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Traditional visualisation of time series data consists of plotting the time series
values against time and “connecting the dots”. We propose an alternative, multi-
scale visualisation technique, motivated by the scale-space approach in computer
vision. In brief, our method also “connects the dots”, but uses a range of pens
of varying thicknesses for this purpose. The resulting multiscale map, termed the
Thick-Pen Transform (TPT) corresponds to viewing the time series from a range
of distances. We hope that the resulting set of plots will provide interesting and
useful information about the structure of the time series, not only in a heuristic,
but also in a formal probabilistic sense.

We define the TPT of a real-valued univariate process (Xt)nt=1 as follows. Let
T denote the set of thickness parameters. For each τi ∈ T , i = 1, . . . , |T |, let
Uτi
t denote the upper boundary of the area covered by a pen of thickness τi while

connecting the points (t,Xt)nt=1. Similarly, let Lτi
t denote its lower boundary. The

TPT TPT (Xt) is the sequence of all pairs of boundaries, i.e.

TPT (Xt) = {(Lτi
t , U

τi
t )nt=1}i=1,...,|T |.

The precise mathematical form of TPT (Xt) depends on the shape of the pen
used. For example, consider a pen which is a closed square of side length τ ∈ T ,
positioned so that two of its sides are parallel to the time axis. For each point
along the straight line connecting (t,Xt) with (t + 1, Xt+1), we place the pen so
that the given point is at the centre of the right-hand side of the pen. In this
set-up, we have

Uτt = max(Xt, . . . , Xt+τ ) +
τ

2
(1)

Lτt = min(Xt, . . . , Xt+τ )− τ

2
.(2)

Other pen shapes are possible, in the same way that a variety of kernel shapes
are possible in kernel smoothing. Considering TPT (Xt) for a range of thickness
values τ , a multiscale transform of the data Xt is obtained, with higher values of
the thickness parameter bringing out coarser-scale features of the data, and vice
versa.

The TPT is not the only multiscale tool in time series analysis. Wavelets, which
provide linear, multiscale and local decomposition of data, have been used exten-
sively in time series analysis (see e.g. [5]). SiZer ([1]) is a linear data visualisation
technique for displaying features of kernel-smoothed data as a function of location
and bandwidth, simultaneously over a range of bandwidths. We note here that the
TPT is not linear as it is based, effectively, on localised and weighted min/max
operations. Self-similarity and (multi-)fractality are oft-recurring concepts in time
series analysis, aiming to study parametric relationships between distributions of
the process at different scales, particularly in the context of long-range dependent
processes, see e.g. [2]. Besides using different methodology, the aims of the TPT
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are different: we regard it as a visualiser which can be applied to any time series
and which can ultimately assist in solving tasks such as nonstationarity detection,
classification or measuring dependence between time series.

In the TPT as described above, one thickness value τ generates two sequences:
Uτt and Lτt . In some time series problems, it might be more convenient to use
a single summary sequence, instead of a pair. Probably the simplest possible
summary sequences involving Uτt and Lτt are

• Volume of the pen, defined as V τt = Uτt − Lτt ;
• Mean of the pen, defined as Mτ

t = 1
2{U

τ
t + Lτt }.

Many more summary statistics are possible, also those combining Uτt and Lτt non-
linearly. The volume statistic V τt deserves special attention as statistical literature
has previously explored the concept of “the volume of a covering of data”, albeit
in other contexts. [7] derived the “tube formula” for calculating the volume of a
tube surrounding a smooth manifold. This result has more recently been applied
in various statistical contexts by a number of authors, see e.g. [6]. We are un-
aware of any applications of tube formulae in classical time series, where sample
paths are often intrinsically non-smooth. On the other hand, in estimating the
Hurst exponent or the fractal dimension of stochastic processes, two techniques
involving statistics related to V τt are the Rescaled Range Analysis ([4]) and the
“box-counting” method, whose statistical properties in estimating the fractal di-
mension of a stationary continuous-time Gaussian process were studied in [3]. By
contrast, our V τt statistic is not an estimator, and applies to discrete-time, also
nonstationary processes.

We now state a discrimination property of the TPT, which implies, roughly
speaking, that two differently distributed Gaussian time series have differently
distributed TPTs, under the (mild) Assumption 1 below. This is an important
result as it gives us hope that the TPT can serve as an effective discriminant for
time series.

Assumption 1. For a given fixed lag τ > 0, a process Xt satisfies

∃λ0, δ ∈ [0, 1) ∀λ > λ0 ∀ t

P

 ⋃
t≤i,j≤t+τ ;{i,j}6={t,t+τ}

|Xi −Xj | > |Xt −Xt+τ |
∣∣∣ |Xt −Xt+τ | > λ

 ≤ δ.

Discrimination theorem. Let Xt, Yt be two zero-mean Gaussian time series
such that for some s < t, the distribution of Xs − Xt is not the same as the
distribution of Ys − Yt, and let both Xt and Yt satisfy Assumption 1 with τ =
t − s. Let TPT (Xt), TPT (Yt) be the TPTs of Xt, Yt respectively, both with the
square pen where the set T of thickness parameters is T = {1, 2, . . .}, and let
V τt (X), V τt (Y ) be the corresponding volumes. Then, TPT (Xt) and TPT (Yt) follow
different probability distributions in the sense that the tri-variate random vectors
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(V τ−1
s (X), V τ−1

s+1 (X), V τs (X)) and (V τ−1
s (Y ), V τ−1

s+1 (Y ), V τs (Y )) are distributed dif-
ferently.

We have applied the TPT to testing for time series stationarity, and to quantify-
ing dependence between two time series. We introduce here the former application.
The key result is as follows.

Functional central limit theorem. Let {Xt}nt=1 be a stationary process satis-
fying E|Xt|r <∞ for some r > 2. In addition let Xt be α-mixing with the mixing
coefficients αm satisfying αm = O(m−s) for some s > r

r−2 . Let TPT (Xt) be the
TPT of Xt using an arbitrary pen but such that both Uτt and Lτt are functions of
Xt−Cτ , . . . , Xt+Cτ only, for some C > 0. Further let the summary sequence Kτ

t

be such that for each fixed τ , we have n−1Var(
∑n
t=1K

τ
t ) → σ2

τ < ∞, and |Kτ
t | ≤

A+ B|max(Xt−Cτ , . . . , Xt+Cτ )| for some constants A,B > 0, possibly depending
on τ . Under these conditions, the following functional central limit result holds
for each fixed τ . Let u ∈ [0, 1] and denote Y τn (u) = σ−1

τ n−1/2
∑dnue
t=1 Kτ

t − E(Kτ
t ).

We have

Zτn(u) := Y τn (u)− dnue
n

Y τn (1) d→ B0
u,

where B0
u is the standard Brownian bridge process on [0, 1].

Our stationarity test is based on the fact that under the null hypothesis of
stationarity, the range of the empirical version of Zτn(u) is distributed as the range
of Brownian bridge. As the test is derived from the TPT, which is a visualiser,
it can be regarded as a “visual” one. Hence, it should come as no surprise that
it operates under low moment assumptions, and is equally valid for linear and
nonlinear processes. It appears to offer very good empirical performance.
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