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SummaryIn this paper, we consider the problem of pricing American vanilla optionsin an incomplete market in which the stock price process is driven by adi�usion with jumps of random magnitude. We use Schweizer's minimalequvalent martingale measure as the pricing measure.We formulate the problem as a variational inequality, whose discretizationleads to a linear complementarity problem (LCP). We introduce a signi�-cant modi�cation to the discretization scheme proposed by Zhang [Zha97].Moreover, we propose a new e�cient linear programming (LP) algorithmfor solving the LCP's which arise, and show that, on the whole, it performsbetter than the standard iterative PSOR method.Furthermore, we analyse how the numerical solution to the American putpricing problem depends on the parameters of the model. We also investigatehow the distribution of the optimal exercise time for the American put varieswith the parameters.The original ideas and results presented in this paper are the following.1. The computation of Schweizer's minimal martingale measure for themodel in question, and the application of this measure (instead of Mer-ton's measure) to de�ne the value of a derivative security in this model.2. The modi�cation of the discretization scheme for the implied varia-tional inequality, introduced to eliminate the instability of the numer-ical solution and to improve its properties.3. The construction of an e�cient LP algorithm for solving the arisingLCP's, its detailed analysis and comparison with the PSOR algorithm.4. A thorough analysis of the numerical solution to the American putpricing problem (dependence on the parameters, comparison with theBlack-Scholes prices, distribution of the optimal exercise times).3



Chapter 1The Valuation of AmericanOptions in the Jump-Di�usionModel
1.1 IntroductionAmerican stock options are the most widely traded derivative securities inthe world. Since the seventies, when they appeared on public exchanges,their valuation has been a crucial problem in �nancial management. Dueto the early exercise feature of these �nancial products, it is impossible tovalue them analytically for most payo� functions, even in the Black-Scholesframework1. In order to price them, it is necessary to resort to numericalmethods.In the Black-Scholes case, the problem of valuing both American vanillasand American exotics numerically has been examined closely, and variousmethods have been proposed. Karatzas and Shreve [KS98] enumerate thefollowing methods as the most popular ones currently in use:� numerical solutions of partial di�erential equations and variational in-equalities,� binomial trees and their extensions,� analytic approximations,1The important exception are perpetuities, i. e. options with in�nite expiry date. Theycan be priced analytically in both the Black-Scholes and the jump-di�usion model (see[KS98] and [Mor99] for explicit formulae in the former and the latter model, respectively).4



� Monte Carlo simulation.A survey of recent numerical techniques of pricing American options is pre-sented in the paper by Broadie and Detemple [BD97].Jaillet, Lamberton and Lapeyre [JLL90] were the �rst to introduce the vari-ational inequality approach to pricing American options in the Black-Scholesmodel. They rely on the methodology of Bensoussan and Lions [BL78] toobtain the main results. For an overview of variational inequality methodsin the context of American option pricing in the Black-Scholes model, seeWilmott, Dewynne and Howison [WDH93].The jump-di�usion model of the market was �rst introduced by Merton[Mer76]. Merton, by assuming that the risk associated with the stock isunpriced, attempts at valuing European options in his model, despite its in-completeness. It is now well known that in incomplete markets option pricesare not unique and each equivalent martingale measure de�nes an arbitrage-precluding price. Instead of using Merton's equivalent martingale measure(jump risk unpriced, di�usion risk priced like in the Black-Scholes model),Schweizer [Sch95] suggests using the so-called minimal martingale measure(MMM), which has the advantage of leaving the discounted stock price semi-martingale \nearly intact".Zhang [Zha93], [Zha97] uses the methodology of variational inequalities toprice American options in Merton's model. Her approach is based on thetheory of Bensoussan and Lions [BL78], [BL82], and Jaillet et al. [JLL90].The discretization of the variational formulation leads to a linear comple-mentarity problem (LCP), on which there is vast literature (see, for example,Cottle, Pang and Stone [CPS92] or Murty [Mur97]). In principle, there aretwo main approaches to solving LCP's | one iterative and the other di-rect. Probably the most popular iterative method is the projected successiveover-relaxation (PSOR), considered in [WDH93] in the context of Americanoption valuation in the Black-Scholes model. Parametric principal pivotingappears to be the most popular direct method. It is discussed at length in[CPS92].The numerical treatment of the LCP's arising in Merton's jump-di�usionmodel is discussed in the paper by Huang and Pang [HP98]. The authorsargue that both algorithms (PSOR and parametric principal pivoting) canbe used to solve the LCP's in question.Some LCP's can be equivalently formulated as linear programming (LP) prob-lems. Dempster et al. [DHR98], [DH97], [DH99] take advantage of this equiv-alence by employing the LP methodology to price American options in the5



Black-Scholes model.Our aim in this paper is to value American vanilla options in the jump-di�usion model with jumps of random magnitude, using the linear comple-mentarity approach. We use Schweizer's minimal martingale measure as thepricing measure. We modify the discretization scheme proposed by Zhang[Zha97], and show that, after the modi�cation, the numerical solutions tothe American option pricing problems behave \better" than those resultingfrom the unmodi�ed scheme. The arising LCP's are solved by means of boththe standard PSOR method and a new LP technique.The paper is organized as follows. In Chapter 1, we describe the jump-di�usion model, de�ne the option pricing problem, and then explicitly com-pute Schweizer's minimal martingale measure for the stock price process inquestion. Subsequently, we formulate the problem in the language of linearcomplementarity, using a di�erent discrete approximation of the pdf of thejump relative size than that proposed by Zhang [Zha97]. We solve the LCP'swhich arise by means of the standard PSOR method. In Chapter 2, wepropose a new linear programming method for solving the above-mentionedLCP. We show its advantages and disadvantages, and conclude that the newLP algorithm, while being comparable to PSOR in terms of accuracy, signi�-cantly outperforms PSOR in terms of speed. Subsequently, we apply the newalgorithm to the valuation of the American put written on a dividend-payingstock, using Schweizer's measure as the pricing measure. In Chapter 3, wediscuss the most important numerical results. Namely, we analyse how thecomputed price of the option depends on the parameters of the model, andwe study the optimal exercise times for the option. Finally, we discuss theadvantages of our approximation scheme over Zhang's scheme.The original ideas and results presented in this paper are the following.1. The explicit computation of Schweizer's minimal martingale measurefor the model in question, and the application of this measure (insteadof Merton's measure) to de�ne the value of an American option in thismodel (Section 1.4).2. The modi�cation of the discretization scheme for the implied varia-tional inequality, introduced to eliminate the instability of the numer-ical solution and to improve its properties (subsection 1.6.3, Section3.3).3. The construction of a new e�cient LP algorithm for solving the arisingLCP's, its detailed analysis and comparison with the well-establishedPSOR algorithm (Chapter 2). 6



4. A thorough analysis of the numerical solution to the American putpricing problem (dependence on the parameters, comparison with theBlack-Scholes prices, distribution of the optimal exercise times: Chap-ter 3).1.2 The Jump-Di�usion ModelThroughout the paper, we are concerned with a �nancial market on whichthere are two assets, S0 and S, traded continuously up to time T > 0. Theasset S0 is a bond and its price at time t 2 [0; T ] is given byS0t = exp(rt);where r is the constant risk-free interest rate. The uncertainty on the mar-ket is generated by a probability space (
;F ;P), equipped with a �ltrationfFtgt2[0;T ], such that FT � F . The �ltration fFtg is assumed to satisfythe usual conditions. The asset S is a stock whose price is governed by thefollowing stochastic di�erential equation:( S0 = y;dStSt� = �dt+ �dWt + d�PNtj=1 Uj� ; t 2 (0; T ]; (1.1)where y is the spot price at time 0, W is a standard one-dimensional Brow-nian motion, N is a Poisson process with constant intensity � � 0, andfUjgj�1 is a sequence of iid square integrable random variables with valuesin (�1;1) (so as to keep the stock price positive). The drift coe�cient � andthe volatility � are both constant. The variables Uj represent the relativeamplitudes of jumps and the parameter � accounts for their frequency.The processes fWtgt2[0;T ], fNtgt2[0;T ], and fUjgj�1 (the \process" fUjgj�1being in fact a sequence of random variables) are independent. We assumethat the stock S pays dividends at the (constant) rate �, where r > � � 0.Equivalently, the process S can be written in the following form:( S0 = y;dStSt� = ��dt+ �dWt + d�PNtj=1 Uj � �EP(U1)t� ; t 2 (0; T ]; (1.2)where �� = �+ �EP(U1).The generalized Poisson process fPNtj=1 Ujgt2[0;T ] can be identi�ed to a ran-dom measure v(dt; dy), de�ned on [0; T ] � R. As a result, the compensated7



