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A. Simulation models

(M1) teeth: piecewise-constant ft (in Scenario (S1)), T = 512, q = 7 change-points at
τ = 64, 128, . . . , 448, with the corresponding jump sizes −2, 2,−2, . . . ,−2, starting
intercept f1 = 1, σt = 1 for t = 1, . . . , T .

(M2) blocks: piecewise-constant ft (in Scenario (S1)), T = 2024, q = 11 change-points
at τ = 205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598, 1659, with the corresponding
jump sizes 1.464,−1.830, 1.098,−1.464, 1.830,−1.537, 0.768, 1.574,−1.135, 0.769,−1.537,
starting intercept f1 = 0, σt = 1 for t = 1, . . . , T . This signal is widely analysed in
the literature, see e.g. Fryzlewicz (2014).

(M3) wave1: piecewise-linear ft without jumps in the intercept (in Scenario (S2)), T =
1408, q = 7 change-points at τ = 256, 512, 768, 1024, 1152, 1280, 1344, with the cor-
responding changes in slopes 1 · 2−6,−2 · 2−6, 3 · 2−6 . . . ,−7 · 2−6, starting intercept
f1 = 1 and slope f2 − f1 = 2−8, σt = 1 for t = 1, . . . , T .

(M4) wave2: piecewise-linear ft without jumps in the intercept (in Scenario (S2)), T =
1500, q = 9 change-points at τ = 150, 300, . . . , 1350, with the corresponding changes
in slopes 2−5,−2−5, 2−5, . . . ,−2−5, starting intercept f1 = 2−1 and slope f2 − f1 =
2−6, σt = 1 for t = 1, . . . , T .

(M5) mix: piecewise-linear ft with possible jumps at change-points (in Scenario (S3)),
length T = 2048, q = 7 change-points at τ = 256, 512, . . . , 1792, with the corre-
sponding sizes of jump 0,−1, 0, 0, 2,−1, 0 and changes in the slope 2−6,−2−6,−2−6,
2−6, 0, 2−6,−2−5, starting value for the intercept f1 = 0 and slope f2− f1 = 0, σt = 1
for t = 1, . . . , T .

(M6) vol: piecewise-constant ft and σt (in Scenario (S4)), T = 2048, q = 7 change-
points at τ = 256, 512, . . . , 1792 with the corresponding jumps in ft and σt being
1, 0,−2, 0, 2,−1, 0 and 0, 1, 0, 1, 0,−1, 1, respectively, initial values f1 = σ1 = 1.

(M7) quad: piecewise-quadratic ft (in Scenario (S5)), T = 1000, q = 3 change-points at
τ = 100, 250, 500, with the corresponding changes in the intercept 2,−2, 0, in the
slope 0,−10−1, 10−1 and in the quadratic coefficient 0, 0, 2 × 10−5, the initial values
f1 = f2 − f1 = f3 − 2f2 + f1 = 0, σt = 1 for all t = 1, . . . , T .

(M8) smile: piecewise-linear ft with possible jumps at change-points (designed to test
NOT under misspecification), T = 2048, q = 6 change-points at τ = 256, 512, 768,
1280, 1536, 1792, with the corresponding sizes of jump 0,−4, 0, 0, 4, 0 and changes in
the slope −2−5, 0, 2−6, 2−6, 0,−2−5, starting value for the intercept f1 = 0 and slope
f2 − f1 = 2−6, σt = 1 for t = 1, . . . , T .
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B. More details on the contrast functions and their construction

B.1. Scenario (S1)
Here ft is piecewise-constant. For any integer triple (s, e, b) with 0 ≤ s < e ≤ T and

s < b < e, recalling that we have defined the contrast vector ψbs,e =
(
ψbs,e(1), . . . , ψbs,e(T )

)′
as

ψb(s,e](t) =


√

e−b
(e−s)(b−s) , t = s+ 1, . . . , b

−
√

b−s
(e−s)(e−b) , t = b+ 1, . . . , e

0, otherwise.

Also, if b /∈ {s+ 1, . . . , e− 1}, then we set ψb(s,e](t) = 0 for all t.

For any vector v = (v1, . . . , vT )′, we define the contrast function as Cb(s,e](v) =
∣∣∣〈v,ψb(s,e]

〉∣∣∣.
Therefore, if s < b < e, then

Cb(s,e](v) =

∣∣∣∣∣
√

e− b
(e− s)(b− s)

b∑
t=s+1

vt −

√
b− s

(e− s)(e− b)

e∑
t=b+1

vt

∣∣∣∣∣ .
Otherwise, Cb(s,e](v) = 0. This recovers the well-known CUSUM statistic in the change-

point detection literature. It can be shown that
[
Cb(s,e](Y)

]2
= σ2

0Rb(s,e](Y) for every (s, e, b)

with 0 ≤ s < b < e ≤ T , thus Cb(s,e](·) fulfills the requirements for the contrast function

listed in Section 2.3.
In addition, for any 0 ≤ s < e ≤ T , we define the constant vector for the interval (s, e]

as

1(s,e](t) =

{
(e− s)−1/2, t = s+ 1, . . . , e

0, otherwise
,

and write 1(s,e] =
(
1(s,e](1), . . . ,1(s,e](T )

)′
. Then it is easy to check that 1(s,e] and ψb(s,e]

are orthonormal. This explains why the CUSUM is invariant to shifts in the mean.

B.2. Scenario (S2)
Here ft is piecewise-linear and continuous. For any triple (s, e, b) with 0 ≤ s < e ≤ T and

s+ 1 < b < e, consider the contrast vector φb(s,e] =
(
φb(s,e](1), . . . , φb(s,e](T )

)′
with

φb(s,e](t) =


αb(s,e]β

b
(s,e]

[{
3(b− s) + (e− b)− 1

}
t−
{
b(e− s− 1) + 2(s+ 1)(b− s)

}]
, t = s+ 1, . . . , b

−α
b
(s,e]

βb
(s,e]

[{
3(e− b) + (b− s) + 1

}
t−
{
b(e− s− 1) + 2e(e− b+ 1)

}]
, t = b+ 1, . . . , e,

0, otherwise.

where αbs,e =

(
6

l(l2−1)
(

1+(e−b+1)(b−s)+(e−b)(b−s−1)
))1/2

, βbs,e =
(

(e−b+1)(e−b)
(b−s−1)(b−s)

)1/2
and l =

e− s. If b /∈ {s+ 2, . . . , e− 1}, then we set φb(s,e](t) = 0 for all t. The contrast function is

then defined as

Cb(s,e](v) =
∣∣∣〈v,φb(s,e]

〉∣∣∣ .
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To explain the rationale behind φb(s,e], we first define the “linear” vector for the interval

(s, e] with e− s > 1, γ(s,e] =
(
γ(s,e](1), . . . , γ(s,e](T )

)′
, as

γ(s,e](t) =


{

1
12(e− s− 1)(e− s)(e− s+ 1)

}−1/2(
t− e+s+1

2

)
, t = s+ 1, . . . , e;

0, otherwise.

Then we have that φb(s,e] is orthonormal to both 1(s,e] and γ(s,e] (note that γ(s,e] itself is

orthonormal to 1(s,e]). The orthonormality of the vectors 1(s,e], γ(s,e] and φb(s,e] is important

in deriving the identity σ2
0Rb(s,e](Y) = Cb(s,e](Y)2 below, and helps improve the numerical

efficiency and stability in our implementation of NOT. In particular, it means that the
contrast function is invariant to both mean shifts and slope shifts on a given interval.
In fact, φb(s,e] can be derived by (i) applying the Gram–Schmidt process on the following

vector (linear with a kink at b on (s, e])

φ̃b(s,e](t) =

{
t− b, t = b+ 1, . . . , e

0, otherwise

with respect to 1(s,e] and γ(s,e], and (ii) normalisation such that ‖ · ‖2 = 1. Now write the

restriction of v on the interval (s, e] as v|(s,e] = (0, . . . , 0, vs+1, . . . , ve, 0, . . . , 0)′. Fix any
(s, e, b), given the restriction imposed on Θ in (S2), the best approximation of Y|(s,e] (in

the `2 distance) with a single kink at b is a linear combination of 1(s,e], γ(s,e] and φb(s,e] (all

mutually orthonormal). Therefore,

σ2
0Rb(s,e](Y)

= min
a0,a1∈R

‖Y|(s,e] − a01(s,e] − a1γ(s,e]‖22 − min
a0,a1,a2∈R

‖Y|(s,e] − a01(s,e] − a1γ(s,e] − a2φ
b
(s,e]‖

2
2

= ‖Y|(s,e] − 〈Y,γ(s,e]〉γ(s,e] − 〈Y,1(s,e]〉1(s,e]‖2

− ‖Y|(s,e] − 〈Y,φb(s,e]〉φ
b
(s,e] − 〈Y,γ(s,e]〉γ(s,e] − 〈Y,1(s,e]〉1(s,e]‖2

= 〈Y,φb(s,e]〉
2 = Cb(s,e](Y)2.

Thus the aforementioned requirements for the contrast function are satisfied.

B.3. Scenario (S3)

Here ft is a piecewise-linear but not necessarily continuous function. We use the following
contrast function for any s+ 1 < b < e− 1:

Cb(s,e](v) =

(〈
v,ψb(s,e]

〉2
+
〈
v,γ(s,b]

〉2
+
〈
v,γ(b,e]

〉2
−
〈
v,γ(s,e]

〉2
)1/2

. (13)

Otherwise, for b 6∈ {s+ 2, . . . , e− 2}, we set Cb(s,e](v) = 0.
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This construction is justified by noting that

σ2
0Rb(s,e](Y) = min

a0,a1∈R
‖Y|(s,e] − a01(s,e] − a1γ(s,e]‖22

−
(

min
a0,a1∈R

‖Y|(s,b] − a01(s,b] − a1γ(s,b]‖22 + min
a0,a1∈R

‖Y|(b,e] − a01(b,e] − a1γ(b,e]‖22
)

= min
a0,a1∈R

‖Y|(s,e] − a01(s,e] − a1γ(s,e]‖22

− min
a0,a1,a2,a3∈R

‖Y|(s,e] − a01(s,e] − a1γ(s,b] − a2γ(b,e] − a3ψ
b
(s,e]‖

2
2

= Cb(s,e](Y)2,

where we also used the orthonormality among 1(s,e], ψ
b
(s,e], γ(s,b] and γ(b,e] in the above

derivation.

B.4. Scenario (S4)

Here both ft and σt are piecewise-constant. For any s+ 1 < b < e− 1, we propose

Cb(s,e](v) = (e− s) log
(
σ̂(s,e](v)

)
− (b− s) log

(
σ̂(s,b](v)

)
− (e− b) log

(
σ̂(b,e](v)

)
, (14)

where

σ̂2
(s,e](v) =

1

e− s

e∑
t=s+1

(
vt −

1

e− s

e∑
t=s+1

vt

)2

=
〈
v2,12

(s,e]

〉
−
〈
v,12

(s,e]

〉2
.

Otherwise, for b 6∈ {s + 2, . . . , e − 2}, we set Cb(s,e](v) = 0. In this Scenario, it is straight-

forward to verify that Cb(s,e](Y) = Rb(s,e](Y). (N.B. 12
(s,e] 6= 1(s,e] due to the normalising

constant.) In practice, for numerical stability, we use logε(·) := log{max(·, ε)} instead of
log(·) in (14) with a pre-given small ε > 0.

C. More details on the compututational aspects of NOT and its solution path

C.1. Computing contrast functions in a linear time

The practical performance (in terms of computational cost) of Algorithm 1 relies on the
fast computation of the contrast functions discussed in Section 2.3 on any given interval
(s, e]. Here we show that in all scenarios listed in Section 2.3, the cost of computing
{Cb(s,e](Y)}e−1

b=s+1 is O(e− s).

Note that the key ingredients in Cb(s,e](Y) under the different scenarios are functions

of the inner products, i.e.
〈
Y,ψb(s,e]

〉
,
〈
Y,φb(s,e]

〉
,
〈
Y,γ(s,b]

〉
,
〈
Y,γ(b,e]

〉
,
〈
Y,12

(s,b]

〉
,〈

Y,12
(b,e]

〉
,
〈
Y2,12

(s,b]

〉
and

〈
Y2,12

(b,e]

〉
for b = s+ 1, . . . , e− 1. For a fixed interval (s, e],
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by simple algebra, we observe that
〈
Y,ψb(s,e]

〉
and

〈
Y,φb(s,e]

〉
can be decomposed as

〈
Y,ψb(s,e]

〉
=←−a ψ,b

b∑
t=s+1

Yt −−→a ψ,b
e∑

t=b+1

Yt

:=←−a ψ,b←−π
(0)
b (Y)−−→a ψ,b−→π

(0)
b (Y),〈

Y,φb(s,e]

〉
=←−a (1)

φ,b

b∑
t=s+1

tYt −−→a (1)
φ,b

e∑
t=b+1

tYt +←−a (0)
φ,b

b∑
t=s+1

Yt −−→a (0)
φ,b

e∑
t=b+1

Yt

:=←−a (1)
φ,b
←−π (1)
b (Y)−−→a (1)

φ,b
−→π (1)
b (Y) +←−a (0)

φ,b
←−π (0)
b (Y)−−→a (0)

φ,b
−→π (0)
b (Y),

where ←−a ψ,b,−→a ψ,b,←−a
(1)
φ,b,
−→a (1)
φ,b,
←−a (0)
φ,b and −→a (0)

φ,b are scalars that do not depend on Y, and

can all be computed at the cost of O(1) using equations given in Section 2.3. Here for
notational convenience, we use overhead arrows to indicate whether a scalar or a function
is associated with observations with indices ≤ b (i.e. over (s, b], using ←−· ) or with indices
> b (i.e. over (b, e], using −→· ). We also suppress their dependence on s and e in the
notation. In addition, the following recursive formulae hold

←−π (k)
b+1(Y) =←−π (k)

b (Y) + (b+ 1)kYb+1,

−→π (k)
b (Y) = −→π (k)

b+1(Y) + (b+ 1)kYb+1,

with ←−π (k)
s (Y) = −→π (k)

e (Y) = 0 for k = 0, 1. Consequently, ←−π (k)
b (Y) and −→π (k)

b (Y) for all

b ∈ {s+1, . . . , e−1} and k = 0, 1 (thereby
〈
Y,ψb(s,e]

〉
and

〈
Y,φb(s,e]

〉
) can be computed in

a single pass through Ys+1, . . . , Ye. Similar approach can be applied to the remaining inner
products involved in the definitions of the contrast functions given in Section 2.3, which
demonstrates that in all these cases the computation of {Cb(s,e](Y)}e−1

b=s+1 scales linearly

with the length of the sub-interval.

C.2. Details of the NOT solution path algorithm
As mentioned in Section 3.2 of the main paper, we have developed Algorithm 2 that
computes the entire threshold-indexed solution path {T (ζT )}ζT≥0 quickly, and have imple-
mented it in our R package not. Detailed pseudo-code is provided on the next page.

The construction of Algorithm 2 stems from two observations. First, for any fixed
threshold ζT , Algorithm 1 implies a binary tree data structure that is constructed according
to the order of the detection of each change-point. More specifically, in our implementation,
each tree node N contains the following information.

(a) The current interval of interest is (N.s, N.e].

(b) From all elements in FMT that are also subsets of (N.s, N.e], we find the narrowest-over-
threshold sub-interval. Within that sub-interval, let N.c be the maximum achieved
value of the contrast function over all possible locations of the feature, and N.b be the
corresponding location (i.e. the detected change-point location over (N.s, N.e]).

(c) N.Left and N.Right point to the nodes of the next detected change-points in (N.s, N.b]
and (N.b, N.e], respectively.
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Algorithm 2 NOT solution path

Input: Data vector Y, all sub-intervals (sm, em] ∈ FMT together with

bm := argmaxsm<b≤em C
b
(sm,em](Y), cm := Cbm(sm,em](Y) and lm := em − sm.

Output: Thresholds 0 = ζ
(1)
T < . . . < ζ

(N)
T and sets of estimated change-points

T (ζ
(1)
T ), . . . , T (ζ

(N)
T ).

