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Abstract

We introduce a way of modelling temporal dependence in random functions X(t)
in the framework of linear regression. Based on discretised curves {Xi(t0), Xi(t1),
. . . , Xi(tT )}, the final point Xi(tT ) is predicted from {Xi(t0), Xi(t1), . . . , Xi(tT−1)}.
The proposed model flexibly reflects the relative importance of predictors by parti-
tioning the regression parameters into a smooth and a rough regime. Specifically,
unconstrained (rough) regression parameters are used for observations located close
to Xi(tT ), while the set of regression coefficients for the predictors positioned far from
Xi(tT ) are assumed to be sampled from a smooth function. This both regularises
the prediction problem and reflects the ‘decaying memory’ structure of the time se-
ries. The point at which the change in smoothness occurs is estimated from the data
via a technique akin to change-point detection. The joint estimation procedure for
the smoothness change-point and the regression parameters is presented, and the
asymptotic behaviour of the estimated change-point is analysed. The usefulness of
the new model is demonstrated through simulations and four real data examples,
involving country fertility data, pollution data, stock volatility series and sunspot
number data. Our methodology is implemented in the R package srp, available
from CRAN.
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1 Introduction

Over the last few decades, functional data analysis (FDA) has been growing in importance

and enjoying increased attention. Functional objects arise in many contexts and the appli-

cations in the literature include prediction of daily curves of particulate matter in the air

(Aue et al., 2015), testing stationarity of intraday price curves of a financial asset (Horváth

et al., 2014), modelling the dynamics of fertility rate (Chen et al., 2017), studying the effect

of air pollution on mortality rate across cities (Kong et al., 2016), prediction of the protein

content of meat from spectral curves (Zhu et al., 2014), investigation of a bike sharing

system by predicting bike pick-up counts (Han et al., 2017), choosing predictive days from

daily egg-laying counts for fruit flies (Ji and Müller, 2017) and predicting sucrose content

of orange juice from its near-infrared spectrum (Ferraty et al., 2010).

In this paper, we consider random functions Xi ∈ L2[a, b] where i = 1, . . . , n and

[a, b] is a compact subset of R. If the functions are used as a predictor for explaining a

scalar response variable Y , this simply describes the standard functional linear regression

which has been widely studied in the literature. The reader is referred to Reiss et al.

(2017) for a review of numerous approaches to scalar-on-function regression. On the other

hand, if the random functions Xi are believed to possess temporal dependence and are

analysed by separating the domain they live on into shorter units, we call such a data

structure functional time series. Functional time series analysis has been an active field of

research in recent years. The best-known model in this area is the first-order functional

autoregressive model proposed by Bosq (2000). Other recent contributions include testing

for stationarity (Horváth et al., 2014), testing for mean functions in a two-sample problem

(Horváth et al., 2013), testing for error correlation (Gabrys et al., 2010) and prediction

(Antoniadis et al., 2006; Aue et al., 2015).

In practice, functional data are often observed on a grid, rather than continuously. The

observation of i.i.d. square-integrable random functions Xi(t) ∈ L2[a, b] on an equispaced

grid {t0, t1, . . . , tT} gives the discretised curves {Xi(t0), Xi(t1), . . . , Xi(tT )} for i = 1, . . . , n

where t0 = a and tT = b. Based on these design points, our objective in this work is to

predict the final point Xi(tT ) from the past observations {Xi(t0), . . . , Xi(tT−1)}. This is an

important applied problem in a variety of fields, including public health, earth sciences, fi-

nance and environment, as our data examples of Section 4 illustrate. Arguably the simplest

statistical framework for expressing the dependence of Xi(tT ) on {Xi(t0), . . . , Xi(tT−1)} is
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linearity, and with this in mind, this work focuses on the following model:

Xi(tT ) = µ+
T∑
j=1

αjXi(tT−j) + εi, i = 1, . . . , n. (1)

We now discuss its specifics. In our asymptotic considerations, we work with a fixed T ;

however, in practice, T can be large (e.g. two of the datasets in Section 4 have T roughly

of the order of n), which inevitably brings us into a high-dimensional setting and the set

of parameters αj cannot be estimated well by classical approaches. In addition, we often

experience a high degree of collinearity between the predictors. As a way of regularising

the problem, our proposal in this work is to split the set of parameters {α1, . . . , αT} into

two, {α1, . . . , αq} and {αq+1, . . . , αT}, and assume that the second set is discretised from

a smooth curve β(t), which gives

Xi(tT ) = µ+

q∑
j=1

αjXi(tT−j) +
T∑

j=q+1

β(tT−j)Xi(tT−j) + εi, i = 1, . . . , n, (2)

where the final point Xi(tT ) is a scalar response variable, {Xi(tT−j),j=1,...,T } ∈ RT rep-

resents scalar predictors and εi denotes the error term with E(εi|Xi(tT−j),j=1,...,T ) = 0

and unknown variance σ2. Since all the dependent and independent variables are ob-

tained from random functions, we assume them to be random. The unknown parameter

set contains a constant µ ∈ R, real and scalar α = (α1, . . . , αq)
T ∈ Rq, real and func-

tional β ∈ L2[t0, tT−q−1] and a change-point index parameter q. Throughout the paper,

we will be referring to (2) as the Smooth-Rough Partition (SRP) model. The SRP model

assumes that the change-point index q is unknown, and we estimate it from the data via

a change-point detection technique. This is possible because we will be assuming that the

coefficients αj are rougher than the coefficients β(tT−j), i.e. exhibit more variation.

We now motivate the smooth-rough partitioning idea in more detail. The partitioning

of the regression coefficients into two classes of smoothness captures the difference in the

relative importance of the observations in predicting the final point Xi(tT ). Constraining

the β’s to be smooth reflects the relatively lower importance of the more remote observa-

tions, whose influence on Xi(tT ) is ‘bundled together’ by the smoothness restriction in β.

By contrast, the unconstrained parameters α are not connected to each other in any (func-

tional) way, so are able to capture any arbitrary linear influence of the near observations

on Xi(tT ). The smoothness assumptions on (α, β) will be specified in Section 5.

The smooth-rough partitioning results in regression estimation that is interpretable in

the sense that it automatically separates the effects that can be seen as “long-term” (these
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are the ones corresponding to the smooth portion of the parameter vector) from those that

can be seen as “instantaneous” (these are the ones that correspond to the rough portion

of the parameter vector). In other words, the SRP framework can be seen as a “two-scale”

approach to linear prediction, where the two scales are defined by both the smoothness

and the extent of the regression parameter vector (i.e. the long, smooth portion and the

short, rough portion). As will be demonstrated in Section 4, this two-scale framework is

useful in various real-world datasets e.g. fertility rate data, high-frequency stock volatility

series, Mexico city pollution data and sunspot number data. Each of them appears to

display both long-term and instantaneous temporal dependences, which (as we illustrate)

are well captured by the SRP model. For example, it is reasonable to believe that in the

context of the pollution data, the level of pollution in a particular curve at a particular

time depends both on the overall shape and level of the curve up until the current time

(which could be seen as the long-term effect) and the levels immediately preceding the

current time in question (which can be seen as the instantaneous effect). We can attach

similar interpretations to the other datasets studied in the paper.