process fPNtj=1 Uj � �E (U1)tgt2[0;T ] is identi�ed to the measure~v(dt; dy) = v(dt; dy)� �fU1(y)dtdy;where fU1 is the common pdf of the random variables U1; U2; : : :. Using thisnotation, we can rewrite the model (1.2) as a stochastic integral equation:St = y+Z t0 ��Ss�ds+Z t0 �Ss�dWs+Z t0 ZR Ss�y~v(ds; dy); t 2 [0; T ]: (1.3)The model de�ned by the equivalent formulae (1.1), (1.2) and (1.3), is calledthe jump-di�usion model of the market. It generalizes the standard Black-Scholes model, obtained upon setting � = 0. Contrary to the latter, it isnot complete (provided that � > 0 and the jumps are non-zero with positiveprobability), which essentially means that under the absence of arbitrageoppurtunities, there are many equivalent martingale measures, i. e. proba-bility measures equivalent to P under which the process fexp(�t)St=S0t gt2[0;T ]is a martingale 2. Due to its incompleteness, the model is naturally used formodelling stock prices whose jumps arise from exogeneous events (such asnatural disasters or interest rate announcements), rather than those whosejumps are intrinsic to the market. For a construction of non-Poissonian com-plete markets with discontinuous stock prices (with jumps induced by thetrading noise), see the paper by Dritschel and Protter [DP99].1.3 Equivalent Martingale Measures and Op-tion PricingWe begin by recalling a few de�nitions.De�nition 1.3.1 Let X be a semimartingale with X0 = 0. The quadraticvariation process of X, denoted by [X ;X] = f[X;X]tgt�0 is de�ned by[X;X]t = X2t � 2 Z t0 Xs�dXs:De�nition 1.3.2 Let A be a �nite variation process with A0 = 0, with lo-cally integrable total variation3. The unique predictable �nite variation pro-cess ~A such that A� ~A is a local martingale, is called the compensator ofA.2For the terminology, see Karatzas and Shreve [KS98].3For the terminology, see Protter [Pro90].8



De�nition 1.3.3 Let X be a semimartingale such that its quadratic vari-ation process [X;X] is locally integrable. Then the conditional quadraticvariation of X, denoted by hXi = fhXitgt�0, exists and it is de�ned to bethe compensator of [X ;X].Next, we de�ne the stochastic exponential (also called the Dol�eans-Dadeexponential) of a semimartingale.De�nition 1.3.4 The stochastic exponential (the Dol�eans-Dade exponen-tial) Y of a semimartingale X, X0 = 0, is denoted by Y = E(X), andis de�ned as the unique solution of the stochastic integral equationYt = 1 + Z t0 Ys�dXs:Explicitly, Y = E(X) is given by the following formulaYt = exp�Xt � 12[X;X]t� Y0<s�t(1 + �Xs) exp���Xs + 12(�Xs)2� :As mentioned in the paper by Pham [Pha97], each equivalent martingalemeasure Qp , which turns the process fexp(�t)St=S0t gt2[0;T ] into a martingale,can be characterized (in terms of its Radon-Nikodym density with respect tothe original measure P) in the following way:dQpdP = E(D)TE(J)T ; (1.4)where Dt = � Z t0 #sdWs (1.5)Jt = Z t0 ZR(ps(y)� 1)~v(ds; dy): (1.6)The predictable processes # = f#tgt2[0;T ] and p = fpt(y)g(t;y)2[0;T ]�R arelinked by �� � r + � = #t� + � ZR y(1� pt(y))fU1(y)dy; (1.7)together with the conditions pt(y) > 0 andEP �dQpdP � = 1:9



The process # is called the market price of di�usion risk and the process p| the market price of jump risk. In the sequel, we limit ourselves to suchequivalent measures Qp that the corresponding process p satis�es8! 2 
 pt(y) = p(y) and p 2 L2(P):By a Girsanov-type theorem, ~v continues to be a homogeneous compensatedrandom measure under Qp . Its characteristics become�p = � ZR p(y)fU1(y)dy (1.8)fpU1(y) = p(y)RR p(y)fU1(y)dyfU1(y): (1.9)Furthermore, W pt = Wt + Z t0 #sds (1.10)is a Brownian motion under Qp .We denote by fSts(y)gs�t the c�adl�ag version of the ow of the SDE (1.1).Changing measures and applying the Itô formula to the equation (1.1), wehave almost surely under QpSts(y) = y exp��r � � � �22 � �pEQp (U1)� (s� t) + �(W ps �W pt )�� NpsYj=Npt +1(1 + Uj);where Np is a homogeneous Poisson process with intensity �p. The variablesfUjgj�1 have the common pdf fpU1 under Qp .Each equivalent martingale measure Qp de�nes an admissible (i. e. arbitrage-precluding) price of a given contingent claim. Given that St = y, the priceat time t of a European option expiring at time T is equal toV pE (t; y) = EQp [e�r(T�t)f(StT (y))]:The function f de�nes the payo� from the option, eg in the case of thecall option we have f(x) = (x � K)+, and in the case of the put option |f(x) = (K�x)+, where K is the preset strike price. The arbitrage-precludingprice of the corresponding American option is given byV pA (t; y) = sup�2St;T EQp [e�r(��t)f(St� (y))]: (1.11)10



Here, St;T is the set of all stopping times with values in [t; T ]. It is knownthat V pA (t; y) � f(y), and that the optimal stopping time for the problem(1.11) is � �p(t; y) = inffs 2 [t; T ] : V pA (s; Sts(y)) = f(Sts(y))g:In other words, it is optimal to exercise the option the moment the optionvalue falls to that of the payo� for immediate exercise. The domain [0; T )�R+ is divided into the continuation region Cp:Cp = f(t; y) 2 [0; T )� R+ : V pA (t; y) > f(y)gand the stopping region Sp:Sp = [0; T )� R+ n Cp:We denote by V pAC the price of the American call option:V pAC(t; y) = sup�2St;T EQp [e�r(��t)(St� (y)�K)+];and by V pAP the price of the American put option:V pAP (t; y) = sup�2St;T EQp [e�r(��t)(K � St� (y))+]:The continuation region and the stopping region for the American call are de-noted by CpAC and SpAC , respectively. The respective regions for the Americanput are denoted by CpAP and SpAP . We have the following proposition.Proposition 1.3.1 If � = 0, then the price of the American call option isequal to the price of the European call option:V pAC(t; y) = EQp [e�r(T�t)(StT (y)�K)+]:We then have � �p(t; y) � T and SpAC = ;.The proof can be found in Merton [Mer73].The following propositions can be proved by methods of Pham [Pha97].Proposition 1.3.2 If � > 0, then for all t 2 [0; T ) there exists a criticalstock price bpAC(t) above which the American call should be exercised early.We have CpAC = f(t; y) 2 [0; T )� R+ : y 2 (0; bpAC(t))g:11



Proposition 1.3.3 Similarly, for all t 2 [0; T ), there exists a critical stockprice bpAP (t) below which the American put should be exercised early. Wehave CpAP = f(t; y) 2 [0; T )� R+ : y > bpAP (t)g:Proposition 1.3.4 The function bpAC(t) is nonincreasing, and the functionbpAP (t) is nondecreasing on [0; T ).The functions bpAC and bpAP will be referred to as optimal exercise boundariesor free boundaries.1.4 Schweizer's Minimal Martingale MeasureIn order to price an American option in the jump-di�usion model, we haveto �rst select an appropriate measure Qp , which boils down to choosing themarket price of jump risk p. Merton [Mer76] sets p � 1 (the jump riskis \unpriced"). By the equation (1.7), the market price of di�usion risk #becomes # � �� � r + �� ;which is identical to the market price of (di�usion) risk in the Black-Scholesmodel (see Karatzas and Shreve [KS98]). Note that the characteristics of therandom measure ~v (equations (1.8), (1.9)) do not change.Recently it has become standard to adopt Schweizer's approach to select an\optimal" equivalent martingale measure in an incomplete market. In his pa-per [Sch95], Schweizer constructs the so-called minimal martingale measure(MMM) and suggests it as the optimal pricing measure. For a given semi-martingale Y (satisfying a mild structure condition), the MMM Q̂ equivalentto the original measure P is characterized as the one which minimizesD(Q ; P) := dQdP � 1L2P= sVar� dPdQ �over all signed local martingale measures Q for Y . The MMM Q̂ is, in asense, \as close as possible" to P, and therefore the process Y \changes aslittle as possible" under Q̂ . It is a strong argument in favour of the minimalmartingale measure as the measure used for converting discounted stock priceprocesses into martingales. 12