To start the algorithm: Call SolutionPath()

procedure BuildBinaryTree((s, e], ζT , N)
M(s,e] := set of those m ∈ {1, . . . ,M} such that (sm, em] ⊂ (s, e]
O(s,e] := set of m ∈M(s,e] such that cm > ζT
if O(s,e] = ∅ then N = NULL

else
k := any element of argminm∈O(s,e]

lm
N.b := bk, N.c := ck, N.Left := NULL, N.Right := NULL

BuildBinaryTree((s, N.b], ζT , N.Left)
BuildBinaryTree((N.b, e], ζT , N.Right)

end if
end procedure

procedure UpdateBinaryTree((s, e], ζT , N)
if N.c ≤ ζT then

BuildBinaryTree((s, e], ζT , N)
else

if N.Left 6= NULL then
UpdateBinaryTree((s, N.b], ζT , N.Left)

end if
if N.Right 6= NULL then

UpdateBinaryTree((N.b, e], ζT , N.Right)
end if

end if
end procedure

procedure SolutionPath()

Set Nr := NULL, i := 1, ζ
(1)
T := 0

BuildBinaryTree((0, T ], ζ
(1)
T , Nr)

while Nr 6= NULL do
D := {Nr and all its children nodes}
T (ζ

(i)
T ) := {N.b|N ∈ D}

ζ
(i+1)
T := minN∈D{N.c}
UpdateBinaryTree((0, T ], ζ

(i+1)
T , Nr)

i := i+ 1
end while

end procedure
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Table 2. Intervals considered in Figure 7a and corresponding max-
ima of the contrast function Cb(s,e](·) given by (8), all calculated for a
sample path of Yt, t = 1, . . . , 1000 generated from model (1) with the
signal ft given by (2) and the noise εt ∼ N (0, 0.052).

s e e− s argmaxs<b≤e Cb(s,e](Y) maxs<b≤e Cb(s,e](Y)

0 1000 1000 490 10.19
9 245 236 43 0.08

224 450 226 344 0.76
499 750 251 651 0.83
749 950 211 746 0.03
449 550 101 471 0.07

We then treat the first detected change-point over (0, T ] as the root of the tree and
construct its branches in a recursive fashion afterwards. Second, suppose that we have
already constructed the tree for ζT with root Nr. For ζ ′T > ζT , the new tree’s root is
unchanged if Nr.c > ζ ′T . This observation remains valid for Nr.Left and Nr.Right and all
subsequent nodes. Therefore, a branch of the tree has to be reconstructed only if N.c ≤ ζ ′T
for some node N. In this way, the tree constructed for ζT can be used as a starting point
to finding the tree corresponding to ζ ′T , thus significantly reducing the computational time
in comparison to constructing the tree from scratch.

Next, we elaborate on the complexity of Algorithm 2. As explained previously, finding
solutions of Algorithm 1 for a single threshold ζT is equivalent to the construction of a
binary tree, which can be performed with the BuildBinaryTree routine given in Algo-
rithm 2. Computational cost of this operation is no larger than O(MKζT ), where KζT

denotes the height of the constructed binary tree with the threshold ζT . The computa-
tional complexity of finding the entire solution path using Algorithm 2 is therefore (in
the worst case) O(MKN), where N and K are, respectively, the number of solutions and
the maximum tree depth over the entire solution path. However, this is a rough estimate
which assumes that for each threshold on the path the binary tree has a different root node,
which, from our empirical experience, is highly unlikely to occur in practice. Typically,
the consecutive trees on the path differ just slightly (see e.g. our next Section C.3), which
significantly reduces the amount of computation that Algorithm 2 requires. As such, we
find that the computational complexity of Algorithm 2 is more like O(MT ) in practice.

C.3. An illustrative example
In this part, we revisit the example shown in the Introduction of our paper, and provide
a simple illustration of how Algorithm 1 and Algorithm 2 work on a simulated dataset.
Figure 7 shows the generated data {Yt}1000

t=1 following Scenario (S2), where the signal ft is as
in (2) and σt = 0.05. The contrast function (8) is evaluated for 5 intervals. We observe that
the contrast function corresponding to (0, 1000], being the longest interval here, attains its
maximum at b = 490, which is far from the true change-points located at τ = 350 and
τ = 650. Furthermore, maxb Cb(0,1000](Y) is much larger than the corresponding value for

the other intervals considered in Table 2. However, thanks to the fact that we focus on the
narrowest-over-threshold intervals, Algorithm 1 (for any ζT ∈ (0.08, 0.83)) picks at its first
iteration an interval with exactly one change-point (depending on ζT , it is either (224, 450]
or (499, 750]) and the maximum of the contrast function computed is close to one of the
true change-points.
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3
6
9

0 250 500 750 1000
t

(a)

0.0

0.4

0.8

1.2

0 250 500 750 1000
t

(b)

Fig. 7. An application of the NOT methodology to Yt generated from model (1) with the signal ft
given by (2) and i.i.d. εt ∼ N (0, 0.052). Figure 7a: contrast function Cb(s,e](Y) given by (8) evaluated
for all b ∈ (s, e] with intervals (s, e] specified in Table 2. For intervals containing one change-point,
Cb(s,e](Y) attains its maximum at b close to the actual change-point. When there are two change-
points (black solid line), the maximum is far from both change-points, despite maxb Cb(s,e](Y) being
large. Figure 7b: observed Yt (thin grey), true signal (thick dashed black), signal estimated picking
the change-point candidate based on the interval corresponding to the largest contrast function
(dotted-dashed navy) and the narrowest-over-threshold intervals (dashed red).

471

344

43

746

(a) ζ
(1)
T = 0

471

344

43

651

(b) ζ
(2)
T = 0.03

344

43 651

(c) ζ
(3)
T = 0.07

344

651

(d) ζ
(4)
T = 0.08

Fig. 8. First four segmentation trees obtained by Algorithm 2 applied to a realization of
(Y1, . . . , Y1000)′ presented in Figure 7. The larger the node, the larger the corresponding value
of maxb Cb(s,e](Y). Here Cb(s,e](·) is given by (8). The grey nodes correspond to the smallest con-
trast function for each tree that are updated as Algorithm 2 proceeds.

Figure 8 shows how Algorithm 2 proceeds in the example presented in Figure 7. At the

initial stage that can be seen in Figure 8a, the threshold is set to ζ
(1)
T = 0 and b = 471, the

maximum of the contrast function computed for the shortest interval (449, 550] is taken as
the root of the binary tree. Then we construct its left and right branches by considering
only those intervals specified in Table 2 with (s, e] ⊂ (0, 471] and (s, e] ⊂ (471, 1000],
respectively, and the procedure continues for the resulting nodes. Next, the node with the
smallest value of the contrast function is determined (b = 746) and the threshold is set to

the corresponding minimum ζ
(2)
T = 0.03. This guarantees that as Algorithm 2 proceeds,

there will be at least one update in the binary tree. In our example, the b = 746 node
is removed and, as the maximum for (499, 750] ⊂ (471, 1000] exceeds the threshold, the
b = 651 node is inserted its place. Subsequently, we identify the node with the smallest

contrast again (b = 471), update the threshold to ζ
(3)
T = 0.07 and reconstruct the entire

tree, as b = 471 in Figure 8b constitutes its root. Algorithm 2 keeps running until the
resulting tree shrinks to NULL. In this example, the fourth solution on the path (Figure 8d)
contains exactly two nodes being close to the true change-points.
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D. Further extension of NOT: noise with slow-varying variance

In all scenarios considered previously, we assumed a constant or piecewise constant σt.
Now we discuss how NOT can be extended to handle σt of a more general form. We model

Y through (3) with εt
i.i.d.∼ N (0, 1). To fix ideas, here we focus on the case of piecewise

constant signal ft (i.e. similar to (S1)), but with a slowly-varying σt, i.e. σt = σ(t/T ) with
σ(·) being an unknown smooth function from [0, 1]→ (0,∞).

D.1. Methodology
We propose to estimate the change-points in three steps:

(a) We estimate σ(·) using a standard nonparametric method, such as spline smoothing,
on
{

(t/T,
√
π|Yt+1− Yt|/2

)
}Tt=2, which we denote as σ̂(·). Also, we write σ̂t = σ̂(t/T )

for t = 1, . . . , T .

(b) We perform our NOT solution path algorithm using the contrast function Ĉb(s,e](Y) =∣∣∣〈Y, ψ̂
b

(s,e]

〉∣∣∣ for any tuple (s, b, e) with 0 ≤ s < b < e ≤ T in our NOT procedure,

with ψ̂
b

(s,e] =
(
ψ̂b(s,e](1), . . . , ψ̂b(s,e](T )

)′
and

ψ̂b(s,e](t) =


σ̂−2
t

√
(Ω2

e − Ω2
b)(Ω

2
e − Ω2

s)
−1(Ω2

b − Ω2
s)
−1, t = s+ 1, . . . , b

−σ̂−2
t

√
(Ω2

b − Ω2
s)(Ω

2
e − Ω2

s)
−1(Ω2

e − Ω2
b)
−1, t = b+ 1, . . . , e

0, otherwise.

where Ω2
t =

∑t
i=1 1/σ̂2

i (and by default Ω2
0 = 0). As before, if b /∈ {s+ 1, . . . , e− 1},

then we set ψ̂b(s,e](t) = 0 for all t. We remark that this contrast function originates

from the generalised log-likelihood ratio, and can be viewed as a weighted and scaled
version of (6) based on CUSUM statistic. Its derivation can be found in Section D.2.
In addition, when σ̂t is constant (say σ̂t = 1 for all t), we would recover (6).

(c) We pick the best model along the solution path via the sSIC criterion, with the
log-likelihood for each segment given by

log `(Yτ̂j−1+1, . . . , Yτ̂j ; Θ̂j) =

τ̂j∑
t=τ̂j−1+1

{
−

(Yt − Ŷ(τ̂j−1,τ̂j ])
2

2σ̂2
t

− log(2πσ̂2
t )

2

}
,

where Ŷ(τ̂j−1,τ̂j ] =
(∑τ̂j

t=τ̂j−1+1 σ̂
−2
t Yt

)
/
(∑τ̂j

t=τ̂j−1+1 σ̂
−2
t

)
.

To make this solution complete, a suitable choice of the smoothing parameter would
have to be considered in the first step. This is a standard problem in nonparametrics, and
several solutions exist, e.g. those based on (leave-one-out) cross-validation. We leave a
detailed study of this issue for future research.

D.2. Detailed derivation of the corresponding contrast function
Here we derive the contrast function from the generalised log-likelihood ratio.
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Given an interval (s, e]. Suppose that there is a change-point at b, then under the
normality assumption, the log-likelihood is

−1

2

b∑
t=s+1

(Yt − µL)2

σ̂2
t

− 1

2

e∑
t=b+1

(Yt − µR)2

σ̂2
t

− 1

2

e∑
t=s+1

log(2πσ̂2
t ),

which is maximised at

µL =

( b∑
t=s+1

1

σ̂2
t

)−1( b∑
t=s+1

Yt
σ̂2
t

)
and µR =

( e∑
t=b+1

1

σ̂2
t

)−1( e∑
t=b+1

Yt
σ̂2
t

)
.

Now suppose there is no change-point over (s, e], then the log-likelihood is

−1

2

e∑
t=s+1

(Yt − µ)2

σ̂2
t

− 1

2

e∑
t=s+1

log(2πσ̂2
t ),

which is maximised at

µ =

( e∑
t=s+1

1

σ̂2
t

)−1( e∑
t=s+1

Yt
σ̂2
t

)
=

Ω2
b − Ω2

s

Ω2
e − Ω2

s

µL +
Ω2
e − Ω2

b

Ω2
e − Ω2

s

µR,

where Ω2
t =

∑t
i=1 1/σ̂2

i (and by default Ω2
0 = 0). After some algebraic manupulation, we

have that the generalised log-likelihood is

Rb(s,e](Y) =
1

2

{
(Ω2

b − Ω2
s)µ

2
L + (Ω2

e − Ω2
b)µ

2
R − (Ω2

e − Ω2
s)µ

2
}

=
1

2

(Ω2
b − Ω2

s)(Ω
2
e − Ω2

s)

Ω2
e − Ω2

b

(µL − µR)2

=
1

2

(√
Ω2
e − Ω2

b

(Ω2
e − Ω2

s)(Ω
2
b − Ω2

s)

b∑
t=s+1

Yt
σ̂2
t

−

√
Ω2
b − Ω2

s

(Ω2
e − Ω2

s)(Ω
2
e − Ω2

b)

e∑
t=b+1

Yt
σ̂2
t

)2

=
1

2

∣∣∣〈Y, ψ̂
b

(s,e]

〉∣∣∣2
=

1

2

{
Ĉb(s,e](Y)

}2
.

E. Additional simulation results

In addition to the results presented in Section 5, here we present Tables 3–6 that summarise

the results for three different distributions of the noise εt, where (b) εt
i.i.d.∼ N (0, 2), (c)

εt
i.i.d.∼ Laplace(0, 2−1/2), (d) i.i.d. scaled Student-t5 in Table 5, and (e) εt follows zero-mean

unit-variance Gaussian AR(1) with ϕ = 0.3.
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Table 3. Distribution of q̂− q for data generated according to (3) with the noise term εt being i.i.d. N (0, 2)
for various choices of ft and σt given in Section A and competing methods listed in Section 5. Also, the
average Mean-Square Error of the resulting estimate of the signal ft, average inverse V-measure dH ,
average V distance dV and average computation time in seconds using a single core of an Intel Xeon 3.6
GHz CPU with 16 GB of RAM, all calculated over 100 simulated data sets. Bold: methods with the largest
empirical frequency of q̂ − q = 0 or smallest average of dH or dV , and those within 10% of the highest or
lowest accordingly.

q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 dV time

B&P

(M1)

0 0 0 100 0 0 0 0.107 0.93 0.037 1.337
e-cp3o 0 0 0 100 0 0 0 0.132 0.98 0.052 0.12

FDRSeg 0 0 0 83 14 1 2 0.134 1.51 0.054 0.093
NMCD 0 0 0 92 8 0 0 0.151 1.44 0.059 1.067
NOT 0 0 0 97 3 0 0 0.111 1.05 0.038 0.044

NOT HT 0 0 0 97 3 0 0 0.126 1.25 0.044 0.058
NP-PELT 0 0 0 73 25 2 0 0.141 1.55 0.048 0.019

PELT 0 2 0 98 0 0 0 0.115 1.22 0.039 0.002
S3IB 0 0 0 90 8 1 1 0.114 1.13 0.038 0.076

SMUCE 0 2 14 84 0 0 0 0.185 2.14 0.064 0.056
WBS 0 0 0 93 7 0 0 0.113 1.15 0.038 0.074
B&P

(M2)

100 0 0 0 0 0 0 0.145 8.78 0.155 30.413
e-cp3o 100 0 0 0 0 0 0 0.223 7.74 0.15 2.425

FDRSeg 20 33 36 7 2 2 0 0.073 3.31 0.066 2.576
NMCD 46 27 21 6 0 0 0 0.076 4.29 0.074 4.324
NOT 28 30 27 13 2 0 0 0.066 3.4 0.059 0.077

NOT HT 49 27 19 2 3 0 0 0.083 4.26 0.077 0.138
NP-PELT 4 9 30 21 21 10 5 0.068 3.74 0.062 0.239

PELT 91 7 2 0 0 0 0 0.114 8.21 0.122 0.004
S3IB 37 34 17 10 1 1 0 0.071 4.15 0.068 0.342

SMUCE 100 0 0 0 0 0 0 0.144 5.95 0.13 0.022
WBS 26 32 29 13 0 0 0 0.067 3.55 0.062 0.145
B&P

(M3)
0 0 100 0 0 0 0 0.258 4.25 0.155 54.381

NOT 0 0 0 97 2 1 0 0.033 1.59 0.073 0.35
TF 0 0 0 0 0 0 100 0.032 8.42 0.216 46.038

B&P
(M4)

13 53 28 6 0 0 0 0.322 6.11 0.204 62.421
NOT 0 0 0 100 0 0 0 0.037 2.01 0.097 0.335
TF 0 0 0 0 0 0 100 0.03 4.47 0.151 47.536

B&P
(M5)

0 0 9 91 0 0 0 0.046 3.52 0.115 119.454
NOT 0 0 7 92 1 0 0 0.047 3.65 0.117 0.334
TF 0 0 0 0 0 0 100 0.041 5.9 0.24 57.36

e-cp3o

(M6)

11 12 12 33 20 5 7 0.145 6.91 0.164 1.738
HSMUCE 97 3 0 0 0 0 0 0.091 12.77 0.209 0.051

NMCD 0 0 18 70 12 0 0 0.06 4.04 0.068 4.135
NOT 0 0 13 85 2 0 0 0.047 2.6 0.048 0.455

NP-PELT 0 0 1 19 26 24 30 0.126 3.17 0.068 0.279
PELT 9 18 31 37 5 0 0 0.069 8.17 0.087 0.011

SegNeigh 0 0 3 49 36 10 2 0.053 1.98 0.048 17.211
B&P

(M7)
0 0 42 58 0 0 0 0.073 6.21 0.132 29.222

NOT 0 0 43 57 0 0 0 0.071 6.13 0.122 0.225
TF 0 0 0 0 0 0 100 0.08 22.86 0.399 43.198
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Table 4. Distribution of q̂ − q for data generated according to (3) with the noise term εt being i.i.d.
Laplace

(
0, (
√

2)−1
)