Additionally, the SRP framework can also be useful in the modelling and forecasting

of univariate time series, especially those that are believed to be well modelled as AR

(autoregressive) processes with large orders, in which case the SRP smoothing device

would be able to offer both regularisation and (hopefully) interpretability, especially if the

time series is believed to possess long-range dependence (which will typically be the case if

an AR model with a large order is used in the first place). Our sunspot example in Section

4 illustrates this.

Model (2) covers two special cases: 1) in the case of q = T , i.e. if we ignore the con-

strained part, then it has the form of multiple linear regressionXi(tT ) = µ+
∑T

j=1 αjXi(tT−j)+

εi and 2) when q = 0, i.e. without the unconstrained part, if the summation is replaced

by integration with a large enough T , then it becomes scalar on function regression with

Xi(tT ) = µ+
∫ tT−1

t0
β(t)Xi(t)dt+ εi. Unlike the former, completely unconstrained case, the

regularisation in model (2) operates in a way that reduces the model’s degrees of freedom.

In the examples of Section 4, we empirically show that the full model (2) exhibits better

prediction performance than these two extreme cases. This further justifies our efforts in

proposing a methodology for detecting the change-point index q automatically from the

data.

Other ways of regularising the functional linear regression coefficient have been pro-

posed in the literature. In particular, some researchers have used ideas from variable
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selection to obtain β(t) = 0 for the non-informative subintervals and β(t) 6= 0 for the in-

formative ones. James et al. (2009) employ the LASSO and Dantzig selector with the aim

of improving the interpretability of β(t) while Zhou et al. (2013) use the Dantzig selector

and SCAD approaches. Lin et al. (2015) propose a functional version of SCAD by com-

bining the SCAD method and smoothing splines to obtain a smooth and sparse estimator

for the functional coefficient. By contrast, we do not regularise by finding null subregions

of β(t) but by imposing different smoothness constraints over different sections of the pa-

rameter curve. The ‘null subregion’ and our approach are compared and contrasted in

Sections 3 and 4.

In addition, our approach is different from the functional linear regression model with

points of impact (Kneip et al., 2016) in the sense that our unrestricted coefficients are

grouped into a single region that is the nearest to the time-location of the response variable,

which (in contrast to Kneip et al. (2016)) allows us not to have to remove the observations

adjoining the points of impact in estimating their locations, which would be impossible in

our time series context. Other methods related to Kneip et al. (2016) but less so to our

work have also been proposed: McKeague and Sen (2010) aim to estimate a single point

of impact with the motivation from gene expression data and Ferraty et al. (2010) fit a

nonparametric model after finding several predictive design points. The performance of

our technique is compared to that of Ferraty et al. (2010) in Sections 3 and 4.

Change-point detection ideas have been proposed in other functional regressions con-

texts before. Hall and Hooker (2016) find the truncation point θ under the truncated

functional linear model Yi = µ+
∫ θ
0
β(t)Xi(t)dt+ εi. Goia and Vieu (2015) use two func-

tions β1(t) and β2(t) by dividing the interval into two with one discontinuity point. They

suggest the partitioned functional single index model, Yi = µ + g1
( ∫

[0,λ]
β1(t)Xi(t)dt

)
+

g2
( ∫

(λ,1]
β2(t)Xi(t)dt

)
+ εi, where g1 and g2 are smooth functions to be estimated and the

breakpoint λ identifies a discontinuity in the functional regression coefficient. Neither of

these methods use their concept of change-point detection to differentiate between two

classes of smoothness.

If q in model (2) were known, the skeleton of our model would be similar to that of

partial functional linear regression with both scalar and functional covariates, recently

studied by e.g. Kong et al. (2016), Zhou et al. (2016), Zhou and Chen (2012), Shin and

Lee (2012), Shin (2009), Aneiros-Pérez and Vieu (2008) and Goia (2012). Apart from

assuming q to be unknown, (2) is different in that it operates in a time series context.

The remainder of the article is organised as follows. Section 2 describes the model and
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the parameter estimation procedure. The supporting simulation studies are outlined in

Section 3, with further real-data illustrations in Section 4 regarding country fertility data,

Mexico city pollution data, stock volatility series and sunspot number data. The relevant

theoretical results are presented in Section 5 and we end with additional discussion in

Section 6. The SRP methodology is implemented in the R package srp and the proofs of

our main theoretical results are in Appendix A.

2 Model and its estimation

We work with the discretised curves {Xi(t0), . . . , Xi(tT )}i=1,...,n observed from each function

Xi(t) on the equispaced T+1 discrete points including both endpoints. Since the regression

coefficients vary by q, we rewrite model (2) as

Xi(tT ) = µq +

q∑
j=1

αqjXi(tT−j) +
T∑

j=q+1

βq(tT−j)Xi(tT−j) + εi, i = 1, . . . , n, (3)

where 1 ≤ q ≤ T . The point tT−q is where a sudden smoothness change occurs in the

sequence of the regression coefficients, with the coefficients αqj being unconstrained in

terms of their smoothness and the coefficients βq(tT−j) assumed to be a sampled version of

a smooth function. The change-point location in (3) is the same for all i’s. Our expectation

is that q is substantially smaller than T and the optimal q is chosen by examining a number

of q’s over a subset of {1, . . . , T}, which we specify in Section 2.1. The reason why T is

assumed to be fixed is that if we were to allow T → ∞, then tT would asymptotically

approach tT−1 and we could simply predict X(tT ) by X(tT−1).

The set of unknown parameters in (3) can be categorised into two types: 1) change-

point tT−q and 2) regression coefficients (µq,αq, βq). Our interest includes the estimation

of the underlying smooth function β(t). Broadly speaking, two possible ways exist: 1)

estimate (β̂q(t0), . . . , β̂
q(tT−q−1)) and then use interpolation to obtain the functional form

of β̂q(t) or 2) obtain the interpolant {X(t), t ∈ [t0, tT−q−1]} and then estimate the function

β̂q(t) through basis expansion. In this paper, we use the latter approach as it is more

popular and the former approach needs a particular penalty to make it feasible if T is

close to or exceeding n. Examples of the former can be found in Cardot et al. (2007) and

Crambes et al. (2009).

The interpolant {Xi(t), t ∈ [t0, tT−q−1]} is obtained from the discrete observations

(Xi(t0), . . . , Xi(tT−q−1)) using natural cubic splines with knots at (t0, . . . , tT−q−1). As
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stated in Crambes et al. (2009), the essential property of natural splines is that for any

vector, the unique natural spline interpolant exists and it can be expressed as a B-spline

expansion with dimension equal to ‘number of knots + 2’ (in our case T −q+2) as follows:

Xi(t) =

T−q+2∑
h=1

dihBh(t), t ∈ [t0, tT−q−1], (4)

where Bh(t) is a set of basis functions for the normalised B-splines {Bh}h=1,...,T−q+2.

Dimension reduction is necessary for the estimation of β(t). The required regularisation

is usually achieved by a basis expansion, which enables a finite number of basis functions to

approximate the infinite-dimensional function. Numerous approaches are available, such

as via the Fourier series, functional principal components (PC), splines or wavelets. The

reader is referred to Ramsay and Silverman (2005) for more details. In what follows, we

use B-splines. Cardot et al. (2003) argue that spline estimators should be preferred to

the functional PC approach when X(t) is rough and the functional coefficient is smooth,

which is the case we are interested in. Moreover, a spline estimator is not directly affected

by the estimation of the eigenstructure of the covariance operator of X(t).