The minimal martingale measure for the jump-di�usion model with pre-dictable coe�cients (i. e. such that the jump component is modelled by�tdNt, where � is a predictable process and N is a Poisson process) is com-puted explicitly, for example, in the paper by Wiesenberg [Wie98]. In thissection, we compute the minimal martingale measure for the jump-di�usionmodel with jumps of random magnitude (i. e. the model de�ned by theequivalent formulae (1.1), (1.2) and (1.3)).Schweizer's algorithm [Sch95] for �nding the minimal equivalent martingalemeasure for the semimartingale Y goes as follows.1. Make sure that the semimartingale Y admits the decompositionYt = Y0 +Mt + Z t0 �sdhMis; (1.12)where M is a P-square-integrable local martingale with M0 = 0. Theprocess � is predictable.2. The Radon-Nikodym density of the minimal martingale measure Q̂ forY is given by dQ̂dP �����Ft = E(L)t; (1.13)where Lt = � Z t0 �sdMs: (1.14)3. If the process fR t0 �2sdhMisgt2[0;T ] is deterministic, then the MMM Q̂minimizes D(Q ;P) = dQdP � 1L2P= sVar� dPdQ � (1.15)over all signed local martingale measures for Y .In our case, we have Yt = exp(�t)St=S0t , which can be decomposed intoYt = S0 +Mt + At;where the martingale part M is equal toMt = Z t0 Su��dWu + Z t0 Su�d NuXj=1 Uj � �EP(U1)u! ;13



and the process A is equal toAt = Z t0 Su�(�� � r + �)du:Denoting by [X;X]c the continuous part of [X ;X], we havedhMit = d^[M;M ]t == d ^ [M;M ]ct + X0<s�t(�Ms)2! == S2t�(�2 + �EP(U21 ))dt:By (1.12), we must have dAt = �tdhMit;which yields �t = 1St� �� � r + ��2 + �EP(U21 ) :We denote � = �� � r + ��2 + �EP(U21 ) :Since the process fR t0 �2sdhMisgt2[0;T ] is deterministic, the MMM Q̂ indeedminimizes the \distance" de�ned by (1.15).We now explicitly compute the Radon-Nikodym density of Schweizer's MMMfor the process fexp(�t)St=S0t gt2[0;T ]. Substituting for � and M in (1.14),we obtain Lt = � Z t0 �sdMs= � Z t0 � �dWs + d NsXj=1 Uj � �EP(U1)s!!= � Z t0 ��dWs + Z t0 ��d NsXj=1 Uj � �EP(U1)s!= � Z t0 ��dWs + Z t0 ZR��y~v(ds; dy):Comparing with (1.5) and (1.6), we getDt = � Z t0 ��dWsJt = Z t0 ZR��y~v(ds; dy);14



which yields #t � ��p(y) = 1� �y:Denote by �̂ and f̂U1 the characteristics of the random measure ~v under theMMM Q̂ . By (1.8) and (1.9) we have�̂ = �(1� �EP(U1))f̂U1(y) = 1� �y1� �EP(U1)fU1(y):Furthermore, Ŵt = Wt + ��t is a Brownian motion under Q̂ (by (1.10)).Denoting �̂ = r � � � �̂E Q̂ (U1);the ow of the equation (1.1) becomesSts(y) = y exp���̂� �22 � (s� t) + �(Ŵs � Ŵt)� N̂sYj=N̂t+1(1 + Uj); s � t;(1.16)where fN̂tgt2[0;T ] is a Poisson process with intensity �̂. The jump relativesizes U1; U2; : : : have the common pdf f̂U1 under Q̂ .Motivated by the above consideration, we introduce the following de�nitionof the price of an American option in the jump-di�usion model de�ned bythe eqivalent formulae (1.1), (1.2) and (1.3).De�nition 1.4.1 The price V̂A(t; y) of an American option at time t 2[0; T ], given that the price of the underlying instrument at time t is equalto y, is de�ned as followsV̂A(t; y) = sup�2St;T E Q̂ [e�r(��t)f(St�(y))];where St;T is the set of all stopping times taking values in [t; T ], Q̂ is Schwei-zer's minimal martingale measure, r is the constant risk-free rate, f is thepayo� from the option, and fSts(y)gs�t is the process de�ned by the equation(1.16).In other words, we de�ne the price of an American option to be the arbitrage-precluding price under Schweizer's minimal martingale measure.15



The prices of the American call and the American put computed under Q̂are denoted by V̂AC and V̂AP , respectively. The respective free boundariesde�ned in Propositions (1.3.2) and (1.3.3) are denoted by b̂AC and b̂AP . Thecontinuation region is denoted by Ĉ and the stopping region | by Ŝ. Weadd the subscript AC for the American call and AP for the American put.In the sequel, it will be our aim to compute an accurate approximation ofV̂A, using the linear complementarity approach (see [HP98] for more detailson linear complementarity in the context of option pricing).1.5 The Variational Inequality and the Com-plementarity SystemTo introduce the variational inequality and the complementarity system ap-propriate for our problem, we �rst make the usual logarithmic change ofvariable. We set Xt = log(St) and x = log(y), and denoteZj = log(1 + Uj) (x) = f(ex)X ts(x) = x+ ��̂� �22 � (s� t) + �(Ŵs � Ŵt) + N̂sXj=N̂t+1Zj; s � tu�(t; x) = sup�2St;T E Q̂ [e�r(��t) (X t� (x))]: (1.17)We have V̂A(t; y) = u�(t; log(y)).We denote by Ĉ the logarithmic continuation region:Ĉ = f(t; x) 2 [0; T )� R : u�(t; x) >  (x)g:The logarithmic stopping region is denoted by Ŝ and de�ned to be the com-plement of Ĉ. We add the subscript AC for the American call and AP forthe American put. We haveĈAC = f(t; x) 2 [0; T )� R : x < log(b̂AC(t)))gĈAP = f(t; x) 2 [0; T )� R : x > log(b̂AP (t)))g:The functions log(b̂AC) and log(b̂AP ) will be referred to as logarithmic optimalexercise boundaries or logarithmic free boundaries.16



Assume that the random variables Zj have the common pdf g = g(x) underQ̂ . Since f̂U1 is the pdf of the variables Uj under Q̂ , we haveg(x) = f̂U1(ex � 1)ex:The function u� = u�(t; x) formally satis�es the following complementaritysystem 8>><>>: u(T; x)�  (x) = 0u(t; x)�  (x) � 0@u@t + LBSu+Bu � 0�@u@t + LBSu+Bu� (u�  ) = 0; (1.18)where LBS is the standard Black-Scholes operatorLBSu = �22 @2u@x2 + ��̂� �22 � @u@x � ruand B is an integral operator resulting from jumps(Bu)(t; x) = �̂�Z 1�1 u(t; x+ z)g(z)dz � u(t; x)� :The proof of this fact follows by dynamic programming and can be accom-plished by methods of Bensoussan and Lions [BL78], [BL82], and Jaillet etal. [JLL90].In order to formulate the problem (1.18) as a variational inequality, we in-troduce the following function spaces:H� = L2(R; e��jxj); � > 0V� = ff 2 H� : f 0 2 H�g: (1.19)Here, f 0 denotes the distributional derivative of f . The space V� is a weightedSobolev space.Furthermore, we introduce the following spaces of functions u = u(t; x) :[0; T ]� R 7! R.L2([0; T ];H�) = �u : Z T0 ku(t; �)k2H�dt <1�L2([0; T ];V�) = �u : Z T0 ku(t; �)k2V�dt <1� :
17