(N.B. Var(εt) = 1) for various choices of ft and σt given in Section A and competing
methods listed in Section 5. Also, the average Mean-Square Error of the resulting estimate of the signal
ft, average Hausdorff distance dH , average inverse V-measure dV and average computation time in
seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM, all calculated over 100
simulated data sets. Bold: methods with the largest empirical frequency of q̂ − q = 0 or smallest average
of dH or dV , and those within 10% of the highest or lowest accordingly.

q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 dV time

B&P

(M1)

0 0 0 100 0 0 0 0.105 1.02 0.035 1.37
e-cp3o 0 0 0 100 0 0 0 0.123 0.91 0.049 0.116

FDRSeg 0 0 0 2 1 5 92 0.207 5.16 0.116 0.078
NMCD 0 0 0 92 7 1 0 0.15 1.55 0.059 1.053
NOT 0 0 0 93 4 3 0 0.114 1.3 0.038 0.043

NOT HT 0 0 0 100 0 0 0 0.099 0.96 0.033 0.058
NP-PELT 0 0 0 55 31 12 2 0.154 2.07 0.05 0.018

PELT 0 0 0 58 17 16 9 0.17 1.89 0.042 0.001
S3IB 0 0 0 70 12 12 6 0.154 1.64 0.04 0.068

SMUCE 0 0 0 48 20 22 10 0.154 2.68 0.066 0.057
WBS 0 0 0 60 4 22 14 0.173 2.18 0.044 0.073
B&P

(M2)

100 0 0 0 0 0 0 0.144 8.7 0.151 32.221
e-cp3o 100 0 0 0 0 0 0 0.208 7.62 0.145 2.313

FDRSeg 0 0 0 0 0 0 100 0.1 7.58 0.158 1.909
NMCD 24 36 35 4 1 0 0 0.06 3.57 0.056 4.354
NOT 63 14 12 6 4 1 0 0.085 5.09 0.082 0.078

NOT HT 31 27 34 8 0 0 0 0.056 3.2 0.049 0.139
NP-PELT 1 0 12 22 24 16 25 0.084 4.17 0.06 0.223

PELT 25 23 15 15 10 8 4 0.112 5.35 0.081 0.004
S3IB 90 7 1 2 0 0 0 0.125 9.55 0.142 0.315

SMUCE 21 15 19 11 13 13 8 0.111 6.03 0.12 0.019
WBS 25 11 15 13 14 5 17 0.11 5.34 0.083 0.143
B&P

(M3)
0 0 100 0 0 0 0 0.255 4.1 0.153 54.071

NOT 0 0 0 93 5 2 0 0.038 1.93 0.078 0.345
TF 0 0 0 0 0 0 100 0.035 8.42 0.224 46.298

B&P
(M4)

10 49 35 6 0 0 0 0.311 6.27 0.204 61.911
NOT 0 0 1 93 6 0 0 0.042 2.26 0.1 0.309
TF 0 0 0 0 0 0 100 0.03 4.41 0.153 47.57

B&P
(M5)

0 0 10 90 0 0 0 0.044 3.47 0.112 118.603
NOT 0 0 5 92 3 0 0 0.045 3.62 0.112 0.329
TF 0 0 0 0 0 0 100 0.041 5.87 0.232 57.763

e-cp3o

(M6)

34 19 9 11 6 7 14 0.304 9.94 0.225 1.693
HSMUCE 100 0 0 0 0 0 0 0.199 15.6 0.275 0.064

NMCD 4 18 44 31 3 0 0 0.114 9.25 0.116 4.085
NOT 2 6 33 38 18 2 1 0.185 7.82 0.107 0.451

NP-PELT 0 1 0 14 24 23 38 0.364 5.44 0.109 0.32
PELT 26 13 35 22 4 0 0 0.226 13.41 0.148 0.013

SegNeigh 0 0 7 30 38 13 12 0.176 5.23 0.094 17.316
B&P

(M7)
0 0 39 60 1 0 0 0.067 6.23 0.123 28.903

NOT 0 2 50 48 0 0 0 0.077 7.42 0.136 0.211
TF 0 0 0 0 0 0 100 0.074 22.81 0.406 43.53
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Table 5. Distribution of q̂ − q for data generated according to (3) with the noise term εt being i.i.d.
(3/5)1/2t5 (N.B. Var(εt) = 1) for various choices of ft and σt given in Section A of the online supplemen-
tary materials and competing methods listed in Section 5. Also, the average Mean-Square Error of the
resulting estimate of the signal ft, average Hausdorff distance dH , average inverse V-measure dV and
average computation time in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of
RAM, all calculated over 100 simulated data sets. Bold: methods with the largest empirical frequency of
q̂ − q = 0 or smallest average of dH or dV , and those within 10% of the highest or lowest accordingly.

q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 dV time

B&P

(M1)

0 0 0 100 0 0 0 0.046 0.45 0.016 1.36
e-cp3o 0 0 0 100 0 0 0 0.087 0.58 0.04 0.119

FDRSeg 0 0 0 8 2 5 85 0.113 4.67 0.089 0.07
NMCD 0 0 0 97 3 0 0 0.089 0.67 0.041 1.07
NOT 0 0 0 96 4 0 0 0.049 0.53 0.017 0.047

NOT HT 0 0 0 99 1 0 0 0.045 0.48 0.016 0.057
NP-PELT 0 0 0 75 12 12 1 0.081 1.35 0.031 0.015

PELT 0 0 0 53 7 25 15 0.106 1.89 0.026 0.002
S3IB 0 0 0 50 10 28 12 0.105 1.97 0.026 0.066

SMUCE 0 0 0 43 13 21 23 0.093 2.65 0.054 0.056
WBS 0 0 0 43 3 29 25 0.12 2.45 0.031 0.071
B&P

(M2)

100 0 0 0 0 0 0 0.126 5.71 0.128 33.68
e-cp3o 100 0 0 0 0 0 0 0.186 6.77 0.129 1.996

FDRSeg 0 0 0 0 0 2 98 0.042 7.02 0.11 1.56
NMCD 0 6 55 39 0 0 0 0.03 1.8 0.032 4.355
NOT 3 10 51 20 13 3 0 0.029 3.49 0.038 0.077

NOT HT 0 3 52 44 1 0 0 0.023 1.48 0.022 0.136
NP-PELT 0 0 13 22 19 23 23 0.043 3.98 0.039 0.2

PELT 1 5 16 28 18 12 20 0.056 3.63 0.04 0.003
S3IB 26 18 23 21 9 3 0 0.058 4.21 0.054 0.299

SMUCE 1 9 10 22 24 6 28 0.05 5.49 0.074 0.016
WBS 2 3 24 7 22 11 31 0.058 4.49 0.046 0.143
B&P

(M3)
0 0 100 0 0 0 0 0.221 3.67 0.132 53.919

NOT 0 0 0 97 3 0 0 0.016 1.05 0.054 0.395
TF 0 0 0 0 0 0 100 0.019 8.36 0.221 46.891

B&P
(M4)

0 0 9 91 0 0 0 0.082 2.85 0.143 61.857
NOT 0 0 0 98 1 1 0 0.017 1.29 0.07 0.371
TF 0 0 0 0 0 0 100 0.018 4.41 0.151 48.119

B&P
(M5)

0 0 0 100 0 0 0 0.018 2.17 0.082 118.05
NOT 0 0 2 90 7 1 0 0.021 2.53 0.086 0.368
TF 0 0 0 0 0 0 100 0.026 5.98 0.26 59.006

e-cp3o

(M6)

19 4 12 34 19 7 5 0.141 6.83 0.17 1.695
HSMUCE 100 0 0 0 0 0 0 0.098 12.68 0.212 0.052

NMCD 0 13 40 42 5 0 0 0.056 7.67 0.088 4.123
NOT 0 3 11 51 23 9 3 0.08 5.09 0.084 0.463

NP-PELT 0 0 3 15 19 19 44 0.194 5.08 0.089 0.281
PELT 5 16 27 40 9 3 0 0.09 7.71 0.099 0.012

SegNeigh 0 0 7 26 28 20 19 0.094 4.33 0.077 17.3
B&P

(M7)
0 0 0 99 1 0 0 0.022 2.26 0.071 28.876

NOT 0 0 6 86 8 0 0 0.027 3.03 0.078 0.226
TF 0 0 0 0 0 0 100 0.049 23.29 0.442 42.538
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Table 6. Distribution of q̂−q for data generated according to (3) with the noise term εt being a zero-mean
unit-variance Gaussian AR(1) process with ϕ = 0.3 for various choices of ft and σt given in Section A and
competing methods listed in Section 5. Also, the average Mean-Square Error of the resulting estimate of
the signal ft, average Hausdorff distance dH , average inverse V-measure dV and average computation
time in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM, all calculated
over 100 simulated data sets. Bold: methods with the largest empirical frequency of q̂− q = 0 or smallest
average of dH or dV , and those within 10% of the highest or lowest accordingly.

q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 dV time

B&P

(M1)

0 0 0 100 0 0 0 0.088 0.84 0.028 1.361
e-cp3o 0 0 0 100 0 0 0 0.126 0.99 0.05 0.116

FDRSeg 0 0 0 1 1 4 94 0.199 5.59 0.128 0.07
NMCD 0 0 0 63 29 6 2 0.145 2.36 0.06 1.048
NOT 0 0 0 64 18 7 11 0.113 2.13 0.04 0.046

NOT HT 0 0 0 78 19 2 1 0.104 1.67 0.036 0.058
NP-PELT 0 0 0 39 31 20 10 0.134 2.63 0.05 0.017

PELT 0 0 0 73 21 3 3 0.106 1.88 0.036 0.001
S3IB 0 0 0 73 22 3 2 0.102 1.79 0.034 0.069

SMUCE 0 0 0 56 30 10 4 0.136 2.52 0.059 0.053
WBS 0 0 0 63 20 7 10 0.11 2.18 0.038 0.072
B&P

(M2)

100 0 0 0 0 0 0 0.136 6.67 0.14 30.394
e-cp3o 100 0 0 0 0 0 0 0.202 6.81 0.137 2.046

FDRSeg 0 0 0 0 0 0 100 0.121 8.87 0.209 1.401
NMCD 1 9 37 35 13 4 1 0.056 2.92 0.055 4.316
NOT 1 8 34 25 9 12 11 0.053 3.63 0.053 0.082

NOT HT 5 14 39 24 8 7 3 0.056 3.34 0.056 0.136
NP-PELT 0 1 1 10 17 14 57 0.067 4.98 0.074 0.192

PELT 1 11 30 38 10 9 1 0.048 2.73 0.045 0.003
S3IB 11 27 39 20 3 0 0 0.05 3.1 0.048 0.34

SMUCE 0 12 36 26 21 3 2 0.057 4.45 0.066 0.015
WBS 2 10 29 27 11 12 9 0.052 3.41 0.051 0.141
B&P

(M3)
0 0 91 9 0 0 0 0.245 4.37 0.147 53.676

NOT 0 0 0 96 4 0 0 0.03 1.51 0.07 0.394
TF 0 0 0 0 0 0 100 0.465 9.08 0.519 46.654

B&P
(M4)

0 1 25 74 0 0 0 0.136 3.74 0.159 61.576
NOT 0 0 0 97 2 1 0 0.035 2.03 0.095 0.378
TF 0 0 0 0 0 0 100 0.479 5 0.462 47.875

B&P
(M5)

0 0 0 98 2 0 0 0.04 3.28 0.113 117.832
NOT 0 0 0 89 8 2 1 0.043 3.55 0.115 0.346
TF 0 0 0 0 0 0 100 0.218 6.24 0.461 56.926

e-cp3o

(M6)

19 9 16 23 13 10 10 0.224 8.25 0.19 1.659
HSMUCE 65 30 5 0 0 0 0 0.117 12.78 0.196 0.05

NMCD 1 0 5 28 29 18 19 0.178 5.36 0.093 4.097
NOT 0 2 23 56 13 5 1 0.123 5.29 0.074 0.455

NP-PELT 0 0 0 0 1 1 98 0.482 5.49 0.127 0.219
PELT 9 17 28 40 6 0 0 0.126 8.78 0.1 0.011

SegNeigh 0 0 2 39 24 23 12 0.12 3.1 0.066 17.242
B&P

(M7)
0 0 2 86 11 1 0 0.045 4.13 0.101 28.884

NOT 0 0 4 89 5 2 0 0.043 3.39 0.089 0.232
TF 0 0 0 0 0 0 100 0.11 24.39 0.537 42.602
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F. Additional numerical experiments on the choice of M

F.1. Setup
We now elaborate on the effect of the choice of M , the number of randomly drawn sub-
intervals. We focus on Scenario (S1) and consider the models based on variations of (M1).
All models listed below have piecewise-constant ft with equal-spaced change-points.

(M1-1) teeth-1: T = 512, q = 1 change-points at τ = 256, with the corresponding jump
sizes −2, f1 = 1, σt = 1 for t = 1, . . . , T .

(M1-2) teeth-2: T = 512, q = 3 change-points at τ = 128, 256, 384, with the corresponding
jump sizes −2, 2,−2, f1 = 1, σt = 1 for t = 1, . . . , T .

(M1-3) teeth-3: T = 512, q = 7 change-points at τ = 64, 128, . . . , 448, with the correspond-
ing jump sizes −2, 2,−2, 2,−2, f1 = 1, σt = 1 for t = 1, . . . , T . Note that this model
is the same as (M1) teeth listed in Section A.

(M1-4) teeth-4: T = 512, q = 15 change-points at τ = 32, 64, . . . , 480, with the correspond-
ing jump sizes −2, 2,−2, . . . ,−2, f1 = 1, σt = 1 for t = 1, . . . , T .

(M1-5) teeth-5: T = 512, q = 31 change-points at τ = 16, 32, . . . , 496, with the correspond-
ing jump sizes −2, 2,−2, . . . ,−2, f1 = 1, σt = 1 for t = 1, . . . , T .

(M1-6) teeth-6: T = 512, q = 63 change-points at τ = 8, 16, . . . , 504, with the corresponding
jump sizes −2, 2,−2, . . . ,−2, f1 = 1, σt = 1 for t = 1, . . . , T .

We take εt
i.i.d.∼ N (0, 1), run our NOT procedure using contrast function given by (6),

and the threshold picked by the SIC, but with different M = 10, 102, 103, 104, 105.

F.2. Results
In Table 7, we report the performance of NOT with the SIC in terms of estimates of
P(q̂ = q), E(q̂/q), dH and dV after 500 realisations. Here dH and dV are, respectively, the
scaled Hausdorff distance measure and the inverse V-measure, both given in Section 5.3.

We see that when there is only a small number of change-points in the signal, a moderate
M would be sufficient for the purpose of identifying all the change-points. In this case,
having a larger M will be more computationally intensive, but will not necessarily improve
the performance of the NOT procedure. As we increase the number of change-points (while
fixing T , as well as the size of the jumps, etc), we see that a larger M would be needed for
satisfactory performance. For example, in Model (M1-4) (with q = 15), our procedure with
M = 104 or 105 estimates the number of the change-points correctly more than 95% of the
time, while this proportion reduces to 87% for M = 103, and virtually 0% for M = 102 or
smaller. In cases like that, increasing M would be helpful.
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Table 7. Performance of NOT with ζT picked via the SIC and different
M = 10, 102, 103, 104, 105. Here data is generated according to (3) with
the noise term εt being i.i.d. N (0, 1) for various models given in Sec-
tion F.1. The estimated values of P(q̂ = q), E(q̂/q), dH and dV are re-
ported, all calculated over 500 simulated data sets.

Model (T = 512) Measure M
10 102 103 104 105

(M1-1): q = 1

P(q̂ = q)

0.978 0.978 0.968 0.972 0.976
(M1-2): q = 3 0.418 0.988 0.982 0.976 0.978
(M1-3): q = 7 0.004 0.566 0.976 0.972 0.974
(M1-4): q = 15 0 0.006 0.872 0.958 0.956
(M1-5): q = 31 0 0 0.002 0.45 0.424
(M1-6): q = 63 0 0 0 0 0

(M1-1): q = 1

E(q̂/q)

1.042 1.026 1.04 1.036 1.036
(M1-2): q = 3 0.925 1.004 1.006 1.009 1.008
(M1-3): q = 7 0.419 0.98 1.003 1.004 1.004
(M1-4): q = 15 0.06 0.565 1.003 1.003 1.003
(M1-5): q = 31 0.002 0.007 0.055 0.837 0.845
(M1-6): q = 63 0 0 0 0 0

(M1-1): q = 1

dH × 102

0.53 0.36 0.45 0.46 0.42
(M1-2): q = 3 14.23 0.33 0.36 0.39 0.38
(M1-3): q = 7 22.71 5.03 0.53 0.53 0.53
(M1-4): q = 15 43.45 14.31 1.25 0.79 0.79
(M1-5): q = 31 49.82 49.04 45.49 8.4 7.92
(M1-6): q = 63 50 49.98 49.97 49.98 49.98

(M1-1): q = 1

dV

0.019 0.014 0.015 0.015 0.015
(M1-2): q = 3 0.142 0.013 0.013 0.013 0.013
(M1-3): q = 7 0.349 0.043 0.018 0.018 0.018
(M1-4): q = 15 0.848 0.242 0.029 0.026 0.027
(M1-5): q = 31 0.995 0.977 0.905 0.168 0.155
(M1-6): q = 63 1 0.999 0.999 0.999 0.999
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Table 8. Performance of NOT with ζT picked via the AIC and
different M = 10, 102, 103, 104, 105. Here data is generated
according to (3) with the noise term εt being i.i.d. N (0, 1) for
Model (M1-6) given in Section F.1. The estimated values of
P(q̂ = q), E(q̂/q), dH and dV are reported, all calculated over
500 simulated data sets.