Let S be the space of splines defined on [t0, tT−q−1] with degree s and k− 1 equispaced

interior knots where L = k + s denotes the dimension of S. Then one can derive a set of

basis functions from the normalised B-splines {Bl}l=1,...,L to approximate βq(t) as

βq(t) ≈
L∑
l=1

blBl(t), t ∈ [t0, tT−q−1], (5)

where bl represents the corresponding coefficient. For each tT−q, the set of the regression

parameters simplifies to δq = (µq,αq, bq1, . . . , b
q
L)T ∈ R1+q+L where αq = (αq1, . . . , α

q
q)
T .

The choice of L is considered in Section 2.2.

2.1 Joint estimation procedure for parameters

We suggest a one-stage estimation procedure for the change-point and the regression pa-

rameters. Since the parameter q represents the number of scalar parameters, under fixed

L, q itself determines the dimension of the model. Thus, using the well-known criterion of

Schwarz (1978), we estimate q by minimising

SIC(q) = n · log M(q) + (q + L+ 1) · log n, (6)

where

M(q) =
1

n

n∑
i=1

{
Xi(tT )− µ̂q −

q∑
j=1

α̂qjXi(tT−j)−
T∑

j=q+1

β̂q(tT−j)Xi(tT−j)

}2

, (7)
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and (µ̂q, α̂qj , β̂
q(tT−j)) are repeatedly estimated for each q by minimising the following sum

of squared errors with appropriate penalisations,

(α̂q, β̂q(t)) = argmin
αq ,βq(t)

[
1

n

n∑
i=1

{
X̃i(tT )−

q∑
j=1

αqjX̃i(tT−j)−
∫ tT−q−1

t0

βq(t)X̃i(t)dt

}2

+ λ1δ
q
0
T δq0 + λ2

∫ tT−q−1

t0

{
βq(m)(t)

}2
dt

]
, (8)

µ̂q =X̄(tT )−
q∑
j=1

α̂qjX̄(tT−j)−
T∑

j=q+1

β̂q(tT−j)X̄(tT−j),

where δq0 = (αq, bq1, . . . , b
q
L)T ∈ Rq+L, X̃i(tT−j) and X̃i(t) are demeaned predictors, X̄(tT−j) =

1
n

∑n
i=1Xi(tT−j) and βq(m)(t) is the mth derivative of βq(t) with the positive integer m sat-

isfying m < s where s denotes the degree of space S.

The penalty terms in (8) contain two tuning parameters: λ1 controls a ridge-type

penalty and λ2 governs the smoothness of the estimated β̂q(t). We do not explicitly

specify assumptions for the magnitudes of λ1 and λ2, but instead, as in Hall and Hooker

(2016), our theoretical conditions (in Section 5) are phrased in terms of the appropriate

convergence rates (Assumptions 3 and 4). In practice, only the initial values of λ1 and λ2

need to be specified by the user and the optimal values are selected automatically via a

cross-validation-type criterion described in Section 2.2. If q were known, our task would

be to estimate the regression parameters (µq,αq, βq). However, we assume that q is not

known and estimate the parameters (q, µq,αq, βq) jointly. We preserve the original time

scale of βq(t) instead of rescaling it to [0, 1] so that we can place α̂q̂ and β̂ q̂(t) on the same

time scale.

Let q0,α0, β0 denote the true values of the parameters q,α, β, respectively. Typically,

as a function of q, M(q) decreases sharply as q ↑ q0, and becomes relatively flat (as n→∞)

for q ≥ q0. For q > q0, the smooth function β0(t) is estimated by the scalar estimators

(α̂q, . . . , α̂q0+1) on the interval [tT−q, tT−q0−1]. As the smoothness of (α̂q, . . . , α̂q0+1) is un-

restricted, the fit is typically good, which causes the flat shape of M(q). Conversely,

when q < q0, some of the unrestricted parameters, (α0,q0 , . . . , α0,q+1), are estimated by

the smooth (β̂q(tT−q0), . . . , β̂
q(tT−q−1)), which typically causes M(q) to be away from its

minimum for q < q0. The SIC penalty “lifts” the flat part of M(q) and enables us to

estimate the q parameter close to its true value. This is shown theoretically in Section 5

and numerically in Sections 3 and 4.

When finding the optimal q in (6), although q can in principle be large enough up to
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q = T , we recommend examining 1 ≤ q ≤ q̄, where q̄ is substantially smaller than T . In

the examples considered in Sections 3 and 4, we take q̄ = min(dT × 0.1e, 30). Based on

our empirical experience, when q is large, there is the possibility that the optimisation

of the two tuning parameters, λ1 and λ2 in (8), becomes unstable in that it becomes

highly dependent on the selection of their initial values. In addition, examining the entire

range 1 ≤ q ≤ T can make the algorithm unnecessarily slow especially when both T and

n are large. In practice, even if we do not restrict q to be small (which introduces the

stability and speed issues referred to above), the minimiser q̂ of SIC(q) in (6), if computed

successfully despite the potential stability issues, is typically obtained to be substantially

smaller than T .

2.2 Selection of the tuning parameters

To select the tuning parameters, we use the magic function from the R package mgcv

(Wood (2006)). The mgcv includes various regression models such as GAM or the gen-

eralised ridge regression. The magic function is useful in that it is able to optimise over

more than one penalty parameters (λ1 and λ2 in our case) by minimising GCV based

on Newton’s method. The results also give the estimators (α̂q̂, β̂ q̂(t)) in (8) under each

selected q̂.

Regarding the dimension of βq, we typically set L to be large but substantially smaller

than T − q. As mentioned in Ruppert (2002), the number of basis function tends not

to play an important role in functional linear regression with a roughness penalty, if we

choose it to be large enough to prevent undersmoothing. Following the rule of thumb from

Ruppert (2002), we use L = 35 in Sections 3 and 4, except in cases in which T < 40, when

we use L = 9.

3 Simulations

In this section, we evaluate the finite-sample performance of our approach. We expect the

performance of our method to vary depending on the size of change between β0(t) and αT0

and on the degree of fluctuations in the αT0 coefficients relative to the smoothness of β0(t).

Based on the model (3), we consider the following four parametric cases – Case 1:

µ0 = 0.0180,α0 = (0.4, 0.2, 0.1)T , Case 2: µ0 = −0.0836,α0 = (0.6,−0.5, 0.4)T , Case

3: µ0 = −0.0239,α0 = (0.4, 0.2, 0.1)T and Case 4: µ0 = −0.0742,α0 = (0.4,−0.2, 0.1)T ,
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to investigate how the performance of change-point detection is affected by the degree of

changes in the regression parameters. The true change-point index parameter is q0 = 3

for all cases as shown in Figure 1 and β0(t) is available from the R package srp. In the

data generating process based on the model (3), we use the Gaussian noise εi with the

signal-to-noise ratio, defined as σ2
X/σ

2, equal to 4 where σ2 is the error variance. In Cases

1 and 3, α0 shows less fluctuation than in Cases 2 and 4. The size |α0,3 − β0(tT−4)| of

the change-point is approximately 0.4 in Case 2 and approximately 0.1 in the remaining

three cases. Case 3 is similar to Case 1 except that its β0(t) = b0 + b1t is linear. We

simulate n = 300 independent copies of each process, in which the length of the sample is

T + 1 = 360 (see formula (3)).
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Figure 1: True regression parameters of Cases 1-4 with different scale for each β0(t) (solid

line) and αT0 (dots).