We denote by (�; �)� the inner product on H�. We further de�nea�(u; w) = �22 ZR @u@x @w@x e��jxjdx+ r ZR uwe��jxjdx� ZR��2�2 sign(x) + �̂� �22 � @u@xwe��jxjdxb�(u; w) = � ZR(Bu)we��jxjdx:The following theorem comes from the paper by Zhang [Zha97].Theorem 1.5.1 If  2 V� for some � > 0 and if8� > 0 E Q̂ e�jZ1j <1; (1.20)then there exists a unique function u 2 L2([0; T ];V�) satisfying @u=@t 2L2([0; T ];H�), such that8<: u(T; x)�  (x) = 0u(t; x)�  (x) � 0� �@u@t ; w � u�+ a�(u; w � u) + b�(u; w � u) � 0; 8w 2 V�; w �  :(1.21)Furhtermore, the unique solution of the variational inequality (1.21) is equalto the function u� = u�(t; x) de�ned by (1.17).The proof follows by methods of Bensoussan and Lions [BL78], [BL82], andJaillet et al. [JLL90].The theorem below speci�es some regularity results for the function u�.Theorem 1.5.2 Assume that the condition (1.20) is satis�ed. If the func-tion  is Lipschitz continuous, and if the function f(x) =  (log(x)) is convex,then the unique solution u = u� of the variational inequality (1.21) admitsdistributional partial derivatives @u=@t, @u=@x, and @2u=@x2, locally boundedon [0; T )� R. The operator Bu is also locally bounded on [0; T )� R.Furthermore, the function @u=@x is continuous on [0; T )� R.This theorem is stated and proved in Zhang [Zha97].Theorem 1.5.2 provides a justi�cation for the \strong" formulation (1.18).Indeed, once we know that the (unique) solution u of the variational inequal-ity (1.21) satis�es the regularity conditions speci�ed in Theorem 1.5.2, we18



can rewrite the variational inequality (1.21) as the complementarity system(1.18). For details, see the books by Bensoussan and Lions [BL78], [BL82].As the problem (1:18) is easier to deal with numerically than the problem(1:21), we shall from now on concentrate on the former one.The following theorem concerns the behaviour of u� in the logarithmic con-tinuation region.Theorem 1.5.3 In the logarithmic continuation region Ĉ, the function u�satis�es @u�@t + LBSu� +Bu� = 0:The proof can be found in the paper by Pham [Pha97].We will now localize the complementarity system (1.18), and then discretize itusing the �nite di�erence method. Then we will concentrate on the resultinglinear complementarity problem (LCP).1.6 Localization and Discretization | the Li-near Complementarity Problem1.6.1 LocalizationTo make the system (1.18) suitable for numerical solution, we localize itby limiting it to the rectangle [0; T ] � [X l; Xu] and introducing appropriateboundary conditions. We introduce the function ~u(�; �), de�ned on [0; T ]�R,and satisfying the following localized complementarity system:8>>>><>>>>: ~u(T; x)�  (x) = 0~u(t; x)�  (x) � 0@~u@t + LBS~u+B~u � 0�@~u@t + LBS~u+B~u� (~u�  ) = 0~u(t; x)�  (x) = 0 on [0; T ]� �R n (X l; Xu)� :(1.22)The function ~u(�; �) is well-de�ned, since the system (1.22) has a uniquesolution, which can be shown using the methodology outlined in Section 1.5.The following theorem holds.Theorem 1.6.1 The function ~u = ~u(t; x) converges to u� = u�(t; x), uni-formly on compact subsets of [0; T ]� R, as (X l; Xu) ! (�1;1).19



The proof can be found in the paper by Zhang [Zha97].1.6.2 Discretization of the Partial Di�erential Opera-torIn order to discretize the system (1.22) using the �nite di�erence method, wedivide the interval [X l; Xu] into I subintervals of length �x = (Xu�X l)=I,and the interval [0; T ] into N subintervals of length �t = T=N . To simplifythe notation, we skip the tilde in ~u.We approximate the partial derivatives @u=@t and @2u=@x2 in the followingway: @u@t ����(t;x) � u(t+ �t; x) � u(t; x)�t@2u@x2 ����(t;x) � �u(t; x+ �x) � 2u(t; x) + u(t; x� �x)(�x)2 ++ (1� �)u(t+ �t; x + �x) � 2u(t+ �t; x)(�x)2 ++ (1� �)u(t+ �t; x� �x)(�x)2 :The parameter � 2 [0; 1] is usually set to 0 (which yields the so-called explicitmethod), to 1/2 (the Crank-Nicholson method | particularly well suited forequations), or to 1 (the implicit method). In the experiments, we use theimplicit method due to its good convergence properties.The partial derivative @u=@x is approximated using:1. either the upwind scheme:� if �̂� �22 > 0,@u@x ����(t;x) � �4u(t; x+ �x) � 3u(t; x)� u(t; x+ 2�x)2�x ++ (1� �)4u(t+ �t; x + �x) � 3u(t+ �t; x)2�x ++ (1� �)�u(t+ �t; x + 2�x)2�x20



� if �̂� �22 < 0,@u@x ����(t;x) � ��4u(t; x� �x) � 3u(t; x)� u(t; x� 2�x)2�x +� (1� �)4u(t+ �t; x� �x)� 3u(t+ �t; x)2�x +� (1� �)�u(t+ �t; x� 2�x)2�x2. or the no-upwind scheme (the usual central di�erence):@u@x ����(t;x) � �u(t; x+ �x) � u(t; x� �x)2�x ++ (1� �)u(t+ �t; x + �x) � u(t+ �t; x� �x)2�x :The upwind scheme is recommended by Huang and Pang [HP98]. It speedsup the convergence of the iterative PSOR method (see Section 1.8 for thealgorithm), and forces convergence where the no-upwind scheme is unstable.The linear programming method (Chapter 2) requires the use of the latterscheme.1.6.3 Discretization of the Integral Operator | a NewSchemeTo discretize the integral operator Bu = �̂ R1�1 u(t; x+ z)g(z)dz�u(t; x), weapproximate g = g(x) (the pdf of the jump relative size under Schweizer'smeasure) by gi = g(i�x)Pfg(i�x)>0g g(i�x)�x; (1.23)so that we always have Xfgi>0g gi�x = 1: (1.24)Zhang [Zha97], and Huang and Pang [HP98] after her, simply set gi =g(i�x), which results in the fact that the discrete approximation fgiggi>0of the pdf g = g(x) does not \integrate" exactly to one (Pfgi>0g gi�x 6= 1).This may have adverse consequences for the accuracy of the numerical solu-tion to the discretized system (1.22). It should be borne in mind that thesequence fgi�xggi>0 is, in a sense, a sequence of transition probabilities, and21



it is therefore essential that the condition (1.24) be ful�lled. Section 3.3 de-scribes in brief what may happen if this condition is violated (which is thecase when Zhang's [Zha97] approximation is used).Bearing in mind that gi's are de�ned by the equation (1.23), and denoting i =  (i�x), we discretize the operator B in the following way:Buj(t;x) � �̂�� 1Xj=�1u(t; x+ j�x)gj�x� u(t; x)!++ �̂(1� ��) 1Xj=�1u(t+ �t; x + j�x)gj�x� u(t+ �t; x)! :In the experiments, we set �� = 1. Zhang [Zha97] uses the less accuratesubstitution �� = 0, calling the resulting scheme \semi-implicit" (with � = 1).Each in�nite sum P1j=�1 u(t + k�t; x + j�x)gj�x for k = 0; 1, is split upinto two:1Xj=�1u(t+ k�t; x + j�x)gj�x = Xj2f1;2;:::;I�1g�i u(t+ k�t; x+ j�x)gj�x+ Xj 62f1;2;:::;I�1g�i i+jgj�x:Obviously enough, the second term on the right-hand side is approximatedby a �nite sum.1.6.4 The Linear Complementarity ProblemThe above discretization of (1.22) leads to a discrete problem, whose exactsolution will be denoted by funi g, i = 0; 1; : : : ; I, n = 0; 1; : : : ; N . Eachelement uni of the discrete solution will approximate the actual solution ofthe problem (1.22): uni � ~u(n�t; X l + i�x):The discrete problem is in fact a sequence of linear complementarity problems(LCP's) and has the form:8<: un �  Mun + qn+1 � 0(un �  )T (Mun + qn+1) = 0 (1.25)22



for each n = N � 1; N � 2; : : : ; 0, with un = (un1 ; un2 ; : : : ; unI�1)T and  =( 1;  2; : : : ;  I�1)T . The column vector qn+1 contains input from the previ-ous time step and information about the boundary conditions. The squarematrix M is a sum of two matrices, ~M and G, where ~M is the result ofdiscretizing the partial di�erential operator � @@t � LBS, and G is the resultof discretizing the integral operator �B. If the upwind scheme is used, then~M is a pentadiagonal (I � 1)� (I � 1) matrix of the form
~M = 0BBBBBBBBB@

c d e 0 0 � � � 0b c d e 0 � � � 0a b c d e 0. . . . . . . . . . . . . . .0 a b c d e0 � � � 0 a b c d0 � � � 0 0 a b c
1CCCCCCCCCA ; (1.26)

where a = �2�x ��22 � �̂�+b = � ��22(�x)2 � 2��x ��22 � �̂�+c = 1�t + ��2(�x)2 + 3�2�x �����̂� �22 ���� + rd = � ��22(�x)2 � 2��x ��̂� �22 �+e = �2�x ��̂� �22 �+ :If the no-upwind scheme is used, then ~M is a tridiagonal matrix of the form~M = 0BBBBB@ b0 c0 0 � � � 0a0 b0 c0 0. . . . . . . . .0 a0 b0 c00 � � � 0 a0 b0
1CCCCCA ; (1.27)where a0 = � ��22(�x)2 + �2�x ��̂� �22 �23



b0 = 1�t + ��2(�x)2 + rc0 = � ��22(�x)2 � �2�x ��̂� �22 � :The matrix G is given by
G = ���̂I � ���̂�x0BBBBBBB@

g0 g1 g2 g3 � � � gI�2g�1 g0 g1 g2 � � � gI�3g�2 g�1 g0 g1 � � � gI�4... . . . . . . . . . . . . ...g3�I � � � g�2 g�1 g0 g1g2�I � � � g�3 g�2 g�1 g0
1CCCCCCCA : (1.28)