M P(q̂ = q) E(q̂/q) dH × 102 dV

(M1-6) : q = 63

10 0 0.007 47.06 0.948
102 0 0.041 37.29 0.776
103 0 0.276 13.29 0.331
104 0.08 0.937 1.76 0.063
105 0.106 0.988 1.58 0.057

On the other hand, caution must be exercised for signals with an extremely large number
of change-points, or the spacing of change-points to be highly non-homogeneous. For
example, in Model (M1-6) (with q = 63) where jumps in the signal occur at every 8
observations (which is itself a difficult problem), having M = 105 or larger will not lead to
any improvement of NOT with the SIC. However, we believe that this is partially due to
the fact that the SIC penalty is no longer approperiate for this extreme scenario. One could
alleviate the issue by using NOT with other less harsh penalty, or use methods designed
to tackle frequent change-points such as Fryzlewicz (2018). For instance, by changing the
SIC to the AIC in our procedure, we can see from Table 8 that with M = 105, P(q̂ = q)
increases from 0% to around 10%. More importantly, there is huge improvement in terms
of E(q̂/q), dH and dV . In fact, a close inspection indicates that q̂/q ∈ [0.9, 1.1] more than
90% of the time.

G. More on model misspecification and model selection

We have demonstrated that NOT is relatively robust against the misspecification in the
distribution of εt, when the truth is either correlated or heavy-tailed. Now we investigate
the case where the signal ft is misspecified. In particular, we focus on the misspecification
of the degree of the polynomials between consecutive change-points.

We simulate data according to (3) using the signal (M8) smile and noise of (a) i.i.d.
N (0, 1) and (b) i.i.d. N (0, 2). Here the true signal is piecewise-linear but not necessarily
continuous (i.e. from Scenario (S3)). We test NOT with the sSIC using contrast functions
constructed from Scenarios (S1), (S3) and (S5), where the estimators are denoted by NOT0,
NOT1 and NOT2, respectively. Again we take α = 1. Figure 9 shows a typical realisation of
the estimates produced by NOT with different contrast functions, while Table 9 summarises
the results.

For NOT0 (suitable for piecewise-constant signal), we see that unsurprisingly NOT0

significantly overestimates the number of change-points q. This is due to the bias-variance
tradeoff in the sSIC, where the bias term only approaches zero as the estimated number of
change-points q̂ →∞. Nevertheless, we observe that the set of change-point estimates from
NOT0 typically includes the true change-points with jump, even though the construction
of the contrast function (wrongly) assumes that the signal is piecewise-constant in the
neighbourhood of these change-points. Furthermore, under the higher signal-to-noise ratio
setting, NOT2, which is designed for piecewise-quadratic signal, is able to estimate the
number of change-points q correctly most of the time. However, since NOT2 is over-
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parameterised in this setting of Scenario (S3), it tends to perform slightly worse than
NOT1 in terms of both the MSE for the estimated signal, and the accuracy of the estimated
locations of the change-points. Finally, under the lower signal-to-noise ratio setting, NOT2

tends to underestimate the number of change-points, thanks to the bias-variance tradeoff
in the sSIC. Nevertheless, as is illustrated in Figures 9f, the estimated ft is quite close to
the truth in terms of the `2 distance. These findings suggest that NOT could still provide
valuable insights in certain misspecified circumstances.
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Fig. 9. Typical realisation of the estimates produced by different NOTs, with data generated from
(M8) smile. Figure 9a– 9f: data series Yt (thin grey), true signal ft (dashed black), f̂t being the
LS estimate of ft with the change-points estimated by NOT (thick red). Higher signal-to-noise
ratio setting (with N (0, 1) errors) in Figures 9a, 9c and 9e; lower signal-to-noise ratio setting (with
N (0, 2) errors) in Figures 9b, 9d and 9f. Here NOT0, NOT1 and NOT2 denote estimates from NOT
with sSIC using contrast functions constructed from Scenarios (S1), (S3) and (S5), respectively.

In the same example, we also demonstrate that one could empirically select the degree
of the polynomial for the NOT’s contrast function via sSIC. Denote the sSIC scores cor-
responding to the estimates from NOT0, NOT1 and NOT2 by sSIC(NOT0), sSIC(NOT1)
and sSIC(NOT2) respectively. We propose to pick the estimator produced by NOTi∗ with

i∗ = argmini∈{0,1,2}sSIC(NOTi).

As shown in Table 9, empirical results suggest that we are able to select the correct order
of the polynomial for our NOT approach using the sSIC (with α = 1), especially when the
signal-to-noise ratio is high.
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Table 9. Distribution of q̂−q obtained by NOT0,NOT1,NOT2 for data generated according
to (3) with the signal (M8) and the noise εt

i.i.d.∼ N (0, 1) and N (0, 2), the average Mean-
Square Error of the resulting estimate of the signal over 100 simulations. The number of
times each method selected by sSIC is also reported.

q̂ − q Number of times
Noise Method ≤ −3 −2 −1 0 1 2 ≥ 3 MSE selected by sSIC

NOT0 0 0 0 0 0 0 100 0.120 0
N (0, 1) NOT1 0 0 0 99 1 0 0 0.015 100

NOT2 0 4 18 78 0 0 0 0.024 0
NOT0 0 0 0 0 0 0 100 0.188 0

N (0, 2) NOT1 0 0 0 100 0 0 0 0.032 94
NOT2 57 23 14 6 0 0 0 0.078 6

H. Additional real data example: OPEC Reference Basket oil price

We perform change-point analysis on the daily Organisation of the Petroleum Exporting
Countries (OPEC) Reference Basket oil price from 1 January, 2003 to 15 July, 2016. The
data were obtained from the OPEC database through the R package Quandl (McTaggart
et al., 2016). Instead of working with the raw price series, we analyse the log-returns series
Yt = 100 log (Pt/Pt−1), where Pt denotes the daily oil price. One of the stylised facts of
the financial time series data is that the autocorrelation of assets returns are weak, while
squared returns tend to exhibit strong autocorrelation, which is the case for the oil price
time series (see Figure 10b). This phenomenon can be possibly explained by the existence
of the structural breaks in the mean and variance structure of the data series (Mikosch
and Stărică, 2004; Fryzlewicz et al., 2006). In this study, we apply NOT with the contrast
function given by (14), which is designed to detect changes in both the mean and the
volatility, as in Scenario (S4). For comparison, we also report change-points detected with
the NMCD method of Zou et al. (2014).

We apply Algorithm 2 to compute the NOT solution path and choose the model achiev-
ing the lowest SIC given by (11), setting the number of intervals drawn M = 10000 and
the maximum number of change-points qmax = 25. Computations for the solution path
and model selection are performed using the R package not (Baranowski et al., 2016).
For the NMCD procedure, we use the nmcd routine from the R package nmcdr (Zou and
Lancezhange, 2014), setting the maximum number of change-points to qmax = 25 as well.

Figure 10 illustrates the results of our analysis. The oil price time series and the
locations of the change-points identified by NOT and NMCD can be seen in Figure 10a.
Both methods discover 7 change-points, largely agreeing on their locations, in the sense
that for 6 out of 7 features NOT detects, NMCD detects a change-point nearby. However,
NMCD does not indicate any change-point around the first change-point identified by NOT
on 29 April 2003. This date could potentially be related to the end of the 2003 invasion of
Iraq, which initiated the upward trend in the oil price lasting almost ceaselessly until the
beginning of the 2008–09 financial crisis. On the other hand, NMCD indicates two change-
points in the first quarter of 2016, while NOT only finds one in that period. Table 10
lists the exact locations of the change-points detected by the two methods and the events
that coincide with some of them. Figure 10f shows the autocorrelation function for the
squared residuals obtained by subtracting the sample mean and dividing by the standard
deviations from the data in each segment. It appears that there is little autocorrelation in
the squares of the residuals, suggesting that Scenario (S4) fits the data reasonably well.
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Fig. 10. Change-point analysis on the daily OPEC Reference Basket oil price in USD from 1
January, 2003 to 15 July, 2016. Figure 10a: price series Pt (thin grey), locations of the change-
points detected with NOT (vertical dotted lines) and NMCD (vertical dashed lines). Figure 10b:
autocorrelation function of Y 2

t . Figure 10c: log-returns Yt = 100 log (Pt/Pt−1) (thin grey), the
fitted piecewise-constant mean via NOT, f̂t (thick red). Figure 10d: estimated residuals via NOT,
ε̂t = (Yt− f̂t)/σ̂t. Figure 10e: the centred log-returns |Yt− f̂t| (thin grey), fitted piecewise-constant
volatility σ̂t (thick red). Figure 10f: autocorrelation of ε̂2t . The exact locations of the change-points
detected via NOT are given in Table 10.

Table 10. Change-points detected using NOT and NMCD methods in the daily OPEC Reference
Basket oil price data from 1 January 2003 to 15 July 2016, with some of them dated.

NOT NMCD Event that coincides
29 April 2003 N/A Invasion of Iraq
1 September 2008 28 August 2008 critical stage of the subprime mortgage crisis
27 January 2009 22 January 2009 tensions in the Gaza Strip
1 October 2009 23 October 2009
12 November
2012

12 October 2012 beginning of a period of low volatility

30 September
2014

1 October 2014

5 January 2016 21 January 2016 beginning of a sell-off leading the price to 12-year
low

N/A 22 February
2016
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I. Proofs

I.1. Some useful lemmas
I.1.1. The piecewise-constant case
Lemma 1. Let g(x, y) = xy

x+y and suppose that min(x, y) > 0. Then

g(x, y) ≥ 1

2
min(x, y).

Proof. Without loss of generality, assume that x ≥ y. Then g(x, y) ≥ xy
2x ≥ y/2 =

min(x, y)/2.

Lemma 2. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario (S1),
and τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T , such that
τj−1 ≤ s < τj < e ≤ τj+1 for some j = 1 . . . , q. Let η = min{τj − s, e − τj} and
∆f
j = |fτj+1 − fτj |. Then

Cτj(s,e] (f) = max
s<b<e

Cb(s,e] (f)

{
≥ 1√

2
η1/2∆f

j ,

≤ η1/2∆f
j .

Proof. For any s < b < e, by simple algebra, we have

Cb(s,e] (f) =


√

b−s
(e−s)(e−b)(e− τj)|fτj+1 − fτj |, b ≤ τj ;√
(τj−s)(e−τj)

e−s |fτj+1 − fτj |, b = τj ;√
e−b

(e−s)(b−s)(τj − s)|fτj+1 − fτj |, b ≥ τj .

(15)

Now Cτj(s,e] (f) = maxs<b<e Cb(s,e] (f) follows from the fact that Cb(s,e] (f) is increasing (as a

function of b) for s < b ≤ τj and decreasing for τj ≤ b < e. To prove the lower bound,
we set ηL = τj − s and ηR = e − τj and observe that ηL ≥ η and ηR ≥ η. Therefore by
Lemma 1, ηLηR

ηL+ηR
≥ η

2 . Noting that e− s = ηL + ηR we bound

Cτj(s,e] (f) =

√
(τj − s)(e− τj)

e− s
|fτj+1 − fτj |

{
≥ (η/2)1/2∆f

j ;

≤ η1/2∆f
j .

which completes the proof.

Lemma 3. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario (S1),
and τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T such that
τj−1 ≤ s ≤ τj and τj+1 ≤ e ≤ τj+2 for some j = 1 . . . , q − 1. Then

max
s<b<e

Cb(s,e] (f) ≤ (τj − s)1/2∆f
j + (e− τj+1)1/2∆f

j+1

where ∆f
j = |fτj+1 − fτj |.

Proof. Suppose that b∗ = argmaxs<b<e Cb(s,e] (f). Then

0 ≤ ‖f − 〈f ,ψb∗(s,e]〉ψ
b∗

(s,e] − 〈f ,1(s,e]〉1(s,e]‖2 = ‖f − 〈f ,1(s,e]〉1(s,e]‖2 − 〈f ,ψb
∗

(s,e]〉
2

≤ ‖f − fτj+1

√
e− s1(s,e]‖2 − 〈f ,ψb

∗

(s,e]〉
2

= (τj − s)(∆f
j)

2 + (e− τj+1)(∆f
j+1)2 −

(
max
s<b<e

Cb(s,e] (f)
)2
.
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It then follows that

max
s<b<e

Cb(s,e] (f) ≤
√

(τj − s)(∆f
j)

2 + (e− τj+1)(∆f
j+1)2 ≤ (τj − s)1/2∆f

j + (e− τj+1)1/2∆f
j+1.

Lemma 4. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario (S1).
Pick any interval (s, e] ⊂ (0, T ] such that [s + 1, e − 1] contains exactly one change-point
τj. Let ρ = |τj − b|, ∆f

j = |fτj+1 − fτj |, ηL = τj − s and ηR = e− τj. Then,

‖ψb(s,e]〈f ,ψ
b
(s,e]〉 −ψ

τj
(s,e]〈f ,ψ

τj
(s,e]〉‖

2
2 = (Cτj(s,e] (f))2 − (Cb(s,e] (f))2.

Moreover,

(a) for any τj ≤ b < e, (Cτj(s,e] (f))2 − (Cb(s,e] (f))2 = ρ ηL
ρ+ηL

(∆f
j)

2;

(b) for any s < b ≤ τj, (Cτj(s,e] (f))2 − (Cb(s,e] (f))2 = ρ ηR
ρ+ηR

(∆f
j)

2.

Proof. First, we note that since there is only one change-point in [s+1, e−1], the restriction
of f on (s, e], i.e. f |(s,e] = (0, . . . , 0, fs+1, . . . , fe, 0, . . . , 0)′ can be decomposed into

f |(s,e] = ψ
τj
(s,e]〈f ,ψ

τj
(s,e]〉+ 1(s,e]〈f ,1(s,e]〉,

where we also used the fact that ψ
τj
(s,e] and 1(s,e] are orthonormal. Note that ψb(s,e] and

1(s,e] are also orthonormal, it follows that

〈f ,ψb(s,e]〉 = 〈f |(s,e],ψb(s,e]〉 =
〈
ψ
τj
(s,e]〈f ,ψ

τj
(s,e]〉+1(s,e]〈f ,1(s,e]〉,ψb(s,e]

〉
= 〈ψτj(s,e],ψ

b
(s,e]〉〈f ,ψ

τj
(s,e]〉.

Therefore,

〈f ,ψb(s,e]〉
2 = 〈f ,ψb(s,e]〉〈ψ

τj
(s,e],ψ

b
(s,e]〉〈f ,ψ

τj
(s,e]〉,

and thus

〈f ,ψτj(s,e]〉
2 − 〈f ,ψb(s,e]〉

2 = 〈f ,ψτj(s,e]〉
2 + 〈f ,ψb(s,e]〉

2 − 2〈f ,ψb(s,e]〉〈ψ
τj
(s,e],ψ

b
(s,e]〉〈f ,ψ

τj
(s,e]〉

= ‖ψb(s,e]〈f ,ψ
b
(s,e]〉 −ψ

τj
(s,e]〈f ,ψ

τj
(s,e]〉‖

2
2.

Here in the above final step, we used the fact that ‖ψτj(s,e]‖
2
2 = ‖ψb(s,e]‖22 = 1.

Second, for the sake of brevity, we only prove the case of b ≥ τj . Let l = e−s, x = b−s,
and thus ρ = x− ηL. Using (15), we get

(Cτj(s,e] (f))2 − (Cb(s,e] (f))2 =

(
ηL(l − ηL)

l
−
η2
L(l − x)

lx

)
|fτj+1 − fτj |2

=
ηL(x− ηL)

x
(∆f

j)
2 =

(
ρηL
ηL + ρ

)
(∆f

j)
2.
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I.1.2. The piecewise-linear continuous case
Lemma 5. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2), and
τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T , such that
τj−1 ≤ s + 1 < τj < e ≤ τj+1 for some j = 1 . . . , q. Let η = min{τj − s − 1, e − τj} and
∆f
j = |2fτj − fτj−1 − fτj+1|. Then

Cτj(s,e] (f) = max
s+1<b<e

Cb(s,e] (f)

{
≥ 1√

24
η3/2∆f

j ,

≤ 1√
3
(η + 1)3/2∆f

j .

