reciprocal and there exists coefficients {ψj} such that (66) is true.

Furthermore, Hannan and Kavaliers (1986) show if
∑

j |jα|aj| < ∞, then
∑

j |jα|ψj| < ∞. We

now prove (27) by using the recursion

Qs,k(1k−1, x) =
k
∑

j=1

aj+sQ0,k−j(1k−j−1, x) + dk+s(x), s ≥ 0. (67)

We observe that by using the above and setting Q0,k(1k−1, x) = 0 for k ≤ 0, we have that

Q0,k(1k−1, x) satisfies

Q0,k(1k−1, x) =
∞
∑

j=1

ajQ0,k−j(1k−j−1, x) + dk(X), for k > 0.

Rewriting the above using backshift notation we have a(B)Q0,k(1k−1, X) = dk(X), where B

is the backshift operator. Since the reciprocal of a(z) is well defined for |z| ≤ 1, we have

Q0,k(1k−1, X) = a(B)−1dk(X) =
∑∞

j=0 ψjdk−j(X) =
∑k−1

j=0 ψjdk−j(X), and thus we obtain the

desired result. ¤

PROOF of Lemma 4.4 Using the density of fs,k derived in (26) and the same method to prove

(60) we have

∫ k−1
∏

i=1

fZ(zi)

{∫

|f0,k(y, z, x) − f0,k(y, z, 0)|dy
}

dz

≤ K

∫ k−1
∏

i=1

fZ(zi)
Q0,k(z, x)

a0

dz ≤ K

∫ k−1
∏

i=1

fZ(zi)
Q0,k(z, x)

a0

dz ≤ K

a0

E[Q0,k(Z, x)].

By noting that E[Q0,k(Z, x)] = Q0,k(1k−1, x) and using (27) gives us (28).

To prove (29) we use (26) and the same method used to prove (60), this gives us

∫ k−1
∏

i=1

fZ(zi)
{

sup
y

s−1
∈Rs

∫

Ds,k(ys|ys−1
, x)dys

}

dz

≤ K

a0

∫ k−1
∏

i=1

fZ(zi)Qs,k(z, x)dz =
K

a0

E[Qs,k(Z
1
k−1, x)] =

K

a0

Qs,k(1k−1, x).
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By substituting (67) and (27) into the above we have

∫ k−1
∏

i=1

fZ(zi)
{

sup
y

s−1
∈Rs

∫

Ds,k(ys|ys−1
, z, x)dys

}

dz

≤ 1

a0

{

k+s
∑

j=s+1

ajQ0,k+s−j(1k−1, x) + dk+s(x)

}

≤ 1

a0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|dk+s−j−l(x) + dk+s(x)

}

=
1

a0

{

k+s
∑

j=s+1

aj

k+s−j
∑

l=0

|ψl|
∞
∑

i=0

ak+s−j−l+ix−i +
∞
∑

i=0

ak+s+ix−i

}

,

which gives us (29).

The proof of (30) is very similar to the proof of (29), but uses Assumption 3.1(iv) rather than

Assumption 3.1(iii), we omit the details. ¤

PROOF of Lemma 4.5 First let us consider the function h(η) = cη+dη−ν , it clear that h(·) is a

convex function with a unique minimum at η∗ = (dν
c
)

1
ν+1 , where h(η∗) = (ν

1
1+ν + ν−

ν
ν+1 )c

ν
ν+1d

1
ν+1 .

It is straightforward to extend this argument to the function
∑∞

i=0(ciη−i + diη
−ν
−i ), which gives

the required result. ¤

PROOF of Theorem 4.1(i) By substituting aj ∼ j−δ and |ψj| ∼ j−δ into (33) and using for

0 < β ≤ 1, that (
∑

i gi)
β ≤∑i g

β
i , and setting β = ν

ν+1
we have

sup
G∈σ(X∞

k
)