1.7 Matrix Classes and the LCPWe �rst recall de�nitions of some matrix classes.De�nition 1.7.1 A real matrix M = (mij)ni;j=1 is said to be row strictlydiagonally dominant if 8 i mii �Xj 6=i jmijj > 0:De�nition 1.7.2 A real matrix M = (mij)ni;j=1 is said to be column strictlydiagonally dominant if 8 i mii �Xj 6=i jmjij > 0:De�nition 1.7.3 A real square matrix is said to be strictly diagonally dom-inant if it is both row strictly diagonally dominant and column strictly diag-onally dominant.De�nition 1.7.4 A real matrix M = (mij)ni;j=1 is said to be coercive if9C > 0 8 x 2 Rn xTMx � CxTx:De�nition 1.7.5 A real matrix M = (mij)ni;j=1 is said to be type Z if8 i; j; i 6= j mij � 0:24



Consider an LCP of the form8<: v �  Mv + q � 0(v �  )T (Mv + q) = 0 (1.29)We have the following properties.1. If a real square matrix is strictly diagonally dominant, then it is coer-cive.2. If the matrix M is coercive, then the LCP (1.29) has a unique solution(see Zhang [Zha97]).3. If M is a strictly diagonally dominant matrix, then the iterative PSORmethod for solving the LCP (1.29) (the method is described in detailin Section 1.8) converges for all values of ! 2 (0; �!), where �! = �!(M)and 1 < �! � 2 (see Huang and Pang [HP98]).4. Under mild conditions on the discretization steps �x and �t, thematrix M = ~M + G of the LCP (1.25) is strictly diagonally domi-nant for both the upwind and the no-upwind discretization scheme.Consequently, the LCP (1.25) has a unique solution for each n =N � 1; N � 2; : : : ; 0. This solution can be found by the PSOR method.The key property concerning type Z matrices (De�nition 1.7.5) will be statedin Chapter 2.1.8 The PSOR MethodAs mentioned in Section 1.1, there are two main approaches to solving LCP'sof the form (1.29). The parametric principal pivoting (PPP) is probably themost popular direct method (see Cottle, Pang and Stone [CPS92] and Huangand Pang [HP98]). The projected successive over-relaxation (PSOR) is byfar the most popular iterative method. It is discussed, for example, in Murty[Mur97] and, in the context of LCP's arising in option pricing in the Black-Scholes model, in Wilmott, Dewynne and Howison [WDH93].Consider again the LCP (1.29) and assume that the J�J matrixM is strictlydiagonally dominant, so that the PSOR method is bound to converge. Denoteby v(n) = (v(n)1 ; v(n)2 ; : : : ; v(n)J ) the nth iterate (which approximates the originalsolution to (1.29)). The PSOR algorithm goes as follows.25



1. Compute the (conservative) upper limit �! on the relaxation parameter! using the following formula:�! = 2 mini miiPj jmijj : (1.30)If M is symmetric, set �! = 2.2. Pick any ! 2 (0; �!) and an arbitrary initial vector v(0) �  . Choose asuitable accuracy parameter " > 0.3. For all j = 1; 2; : : : ; J setv(n)j = max v(n�1)j � !mjj  j�1Xk=1mjkv(n)k + nXk=j mjkv(n�1)k + qj! ;  j!to obtain the successive iterates v(1); v(2); : : :.4. Terminate when dist(v(n); v(n�1)) < ", where dist(�; �) is an appropri-ately de�ned distance function, and take v(n) to be the (approximate)solution of the LCP (1.29).Dewynne in his \Option pricing demonstration code"4 uses the PSOR algo-rithm with dist(v(n); v(n�1)) = PJj=1 jjv(n)j � v(n�1)j jmax�1;PJj=1 jv(n)j j� : (1.31)Following Dempster et al. [DHR98], [DH97], [DH99] who test their linear pro-gramming method against PSOR in the Black-Scholes framework, we com-pare these two methods in the jump-di�usion setting. In Chapter 2, we �rstpropose a new LP algorithm appropriate for the jump-di�usion model, andthen examine its e�ciency by comparing it with PSOR.1.9 The Convergence TheoremThe aim of this section is to state the theorem which speci�es the conditionsunder which the solution of the LCP (1.25) converges to the solution ofthe localized problem (1.22) (which in turn converges to the solution of the4\Option pricing demonstration code", cOxford Financial Software, 1996, is a freewarefor pricing American and European options in the Black-Scholes model. It is available athttp://www.maths.soton.ac.uk/staff/Dewynne/ofs-demo1.html.26



original problem (1.18), see Theorem 1.6.1). Throughout this section, weassume that the no-upwind scheme is used to discretize the problem (1.22),and that Zhang's [Zha97] method is used to approximate the pdf of thejump relative size g = g(x) (see subsection 1.6.3 for details). Similar resultscan probably be obtained in the case of the upwind scheme and the newapproximation method for g.After Zhang [Zha97], we introduce the following stability conditions: thereexist two constants �1 > 0, �2 > 0 such that1� (1� �)8C21C22�2 �t(�x)2 � �1 (1.32)1� ��C3�t� �C2 �t(�x)2 � �2 (1.33)1� ��̂(1� ��) + r(1� �)��t� (1� �)�2 �t(�x)2 > 0; (1.34)where C1 = p5 when �x < 1C2 = 3(�2 + j�̂j+ r)C3 = �̂p10:For a given solution (uni ); i = 1; 2; : : : I � 1; n = 0; 1; : : : ; N � 1 of the LCP(1.25) we de�ne a piecewise constant function uNI (t; x) byuNI (t; x) = NXn=1 I�1Xi=1 uni 1(Xl+�x(i�1=2);Xl+�x(i+1=2)](x)1((n�1)�t;n�t](t):We further de�ne the di�erence operator D:Df(t; x) = 1�x �f �t; x+ �x2 �� f �t; x� �x2 �� :The following convergence theorem holds.Theorem 1.9.1 Suppose that the piecewise constant function uNI (t; x) wascreated from the solution (uni ) of the LCP (1.25), and the function ~u isthe solution of the localized problem (1.22). Let �; �� 2 [0; 1]. Assume that�t=(�x)2 < �, where � is a su�ciently small constant, so that the stabil-ity conditions (1.32), (1.33) and (1.34) are satis�ed. Suppose further that27