Proof. First, we show that Cb(s,e] (f) is maximised at b = τj . Using the notation from the

proof of Lemma 4, we have that

f |(s,e] = φ
τj
(s,e]〈f ,φ

τj
(s,e]〉+ γ(s,e]〈f ,1(s,e]〉+ 1(s,e]〈f ,1(s,e]〉.

Therefore, it follows that

‖f |(s,e]‖22 = 〈f ,φτj(s,e]〉
2 + 〈f ,γ(s,e]〉2 + 〈f ,1(s,e]〉2. (16)

For any b ∈ {s + 2, . . . , τj − 1, τj + 1, . . . , e − 1}, it is clear that f |(s,e] does not lie in the

span of φb(s,e], γ(s,e] and 1(s,e]. Consequently, by projecting f |(s,e] onto these three bases,
we have that

‖f |(s,e]‖2 > 〈f ,φb(s,e]〉
2 + 〈f ,γ(s,e]〉2 + 〈f ,1(s,e]〉2. (17)

Comparing (17) with (16) entails that |〈f ,φτj(s,e]〉
∣∣ > ∣∣〈f ,φb(s,e]〉∣∣ for any b 6= τj .

Secondly, set ηL = τj − s− 1 and ηR = e− τj . After some calculation, we get that

Cτj(s,e] (f) =

{
ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}
∆f
j ,

where l = e − s. Also, we have ηL ≥ η, ηR ≥ η and l = ηL + ηR + 1. To prove the lower
bound, we observe that{

ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}
≥
{

1

6

(ηL + 1)ηR
l

ηL(ηR + 1)

l

2 min(ηL, ηR){max(ηL, ηR) + 1}
l

}
≥
{
η3

24

}
,

where the last inequality is obtained applying Lemma 1 three times. For the upper bound,
we notice that 2ηLηR + ηL + ηR + 2 ≤ 2(ηL + 1)(ηR + 1) which implies{
ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}
≤
{

1

3

ηLηR(ηL + 1)2(ηR + 1)2

(l − 1)l2

}
≤
{

(η + 1)3

3

}
.

Lemma 6. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2), and
τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T such that τj−1 ≤
s+ 1 ≤ τj and τj+1 ≤ e ≤ τj+2 for some j = 1 . . . , q − 1. Then,

max
s+1<b<e

Cb(s,e] (f) ≤ 1√
3

(τj − s)3/2∆f
j +

1√
3

(e− τj+1 + 1)3/2∆f
j+1
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and

max
s+1<b<e

Cb(s,e] (f) ≤ (τj − s− 1)3/2∆f
j + (e− τj+1)3/2∆f

j+1,

where ∆f
j = |2fτj − fτj−1 − fτj+1|.

Proof. Suppose that b∗ = argmaxs≤b≤e Cb(s,e] (f). Then

0 ≤ ‖f |(s,e] − 〈f ,φb
∗

(s,e]〉φ
b∗

(s,e] − 〈f ,γ(s,e]〉γ(s,e] − 〈f ,1(s,e]〉1(s,e]‖2

= ‖f |(s,e] − 〈f ,γ(s,e]〉γ(s,e] − 〈f ,1(s,e]〉1(s,e]‖2 − 〈f ,φb
∗

(s,e]〉
2

=
1

6
(τj − s− 1)(τj − s)(2τj − 2s− 1)(∆f

j)
2 +

1

6
(e− τj+1)(e− τj+1 + 1)(2e− 2τj+1 + 1)(∆f

j+1)2

−
(

max
s+1<b<e

Cb(s,e] (f)
)2
.

It then follows that

max
s+1<b<e

Cb(s,e] (f) ≤
{

(τj − s)3(∆f
j)

2/3 + (e− τj+1 + 1)3(∆f
j+1)2/3

}1/2

≤ 1√
3

(τj − s)3/2∆f
j +

1√
3

(e− τj+1 + 1)3/2∆f
j+1.

For the second claim, we note that (τj − s)(2τj − 2s− 1) ≤ 6(τj − s− 1)2 and (e− τj+1 +
1)(2e− 2τj+1 + 1) ≤ 6(e− τj+1)2, so

max
s+1<b<e

Cb(s,e] (f) ≤
{

(τj − s− 1)3(∆f
j)

2 + (e− τj+1)3(∆f
j+1)2

}1/2

≤ (τj − s− 1)3/2∆f
j + (e− τj+1)3/2∆f

j+1.

Lemma 7. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2), and
τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T , such that
τj−1 ≤ s + 1 < τj < e ≤ τj+1 for some j = 1 . . . , q. Let ρ = |τj − b|, ηL = τj − s − 1,
ηR = e− τj and ∆f

j = |2fτj − fτj−1 − fτj+1|. Then,

‖φb(s,e]〈f ,φ
b
(s,e]〉 − φ

τj
(s,e]〈f ,φ

τj
(s,e]〉‖

2
2 = (Cτj(s,e] (f))2 − (Cb(s,e] (f))2. (18)

Moreover,

(a) for any τj ≤ b < e, (Cτj(s,e] (f))2 − (Cb(s,e] (f))2 ≥ 1
63 min(ρ, ηL)3(∆f

j)
2;

(b) for any s+ 1 < b ≤ τj, (Cτj(s,e] (f))2 − (Cb(s,e] (f))2 ≥ 1
63 min(ρ, ηR)3(∆f

j)
2.

Proof. The proof of (18) is very similar to that shown in Lemma 4, so is omitted for brevity.
In the following, we only deal with the case of τj ≤ b < e. Note that

‖φb(s,e]〈f ,φ
b
(s,e]〉 − φ

τj
(s,e]〈f ,φ

τj
(s,e]〉‖

2
2

=
∥∥φb(s,e]〈f ,φb(s,e]〉+ γ(s,e]〈f ,γ(s,e]〉+ 1(s,e]〈f ,1(s,e]〉 − f |(s,e]

∥∥2

2

≥ min
a0,a1∈R

∥∥f |(s,b] − a01(s,b] − a1γ(s,b]

∥∥2

2
+ min
a0,a1∈R

∥∥f |(b,e] − a01(b,e] − a1γ(b,e]

∥∥2

2

≥ min
a0,a1∈R

∥∥f |(s,b] − a01(s,b] − a1γ(s,b]

∥∥2

2
.
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Recalling the definitions of α
τj
(s,b] and β

τj
(s,b] in (7), and writing d = b − s. After some cal-

culations (similar to what has already been carried out in deriving φb(s,e], as demonstrated

in Section B), we obtain that

min
a0,a1∈R

∥∥f |(s,b] − a01(s,b] − a1γ(s,b]

∥∥2

2

=
[
(3ηL + ρ+ 2)α

τj
(s,b]β

τj
(s,b] + (3ρ+ ηL + 2)α

τj
(s,b](β

τj
(s,b])

−1
]−2

(∆f
j)

2

=
1

6
(∆f

j)
2d(d2 − 1)

[
1 + ρηL + (ρ+ 1)(ηL + 1)

]
×[

(d+ 2ηL + 1)2 ρ(ρ+ 1)

ηL(ηL + 1)
+ (d+ 2ρ+ 1)2 ηL(ηL + 1)

ρ(ρ+ 1)
+ 2(d+ 2ηL + 1)(d+ 2ρ+ 1)

]−1

.

Notice that the above equation is symmetric with respect to ηL and ρ. Without loss of
generality, here we proceed by assuming that ηL ≥ ρ. Since (d+2ηL+1)+(d+2ρ+1) = 4d,
it follows that (d+ 2ηL + 1)(d+ 2ρ+ 1) ≤ 4d2. Therefore,

min
a0,a1∈R

∥∥f |(s,b] − a01(s,b] − a1γ(s,b]

∥∥2

2

≥ 1

6
(∆f

j)
2d(d2 − 1)[2(ηL + 1)ρ]

[
(3d)2 + (2d)2 (ηL + 1)2

ρ2
+ 8d2

]−1

≥ 1

6
(∆f

j)
2d2(d− 1)[2(ηL + 1)ρ]

[
21d2 (ηL + 1)2

ρ2

]−1

≥ 1

63
ρ3(∆f

j)
2,

where in the last step, we used the fact that d−1
ηL+1 ≥ 1 for ρ ≥ 1 (and note that the last

above-displayed equation also holds if ρ = 0).
Finally, we remark that the case of s+ 1 < b ≤ τj can be handled in a similar manner

by symmetry.

Lemma 8. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2), and
τ1, . . . , τq are the locations of the change-points. Suppose 0 ≤ s < e ≤ T , such that
τj−1 ≤ s + 1 < τj < e ≤ τj+1 for some j = 1 . . . , q. Let ρ = |τj − b|, ηL = τj − s − 1,
ηR = e−τj and ∆f

j = |2fτj−fτj−1−fτj+1|. Then, for any b satisfying τj−min(ηL, ηR)/2 <
b < τj + min(ηL, ηR)/2, we have that

(Cτj(s,e] (f))2 − (Cb(s,e] (f))2 ≥
(∆f

j)
2

48

{
min(ηL, ηR)− 1

}
ρ2.

Proof. Here we focus on the scenario where b > τj . By Lemma 7,

(Cτj(s,e] (f))2 − (Cb(s,e] (f))2 = ‖φbs,e〈f ,φb(s,e]〉 − φ
τj
(s,e]〈f ,φ

τj
(s,e]〉‖

2
2

= min
a0,a1,a2∈R

∥∥f |(s,e] − a01(s,e] − a1γ(s,e] − a2φ
b
(s,e]

∥∥2

2

= (∆f
j)

2 min
a0,a1,a2∈R

∥∥f̃ |(s,e] − a01(s,e] − a1γ(s,e] − a2φ
b
(s,e]

∥∥2

2
,

where f̃ |(s,e] := (0, . . . , 0, 1, . . . , e − τj , 0, . . . , 0)′, in which “1” appears at the (τj + 1)-th
position. In the following, our aim is to bound the residual sum of squares resulted from
fitting f̃ |(s,e] via a piecewise-linear and continuous function with only one kink at b over
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(s, e]. Assuming that the fitted value of this vector at the b-th position is m, then, we have
that

min
a0,a1,a2∈R

∥∥f̃ |(s,e] − a01(s,e] − a1γ(s,e] − a2φ
b
(s,e]

∥∥2

2

≥
( 2m

ηL + 2ρ

)2
× 1

6

(ηL − 1

2

)(ηL + 1

2

)
ηL +

{2(ρ−m)

e− b

}2
× 1

6

(e− b− 1

2

)(e− b+ 1

2

)
(e− b).

Since b < τj+ηR/2, it follows that e−b > ηR/2, and thus e−b−1 ≥ (ηR−1)/2. Moreover,
the fact of ρ < min(ηL, ηR)/2 yields ηL + 2ρ ≤ 2ηL. Plugging these two inequalities into
the previous equation, we have that

min
a0,a1,a2∈R

∥∥f̃ |(s,e] − a01(s,e] − a1γ(s,e] − a2φ
b
(s,e]

∥∥2

2

≥ m2 ηL − 1

24
+ (ρ−m)2 ηR − 1

12
≥ 1

2
min

(ηL − 1

24
,
ηR − 1

12

)
ρ2

Consequently,

(Cτj(s,e] (f))2 − (Cb(s,e] (f))2 ≥
(∆f

j)
2

48

{
min(ηL, ηR)− 1

}
ρ2.

By symmetry, the scenario of b < τj can be dealt with in a similar fashion. Finally, we
remark that the constants here are not sharp, as we will only use this lemma to establish
rate-type results later.

I.2. Proof of Theorem 1
Here we informally discuss our proof strategy, which could be generalised to other scenarios.

• Intuitively speaking, lemmas from Appendix I.1 deal with noiseless versions of the
change-point estimation problems. In order to apply these results to show the consis-
tency of estimated number of change-points, we need to control ‖Cb(s,e] (Y)−Cb(s,e] (f) ‖
for every tuple (s, e, b), which can be achieved using Bonferroni in Step One.

• Note that for any fixed left-open and right-closed interval with start-point s and end-
point e, to decide whether b1 or b2 is a more suitable change-point candidate inside this
interval, we only need to look at the value of Cb1(s,e] (Y)− Cb2(s,e] (Y). Therefore, when

establishing the convergence rate of the estimated change-point location , we control
the distance between Cb1(s,e] (Y)−Cb2(s,e] (Y) and its noiseless analogue Cb1(s,e] (f)−Cb2(s,e] (f)

(after proper normalisation) for all tuples (s, e, b1, b2) in Step Two.

• In Step Three, we show that given a properly chosen threshold and a large enough M ,
both bounds in Step One and Step Two hold, and for each change-point τj , there exists
an interval from FMT that contains only this change-point and both its start- and end-
points are sufficiently far away from other change-points. Since we are dealing with
the narrowest-over-threshold intervals, the actual intervals that our NOT algorithm
pick must have length no longer than the ones we considered in Step Three, thus
could only contain precisely one change-point.
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• So in Step Four, it suffices to investigate a single change-point detection problem,
where we can use lemmas from Appendix I.1 and the bound in Step Two to establish
the convergence rate for its location estimation.

• Finally, in Step Five, we show that after detecting all the change-points, the NOT
algorithm stops with no further detection. This is because the remaining elements
(s, e] ∈ FMT to be considered either have no change-point inside, or have one/two
change-points that are very close to its start- or/and end- points, thus their corre-
sponding maxb Cb(s,e] (Y) cannot exceed the given threshold in views of the property

of its noiseless analogue and the bound from Step One.

Now we proceed to the technical details.

Proof. We shall prove the following more specific result, which in turn implies (9).

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj |(∆f

j)
2
)
≤ C3 log T

)
≥ 1− T−1/(6

√
π)− Tδ−1

T (1− δ2
TT
−2/36)M ,

(19)

Step One.

Let ε = (ε1, . . . , εT )′ and λT =
√

8 log T . Define the set

AT =
{

max
s,b,e:0≤s<b<e≤T

|Cb(s,e] (ε) | ≤ λT
}
.

Note that for any 0 ≤ s < b < e ≤ T , Cb(s,e] (ε) follows a standard normal distribution.

Therefore, using the Bonferroni bound, we get

P (AcT ) ≤ T 3

6

2e−(
√

8 log T )2/2

√
8 log T

√
2π
≤ T−1

12
√
π
.

Moreover, because Cb(s,e] (Y)− Cb(s,e] (f) = Cb(s,e] (ε), so AT also implies that{
max

s,b,e:0≤s<b<e≤T
|Cb(s,e] (Y)− Cb(s,e] (f) | ≤ λT

}
.

We remark that though the constant in λT (i.e.
√

8) does not appear sharp (as it is rooted
in the simple Bonferroni bound), it is sufficient for our purpose of establishing consistency
and rate-type results later. We refer the readers to Dümbgen and Spokoiny (2001) and
Rufibach and Walther (2010) for possible improvement over this constant.

Step Two.

Define the set

BT =
{

max
j=1,...,q

max
τj−1≤s<τj
τj<e≤τj+1

s<b<e

∣∣∣〈ψb(s,e]〈f ,ψb(s,e]〉 −ψτj(s,e]〈f ,ψτj(s,e]〉, ε〉∣∣∣
‖ψb(s,e]〈f ,ψ

b
(s,e]〉 −ψ

τj
(s,e]〈f ,ψ

τj
(s,e]〉‖2

≤ λT
}
.
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Again, for any 0 ≤ s < b < e ≤ T ,
|〈ψb(s,e]〈f ,ψb(s,e]〉−ψ

τj
(s,e]〈f ,ψ

τj
(s,e]〉,ε〉|

‖ψb(s,e]〈f ,ψb(s,e]〉−ψ
τj
(s,e]〈f ,ψ

τj
(s,e]〉‖2

follows a standard normal

distribution, so using a similar argument, we get

P (Bc
T ) ≤ T−1

12
√
π
.

Step Three.
To fix the ideas, for j = 1, . . . , q, we define intervals

ILj = (τj − δT /3− 1, τj − δT /6− 1] (20)

IRj = (τj + δT /6, τj + δT /3] (21)

Note that these intervals all contain at least one integer as long as δT > 6. This is always
true for sufficiently large T , as it follows from Conditions 1 and 2 that δT > C log T/f .

Recall that FMT is the set of M randomly drawn intervals with pairs of endpoints in
{0, . . . , T − 1} × {1, . . . , T}. Denote by (s1, e1], . . . , (sM , eM ] the elements of FMT and let

DM
T =

{
∀j = 1, . . . , q, ∃k ∈ {1, . . . ,M}, s.t. sk ∈ ILj and ek ∈ IRj

}
. (22)

We have that

P
(
(DM

T )c
)
≤

q∑
j=1

ΠM
m=1

(
1− P

(
sm × em ∈ ILj × IRj

) )
≤ q

(
1−

δ2
T

62T 2

)M
≤ T

δT

(
1−

δ2
T

36T 2

)M
.