In each of 100 Monte Carlo runs, we split n = 300 observations into training and test

sets of sizes n1 = 150 and n2 = 150, respectively. The training sample is used to obtain

q̂ and (α̂, β̂) by minimising (6) and (8), respectively. The accuracy of the regression

parameter estimators can be evaluated by comparing (α̂q, β̂q(t)) and (α0, β0(t)); however,

if the change-point is incorrectly estimated, i.e. q̂ 6= q0, the length of the vector α̂q is not

matched with that of α0 and neither is β̂q(t). To circumvent this, we discretise β̂q(t) and

β0(t) and define γ̂ q̂ and γ0 of dimension T ×1 as γ̂ q̂ =
(
α̂q̂1, . . . , α̂

q̂
q̂, β̂

q̂(t0), . . . , β̂
q̂(tT−q̂−1)

)T
and γ0 =

(
α0,1, . . . , α0,q0 , β0(t0), . . . , β0(tT−q0−1)

)T
, which enables us to use the following

sum-of-squared-errors (SSE) criterion:

SSE =
[
γ̂ q̂ − γ0

]T[
γ̂ q̂ − γ0

]
. (9)

The prediction performance is examined in the test sample by computing the mean-square
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prediction error (MSPE),

MSPE =
1

n2

n2∑
i=1

{Xi(tT )− X̂i(tT )}2, (10)

where X̂i(tT ) is the prediction using the estimated parameters (q̂, µ̂q̂, α̂q̂, β̂ q̂(t)).

3.1 Competing methods

We compare the performance of our approach to the following existing methodologies:

multiple linear regression (MLR), ridge regression (RIDGE), functional linear regression

with penalised B-splines (FLR, Cardot et al. (2003)), interpretable functional linear re-

gression (FLiRTI, James et al. (2009)), most-predictive design points approach (MPDP,

Ferraty et al. (2010)) and functional nonparametric regression (NP, Ferraty and Vieu

(2002)). We also compare our proposal (SRPC) with its simplified version named SRPL,

which follows the form of SRPC except that β0(t) is estimated as a linear function. The

corresponding objective functions for the parametric methods are as follows:

MLR : α̂q̂1 = argmin
αq̂1

1

n1

n1∑
i=1

{
X̃i(tT )−

q̂1∑
j=1

αq̂1j X̃i(tT−j)

}2

,

FLR : β̂(t) = argmin
β(t)

1

n1

n1∑
i=1

{
X̃i(tT )−

∫ tT−1

t0

β(t)X̃i(t)dt

}2

+ λ

∫ tT−1

t0

{
β(m)(t)

}2
dt,

SRPL : (α̂q̂2 , b̂0, b̂1) = argmin
αq̂2 ,b0,b1

1

n1

n1∑
i=1

{
X̃i(tT )−

q̂2∑
j=1

αq̂2j X̃i(tT−j)−
∫ tT−q̂2−1

t0

(b0 + b1t)X̃i(t)dt

}2

.

The objective function of our method (SRPC) is in (8) and we determine q̂1 and q̂2 for

MLR and SRPL by minimising SIC(q) in (6) with appropriate M(q) for each. In the

implementation of FLR, we use cubic smoothing splines (s = 3) with the dimension

L = 35 for both β(t) and Xi(t) where the derivative order of β(t) is m = 2 and λ is

selected by minimising GCV. Ridge parameter is also optimised by minimising GCV. For

the implementation of other methods, we follow the suggestions of each paper for select-

ing the tuning parameters and the R code is available on the web (FLiRTI: http://

www-bcf.usc.edu/˜gareth/research/Research.html, MPDP and NP: http:

//www.math.univ-toulouse.fr/˜ferraty/).
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Figure 2: (1st row) Mean of {SIC(q)}1≤q≤10 defined in formula (6) over 100 simulation runs

for Cases 1-4 (1st-4th column); (2nd row) Barplots of the 100 q̂ estimated by minimising

{SIC(q)}1≤q≤30 where the black bars indicate the true change-point index parameter q0 =

3.

3.2 Simulation results

The top row of Figure 2 shows that the mean of 100 SIC(q) is minimised at true q0 = 3

for all cases. Case 2 shows a more rapid decrease than the other cases when q ↑ q0 due to

the larger size of change at the change-point. Similarly, in the bottom row, we see that

the mode of q̂ is q0 = 3 in all cases. Since Cases 1 and 3 have a relatively smooth α,

q̂ = 1, 2(< q0) are selected more frequently than in Cases 2 and 4, which have relatively

more fluctuating α’s. Figure 3 provides numerical evidence of the increased closeness of q̂

to q0 in Case 4 as the sample size n increases.
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Figure 3: Barplots of the 100 q̂ estimated by minimising SIC(q) in formula (6) with

increasing n = 300, 600, 1200 under Case 4. The black bars indicate the true change-point

index parameter q0 = 3.
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As is apparent from Table 1, FLR and RIDGE perform systematically worse than the

others. Our proposal, SRPC, outperforms the others in Cases 1, 2 and 4 and the difference

is the most striking in Cases 2 and 4, in which a sudden smoothness change occurs. In

Case 3, in which there is no clear smoothness change around the change-point and the

true β(t) is linear, SRPL turns out to be the best-performing method.

Table 1: The mean(sd) of SSE(×102) defined in formula (9) over 100 simulation runs for

the parametric methods in all cases. Bold: methods with the lowest mean of SSE.

Case MLR FLR FLiRTI SRPL SRPC RIDGE

1 1.39(0.73) 5.32(1.33) 1.11(0.44) 1.43(0.69) 1.00(0.86) 19.90(2.05)

2 10.24(2.59) 75.08(1.76) 31.25(9.24) 9.09(1.03) 2.06(0.76) 72.80(2.87)

3 0.79(0.55) 5.28(1.30) 0.78(0.39) 0.64(0.56) 1.08(1.20) 19.12(1.91)

4 11.31(1.38) 21.37(1.63) 9.72(2.32) 6.96(0.79) 1.03(0.44) 24.30(1.23)

Figure 4: True (black) and 100 estimated (grey) regression parameters for Cases 1-4(1st−
4th column) with three methods, FLR(1st row), FLiRTI(2nd row) and SRPC(3

rd row). The

corresponding numerical summaries of these results are in Table 1.
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Examining Figure 4, while the misestimation in SRPC is mainly located around the

true change-point, in FLiRTI and FLR it is scattered over the whole interval. In addition,

the graph offers visual confirmation of the superior performance of SRPC in Cases 1, 2 and

4. In particular, in Cases 2 and 4, FLR ignores the sudden fluctuation in α by estimating

it as a smooth function. Unlike FLR and FLiRTI, SRPC shows its advantages not only

when scale changes are present (Cases 1 and 3) but also when a sudden smoothness change

occurs at the change-point (Cases 2 and 4).

Table 2 contains two more columns than Table 1 as the mean-square prediction error

can also be obtained for the nonparametric methods, MPDP and NP, which do not involve

the estimation of (α̂, β̂(t)). In all cases considered, FLR, MPDP, NP and RIDGE show

worse prediction performance than the other methods. SRPC performs better than FLiRTI

for all cases (but more noticeably so in Cases 2 and 4). SRPC is superior to SRPL in all

cases except Case 3 which is expected since Case 3 includes a linear β0(t). However, SRPC

is not far behind SRPL in Case 3 as the smoothness of β̂(t) is flexibly controlled by the

automatically chosen penalty.