 2 V�, where V� is the weighted Sobolev space de�ned by (1.19). We have,as (�t;�x) ! (0; 0),uNI (�; �) ! ~u(�; �) strongly in L2([0; T ]� (X l; Xu))DuNI (�; �) ! @~u@x(�; �) weakly in L2([0; T ]� (X l; Xu)):The proof can be found in Zhang [Zha97].The above theorem shows that in order to value an American option in thejump-di�usion model, it su�ces to solve an LCP of the form (1.25). In thischapter, we have shown that this can be done using the PSOR method. InChapter 2, we propose a new method of solving the LCP (1.25), based on alinear programming formulation of (1.25).
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Chapter 2A New Linear ProgrammingMethodIn this chapter, we �rst reformulate the discrete problem (1.25) as a linearprogramming problem, and then propose an algorithm for solving the result-ing linear program. Subsequently, we compare our algorithm with the PSORalgorithm of Section 1.8. Throughout the chapter, we use the new approxi-mation scheme for the pdf of the relative jump size g = g(x) (see subsection1.6.3).2.1 A Linear Programming Formulation ofthe LCPThe following theorem comes from Dempster and Hutton [DH99].Theorem 2.1.1 If the matrix M is type Z, then the linear complementarityproblem (1.29) is equivalent to the following linear programming problem: fora �xed arbitrary column vector c > 0,8<: minimize cTvsubject to � v �  Mv + q � 0: (2.1)Under mild conditions on the discretization steps �x and �t, the matrixM = ~M + G of the LCP (1.25) is type Z for the no-upwind discretizationscheme. Therefore, the LCP (1.25) can be equivalently formulated as the29



sequence of linear programs8<: minimize cTunsubject to � un �  Mun + qn+1 � 0; (2.2)where c is a �xed arbitrary column vector such that c > 0.2.2 Motivation for the LP AlgorithmWe �rst motivate the linear programming algorithm by making the followingobservations.1. The assertions of Propositions 1.3.2, 1.3.3, and 1.3.4 carry over to thediscrete case.(a) Suppose that funi g is the solution of the discretized Americanput problem of the form (1.25). For each time index n = N �1; N � 2; : : : ; 0 there exists a space index kn such that uni =  ifor all i 2 f1; 2; : : : ; kng, and uni >  i for all i 2 fkn + 1; kn +2; : : : ; I � 1g. Moreover, the \discrete" logarithmic free boundarykn is nondecreasing, i. e. kn � kn�1 for n = 1; 2; : : : ; N � 1.(b) Similarly, if funi g is the solution of the discretized American callproblem with � > 0, then for each n = N � 1; N � 2; : : : ; 0 thereexists ln such that uni >  i for all i 2 f1; : : : ; ln� 1g, and uni =  ifor all i 2 fln; ln + 1; : : : ; I � 1g. The discrete logarithmic freeboundary ln is nonincreasing, i. e. ln � ln�1 for n = 1; 2; : : : ; N�1.Figure 2.1 illustrates the behaviour of the free boundary for the Amer-ican put. The continuation region lies above the boundary, and thestopping region | below it.2. Theorem 1.5.3 also has its discrete counterpart. To �x ideas, let usconcentrate on the American put. Suppose that the operator � @@t �LBS � B is discretized only in the logarithmic continuation region,and let Mkn denote the matrix resulting from this discretization. ThematrixMkn will operate on the vector un;kn = (unkn+1; unkn+2; : : : ; unI�1)T ,which is the part of the vector un lying in the logarithmic continuationregion. Denote by qn+1;kn the vector carrying input from the previous30
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Figure 2.1: The calculated optimal exercise boundary for the American put,with � = 0:15, r = 0:1, � = 0:02, � = 0:3, � = 5, K = 2 and U1 �Unif[�0:2; 0:2]. The discretization is I = 100, N = 500, and the stock pricerange is (0:01; 5).time step and information about the boundary conditions, resultingfrom the above discretization. We haveMknun;kn + qn+1;kn = 0;for n = N � 1; N � 2; : : : ; 0 (a discrete counterpart of the equality inTheorem 1.5.3). Analogous equalities hold in the case of the Americancall.2.3 The LP AlgorithmMotivated by the remarks of Section 2.2, we propose a new algorithm forsolving the sequence of linear programs (2.2). The algorithm which we giveis suitable for the American put. An analogous one can be constructed forthe American call.1. Set cT = (1; 1; : : : ; 1) 2 RI+1 , where c is the constant positive vector inthe problem (2.2). 31



2. Assume that the previous time step solution un+1 2 RI+1 is known.Determine the free boundary kn+1. Set j := kn+1.3. Temporarily set un = (K;K; : : : ; K)T 2 RI+1 . In fact, the price of theAmerican put option is never greater than K (the strike price).4. Introduce a temporary vector v = (v0; v1; : : : ; vI)T and set it to zero.5. For i = 0; 1; : : : ; j, set vi =  i. It is possible that kn = j. Discretize theoperator � @@t � LBS � B in the hypothetical logarithmic continuationregion so that it is represented by an (I�j�1)�(I�j�1) matrix M j.Cumulate in the vector qn+1;j the information about the previous timestep and the boundary conditions. Denote vj = (vj+1; vj+2; : : : ; vI�1)T .Solve M jvj + qn+1;j = 0:6. Set v = min(K � exp(X l);max(v; un+1)):It is safe to do so, since the actual solution un at time step n will haveto satisfy these constraints anyway.7. Check whether v is feasible, i. e. ifMv0 + qn+1 � 0:If it is, then examine whethercTv < cTun:If so, then set un = v.8. Unless j = 0, set j := j � 1 and jump back to point 5.2.4 Computational DetailsTo adequately explain the functioning of the algorithm, the following remarksshould be made.(A) We have uN =  (the payo� from the option). In the case of theAmerican put, we set kN = maxfi :  i > 0g. In the case of theAmerican call, we set kN = minfi :  i > 0g.32



(B) The matrices M j de�ned in point 5. of the algorithm, are in factsubmatrices of the main matrix M . They are formed by removing thelast j�1 columns and j�1 rows from M . Therefore, the band structureof M (see subsection 1.6.4) carries over to the matrices M j. Denoteby L the lower triangular, and by U | the upper triangular matrix,resulting from the LU factorization of M . Similarly, denote by Lj andU j the respective matrices resulting from the LU factorization of M j.It can be proved that Lj are formed by removing the last j�1 columnsand rows from L, and U j are formed by removing the last j�1 columnsand rows from U .The systems of linear equationsM jvj + qn+1;j = 0 (2.3)in point 5., are solved in the following way: �rst (at the beginning ofthe algorithm), the matrix M is decomposed into the matrices L andU , and then the matrices Lj and U j are (rapidly) formed from L andU . Equation (2.3) becomesLjU jvj + qn+1;j = 0;and this is solved by forward and backward substitution:x := U jvjx = �(Lj)�1qn+1;jvj = (U j)�1x:(C) The feasibility condition of point 7. is in fact hardly ever satis�ed. Inpractice, we set w = Mv0 + qn+1 and check ifmini (wi) � �"n1or if Xwi<0wi � �"n2 ;where "n1 ; "n2 > 0. If either of these conditions is satis�ed, we say thatv is feasible and proceed with the algorithm. It seems reasonable tochoose, for example "n1 = �mini (zi)"n2 = �Xzi<0 zi;where zi = Mun+1;0 + qn+1. 33



(D) It has been observed that the algorithm produces the same result if itis stopped once cTv exceeds cTun for the �rst time (see point 7. of thealgorithm).2.5 The Model and an ExampleIn the numerical analysis which follows, we consider models in which thejump relative sizes Uj are uniformly distributed under the original measureP: Uj � Unif[�a; a]; where a 2 [0; 1):The LP algorithm of Sections 2.3, 2.4, and the PSOR algorithm of Section 1.8were implemented in MATLAB 5.2 on a PC system with a 300 MHz processorand 64 MB RAM, running under Windows 98. The distance function inPSOR was taken to be that de�ned by (1.31). The parameter ! was set to1 in order to ensure convergence irrespective of the properties of the matrixM , given that it is row strictly diagonally dominant (see Formula (1.30)).The paramter " of point 4. of the PSOR algorithm of Section 1.8 was set to10�8.To give an example, we apply the LP algorithm to compute the price of theAmerican put in the model with the following set of parameters:� = 0:12r = 0:1� = 0:01� = 0:4� = 50a = 0:1:
9>>>>>>=>>>>>>; (2.4)

The strike price K = 2 and the time horizon T = 1=4. The discretizationparameters are: the stock price range = [0:01; 10], I = 150, N = 500.The jumps have intensity � = 50 (on average 50 jumps per year), and theirrelative magnitudes are uniformly distributed on the interval [�0:1; 0:1].The price surface of the American put option in this model is plotted inFigure 2.2. The price of the option at 112 and 3 months before the expirydate is plotted in Figure 2.3. The free boundary (with the continuationregion above it, and the stopping region below it) is plotted in Figure 2.4.
34
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Figure 2.4: The free boundary for the American put; the parameters as in(2.4).2.6 Accuracy of the AlgorithmThroughout the section, we denote by funi g the solution obtained by meansof the LP algorithm, and by fvni g | by means of the PSOR algorithm. Toillustrate the accuracy of the LP algorithm, we consider the system with thefollowing set of parameters: � = 0:11r = 0:1� = 0:01� = 0:3� = 10a = 0:1:
9>>>>>>=>>>>>>; (2.5)