Therefore, P
(
AT ∩BT ∩DM

T

)
≥ 1− T−1/(6

√
π)− Tδ−1

T (1− δ2
TT
−2/36)M .

In the rest of the proof, we assume that AT , BT and DM
T all hold. We give the constants

as follows:

C =
√

6
(
2
√
C3 + 4

√
2
)

+ 1, C1 = 2
√
C3 + 2

√
2, C2 =

1√
6
− 2
√

2

C
, C3 = 32

√
2 + 48.

These constants could be further refined by applying the Bonferroni bound more carefully.
See also our remark at the end of Step One. But since our main aim is to establish the
rate, we chose not to pursue this direction further. In addition, here we set C in such a

way that CC2 > C1 (as well as C2 > 0). This means that given δ
1/2
T f

T
≥ C
√

log T , one

have that C2δ
1/2
T f

T
> C1

√
log T , i.e. we can select ζT ∈ [C1

√
log T ,C2δ

1/2
T f

T
).

Step Four.
We focus on a generic interval (s, e] such that

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. (sk, ek] ⊂ (s, e] and sk × ek ∈ ILj × IRj (23)

Fix such an interval (s, e] and let j ∈ {1, . . . , q} and k ∈ {1, . . . ,M} be such that (23) is
satisfied. Let b∗k = argmaxsk<b<ek C

b
(sk,ek] (Y). By construction, (sk, ek] satisfies τj − sk >
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δT /6 and ek − τj > δT /6. Denote by

M(s,e] =
{
m : (sm, em] ∈ FMT , (sm, em] ⊂ (s, e]

}
;

O(s,e] = {m ∈M(s,e] : max
sm<b<em

Cb(sm,em] (Y) > ζT }

Our first aim is to show that O(s,e] is non-empty. This follows from Lemma 2 and the
calculation below.

Cb
∗
k

(sk,ek] (Y) ≥ Cτj(sk,ek] (Y)

≥ Cb
∗
k

(sk,ek] (f)− λT ≥
(
δT
6

)1/2

|fτj+1 − fτj | − λT ≥
(
δT
6

)1/2

f
T
− λT

=

(
1√
6
− λT

δ
1/2
T f

T

)
δ

1/2
T f

T
≥
(

1√
6
− 2
√

2

C

)
δ

1/2
T f

T
= C2δ

1/2
T f

T
> ζT .

Let m∗ = argminm∈Os,e(em − sm) and b∗ = argmaxsm∗<b<em∗ C
b
(sm∗ ,em∗ ] (Y). Observe

that (sm∗ , em∗) must contain at least one change-point. Indeed, if that was not the case,
we would have Cb(sm∗ ,em∗ ] (f) = 0 and

Cb∗(sm∗ ,em∗ ] (Y) =
∣∣∣Cb∗(sm∗ ,em∗ ] (Y)− Cb∗(sm∗ ,em∗ ] (f)

∣∣∣ ≤ λT ≤ ζT
which contradicts Cb∗(sm∗ ,em∗ ] (Y) > ζT . On the other hand, [sm∗ , em∗) cannot contain more

than one change-points, because em∗ − sm∗ ≤ ek − sk ≤ δT , as we picked the narrowest-
over-threshold interval.

Without loss of generality, assume τj ∈ (sm∗ , em∗). Denote by ηL = τj − sm∗ , ηR =

em∗ − τj and ηT = (C1 −
√

8)2(∆f
j)
−2 log T , where ∆f

j = |fτj+1 − fτj |. We claim that
min(ηL, ηR) > ηT , because otherwise min(ηL, ηR) ≤ ηT and Lemma 2 would result in

Cb∗(sm∗ ,em∗ ] (Y) ≤ Cb∗(sm∗ ,em∗ ] (f) + λT ≤ Cτj(sm∗ ,em∗ ] (f) + λT ≤ η1/2
T ∆f

j + λT

= (C1 −
√

8 +
√

8)
√

log T = C1

√
log T ≤ ζT ,

which would contradict Cb∗(sm∗ ,em∗ ] (Y) > ζT .

We are now in the position to prove |b∗ − τj | ≤ C3 log T/(∆f
j)

2. The arguments we use
here are simpler and slightly more general than Lemma A.3 of Fryzlewicz (2014). Our aim
is to find εT such that for any b ∈ {sm∗ + 1, . . . , em∗ −1} with |b− τj | > εT , we always have

(Cτj(sm∗ ,em∗ ] (Y))2 − (Cb(sm∗ ,em∗ ] (Y))2 > 0. (24)

This would then imply that |b∗− τj | ≤ εT . By expansion and rearranging the terms (using
the fact that ft = Yt + εt), we see that (24) is equivalent to

〈f ,ψτj(sm∗ ,em∗ ]〉
2 − 〈f ,ψb(sm∗ ,em∗ ]〉

2 >〈ε,ψb(sm∗ ,em∗ ]〉
2 − 〈ε,ψτj(sm∗ ,em∗ ]〉

2

+ 2
〈
ε,ψb(sm∗ ,em∗ ]〈f ,ψ

b
(sm∗ ,em∗ ]〉 −ψ

τj
(sm∗ ,em∗ ]〈f ,ψ

τj
(sm∗ ,em∗ ]〉

〉
.

(25)
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In the following, we assume that b ≥ τj . The case that b < τj can be handled in a similar
fashion. By Lemma 4, we have

〈f ,ψτj(sm∗ ,em∗ ]〉
2 − 〈f ,ψb(sm∗ ,em∗ ]〉

2 = (Cτj(sm∗ ,em∗ ] (f))2 − (Cb(sm∗ ,em∗ ] (f))2 =
|b− τj |ηL
|b− τj |+ ηL

(∆f
j)

2 := κ.

In addition, since AT and BT hold, we have that

〈ε,ψb(sm∗ ,em∗ ]〉
2 − 〈ε,ψτj(sm∗ ,em∗ ]〉

2 ≤ λ2
T ,

2
〈
ε,ψb(sm∗ ,em∗ ]〈f ,ψ

b
(sm∗ ,em∗ ]〉 −ψ

τj
(sm∗ ,em∗ ]〈f ,ψ

τj
(sm∗ ,em∗ ]〉

〉
≤ 2‖ψb(sm∗ ,em∗ ]〈f ,ψ

b
(sm∗ ,em∗ ]〉 −ψ

τj
(sm∗ ,em∗ ]〈f ,ψ

τj
(sm∗ ,em∗ ]〉‖2λT = 2κ1/2λT ,

where the last equality also comes from Lemma 4. Consequently, (25) can be deducted
from the stronger inequality κ − 2λTκ

1/2 − λ2
T > 0. This quadratic inequality is implied

by κ > (
√

2 + 1)2λ2
T , and could be restricted further to

2|b− τj |ηL
|b− τj |+ ηL

≥ min(|b− τj |, ηL) > (32
√

2 + 48)(∆f
j)
−2 log T = C3(∆f

j)
−2 log T. (26)

But since

ηL ≥ ηT = (C1 −
√

8)2(∆f
j)
−2 log T = (2

√
C3)2(∆f

j)
−2 log T > C3(∆f

j)
−2 log T,

we see that the inequality in (26) is equivalent to |b − τj | > C3(∆f
j)
−2 log T . To sum up,

|b∗ − τj |(∆f
j)

2 > C3 log T would result in (24), a contradiction. So we have proved that

|b∗ − τj |(∆f
j)

2 ≤ C3 log T .

Step Five.

Using the arguments given above which are valid on the event AT ∩ BT ∩ DM
T , we can

now proceed with the proof of the theorem as follows. At the start of Algorithm 1 we
have s = 0 and e = T and, provided that q ≥ 1, condition (23) is satisfied. Therefore the
algorithm detects a change-point b∗ in that interval such that |b∗ − τj | ≤ C3 log T (∆f

j)
−2

for some j. By construction, we also have that |b∗ − τj | < 2/3δT . This in turn implies
that for all l = 1, . . . , q such that τl ∈ (s, e) and l 6= j we have either ILl , IRl ⊂ (s, b∗] or
ILl , IRl ⊂ (b∗, e]. Therefore (23) is satisfied within each segment containing at least one
change-point. Note that before all q change-points are detected, each change-point will not
be detected twice. To see this, we suppose that τj has already been detected by b∗, then for
all intervals (sk, ek] ⊂ (τj −C3 log T (∆f

j)
−2, τj + 2/3δT ]∪ (τj − 2/3δT , τj +C3 log T (∆f

j)
−2],

Lemma 2, together with the event AT , guarantees that

max
sk<b<ek

Cb(sk,ek] (Y) ≤ max
s<b<e

Cb(sk,ek] (f) + λT ≤
√
C3 log T (∆f

j)
−2∆f

j + λT ≤ C1

√
log T ≤ ζT .

Once all the change-points are detected, we then only need to consider (sk, ek] such that

(sk, ek] ⊂ (τj − C3 log T (∆f
j)
−2, τj+1 + C3 log T (∆f

j+1)−2]
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for j = 0, . . . , q, where we set ∆f
0 = ∆f

q+1 =∞ for notational convenience. It follows from
Lemma 3 (within the event AT ) that

max
sk<b<ek

Cb(sk,ek] (Y) ≤ max
sk<b<ek

Cb(sk,ek] (f) + λT

≤
√
C3 log T (∆f

j)
−2∆f

j +
√
C3 log T (∆f

j+1)−2∆f
j+1 + λT

< (2
√
C3 +

√
8)
√

log T = C1

√
log T ≤ ζT .

Hence the algorithm terminates with no further change-point detection.

I.3. Proof of Theorem 2
Proof. The proof proceeds in analogy to the proof of Theorem 1. In five steps we shall
establish the following result,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj |(∆f

j)
2/3
)
≤ C3(log T )1/3

)
≥ 1− T−1/(6

√
π)− Tδ−1

T (1− δ2
TT
−2/36)M ,

(27)

which in turn implies (10).

Step One and Step Two
We define the following two events

AT =
{

max
s,b,e:1≤s+1<b<e≤T

|Cb(s,e] (ε) | ≤ λT
}
,

BT =
{

max
j=1,...,q

max
τj−1≤s+1<τj
τj<e≤τj+1

s+1<b<e

∣∣∣〈φb(s,e]〈f ,φb(s,e]〉 − φτj(s,e]〈f ,φτj(s,e]〉, ε〉∣∣∣
‖φb(s,e]〈f ,φ

b
(s,e]〉 − φ

τj
(s,e]〈f ,φ

τj
(s,e]〉‖2

≤ λT
}
,

where λT =
√

8 log T . Arguments as those used in Step One and Step Two of the proof of
Theorem 1 show that P (AcT ) ≤ T−1

12
√
π

and P (Bc
T ) ≤ T−1

12
√
π

.

Step Three
Here ILj , ILj and DM

T are as defined in the proof of Theorem 1. In the rest of the proof, we

assume that AT , BT and DM
T all hold, where the last event is given by (22). Exactly as in

the proof of Theorem 9, we show that P
(
AT ∩BT ∩DM

T

)
≥ 1 − T−1/(6

√
π) − Tδ−1

T (1 −
δ2
TT
−2/36)M .

We give the constants as follows:

C = 72
(

4
√

2+2C
3/2
3

)
+1, C1 = 2C

3/2
3 +2

√
2, C2 =

1

72
−2
√

2

C
, C3 = 2

3
√

7
(

3
(

1 +
√

2
))2/3

.

Here we set C in such a way that CC2 > C1 (which also implies that C2 > 0). Consequently,

given δ
3/2
T f

T
≥ C
√

log T it is possible to select ζT ∈
[
C1
√

log T ,C2δ
3/2
T f

T

)
.

Again, these constants could be further refined. But since our main aim is to establish
the rate, we chose not to pursue this direction here.
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Step Four
Consider a generic interval (s, e] satisfying

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. (sk, ek] ⊂ (s, e] and sk × ek ∈ ILj × IRj (28)

and define events

M(s,e] =
{
m : (sm, em] ∈ FMT , (sm, em] ⊂ (s, e]

}
,

O(s,e] = {m ∈M(s,e] : max
sm+1<b<em

Cb(sm,em] (Y) > ζT }.

Let b∗k = argmaxsk+1<b<ek C
b
(sk,ek] (Y). We have

Cb
∗
k

(sk,ek] (Y) ≥ Cτj(sk,ek] (Y)

≥ Cb
∗
k

(sk,ek] (f)− λT ≥
1√
24

(δT /6)3/2 ∆f
j − λT ≥

1

72
δ

3/2
T f

T
− λT

=

(
1

72
− λT

δ
3/2
T f

T

)
δ

3/2
T f

T
≥
(

1

72
− 2
√

2

C

)
δ

3/2
T f

T
= C2δ

3/2
T f

T
> ζT ,

where the third inequality above follows from Lemma 5, therefore Os,e is non-empty.
Let m∗ = argminm∈O(s,e]

(em−sm) and b∗ = argmaxsm∗+1<b<em∗ C
b
(sm∗ ,em∗ ] (Y). Arguing

exactly as in Step Four in the proof of Theorem 1, we show that (sm∗ + 1, em∗) must
contain exactly one change-point. Further, without loss of generality, assume that τj ∈
(sm∗ + 1, em∗). Let ηL = τj − sm∗ − 1, ηR = em∗ − τj and

ηT =
(√

3(C1 −
√

8)
√

log T (∆f
j)
−1)
)2/3

− 1.

We observe that min(ηL, ηR) > ηT , as otherwise min(ηL, ηR) ≤ ηT and Lemma 5 would
imply

Cb∗(sm∗ ,em∗ ] (Y) ≤ Cb∗(sm∗ ,em∗ ] (f) + λT ≤ Cτj(sm∗ ,em∗ ] (f) + λT ≤
1√
3

(ηT + 1)3/2∆f
j + λT

= (C1 −
√

8 +
√

8)
√

log T = C1

√
log T ≤ ζT ,

contradicting Cb∗(sm∗ ,em∗ ] (Y) > ζT .

We are now in the position to prove that |b∗ − τj | ≤ C3(∆f
j)
−2/3(log T )1/3 := εT . Let

b ∈ {sm∗ + 2, . . . , em∗ − 1}. Our aim is to claim that when |b− τj | > εT ,

(Cτj(sm∗ ,em∗ ] (Y))2 − (Cb(sm∗ ,em∗ ] (Y))2 > 0. (29)

Since inequality (29) does not hold for b = b∗, proving this claim consequently demonstrates
that |b∗ − τj | ≤ εT .

Without loss of generality, we consider the case of b > τj . Using arguments as those in

Step Four of the proof of Theorem 1 we can show that (29) is implied by κ > (
√

2 + 1)2λ2
T ,

where κ = (Cτj(sm∗ ,em∗ ] (f))2− (Cb(sm∗ ,em∗ ] (f))2. By Lemma 7, κ > (
√

2 + 1)2λ2
T is implied by

min (|b− τj |, ηL) >
(

63(∆f
j)
−2 · 8(

√
2 + 1)2 log T

)1/3
= C3(∆f

j)
−2/3(log T )1/3
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However, for sufficiently large T ,

ηL > ηT = (
√

3(C1 −
√

8))2/3(∆f
j)
−2/3(log T )1/3 − 1 > (C1 −

√
8)2/3(∆f

j)
−2/3(log T )1/3

> (C
3/2
3 +

√
8−
√

8)2/3(∆f
j)
−2/3(log T )1/3 = C3(∆f

j)
−2/3(log T )1/3 = εT ,

hence |b− τj | > εT implies (29), so it must hold that |b∗ − τj | ≤ εT .