Table 2: The mean(sd) of MSPE(×102) defined in formula (10) over 100 simulation runs

for all methods in all cases. Bold: methods with the lowest mean of MSPE.

Case MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE

1 21.83(2.7) 23.39(3.2) 20.48(2.7) 22.12(2.8) 18.95(3.2) 26.22(5.1) 79.04(9.9) 43.52(7.0)

2 53.97(7.0) 83.38(9.9) 51.71(9.3) 50.81(7.1) 27.55(4.4) 69.20(21.4) 102.21(11.5) 94.76(11.3)

3 17.26(2.1) 22.01(3.0) 17.86(2.5) 15.61(2.1) 16.80(3.3) 21.41(3.8) 74.82(9.7) 41.35(6.8)

4 30.48(4.2) 28.17(4.2) 22.17(4.1) 22.05(2.8) 10.88(1.6) 39.18(15.7) 43.54(5.6) 35.68(4.3)

4 Data applications

In this section, our methodology is applied to country fertility data, Mexico city pollution

data, stock volatility series and sunspot number data. The data can be obtained from the

Human Fertility Database (www.humanfertility.org), the R package aire.zmvm,

the Wharton Research Data Services (wrds-web.wharton.upenn.edu/wrds/) and

the Base R datasets available from CRAN, respectively.
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4.1 Country fertility rate data

Forecasting future fertility rates has a great impact on governments in planning children’s

service and education. We use fertility rates at age 20, recorded for 36 years from 1974

to 2009 for 31 countries around the world. As shown in Figure 5, the fertility rates at

age 20 show an overall decreasing trend in all countries and although it is not illustrated

in this paper, similar patterns are observed at ages 21–26, while fertility rates at ages

30–39 have obvious increasing trends in recent years from 1990 onwards, which reflects the

phenomenon of more women deferring childbirth to a later age.

The final observation recorded in 2009 is predicted from the past observations from

1974 to 2008. To compare the prediction power of the new model with competitors, we

split the whole dataset into a training sample of size n1 = 26 and a test set of size n2 = 5

randomly 100 times and compute the mean, median and standard deviation of the 100

mean-square prediction errors defined in (10). In the training set, the B-spline expansion

with dimension L = 9 is used for SRPC, SRPL and FLR. As found in Table 3, MLR,

SRPC and SRPL lead to similar performance in prediction, which is better than that of

the nonparametric methods (MPDP, NP), the full functional model (FLR), the full scalar

setting (RIDGE) and FLiRTI.
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Figure 5: The fertility rates at age 20 from 1974 to 2009 for 31 countries.

As shown in Figure 6, q̂. = 1, 2 are the most frequently selected as the optimal size of

scalar variables for MLR, SRPL and SRPC. Although MLR and SRPL seem to be slightly

better than SRPC in prediction in Table 3, Figure 6 shows that SRPC is the most frequently

selected as the best-performing method in terms of MSPE from 100 samples. In Figure 7,
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Table 3: The mean, median and standard deviation of 100 MSPE’s (×106) defined in

formula (10) for all methods described in Section 3.1, for the case study in Section 4.1.

Bold: methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE

mean of MSPE 3.36 12.60 5.99 3.45 3.73 5.38 139.55 7.73

median of MSPE 2.98 9.15 3.95 3.12 3.28 3.65 118.48 4.97

sd of MSPE 2.00 10.70 6.13 1.94 2.32 5.33 114.58 7.39
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Figure 6: Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂

for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 4} in formula (6) and the

frequency barplot of the best-performing method (with the lowest MSPE) out of the 100

samples (fourth) for the case study in Section 4.1.

the functional estimators β̂(t) for FLR and FLiRTI and the discrete ones for RIDGE live

in the whole interval t ∈ [t0, tT−1] while SRPC, MLR and SRPL assign the corresponding

subintervals for α̂ with the optimally chosen q̂ = 1, q̂1 = 2 and q̂2 = 1 (respectively).

The estimated curves for FLR and FLiRTI and the estimated coefficients for RIDGE

appear to be relatively oscillatory over the entire interval under a fixed smoothness while

the smoothness of the SRP estimators varies as dictated by their design. Interestingly,

all parametric methods give a large size of the regression coefficient at year 2008, which

contrasts with the coefficients for years 1974–2007 which are close to zero. In a time series

context, this indicates that the fertility rate in 2008 is more influential for predicting the

fertility rate in 2009 than the older observations are.
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Figure 7: A randomly selected estimated regression coefficients of the six parametric meth-

ods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting fertility rates at age 20 in

2009 from the past observations (1974-2008).

4.2 Nitrogen oxides in Mexico City

We use the daily curves of hourly average nitrogen oxides level in Mexico City, recorded at

the Pedregal station in 2016. As shown in Figure 8, daily curves contain 24 observations

each and have similar patterns including two peaks around hours 9 and 21. The final

observation recorded at hour 24 is predicted from the past observations indexed 1 to 23.

We split the whole dataset into a training sample of size n1 = 161 and a test set of size

n2 = 86 randomly 100 times and compute the mean, median and standard deviation of

the 100 mean-square prediction errors defined in (10). In the training set, the B-spline

expansion with dimension L = 9 is used for SRPC, SRPL and FLR. As found in Table

4 and Figure 9, SRPC gives the best prediction among all methods and is also the most

frequently selected as the best-performing one from the 100 samples in terms of MSPE.

As shown in Figure 9, q̂ = 3 is the most frequently selected as the optimal size of scalar

variables for SRPC while q̂. = 2 is so for MLR and SRPL.

In Figure 10, it is interesting to observe that the smooth portion of the SRP parameter

vector appears to be non-trivially different from zero, which, together with the fact that the

SRP model outperforms its competitors in the forecasting exercise reported above, provides

evidence for the existence and impact of the long-term temporal dependence in this dataset.
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Figure 8: The daily curves of hourly average nitrogen oxides (parts per billion) at the

Pedregal station in Mexico City in 2016.

It is also apparent that all the methods attempt to fit a particularly large-size regression

coefficient at hour 23. The SRPC curve detects a change at hour 20, where it experiences a

seemingly non-trivial drop. It would be difficult for us to conclude that this drop is merely

caused by a boundary effect as the RIDGE solution (in which there are no boundary effects

to speak of) also experiences a dip at that point. In the same manner, the sudden increase

observed in the FLR curve at hour 23 does not appear to be a mere boundary effect,

but it also reflects this method’s own effort to fit the influential predictor under its own

smoothness constraints. The results in Table 4 show that it is useful to apply two different

regularisations, as done in SRPC, depending on the perceived importance of predictors,

rather than estimating the regression coefficients under an unvarying regularisation, as

done in RIDGE.

Table 4: The mean, median and standard deviation of 100 MSPE’s (×102) defined in

formula (10) for all methods described in Section 3.1, for the case study in Section 4.2.

Bold: methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE

mean of MSPE 75.50 86.44 73.88 75.41 72.35 74.92 126.09 74.42

median of MSPE 75.38 85.16 74.04 75.13 71.84 74.23 126.99 73.41

sd of MSPE 12.92 14.03 12.96 14.10 13.18 13.13 26.63 12.94
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Figure 9: Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂

for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 3} in formula (6) and the

frequency barplot of the best-performing method (with the lowest MSPE) out of the 100

samples (fourth) for the case study in Section 4.2.
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Figure 10: A randomly selected estimated regression coefficients of the six parametric

methods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting the average of nitrogen

oxides level at hour 24.