The strike price K is equal to 1, and the time horizon T is 1/2. We takethe stock price range to be [0:1; 10]. We set N = 500 and consider variouschoices of I.1. I = 160The stability condition (1.33) is not satis�ed (as the actual stability36



condition for the new pdf approximation scheme is unknown, the in-equality (1.33) serves as a \rough approximation" of the true stabilitycondition).2. I = 150The stability condition (1.33) is satis�ed. We have max juni � vni j =0:0009. As can be seen in Figure 2.5, the di�erence uni � vni is positivewhen the stock price is small (perhaps starting from around 1/2), whichmay mean that the LP solution funi g lifts o� the payo� surface \sooner"than the PSOR solution fvni g (eg the critical price implied by the LPsolution may be lower than the critical price implied by the PSORsolution). Indeed, the free boundary derived from funi g is situatedbelow the free boundary derived from fvni g (illustration in Figure 2.6).It is clear that the free boundary obtained from funi g is incorrect.3. I = 110The stability condition (1.33) is satis�ed. We have max juni � vni j =0:0004. The di�erence uni � vni is plotted in Figure 2.7. The di�erenceis nonpositive close to the expiry date, which corresponds to the cor-rectness of the LP free boundary close to the expiry date (see Figure2.8). Similarly, the positivity (for small values of the stock price) ofthe di�erence for time to expiry greater than 0.17 corresponds to theincorrectness of the LP free boundary in that interval.4. I = 100The stability condition (1.33) is satis�ed. We have max juni � vni j =0:00014. The di�erence uni � vni is nonpositive (Figure 2.9). We maytherefore expect the free boundary derived from the LP solution funi gto be correct. Indeed, the two free boundaries nearly coincide (Figure2.10).The pattern described above arises in all problems which have been consid-ered. For small values of I, the di�erence between the LP solution and thePSOR solution is nonpositive and both the implied free boundaries are cor-rect (as in point 4.). For larger values of I, the di�erence is nonpositive closeto the expiry date, and nonnegative in the remaining part of the time interval(for small values of the stock price), which corresponds to the incorrectnessof the LP free boundary in this subinterval (as in point 3.). The larger I gets,the bigger part of the LP free boundary becomes \pushed down". Eventu-ally, the di�erence becomes nonnegative for small stock prices in the entiretime interval. The LP free boundary is then incorrect for all t 2 [0; T ] (as in37
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Figure 2.5: The di�erence in option prices obtained by LP and PSOR; theparameters as in (2.5), I = 150, N = 500.
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Figure 2.7: The di�erence in option prices obtained by LP and PSOR; theparameters as in (2.5), I = 110, N = 500.
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Figure 2.9: The di�erence in option prices obtained by LP and PSOR; theparameters as in (2.5), I = 100, N = 500.
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point 2.). When I exceeds a certain number, the stability condition (1.33)ceases to be satis�ed (as in point 1.).To summarize, the LP algorithm is comparable, but marginally inferior toPSOR in terms of accuracy. In its present version, it yields incorrect freeboundaries for larger values of I, but this imperfection can probably bepatched up without much trouble.2.7 Solution TimesThe tables in this section contain MATLAB solution times of selected prob-lems. To begin with, we illustrate the dependence of the solution times onI. We set � = 0:12r = 0:1� = 0:01� = 0:3� = 26a = 0:1:
9>>>>>>=>>>>>>; (2.6)The strike price is K = 1. The stock price range is [0:1; 20], the time horizonis T = 1=4, and the spatial discretization is N = 1000. Table 2.1 shows theI LP solution time PSOR solution time50 4.34 25.32100 14.94 74.47150 33.17 128.3200 56.08 219.05250 92.66 333.01300 122.04 446.11350 181.26 644.77Table 2.1: Problem (2.6), solution times in seconds.LP and PSOR solution times in seconds. The times are plotted in Figure2.11. For both the LP and the PSOR method, we observe a nonlinearity ofthe solution time as a function of I. However, as we have observed in thisand many other cases, the LP solution times are near-linear in the spatialdiscretization, which cannot be said of the PSOR solution times.41
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Subsequently, we illustrate the dependence of the solution times on N .We set � = 0:15r = 0:1� = 0:02� = 0:9� = 50a = 0:2:
9>>>>>>=>>>>>>; (2.7)The strike price is K = 1. The stock price range is [0:01; 5], the time horizonis T = 1=12, and the time discretization is I = 100. Table 2.2 shows theN LP solution time PSOR solution time200 2.74 24.22400 5.6 40.48600 7.8 78.48800 10.6 101.951000 13.13 132.81Table 2.2: Problem (2.7), solution times in seconds.LP and PSOR solution times in seconds. The times are plotted in Figure2.12. The observed linearity of the LP solution time as a function of N isintuitively justi�able. It has appeared it all of the problems tested.What is important is that LP solution times are robust to changes in thoseparameters which account for the volatility of the system: �, � and a. Toillustrate this, we consider the following problem� = 0:12r = 0:1� = 0:01: 9=; (2.8)We set the strike price to K = 1. The stock price range is [0:1; 20], the timehorizon T = 1=4. The discretization is I = 200, and N = 1000. Table 2.3gives the solution times for problem (2.8), for varying parameters �, � anda. While the LP solution time is a constant function of these parameters,the PSOR solution time is an increasing function of each of them.To summarize, the LP method signi�cantly outperforms PSOR in terms ofspeed, even though an important part of the LP algorithm is the LU de-composition of a substantially large matrix. The computational complexityof the LU decomposition is O(I3=3), where I � I is the size of the matrix.43



� � a LP solution time PSOR solution time0.1 0 51.63 139.840.5 0 51.63 258.70.5 10 0.2 52.02 283.140.5 50 0.2 51.74 297.26Table 2.3: Problem (2.8), solution times in seconds.However, due to the stability condition (1.33) (a similar stability conditionprobably arises in the case of the new approximation scheme, see subsection1.6.3), I is usually limited to a few hundred, unless the partition of the timeinterval is very �ne. Therefore, the size of the matrix is limited. In practice,the LU decomposition of a 500�500 matrix is performed in about 3.5 secondsby means of the MATLAB routine lu.
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Chapter 3Numerical ResultsIn this chapter, we analyse the dependence of the price of the American puton a variety of parameters. We also examine the densities of the optimalstopping times for the American put problem.Throughout the chapter, we use the new approximation scheme for the pdfof the relative jump size g = g(x) (see subsection 1.6.3). The only exceptionis Section 3.3, where we give examples of what may happen if we apply theusual scheme (i. e. the one proposed by Zhang [Zha97]).3.1 The Impact of the Parameters on the Op-tion PriceIt has to be emphasized that the examples quoted in this section illustratea general pattern which has appeared in all of the problems considered, notonly in the ones referred to below.3.1.1 The Volatility ParametersBy \volatility parameters" we mean the three parameters �, � and a. How-ever, the term \volatility parameter" is reserved for �.The results obtained from the conducted experiments suggest that the priceof the American put is an increasing function of each of the volatility param-eters �, � and a.To illustrate the above statement, we consider the system with the following45