Step Five
Using the arguments given above which are valid on the event AT ∩BT ∩DM

T , we can now
proceed with the proof of the theorem as follows. At the start of Algorithm 1 we have s = 0
and e = T and, provided that q ≥ 1, condition (23) is satisfied. Therefore the algorithm
detects a change-point b∗ in that interval such that |b∗ − τj | ≤ C3(∆f

j)
−2/3(log T )1/3 for

some j. By construction, we also have that |b∗ − τj | < 2/3δT . This in turn implies that
for all l = 1, . . . , q such that τl ∈ (s + 1, e) and l 6= j we have either ILl , IRl ⊂ (s, b∗] or
ILl , IRl ⊂ (b∗, e]. Therefore (23) is satisfied within each segment containing at least one
change-point. Note that before all q change-points are detected, each change-point will not
be detected twice. To see this, we suppose that τj has already been detected by b∗, then
for all intervals (sk, ek] ⊂ (τj − εT , τj + 2/3δT ] ∪ (τj − 2/3δT , τj + εT ], Lemma 5, together
with the event AT , guarantees that for sufficiently large T

max
sk+1<b<ek

Cb(sk,ek] (Y) ≤ max
s+1<b<e

Cb(sk,ek] (f) +
√

8 log T

≤ 1√
3

(C3(∆f
j)
−2/3(log T )1/3 + 1)3/2∆f

j +
√

8 log T

≤ (2C
3/2
3 +

√
8)
√

log T = C1

√
log T ≤ ζT

Once all the change-points are detected, we then only need to consider (sk, ek] such that

(sk, ek] ⊂ (τj − C3

(
∆f
j)
−2/3(log T )1/3, τj+1 + C3(∆f

j+1)−2/3(log T )1/3
]

for j = 0, . . . , q, where we set ∆f
0 = ∆f

q+1 =∞ for notational convenience. It follows from
Lemma 6 (within the event AT ) that

max
sk+1<b<ek

Cb(sk,ek] (Y) ≤ max
sk+1<b<ek

Cb(sk,ek] (f) +
√

8 log T

≤ (C3(∆f
j)
−2/3(log T )1/3)3/2∆f

j + (C3(∆f
j+1)−2/3(log T )1/3)3/2∆f

j+1 +
√

8 log T

= (2C
3/2
3 +

√
8)
√

log T ≤ C1

√
log T ≤ ζT .

Hence the algorithm terminates and no further change-points will be detected.

I.4. Proof of Theorem 3
Proof. Recall that {εt}Tt=1 are i.i.d. N(0, σ2

0) with σ0 = 1. For any candidate T (ζ(k)) on
the NOT solution path, the sSIC criterion function in (S1) can be written as

T σ̂2
k + (2q̂k + 1) logα(T ) + constant

where σ̂2
k is the estimated variance of the noise (i.e. the residual sum of squares divided by

T ) based on T (ζ(k)), and q̂k is the estimated number of change-points.
We now divide our proof into three parts.
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Part I. About a particular model candidate on the NOT solution path

By Theorem 1, we know that with arbitrarily high probability for sufficiently large T ,
there exists k∗ such that T (ζ(k∗)) on the NOT solution path is a “good” candidate with
τ̂1, . . . , τ̂q̂k∗ ∈ T (ζ(k∗)) satisfying q̂k∗ = q and maxqi=1 |τ̂i−τi| ≤ C ′ log T for some C ′ > 0. In
the rest of the proof, for presentational convenience, we condition on the event that such
k∗ does exist throughout our analysis.

In addition, we recall that 1(s,e] =
(
1(s,e](1), . . . ,1(s,e](T )

)′
with

1(s,e](t) =

{
(e− s)−1/2, t = s+ 1, . . . , e

0, otherwise
, (30)

and define the set

ET =
{

max
s,e:0≤s<e≤T

|〈1(s,e], ε〉| ≤
√

6 log T
}
.

Using an argument similar to Step One of the proof of Theorem 1, we see that P (EcT ) =
O(T−1). Since we are only interested in proving a certain type of probabilistic statement
for T →∞, here we could also assume that ET holds.

Let {f̂t}Tt=1 be the fitted values using the candidate on the solution path with τ̂1, . . . , τ̂q̂k∗ ∈
T (ζ(k∗)) , and define f̃t = fτj for t = τ̂j , . . . , τ̂j+1− 1 for every j = 0, 1, . . . q. Here for nota-

tional convenience, we suppressed the dependence of {f̂t}Tt=1 and {f̃t}Tt=1 on k∗. It is easy

to see that ft− f̃t is piecewise-constant, only non-zero for t between the true location of the
change-point τj and its estimation τ̂j , and exactly zero elsewhere. Write f̃ = (f̃1, . . . , f̃T )′.
Then

T σ̂2
k∗ =

T∑
t=1

(εt + ft − f̂t)2

≤
T∑
t=1

(εt + ft − f̃t)2 =

T∑
t=1

ε2
t + 2〈ε, f − f̃〉+ ‖f − f̃‖2

=

T∑
t=1

ε2
t + 4qC̄

√
6 log T

√
C ′ log T + q(2C̄)2C ′ log T

=

T∑
t=1

ε2
t + (4qC̄

√
6C ′ + 4qC ′C̄2) log T

where the second last step follows from ET , linearity of the inner product, and the fact
that maxqi=1 |τ̂i − τi| ≤ C ′ log T .

Part II. Estimation of the number of change-points

In this part, we prove that for NOT with the sSIC, P (q̂ = q)→ 1 as T →∞. We accomplish
this by showing separately that (i) P (q̂ > q)→ 0 and (ii) P (q̂ < q)→ 0.

First, for all k with q̂k > q and τ̂1, . . . , τ̂q̂k ∈ T (ζ(k)), we consider a “saturated oracle”
candidate model with q̂k+q change-points at τ̂1, . . . , τ̂q̂k , τ1, . . . , τq respectively. We reorder
these q̂k+q locations as 0 = τ̊0 < τ̊1 ≤ . . . ≤ τ̊q̂k+q < τ̊q̂k+q+1 = T , and denote the estimated
variance of the errors corresponding this saturated oracle candidate by σ̊2

k. Since for each
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j = 0, . . . , q̂k + q, ft is constant over {1 + τ̊j , . . . , τ̊j+1}, it then follows that

T σ̂2
k ≥ T σ̊2

k =

q̂k+q∑
j=0

τ̊j+1∑
t=1+τ̊j

{
εt −

1

τ̊j+1 − τ̊j

τ̊j+1∑
b=1+τ̊j

εb

}2

=

T∑
t=1

ε2
t −

q̂k+q∑
j=0

〈ε,11+τ̊j ,̊τj+1
〉2 ≥

T∑
t=1

ε2
t − 6(q + q̂k + 1) log T,

where the last line again follows from ET . Note that in the above, for notational conve-
nience, we have implicitly assumed that τ̂1, . . . , τ̂q̂k , τ1, . . . , τq are distinct. It is clear to see
that the same argument holds even if {τ̂1, . . . , τ̂q̂k} ∩ {τ1, . . . , τq} 6= ∅. This means that for
all k with q̂k > q,

sSIC(k)− sSIC(k∗) ≥ T (̊σ2
k − σ̂2

k∗) + 2(q̂k − q) logα(T )

≥
{ T∑
t=1

ε2
t − 6(q + q̂k + 1) log T

}
−
{ T∑
t=1

ε2
t + (4qC̄

√
6C ′ + 4qC ′C̄2) log T

}
+ 2(q̂k − q) logα(T )

= (q̂k − q){2 logα(T )− 6 log T} − (12q + 4qC̄
√

6C ′ + 4qC ′C̄2 + 6) log T

≥ {2 logα(T )− 6 log T} − (12q + 4qC̄
√

6C ′ + 4qC ′C̄2 + 6) log T > 0

for large enough T , which implies P (q̂ > q)→ 0.
Second, for all k with q̂k < q, it must be the case that one can find some j∗ ∈ {1, . . . , q}

such that the corresponding f̂t is constant over
(
τj∗ − bδT /2c, τj∗ + bδT /2c

]
. Now con-

sider the “intermediate” candidate model with q̂k + 3 change-points at τ̂1, . . . , τ̂q̂k , τj∗ −
bδT /2c, τj∗ , τj∗ + bδT /2c, and denote the corresponding estimated variance of errors by σ̃2

k.
Without loss of generality, assume that fτj∗+1 > fτj∗ . Then,

T σ̂2
k − T σ̃2

k ≥
τj∗∑

t=τj∗−bδT /2c+1

{
εt −

∆f
j∗

2
− 1

2bδT /2c

τj∗+bδT /2c∑
b=τj∗−bδT /2c+1

εb

}2

+

τj∗+bδT /2c∑
t=τj∗+1

{
εt +

∆f
j∗

2
− 1

2bδT /2c

τj∗+bδT /2c∑
b=τj∗−bδT /2c+1

εb

}2

−
τj∗∑

t=τj∗−bδT /2c+1

ε2
t −

τj∗+bδT /2c∑
t=τj∗+1

ε2
t

= 2(∆f
j∗/2)2bδT /2c −

〈
ε,1(

τj∗−bδT /2c,τj∗+bδT /2c
]〉2

−∆f
j∗

√
bδT /2c

{〈
ε,1(

τj∗−bδT /2c,τj∗
]〉− 〈ε,1(

τj∗ ,τj∗+bδT /2c
]〉}

≥ 1

2

(
∆f
j∗

√
bδT /2c − 2

√
6 log T

)2 − 12 log T − 6 log T

In the mean time, by adding q − 1 more change-points, τ1, . . . , τj∗−1, τj∗+1, . . . , τq, to the
intermediate candidate model, we can show that using the same argument as in the first
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half of Part II that

T σ̃2
k ≥

T∑
t=1

ε2
t − 6(q + q̂k + 3) log T.

Since δT ≥ C1(log T )α
′

with α′ > 1, ∆f
j∗

√
bδT /2c ≥ C2

√
bδT /2c ≥ 2

√
6 log T for large

enough T . Consequently, combining the previous two displayed equations lead to

T σ̂2
k ≥

T∑
t=1

ε2
t − 6(q + q̂k + 6) log T +

1

2

(
C2

√
bδT /2c − 2

√
6 log T

)2
for large enought T . This means that for all k with q̂k < q,

sSIC(k)− sSIC(k∗) = T (σ̂2
k − σ̂2

k∗) + 2(q̂k − q) logα(T )

≥ 1

2

(
C2

√
bδT /2c − 2

√
6 log T

)2
− (4qC̄

√
6C ′ + 4qC ′C̄2 + 6q + 6q̂k + 36) log T − 2q logα(T )

> 0

for sufficiently large T , where we again used that fact that δT ≥ C1(log T )α
′

with α′ > α >

1, so 1
2

(
C2

√
bδT /2c−2

√
6 log T

)2
is at least of order (log T )α

′
. This implies P (q̂ < q)→ 0.

In conclusion, we have established P (q̂ = q)→ 1.

Part III. Estimation of the change-point locations

In view of the conclusion of Part II, in the rest of the proof we could assume that ET holds

and q̂ = q. Suppose that the model picked via NOT with the sSIC is τ̂1, . . . , τ̂q ∈ T (ζ(k̂)).
Furthermore, let

j∗ = argmaxj=1,...,q min
i=1,...,q

|τ̂i − τj | and C :=
min

(
bδT /2c,mini=1,...,q |τ̂i − τj∗ |

)
log T

.

Our aim is to show that C is finite (more precisely, has an upper bound independent of
T ). Now consider a “near-saturated oracle” candidate model with 2q+ 1 change-points at

{τ̂1, . . . , τ̂q, τ1, . . . , τj∗−1, τj∗+1, . . . , τ̂q, τj∗ − C log T, τj∗ + C log T}

with the corresponding estimated variance of the errors denoted as σ̇2
k̂
. So here instead of

adding all the true change-points to the set of estimated change-points as before (which
generates the so-called “saturated oracle”), we add all true change-points apart from τj∗ ,
and replace it by τj∗ ± C log T .

Note that by construction (i.e. via δT in the definition of C), ft is constant over(
τj∗ − C log T, τj∗

]
and

(
τj∗ , τj∗ + C log T

]
. In addition, ∆f

j∗ = |fτj∗+1 − fτj∗ | ≥ fT . Write

ε̄∗ =
1

2C log T

τj∗+C log T∑
t=τj∗−C log T+1

εt.
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Without loss of generality, assume that fτj∗+1 > fτj∗ . Now using the arguments similar
to those in Part II, we see that

T σ̂2
k̂
≥ T σ̇2

k̂
≥

τj∗−C log T∑
t=1

ε2
t +

T∑
t=τj∗+C log T+1

ε2
t − (2q)6 log T

+

τj∗∑
t=τj∗−C log T+1

(εt −∆f
j∗/2− ε̄∗)2 +

τj∗+C log T∑
t=τj∗+1

(εt + ∆f
j∗/2− ε̄∗)2

=

T∑
t=1

ε2
t − 12q log T + ∆f

j∗

( τj∗+C log T∑
t=τj∗+1

εt −
τj∗∑

t=τj∗−C log T+1

εt

)
+ (∆f

j∗/2)2(2C log T )− (2C log T )ε̄2
∗

=

T∑
t=1

ε2
t − 12q log T + ∆f

j∗

√
C log T

{
〈ε,1τj∗+1,τj∗+C log T 〉 − 〈ε,1τj∗−C log T+1,τj∗ 〉

}
+ (∆f

j∗/2)2(2C log T )− 〈ε,1τj∗−C log T+1,τj∗+C log T 〉2

≥
T∑
t=1

ε2
t − {6(2q + 1) + 2

√
6C∆f

j∗} log T + (∆f
j∗/2)2(2C log T )

However,

T σ̂2
k̂
≤ T σ̂2

k∗ ≤
T∑
t=1

ε2
t + (4qC̄

√
6C ′ + 4qC ′C̄2) log T

Combining the above two inequalities, and after some algebraic manipulations, we get

2qC̄
√

6C ′ + 2qC ′C̄2 ≥ C(∆f
j∗/2)2 − 3(2q + 1)−

√
6C∆f

j∗ ,

and thus

2qC̄
√

6C ′ + 2qC ′C̄2 + 3(2q + 1) + 6 ≥ (
√
C∆f

j∗/2−
√

6)2,

which entails

C ≤ 4
[{

2qC̄
√

6C ′ + 2qC ′C̄2 + 3(2q + 1) + 6
}1/2

+
√

6
]2
/C2

2.

Finally, we remark that since δT = minj=1,...,q+1(τj−τj−1) ≥ C1(log T )α
′
, for sufficiently

large T ,

C log T ≥ min
(
bδT /2c, max

j=1,...,q
min

i=1,...,q
|τ̂i − τj |

)
= max

j=1,...,q
|τ̂j − τj |.

Therefore, P (maxj=1,...,q |τ̂j − τj | ≤ C log T )→ 1, as required.

I.5. Proof of Theorem 4
First, we strengthen Theorem 2 in the scenario where the true signal has finitely many
kinks with spacing ∼ T .
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Lemma 9. Under the assumptions of Theorem 4, there exist constants C ′ and C̃ such that
by setting ζT = C̃

√
T and M ≥ 36C−2

1 log(C−1
1 T ), we have that

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C ′

√
T log T

)
→ 1, (31)

as T →∞.

Proof. Let C,C1, C2, C3 > 0 be the constants upon applying Theorem 2. For simplicity,
here we shall take

C̃ = C2C
3/2
1 C2/2 and C ′ =

32
√

3(
√

2 + 1)

C2

{√
3C1C̃/C̄

}1/3

First, we verify that the conditions in Theorem 2 are satisfied. Specifically, we note
that under the additional assumptions of Theorem 4, for sufficiently large T ,

(a) δ
3/2
T f

T
≥ C3/2

1 C2

√
T > C

√
log T ,

(b) ζT = C̃
√
T ∈ [C1

√
log T ,C2δ

3/2
T f

T
),

(c) M ≥ 36C−2
1 log(C−1

1 T ) ≥ 36(T/δT )2 log{(T/δT )T}.

This means that

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C3C

−2/3
2 (T 2 log T )1/3

)
→ 1.

Second, to strengthen the convergence rate of maxj=1,...,q |τ̂j − τj |, we make some minor
modifications to Step Four in the proof of Theorem 2.

We still let m∗ = argminm∈O(s,e]
(em − sm) and b∗ = argmaxsm∗+1<b<em∗ C

b
(sm∗ ,em∗ ] (Y),

where (sm∗ + 1, em∗) must contain exactly one change-point. Again, we consider τj ∈
(sm∗ + 1, em∗), and let ηL = τj − sm∗ − 1 and ηR = em∗ − τj . Note that

max
j=1,...,q

∆f
j ≤

4 maxi=1,...,T |fi|
δT

≤ 4C̄

C1

1

T

By setting ηT =
{√

3C1C̃/(8C̄)
}2/3

T − 1 (different from the proof of Theorem 2), we

observe that min(ηL, ηR) > ηT for sufficiently large T (satisfying 8 log T < C̃2T/4). It is
because otherwise min(ηL, ηR) ≤ ηT and Lemma 5 would imply that

Cb∗(sm∗ ,em∗ ] (Y) ≤ Cb∗(sm∗ ,em∗ ] (f) + λT ≤ Cτj(sm∗ ,em∗ ] (f) + λT ≤
1√
3

(ηT + 1)3/2 4C̄

C1

1

T
+ λT

=
C̃

2

√
T +

√
8 log T < C̃

√
T = ζT ,

which leads to a contradiction.
We are now in the position to prove that |b∗ − τj | ≤ C ′

√
T log T := εT . Note that in

view of Theorem 2, it suffices to only consider

b ∈
{
sm∗+2, . . . , em∗−1

}
∩
{
τj−dC3(∆f

j)
−2/3(log T )1/3e, . . . , τj+dC3(∆f

j)
−2/3(log T )1/3e

}
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Our aim is to show that given |b − τj | > εT (as well as |b − τj | ≤ C3(∆f
j)
−2/3(log T )1/3 in

view of Theorem 2),

(Cτj(sm∗ ,em∗ ] (Y))2 − (Cb(sm∗ ,em∗ ] (Y))2 > 0. (32)

Inequality (32) does not hold for b = b∗ by the definition of b∗, so proving this claim would
demonstrate that |b∗ − τj | ≤ εT .