4.3 High frequency volatility series

In financial data analysis, modelling high-frequency volatility has attracted much attention

in recent years. Especially, in the functional framework, nonparametric methods have been

extensively studied (Bandi and Phillips, 2003; Reno, 2008; Kristensen, 2010). Müller et al.

(2011) emphasise the random nature of volatility functions under the assumption that the

repeated realisations of the volatility trajectories come from a suitable functional volatility
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process. Our interest is also in the random nature of functional observations rather than

in modelling potential dependencies between curves, therefore, as in Müller et al. (2011),

we view the daily curves as i.i.d. random functions. We aim to predict the latest point of

the curves from the past observations.

Specifically, our methodology is applied to the prediction of the Disney stock volatility

where the raw observations contain n = 248 trading days available from January 2, 2013

to December 30, 2013 and each curve has 395 grid points of closing prices recorded every 1

minute. The volatility trajectories are obtained from the return series in the same way as

in Müller et al. (2011), however we retain the roughness of volatility trajectories by using

natural cubic splines as in (4) rather than smoothing them. This is important as volatility

is not observable but typically estimated to be oscillatory, thus an extra smoothing step

can possibly cause the loss of important information as stated in Kneip et al. (2016).

We split the dataset into a training and a test set of size n1 = n2 = 124 randomly 100

times and in the training set, the B-spline expansion with dimension L = 35 is used for

SRPC, SRPL and FLR. Figure 11 shows that q̂1 = 3 is the most frequently chosen for MLR

while q̂2 = 1 and q̂ = 1 are the most frequently selected for SRPL and SRPC, respectively.

Similar to the previous examples in Sections 4.1 and 4.2, Figure 12 shows that all the

parametric methods reflect the ‘fading memory’ of the time series by assigning a large-

size regression coefficient for observations located close to the closing volatilities, which

contrasts with the coefficients for intervals positioned far from the closing volatility. As

found in Table 5 and Figure 11, SRPC leads to the best prediction among all methods and

is also the most frequently selected as the best-performing one in terms of MSPE from 100

samples.

Table 5: The mean, median and standard deviation of 100 MSPE’s defined in formula

(10) for all methods described in Section 3.1, for the case study from Section 4.3. Bold:

methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE

mean of MSPE 2.88 4.10 3.13 2.96 2.78 3.02 6.29 4.34

median of MSPE 2.80 4.05 3.08 2.91 2.72 2.77 6.18 4.29

sd of MSPE 0.56 0.58 0.68 0.56 0.51 1.52 0.71 0.48

20



1 2 3 4

0
1

0
2

0
3

0
4

0
5

0
6

0

1 3 5 7 10 12 15 17 30

0
1

0
2

0
3

0
4

0
5

0

1 3 5 6

0
2

0
4

0
6

0
8

0
1

0
0

MLR FLiRTI SRP.L SRP.C

0
1

0
2

0
3

0
4

0
5

0
6

0

Figure 11: Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂

for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 30} in formula (6) and the

frequency barplot of the best-performing method (with the lowest MSPE) out of the 100

samples (fourth) for the case study in Section 4.3.
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Figure 12: A randomly selected estimated regression coefficients of the six parametric

methods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting closing volatility of

the Disney stock data from January to December in 2013.

4.4 Monthly numbers of sunspots

In this section, we demonstrate the usefulness the SRP framework in univariate time

series modelling, as an alternative to the AR model, which is often used in time series

forecasting. The SRP model is similar to the AR model in that they both specify the

fading memory structure of the time series under linear dependence of the output variable

on its own previous values. In practice, the AR(p) model is usually fitted with a small p
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for simplicity, interpretability and better forecasting performance, however it may fail in

the presence of longer-range effects. In this case, the SRP model can also be used for the

forecasting of a univariate time series, where it becomes an autoregressive (AR) model with

a large order (e.g. AR(T ) in (2) with a fixed T ) under the smooth-rough regularisation.

The middle plot of Figure 13 shows that the monthly sunspot number series may need

large-order autoregression (even up to or exceeding order 100), in which case it may be

advantageous to use the SRP model over plain AR modelling.
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Figure 13: Square-rooted monthly numbers of sunspots from 1749 to 2013 (left), its partial

autocorrelation function with maximum lag=150 (middle) and the autocorrelation function

with maximum lag=150 (right).

The sunspot number data contains 3177 observations available from 1749 to 2013 and

we perform a square root transformation to the raw data. We split the whole dataset into

a training sample of size n1 = 2223 and a test set of size n2 = 954 and create the data

matrix for each set via a moving window with a prespecified number T+1 = 151 of discrete

points in one curve (150 for covariates and 1 for the response variable), i.e. from the uni-

variate time series (x1, x2, . . . , xn1) in the training sample, we create 2073 curves, X1(t) =

(x1, x2, . . . , x151), X2(t) = (x2, x3, . . . , x152), . . ., Xn1−151+1 = (xn1−150, xn1−149, . . . , xn1). In

the same way, we create 804 curves for the test sample. In each curve, we use the last

points as the response variable and the covariates are the remaining 150 observations.

Due to the temporal dependence in the entire dataset, we do not randomly repeat the

construction of the training and test sets.

From the training set, with L = 35, the optimal change-point index parameter for MLR,

SRPL and SRPC are chosen as q̂1 = 5, q̂2 = 6, q̂ = 2 (respectively) from {q : 1 ≤ q ≤ 15} as

shown in Figure 14. As the optimal size q̂1 = 5 for MLR is obtained by minimising the SIC
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Figure 14: Estimated regression coefficients of the six parametric methods (MLR,

SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting the sunspot number of next month

from past 150 months of sunspot number.

criterion, the estimated regression coefficients are very close to that of the AR(5) model

and the significance of the first five lags is already revealed in the partial autocorrelation

function in Figure 13. In Figure 14, the FLR and RIDGE estimators appear to be relatively

oscillatory over the entire interval, while the estimators for FLiRTI and SRPC are relatively

smoother. We also obtain the OLS (ordinary least squares) estimator which is slightly more

fluctuating than RIDGE, but is not included in Figure 14. As is apparent from Table 6,

our approach shows an improvement in prediction compared to the other methods. From

this example, SRPC appears to be a useful substitution for a classical AR(p) model with

a small p, especially when the memory of a time series is relatively long.

Table 6: MSPE (×102) defined in formula (10) for all parametric methods described in

Section 3.1 and OLS, for the case study from Section 4.4. Bold: methods with the three

lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC RIDGE OLS

MSPE 11.67 12.09 12.59 11.09 10.72 11.17 11.11
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5 Theoretical results

In this section, we assume that the SRP model in (3) is correct and explore the asymptotic

behaviour of q̂, the estimator of the change-point index q0. There is a one-to-one corre-

spondence between q and tT−q, so we will be interchangeably considering q̂ and tT−q̂. We

denote the true values of scalars α and function β by (α0, β0) and assume the following

conditions.

Assumption 1 β0(t) is continuous on t ∈ [t0, tT−q0−1] and α0 is composed of the finite

number of scalars α0 = (α0,1, . . . , α0,q0)
T on t ∈ [tT−q0 , tT−1].