H0∈σ(X−∞
0 )

|P (G ∩H) − P (G)P (H)|

≤ K
∞
∑

i=0

[ ∞
∑

s=0

k+s
∑

j=s+1

(j + 1)−δ

k+s−j
∑

l=0

(l + 1)−δ(k + s− j − l + i+ 1)−δ +
∞
∑

s=0

(k + s+ i+ 1)−δ

] ν
ν+1

≤ K

∞
∑

s=0

k+s
∑

j=s+1

[(j + 1)(k + s− j + 1)]−δ̃+2 + (k + 1)−δ̃+2

where K is a finite constant which depends on E|Xt|ν and ν, and δ̃ = δ × ( ν
ν+1

). We note that

f(j) = (j + 1)(k + s − j + 1) is a concave quadratic in j, which takes a maximum at either
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boundary (k + s+ 1) and (s+ 2)k. Using this and (s+ 2)k ≥ (k + s+ 1) we have

sup
G∈σ(Xk

∞)

H∈σ(X−∞
0 )

|P (G ∩H) − P (G)P (H)|

≤ K

∞
∑

s=0

k(k + s+ 1)−δ̃+2 + (k + 1)−δ̃+2 ≤ K

[

k(k + 1)−δ̃+3 + (k + 1)−δ̃+2

]

,

which proves Theorem 4.1(i).
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C. Francq and J.-M. Zaköıan. Mixing properties of a general class of garch(1, 1) models without

moment assumptions. Econometric Theory, 22:815–834, 2006.

P. Fryzlewicz, T. Sapatinas, and S. Subba Rao. Normalised least squares estimation in time-

varying ARCH models. Ann. Statistics, 36:742–786, 2008.

P. Fryzlewicz and S. Subba Rao. BaSTA: consistent multiscale multiple change-point detection

for piecewise-stationary ARCH processes. 2008.

L. Giraitis, P. Kokoskza, and R. Leipus. Stationary ARCH models: Dependence structure and

central limit theorem. Econometric Theory, 16:3–22, 2000.

L. Giraitis, R. Leipus, and D Surgailis. Recent advances in ARCH modelling. In A. Kirman and

G. Teyssiere, editors, Long Memory in Economics, pages 3–39. Berlin, 2005.

L. Giraitis and P.M. Robinson. Whittle estimation of ARCH models. Econometric Theory, 17:

608–631, 2001.

V.V. Gorodetskii. On the strong mixing propery for linear sequences. Theory of Probability and

its Applications, 22:411–413, 1977.

P Hall and C.C. Heyde. Martingale Limit Theory and its Application. Academic Press, New

York, 1980.

E. J. Hannan and L. Kavaliers. Regression, autoregressive models. J. Time Series Anal., 7:

27–49, 1986.
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pages 439–459. Birkhäuser, Boston, 2003.

A. Mokkadem. Propertiés de mélange des processus autoregressifs polnomiaux. Annales de l’I

H. P., 26:219–260, 1990.

D. T. Pham. The mixing propery of bilinear and generalised random coefficient autorregressive

models. Stochastic Processes and their Applications, 23:291–300, 1986.

D. T. Pham and T .T Tran. Some mixing properties of time series models. Stochastic processes

and their applications, 19:297–303, 1985.

P. M. Robinson and P. Zaffaroni. Pseudo-maximum likelihood estimation of ARCH(∞) models.

Ann. Statist., 34:1049–1074, 2006.

P.M. Robinson. Testing for strong serial correlation and dynamic conditional heteroskedasity in

multiple regression. Journal of Econometrics, 47:67–78, 1991.

A. A. Sorokin. Uniform bound for strong mixing coefficient and maximum of residual empirical

process of ARCH sequences (in Russian). ArXiv (0610747), 2006.

D. Straumann and T. Mikosch. Quasi-maximum likelihood estimation in conditionally het-

roscedastic time series: a stochastic recurrence equation approach. Ann. Statist., pages 2449–

2495, 2006.

33



S. Subba Rao. A note on uniform convergence of an ARCH(∞) estimator. Sankhya, 68:600–620,

2006.

D. Tjostheim. Nonlinear time series and markov chains. Adv. in Appl. Probab, 22:587–611, 1990.

V. A. Volkonskii and Yu. A. Rozanov. Some limit theorems for random functions I. Theor.

Probabl Appl., 4:178–197, 1959.

34