Using arguments as those in Step Four of the proof of Theorem 1 (or Theorem 2), we can
show that (32) is implied by κ > (

√
2+1)2λ2

T , where κ = (Cτj(sm∗ ,em∗ ] (f))2−(Cb(sm∗ ,em∗ ] (f))2.

By Lemma 8, κ > (
√

2 + 1)2λ2
T is implied by

(∆f
j)

2

48

{
min(ηL, ηR)− 1

}
|b− τj |2 > (

√
2 + 1)2λ2

T , (33)

In view of the fact that

min(ηL, ηR)− 1 > ηT − 2 =
{√

3C1C̃/(8C̄)
}2/3

T − 2 >
{√

3C1C̃/(8C̄)
}2/3

T/2

for sufficiently large T , (33) is further implied by

|b− τj | >
8
√

6(
√

2 + 1)
√

log T

C2/T
{√

3C1C̃/(8C̄)
}1/3√

T/2
=

32
√

3(
√

2 + 1)

C2

{√
3C1C̃/C̄

}1/3

√
T log T = C ′

√
T log T .

In conclusion, |b − τj | > εT implies (32), leading to a contradiction. So it must hold that
|b∗ − τj | ≤ εT for large T .

Finally, since P (q̂ = q)→ 1, we have that

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C ′

√
T log T

)
→ 1,

as required.

Now we are in the position to prove Theorem 4.

Proof. The proof proceeds in analogy to the proof of Theorem 3. In the following, we
present details of the main steps.

Again, thanks to the standard Gaussianity of the noise, for any candidate T (ζ(k)) on
the NOT solution path, the sSIC criterion function in (S2) can be written as

T σ̂2
k + (2q̂k + 2) logα(T ) + constant

where σ̂2
k is the estimated variance of the noise (i.e. the residual sum of squares divided by

T ) based on T (ζ(k)), and q̂k is the estimated number of kinks.

Part I. About a particular model candidate on the NOT solution path
By Lemma 9, we know that with arbitrarily high probability for sufficiently large T ,
there exists k∗ such that T (ζ(k∗)) on the NOT solution path is a “good” candidate with
τ̂1, . . . , τ̂q̂k∗ ∈ T (ζ(k∗)) satisfying q̂k∗ = q and maxqi=1 |τ̂i−τi| ≤ C ′

√
T log T for some C ′ > 0.

In the rest of the proof, for presentational convenience, we assume the existence of such
k∗.
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Define the set

ET =
{

max
s,e:0≤s<e≤T

max
(
|〈γ(s,e], ε〉|, |〈1(s,e], ε〉|

)
≤
√

6 log T
}
.

Using the Bonferroni bound, we see that P (EcT ) = O(T−1). Again, in the following, we
could assume that ET holds.

Let {f̂t}Tt=1 be the fitted values using the candidate on the solution path with τ̂1, . . . , τ̂q̂k∗ ∈
T (ζ(k∗)) , and define f̃1 = f̂1, f̃t+1 = f̃t + (fτj+1 − fτj ) for t = τ̂j , . . . , τ̂j+1 − 1 for every
j = 0, 1, . . . q. Again, here for notational convenience, we suppressed the dependence of
{f̂t}Tt=1 and {f̃t}Tt=1 on k∗. It is easy to see that ft − f̃t is piecewise-linear and continuous,
with at most 2q kinks and

max
t=1,...,T

|ft − f̃t| ≤ qmax
j

(∆f
j)C

′√T log T ≤ 4C̄

C1T
C ′q
√
T log T =

4qC̄C ′

C1

√
log T/T .

Write f̃ = (f̃1, . . . , f̃T )′, then ‖f − f̃‖2 ≤ (4qC̄C ′/C1)2 log T . Furthermore, it is easy to
verify (under ET ) that

T σ̂2
k∗ =

T∑
t=1

(εt + ft − f̂t)2 ≤
T∑
t=1

(εt + ft − f̃t)2 =

T∑
t=1

ε2
t + 2〈ε, f − f̃〉+ ‖f − f̃‖2

≤
T∑
t=1

ε2
t +M ′ log T

for some positive constant M ′ that does not depend on T . Consequently, as T → ∞, it
follows that P

(
σ̂2
k∗ < 1 + δ/2

)
= 1 for any δ > 0.

Part II. Estimation of the number of change-points
Our aim in this part is to show that P (q̂ = q) → 1 as T → ∞. We accomplish this by
showing separately that (i) P (q̂ < q)→ 0 and (ii) P (q̂ > q)→ 0.

First, we note that it follows from Lemma 5.3 and 5.4 of Liu et al. (1997) that there
exists δ > 0 such that as T →∞,

min
k:q̂k<q

P
(
σ̂2
k > 1 + δ

)
→ 1.

This means that for all k with q̂k < q,

sSIC(k)− sSIC(k∗) = T (σ̂2
k − σ̂2

k∗) + 2(q̂k − q) logα(T ) ≥ δT/2− 2q logα(T ) > 0

for large enough T , which implies P (q̂ < q)→ 0.
Second, for all k with q̂k > q and τ̂1, . . . , τ̂q̂k ∈ T (ζ(k)), we consider a “saturated oracle”

candidate model with q̂k + q kinks at τ̂1, . . . , τ̂q̂k , τ1, . . . , τq respectively. We reorder these
q̂k + q locations as 0 = τ̊0 < τ̊1 ≤ . . . ≤ τ̊q̂k+q < τ̊q̂k+q+1 = T , and denote by σ̊2

k the
estimated variance of the errors corresponding to a piecewise-linear model with features at
these locations but without the continuity constraint (so effectively the way of estimating
this quantity under Scenario (S3)). Let ε = (ε1, . . . , εT )′,

Γ(s,e] :=
[
1(s,e],γ(s,e]

]
and H(s,e] = Γ(s,e]

(
Γ′(s,e]Γ(s,e]

)−1
Γ′(s,e]
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for 0 ≤ s < e ≤ T , where Γ(s,e] is a T ×2 matrix and H(s,e] is a T ×T matrix. Furthermore,
denote by D(s,e] a T × T diagonal matrix with 1 in the (s + 1, s + 1)-th to the (e, e)-th
entries and zero elsewhere. Here both H(s,e] and H(s,e] −D(s,e] are idempotent matrices.

Then the residual sum of squares for fitting a linear line over (̊τj , τ̊j+1] (on which ft is
linear as well) is

(f + ε)′{D(̊τj ,̊τj+1] −H(̊τj ,̊τj+1]}(f + ε) = ε′{D(̊τj ,̊τj+1] −H(̊τj ,̊τj+1]}ε.

It then follows that

T σ̂2
k ≥ T σ̊2

k =

q̂k+q∑
j=0

ε′{D(̊τj ,̊τj+1] −H(̊τj ,̊τj+1]}ε.

=

T∑
t=1

ε2
t −

q̂k+q∑
j=0

ε′H(̊τj ,̊τj+1]ε.

Note that ε′H(s,e]ε follows a χ2
2 distribution. For any Z ∼ χ2

2, P (Z > z) ≤ e−z/2. There-
fore, by defining the set

GT =
{

max
s,e:0≤s<e≤T

ε′H(s,e]ε ≤ 6 log T
}
,

we have that P (GcT ) = O(T−1) using the Bonferroni bound. Now assume that GT holds,
it follows that

T σ̂2
k ≥

T∑
t=1

ε2
t − 6(q̂k + q + 1) log T

This means that for all k with q̂k > q,

sSIC(k)− sSIC(k∗) ≥ T (̊σ2
k − σ̂2

k∗) + 2(q̂k − q) logα(T )

≥ 2(q̂k − q) logα(T )− {6(q̂k + q + 1) +M ′} log T

= 2(q̂k − q){logα(T )− 3 log T} − (12q + 6 +M ′) log T

≥ 2 logα(T )− (12q + 12 +M ′) log T > 0

for large enough T , which in turn implies P (q̂ > q)→ 0.
In conclusion, we have established that P (q̂ = q)→ 1.

Part III. Estimation of the change-point locations
In view of the conclusion of Part II, in the rest of the proof we could assume that AT ∩
BT ∩DT ∩ ET ∩GT holds and q̂ = q.

Suppose that the model picked via NOT with the sSIC is τ̂1, . . . , τ̂q ∈ T (ζ(k̂)). Com-

paring the residual sum of squares of this candidate with T (ζ(k∗)) yields that τ̂j ∈ {τj −
bδT /6c+1, . . . , τj +bδT /6c−1}. It is because otherwise one could find an interval of length
roughly δT /3 (i.e. ∼ T ) with a true kink in the middle of but with no kinks in its estimates,
leading to σ̂2 > 1 + δ for some δ > 0 (see Lemma 5.3 and 5.4 of Liu et al. (1997)), and
thus a contradiction (as the sSIC would clearly prefer T (ζ(k∗))). Likewise, since q̂ = q, it is
easy to see that τ̂j is the only estimated kink over

(
τj − dδT /3e − 2, τj + dδT /3e

]
for every

j = 1, . . . , q.



Supplementary Materials for Narrowest-Over-Threshold Detection 43

Let

j∗ = argmaxj=1,...,q |τ̂j − τj |.

Now consider a “near-saturated oracle” candidate model with 2q + 1 kinks at

{τ̂1, . . . , τ̂q, τ1, . . . , τj∗−1, τj∗+1, . . . , τ̂q, τj∗ − dδT /3e − 2, τj∗ + dδT /3e+ 1}

with the corresponding estimated variance of the errors denoted as σ̇2
k̂
. So again, instead

of adding all the true kinks to the set of estimated kinks as before (which generates the
so-called “saturated oracle”), we add all true kinks apart from τj∗ , and replace it by
τj∗ − (dδT /3e+ 2) and τj∗ + (dδT /3e+ 1).

Note that σ̇2
k̂

is no smaller than the estimated variance of the errors from a model with

the features at the same 2q+ 1 locations, but with the continuity constraint only enforced
at τ̂j∗ . More precisely, in the rest of the proof we could effectively follow a model with the
signal following Scenario (S2) over {τj∗−dδT /3e−1, . . . , τj∗+dδT /3e+1} and Scenario (S3)
elsewhere.

In addition, for any 1 ≤ s+ 1 < b < e ≤ T ,∥∥∥Y|(s,e] − 〈Y,φb(s,e]〉φ
b
(s,e] − 〈Y,γ(s,e]〉γ(s,e] − 〈Y,1(s,e]〉1(s,e]

∥∥∥2

=
∥∥∥Y|(s,e] − 〈Y,γ(s,e]〉γ(s,e] − 〈Y,1(s,e]〉1(s,e]

∥∥∥2
− 〈Y,φb(s,e]〉

2

=
∥∥∥Y|(s,e] − 〈Y,γ(s,e]〉γ(s,e] − 〈Y,1(s,e]〉1(s,e]

∥∥∥2
− (Cb(s,e] (Y))2

Applying this result on s = τj∗ −dδT /3e− 2, e = τj∗ + dδT /3e+ 1, b = τj∗ or τ̂j∗ , and using
the argument similar to that in Part II, we obtain that

T σ̂2
k̂
≥ T σ̇2

k̂
≥

τj∗−dδT /3e−2∑
t=1

ε2
t +

T∑
t=τj∗+dδT /3e+2

ε2
t − (2q)6 log T

+ (Cτj∗(s,e] (Y))2 − (C τ̂j∗(s,e] (Y))2 +
( τj∗+dδT /3e+1∑
τj∗−dδT /3e−1

ε2
t − 12 log T

)
,

where
∑τj∗+dδT /3e+1

τj∗−dδT /3e−1 ε
2
t − 12 log T is the lower-bound of the residual sum of squares for

fitting a piecewise-linear function over {τj∗ − dδT /3e − 1, . . . , τj∗ + dδT /3e + 1} with only
one feature at τj∗ . Consequently, it follows from an argument similar to that in Step Four
of the proof of Theorem 1 that

T σ̂2
k̂
≥

T∑
t=1

ε2
t − 6(2q + 2) log T + (Cτj∗(s,e] (f))2 − (C τ̂j∗(s,e] (f))2

− 2
√

8 log T
√

(Cτj∗(s,e] (f))2 − (C τ̂j∗(s,e] (f))2 − 8 log T

=

T∑
t=1

ε2
t − 6(2q + 2) log T +

(√
(Cτj∗(s,e] (f))2 − (C τ̂j∗(s,e] (f))2 −

√
8 log T

)2
− 16 log T

Using the fact that |τ̂j∗ − τj∗ | < δT /6 ≤ (dδT /3e+ 1)/2 and Lemma 8, we have that in the
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case where
C1C

2
2

144T |τ̂j∗ − τj∗ |
2 ≥ 8 log T ,

T σ̂2
k̂
≥

T∑
t=1

ε2
t − (12q + 28) log T +

( C2√
48T

(C1T/3 + 1− 1)1/2|τ̂j∗ − τj∗ | −
√

8 log T
)2

=

T∑
t=1

ε2
t − (12q + 28) log T +

(√C1C
2
2

144T
|τ̂j∗ − τj∗ | −

√
8 log T

)2
.

However,

T σ̂2
k̂
≤ T σ̂2

k∗ ≤
T∑
t=1

ε2
t +M ′ log T.

Combining the above two inequalities, and after some algebraic manipulations, we get

|τ̂j∗ − τj∗ | ≤
12√
C1C2

(
√
M ′ + 12q + 28 +

√
8)
√
T log T =: C

√
T log T .

On the other hand, in the case where
C1C

2
2

144T |τ̂j∗ − τj∗ |
2 < 8 log T , we directly have that

|τ̂j∗ − τj∗ | <
24
√

2√
C1C2

√
T log T < C

√
T log T .

Therefore, P
(
maxj=1,...,q |τ̂j − τj | ≤ C

√
T log T

)
→ 1, as required.

I.6. Proof of Corollary 1
Proof. We set P :=

∑∞
k=−∞ |ρk|, where ρk is the auto-correlation function of {εt}. Now

we modify our proof of Theorem 1 as follows:

Step One and Two
Let λT =

√
8P log T and define the set AT as before. Denote the autocorrelation matrix

of {εt} by PT = [ρi−j ]i,j=1,...,T (which is also the autocovariance matrix, since εt has
unit-variance). Then since PT is symmetric, we have that

‖PT ‖∞ = ‖PT ‖1 = max
j

∑
i

|Pij | ≤ P,

where ‖ · ‖∞ and ‖ · ‖1 are the operator norms of a matrix. Consequently, by Hölder’s

inequality, ‖PT ‖2 ≤
√
‖PT ‖1 ‖PT ‖∞ ≤ P , i.e., the largest eigenvalue of PT is bounded

above by P , which is irrelevant of T .
For any s, b, e such that 0 ≤ s < b < e ≤ T , since

〈
ψb(s,e], ε

〉
has a normal distribution,

with zero-mean and

Var(
〈
ψb(s,e], ε

〉
) = (ψb(s,e])

TPTψ
b
(s,e] ≤ P‖ψ

b
(s,e]‖

2
2 ≤ P,

we have that

P
(
|Cb(s,e] (ε) | ≥ λT

)
= P

(
|Cb(s,e] (ε) |/

√
P ≥

√
8 log T

)
≤ 2e−8 log T/2

√
8 log T

√
2π
.
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It follows from the Bonferroni bound that P (AcT ) ≤ 12
√
πT
−1

.
Using the same argument as above, we can show that for any 0 ≤ s < b < e ≤ T ,〈

ψb(s,e]〈f ,ψb(s,e]〉−ψ
τj
(s,e]〈f ,ψ

τj
(s,e]〉,ε

〉
‖ψb(s,e]〈f ,ψb(s,e]〉−ψ

τj
(s,e]〈f ,ψ

τj
(s,e]〉‖2

is normal distributed, with zero-mean and variance bounded

above by P . Thus, P (Bc
T ) ≤ 12

√
πT
−1

.

Step Three, Four and Five
The rest of the proof goes through by simply changing the constants as

C =
√

6
(
2
√
C3+
√

32P
)
+1, C1 = 2

√
C3+
√

8P , C2 =
1√
6
−
√

8P

C
, C3 = (32

√
2+48)P

and setting
ηT = (C1 −

√
8P )2.

Finally, we remark that the proof of Corollary 2 is similar to that of Corollary 1, so is
omitted for brevity.
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