Assumption 2 The true change-point tT−q0 ∈ (t0, tT−1] is where the change of smoothness

occurs in the sequence of true regression parameters. When q0 > 1, taking q1 such that 1 ≤
q1 < q0, for any q ∈ [q1, q0), there exist δ1, δ2, δ3 > 0 such that (a) inf1≤j≤q |α0,j − α̂qj | > δ1,

(b) infq0<j≤T |β0(tT−j)− β̂q(tT−j)| > δ2 and (c) infq<j≤q0 |α0,j − β̂q(tT−j)| > δ3.

As mentioned in the discussion of the shape of the function M(q) in Section 2.1, Assump-

tion 2 quantifies the non-convergences occurring when q < q0. The next two assumptions

list the converging components of M(q) when q ≥ q0. Our Assumptions 3 and 4 are similar

to the assumptions made on estimated regression coefficients in Hall and Hooker (2016).

Assumption 3 Taking q2 such that 1 ≤ q0 < q2 < T ,

(a) sup
q0≤q≤q2

1

n

n∑
i=1

[ ∑
1≤j≤q0

(α0,j − α̂qj)X̃i(tT−j)

]2
= Op(n

−1),

(b) sup
q0≤q≤q2

1

n

n∑
i=1

[ ∑
q<j≤T

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

]2
= Op(n

−1),

(c) sup
q0<q≤q2

1

n

n∑
i=1

[ ∑
q0<j≤q

(β0(tT−j)− α̂qj)X̃i(tT−j)

]2
= Op(n

−1).

Assumption 4 When q2 is as in Assumption 3,

(a) sup
q0≤q≤q2

∣∣∣∣ 1n
n∑
i=1

(εi − ε̄)
∑

1≤j≤q0

(α0,j − α̂qj)X̃i(tT−j)

∣∣∣∣ = Op(n
−1),

(b) sup
q0≤q≤q2

∣∣∣∣ 1n
n∑
i=1

(εi − ε̄)
∑
q<j≤T

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

∣∣∣∣ = Op(n
−1),

(c) sup
q0<q≤q2

∣∣∣∣ 1n
n∑
i=1

(εi − ε̄)
∑

q0<j≤q

(β0(tT−j)− α̂qj)X̃i(tT−j)

∣∣∣∣ = Op(n
−1).
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Assumption 5 The independent and identically distributed errors εi are independent of

the predictors. We further assume E(XTX) + E(ε2) < ∞ with E(ε) = 0, where Xn×T =

(X(t0), X(t1), . . . , X(tT−1)).

Assumption 6 Writing the singular value decomposition of the covariance matrix of X

as K(k1,k2) = cov(X(tk1), X(tk2)) =
∑T

j=1 vjψjψ
T
j where v1 ≥ v2 · · · > 0 are eigenvalues,

and ψ1,ψ2, . . . are the corresponding eigenvectors, we assume that the eigenvalues decay

sufficiently fast so that the condition
∑T

j=1 v
1/2
j

∥∥ψj

∥∥
∞ <∞ holds.

We are now ready to state our main result.

Theorem 1 If q̂ is any value of q which minimises (6) on the interval [q1, q2] when q1 and

q2 are chosen to satisfy 1 ≤ q1 < q0 < q2 < T , then under the Assumptions 1–6, we have

P (q̂ = q0)→ 1 as n→∞.

Technical proof of Theorem 1 is available in Appendix A. We end this section with

further brief justification of our assumptions by comparing them to similar assumptions

made in some related recent works.

The B-spline expansion employed in this article can be replaced with other bases, for

instance the set of eigenfunctions of the covariance operator of X(t). Cai and Hall (2006)

investigate this case and derive the parametric rates with this methodology. Hall and

Hooker (2016) mention that the methods used by Cai and Hall (2006) can give the rate

of convergence of βq(t) in (n−1/2, n0) for Assumption 3-(b) under appropriate smoothness

conditions for β(t), X(t) and the covariance function measured by the spacing of the

eigenvalues in a fully functional setting (that is, when q = 0 in our case). Similarly,

Crambes et al. (2009) derive the rate of convergence for the general spline classes which is

comparable to that of Cai and Hall (2006), under the usual smoothness assumptions on β(t)

and X(t) defined by the continuity of its derivatives. The methods used in Crambes et al.

(2009) can give the rate in Assumption 3-(b) under appropriate smoothness conditions for

β(t) and X(t) in a full functional setting. Since our model contains scalar covariates and

has the ridge type penalty in (8), we postulate the same or slightly slower rates, which are

also supported by our numerical experience.

6 Discussion

The SRP model represents a compromise between a completely unregularised and a com-

pletely regularised linear model in that it keeps all the effects as non-zero but partitions
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them into two classes of regularity. This makes it a useful alternative to sparsity-based

approaches as retaining the smooth non-zero regression parameter can be beneficial for

prediction, as this paper demonstrates.

The SRP approach can in principle be applied in any context in which potential regres-

sors have been pre-ordered in terms of their importance as is the case in the time series

setting studied in this paper.

Appendix A Technical proofs

The proof of Theorem 1 in Section 5 is presented. The preparatory lemma is developed in

A.1 and the main part of the proof is presented in A.2.

A.1 Lemma 1

Let 1 ≤ q1 < q0 as in Assumption 2. If Assumptions 1, 2, 5 and 6 hold then, uniformly in

q ∈ [q1, q0),

(a)
1

n

n∑
i=1

(εi − ε̄)
{ q∑
j=1

(α0,j − α̂qj)X̃i(tT−j)

}
= Op(n

−1/2|q|),

(b)
1

n

n∑
i=1

(εi − ε̄)
{ T∑
j=q0+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

}
= Op(n

−1/2|T − q0|),

(c)
1

n

n∑
i=1

(εi − ε̄)
{ q0∑
j=q+1

(α0,j − β̂q(tT−j))X̃i(tT−j)

}
= Op(n

−1/2|q0 − q|).

Our Lemma 1 is similar to the Lemma in the recent work of Hall and Hooker (2016) who

study the consistency of truncation point in functional linear regression with one functional

predictor. The proof of Lemma 1 can be simply obtained by following the methods used

in Hall and Hooker (2016) and by having a discrete version of it, i.e. replacing a curve

with a vector, under our assumptions.

A.2 Proof of Theorem 1

Let q1 and q2 as in Assumptions 2 and 3, respectively. SinceXi(tT ) = µ+
∑q0

j=1 α0,j{Xi(tT−j)−
EX(tT−j)} +

∑T
j=q0+1 β0(tT−j){Xi(tT−j) − EX(tT−j)} + εi, we have Xi(tT ) − X̄(tT ) =∑q0

j=1 α0,jX̃i(tT−j) +
∑T

j=q0+1 β0(tT−j)X̃i(tT−j) + (εi − ε̄), thus M(q) defined in (7) of Sec-

tion 2.1 is expanded as
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M(q) =
1

n

n∑
i=1

[
Xi(tT )− µ̂−

q∑
j=1

α̂qjXi(tT−j)−
T∑

j=q+1

β̂q(tT−j)Xi(tT−j)

]2

=
1

n

n∑
i=1

[
Xi(tT )− X̄(tT )−

q∑
j=1

α̂qjX̃i(tT−j)−
T∑

j=q+1

β̂q(tT−j)X̃i(tT−j)

]2

=
1

n

n∑
i=1

[ q0∑
j=1

α0,jX̃i(tT−j) +
T∑

j=q0+1

β0(tT−j)X̃i(tT−j)−
q∑
j=1

α̂qjX̃i(tT−j)