parameters: � = 0:11r = 0:1� = 0:01: 9=; (3.1)The strike price is K = 1. We set the stock price range to [0:1; 20] and thetime horizon to T = 1=4. The discretization is I = 500, N = 2000. Wedenote by uni (�; �; a) the computed price of the American put as a functionof the volatility parameters.Figures 3.1 and 3.2 illustrate the fact that uni (�; �; a) is an increasing functionof �. Similarly, Figures 3.3 and 3.4 suggest that the computed option priceincreases with �, and Figures 3.5 and 3.6 | that it increases with a.Moreover, it has been observed that the option price is a continuous functionof all the volatility parameters.3.1.2 The DriftIt is well-known that in the Black-Scholes case, the drift parameter � doesnot inuence the price of the derivative instrument. As should be expected,this is not the case in the model with jumps. It has been observed thatthe computed option price, as a function of the drift, increases with � if thejumps in the model are big (= a is large). Conversely, it decreases with �if the jumps are small. However, the di�erences between the option pricescomputed for di�erent drift parameters � (the other parameters �xed) aresmall. Two illustrative examples are shown in Figures 3.7 and 3.8. We setr = 0:1� = 0:01� = 0:3� = 10 9>>=>>; (3.2)and compute the price of the option with K = 1 at 12 months before expiry(the stock price range = [0:1; 20], I = 500, N = 2000). Figure 3.7 shows thedi�erence between the option prices computed for � = 0:5 and � = 0, witha = 0:1. Figure 3.8 shows the corresponding di�erence computed for a = 0:2.
46
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Figure 3.1: American put prices for varying � at 3 months before expiry; theparameters as in (3.1), � = 10, a = 0:1. The option price increases with �.
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Figure 3.2: American put prices for varying � at 3 months before expiry; theparameters as in (3.1), � = 50, a = 0:2. The option price increases with �.47
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Figure 3.3: American put prices for varying � at 3 months before expiry; theparameters as in (3.1), � = 0:1, a = 0:1. The option price increases with �.
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Figure 3.5: American put prices for varying a at 3 months before expiry; theparameters as in (3.1), � = 0:5, � = 10. The option price increases with a.
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Figure 3.7: Di�erence between the option prices computed for � = 0:5 and� = 0; \small" jumps: a = 0:1, the other parameters as in (3.2).
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3.2 Optimal Exercise TimesIn this section, we analyse the distribution of the optimal exercise times forthe American put. As was mentioned before, the optimal exercise time isthe �rst moment the stock price enters the exercise region (located below thefree boundary in the case of the American put).We assume that the spot price of the stock at time 0 is equal to S0 = 1. Wefurther assume that the risk-free rate r is equal to 0.1, and the dividend rate� is equal to 0.01. We consider the American put with T = 1, whose strikeprice is equal to S0, i. e. K = 1. For various choices of �, �, � and a, we�rst compute the free boundaries (the stock price range = [0:1; 20], I = 500,N = 2000), and then run the stock price processes 10000 times to obtain theapproximate distributions of the optimal exercise times for the options.We denote by �10000(�; �; a; �) the samples of computed optimal exercise timesobtained in this way.The impact of the volatility parameters on the distribution of the optimalexercise time can be easily deduced from the data obtained. The followingtendencies are apparent.1. As any of the volatility parameters �, � or a increases, more and moreoptions are exercised before the expiry date. An option still unexercisedat time T = 1 is useless (and worthless). The only options which are\worth having" are those which are exercised during their lifetime. Theconclusion is that it is more likely that the option will be \useful" ifthe market is volatile, i. e. if �, � or a are large.2. As any of the volatility parameters increases, more and more optionsare exercised later in the year.However, if the di�usion volatility parameter � \dominates" over the jumpvolatility parameters � and a, the inuence of � and a on the distributionof the optimal exercise time is less apparent. Conversely, if the jump partdominates, the impact of � is less clearly visible.Representative histograms for varying �, the other parameters �xed, areplotted in Figure 3.9. Similarly, histograms for varying � are shown in Figure3.10, and histograms for varying a | in Figure 3.11.The mean optimal exercise time ��10000(�; �; a; �) appears to increase with �,� and a. However, in some cases the increasing trend is not clearly visible.Tables 3.1, 3.2 and 3.3 show the evolution of the mean optimal exercise timeswhich correspond to the respective histograms.51
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Figure 3.9: Optimal exercise time histograms for varying �; the other pa-rameters: � = 10, a = 0:1, � = 0:11.
� ��10000(�; 10; 0:1; 0:11)0.1 0.79440.3 0.81270.5 0.8245Table 3.1: The mean optimal exercise times for varying �; the other param-eters: � = 10, a = 0:1, � = 0:11. The inreasing tendency is apparent.
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Figure 3.10: Optimal exercise time histograms for varying �; the other pa-rameters: � = 0:1, a = 0:1, � = 0:11.
� ��10000(0:1; �; 0:1; 0:11)0 0.754610 0.794420 0.8111Table 3.2: The mean optimal exercise times for varying �; the other param-eters: � = 0:1, a = 0:1, � = 0:11. The increasing tendency is apparent.
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� ��10000(0:3; 10; 0:2; �)0 0.77930.11 0.81840.5 0.9243Table 3.4: The mean optimal exercise times for varying �; the other param-eters: � = 0:3, � = 10, a = 0:2. A very strong increasing tendency.
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As should be expected, the infuence of the drift parameter � on the distribu-tion of the optimal exercise time is substantial. Obviously enough, the larger�, the more options \survive" unexercised until the expiry date. Represen-tative histograms for varying � are shown in Figure 3.12. The mean optimalexercise time increases with � and the increasing trend is very conspicuous,see Table 3.4.3.3 Inaccuracy of Zhang's DiscretizationSchemeAs was mentioned in subsection 1.6.3, the approximation scheme for the pdfof the jump size g = g(x) which was proposed by Zhang [Zha97], yieldsserious numerical errors.Firstly, for some choices of the parameters of the model, the option pricecomputed using Zhang's scheme(a) exceeds the strike price K,(b) is a non-convex function of the stock price1,even though the stability conditions (1.32), (1.33) and (1.34) are satis�ed,and the matrix of the LCP in question is strictly diagonally dominant andtype Z. A representative example is shown in Figure 3.13. The parametersare � = 0:11r = 0:1� = 0:01� = 0:3� = 10a = 0:2:
9>>>>>>=>>>>>>; (3.3)The strike price K is equal to 2. The stock price range is [0:1; 10], the timehorizon is T = 1=2, and the discretization is I�N = 130� 500. In this case,Zhang's approximation scheme produces the characteristic \hump" for I'saround 130. The behaviour illustrated in Figure 3.13 is typical for systemswith large volatility parameters. Even if Zhang's approximation scheme is1The convexity property of the American put price is well-known, see for example Pham[Pha97]. 56
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Figure 3.13: The option price computed under the \new" approximationscheme, and the (apparently incorrect) price computed using Zhang's scheme.The parameters as in (3.3). The \correct" LP and PSOR prices coincide.used, there is no hump in the PSOR option price when the system is littlevolatile2.By contrast, it has been observed that the option price computed using ourapproximation scheme is always lower than K, and is a convex function ofthe stock price, regardless of the parameters of the model and regardless ofthe discretization parameters.Moreover, the option price computed under Zhang's scheme is not always anincreasing function of the jump intensity �. To illustrate the above statement,we consider the following system:� = 0:11r = 0:1� = 0:01� = 0:9a = 0:1:
9>>>>=>>>>; (3.4)2The fact that the LP option price computed under Zhang's scheme is constant forsmall stock prices (see Figure 3.13) is due to the cuto� performed in point 6 of the LPalgorithm (Section 2.3). 57
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It has to be mentioned that the approximation scheme proposed in this pa-per is still far from ideal, since the corresponding Schweizer's measure iscomputed for continuously distributed jumps, and not for their discretizedcounterparts. The scheme would probably be even more accurate if the min-imal martigale measure was computed directly for the discrete problem.Another important remark is that for extremely �ne discretizations, the dif-ference between the both schemes ceases to be signi�cant, since the dis-cretized pdf g = g(x) integrates nearly to one in Zhang's scheme (while italways integrates exactly to one in our scheme, see subsection 1.6.3 for de-tails).The application of Zhang's scheme also distorts the free boundary for �nediscretizations when the LP algorithm is used (see Section 2.6).
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ConclusionsIn the paper, we have proposed a new linear programming (LP) algorithm forsolving linear complementarity problems arising from the variational formu-lation of American option pricing problems in the jump-di�usion model. Wehave shown that the new method is much faster than the standard PSORalgorithm, and, more importantly, it is robust to parameter changes andnear-linear in the spatial discretization. However, for certain choices of pa-rameters, it distorts the free boundary, and therefore there is still scope forthe improvement of its accuracy.Moreover, we have explicitly computed Schweizer's minimal martingale mea-sure for the price process in question, and we have used it used throughoutthe paper as the pricing measure.We have introduced a modi�cation to the discretization scheme proposed byZhang [Zha97], thanks to which we have eliminated the serious numericalinaccuracy of Zhang's scheme. Namely, we have erradicated an instabilitywhich was arising for certain discretization parameters in highly volatile sys-tems, and we have restored the correct dependence of the computed optionprice upon the jump intensity �. Moreover, we have obtained continuity ofthe option price as a function of the maximum relative jump size a.We have applied both algorithms (PSOR and LP) to the valuation of theAmerican put. We have shown that the numerical solution to the put pricingproblem, under the corrected approximation scheme, is an increasing functionof the volatility parameters �, � and a. These results, while contradictingthose obtained by Zhang, are consistent with the theoretical results of Pham[Pha97].We have also analysed the distribution of the optimal exercise times forthe American put and found that the higher the volatility parameters, themore options are exercised before the expiry date. An increase in any of thevolatility parameters also increases the mean optimal exercise time.We are convinced that the thought-provoking results reported here will pro-61



vide much stimulation for researchers in the area.
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