−
T∑

j=q+1

β̂q(tT−j)X̃i(tT−j) + (εi − ε̄)
]2
,

where q ∈ [q1, q2]. M(q) has a different form for three cases: 1) q > q0, 2) q < q0 and 3)

q = q0. Firstly, if q > q0, for q ∈ (q0, q2], we have

M(q) =
1

n

n∑
i=1

[
q0∑
j=1

(α0,j − α̂qj)X̃i(tT−j) +
T∑

j=q+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

+

q∑
j=q0+1

(β0(tT−j)− α̂qj)X̃i(tT−j) + (εi − ε̄)

]2
. (A.1)

If q < q0, for q ∈ [q1, q0),

M(q) =
1

n

n∑
i=1

[
q∑
j=1

(α0,j − α̂qj)X̃i(tT−j) +
T∑

j=q0+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

+

q0∑
j=q+1

(α0,j − β̂q(tT−j))X̃i(tT−j) + (εi − ε̄)

]2
. (A.2)

Lastly, when q = q0,

M(q) =
1

n

n∑
i=1

[
q0∑
j=1

(α0,j − α̂q0j )X̃i(tT−j) +
T∑

j=q0+1

(β0(tT−j)− β̂q0(tT−j))X̃i(tT−j) + (εi − ε̄)

]2
.

(A.3)

A.2.1 Convergence rates of M(q) for three cases

Now we explore the behaviour of M(q). For the first case, 1) q > q0, under Assumptions

3 and 4, (A.1) simplifies to
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M(q) =
1

n

n∑
i=1

{ q0∑
j=1

(α0,j − α̂qj)X̃i(tT−j)

}2

+
1

n

n∑
i=1

{ T∑
j=q+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

}2

+
1

n

n∑
i=1

{ q∑
j=q0+1

(β0(tT−j)− α̂qj)X̃i(tT−j)

}2

+
2

n

n∑
i=1

(εi − ε̄)
{ q0∑
j=1

(α0,j − α̂qj)X̃i(tT−j)

}

+
2

n

n∑
i=1

(εi − ε̄)
{ T∑
j=q+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

}

+
2

n

n∑
i=1

(εi − ε̄)
{ q∑
j=q0+1

(β0(tT−j)− α̂qj)X̃i(tT−j)

}
+

1

n

n∑
i=1

(εi − ε̄)2

=Op(1/n) + V, (A.4)

uniformly in q ∈ (q0, q2], where V refers to the error term which does not depend on q. In

the second case, 2) q < q0, using Lemma 1, (A.2) simplifies to

M(q) =
1

n

n∑
i=1

{ q∑
j=1

(α0,j − α̂qj)X̃i(tT−j)

}2

+
1

n

n∑
i=1

{ T∑
j=q0+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

}2

+
1

n

n∑
i=1

{ q0∑
j=q+1

(α0,j − β̂q(tT−j))X̃i(tT−j)

}2

+
2

n

n∑
i=1

(εi − ε̄)
{ q∑

j=1

(α0,j − α̂qj)X̃i(tT−j)

}

+
2

n

n∑
i=1

(εi − ε̄)
{ T∑
j=q0+1

(β0(tT−j)− β̂q(tT−j))X̃i(tT−j)

}

+
2

n

n∑
i=1

(εi − ε̄)
{ q0∑
j=q+1

(α0,j − β̂q(tT−j))X̃i(tT−j)

}
+

1

n

n∑
i=1

(εi − ε̄)2

=M1(q) +M2(q) +M3(q) +Op(n
−1/2|q|) +Op(n

−1/2|T − q0|) +Op(n
−1/2|q0 − q|) + V,

(A.5)

uniformly in q ∈ [q1, q0), where

M1(q) =
∑

1≤k1,k2≤q

{α0,k1 − α̂
q
k1
}{α0,k2 − α̂

q
k2
}K̂(k1,k2), (A.6)

M2(q) =
∑

q0+1≤k1,k2≤T

{β0(tT−k1)− β̂q(tT−k1)}{β0(tT−k2)− β̂q(tT−k2)}K̂(k1,k2), (A.7)

M3(q) =
∑

q+1≤k1,k2≤q0

{α0,k1 − β̂q(tT−k1)}{α0,k2 − β̂q(tT−k2)}K̂(k1,k2), (A.8)

and K̂(k1,k2) is the empirical version of K defined in Assumption 6. Now we define

κ3(q) =
∑

q+1≤k1,k2≤q0

{α0,k1 − β̂q(tT−k1)}{α0,k2 − β̂q(tT−k2)}K(k1,k2),
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to deal with M3(q). If we show that, for any bounded vector z = (z0, ..., zT−1)
T ,

sup
u,v∈[0,T−1]

∣∣∣∣ v∑
k1=u

v∑
k2=u

zk1zk2
{
K̂(k1,k2) −K(k1,k2)

}∣∣∣∣→ 0 in probability, (A.9)

then we can argue that supq∈[q1,q0)
∣∣M3(q) − κ3(q)

∣∣ → 0 in probability by taking a vector

z with its elements zj = (α0,j − β̂q(tT−j)) if q + 1 ≤ j ≤ q0 and zj = 0 otherwise.

We can simply derive (A.9) under Assumption 5 and the appropriate inequalities as in

Hall and Hooker (2016). Similarly, κ1(q) and κ2(q) can be defined for M1(q) and M2(q),

respectively and following from Assumption 2, κ1(q), κ2(q) and κ3(q) are strictly positive

whenever q < q0.

Lastly, when q = q0, under Assumptions 3 and 4, (A.3) can be simplified as

M(q) =
1

n

n∑
i=1

{ q0∑
j=1

(α0,j − α̂q0j )X̃i(tT−j)

}2

+
1

n

n∑
i=1

{ T∑
j=q0+1

(β0(tT−j)− β̂q0(tT−j))X̃i(tT−j)

}2

+
2

n

n∑
i=1

(εi − ε̄)
{ q0∑
j=1

(α0,j − α̂q0j )X̃i(tT−j)

}

+
2

n

n∑
i=1

(εi − ε̄)
{ T∑
j=q0+1

(β0(tT−j)− β̂q0(tT−j))X̃i(tT−j)

}
+

1

n

n∑
i=1

(εi − ε̄)2

=Op(1/n) + V. (A.10)

A.2.2 Expansions of SIC(q) based on M(q)

To prove Theorem 1, it suffices to show that SIC(q)− SIC(q0) is positive for both cases

1) q > q0 and 2) q < q0. If q > q0, for ε > 0,

SIC(q)− SIC(q0) =n · log

(
M(q)

M(q0)

)
+ (q − q0) · log n

=n · log

(
1− M(q0)−M(q)

M(q0)

)
+ (q − q0) · log n

≥− n(1 + ε)

(
M(q0)−M(q)

M(q0)

)
+ (q − q0) · log n.

Since M(q0) − M(q) = Op(1/n) for q > q0 by (A.4) and (A.10), SIC(q) − SIC(q0) is

guaranteed to be positive as n→∞.

Conversely, if q < q0,

SIC(q)− SIC(q0) =n · log

(
M(q)

M(q0)

)
+ (q − q0) · log n

≥n · log

(
M(q)

M(q0)

)
− q0 · log n.
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Since it can be simply shown that M(q)
M(q0)

> 1 + 1
n

for q > q0 from (A.5) and (A.10),

SIC(q)− SIC(q0) is guaranteed to be positive as n→∞. Hence, we simply deduce that

P (q̂ = q0)→ 1 as n→∞.
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