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We investigate the time-varying ARCH (tvARCH) process. It is
shown that it can be used to describe the slow decay of the sample
autocorrelations of the squared returns often observed in financial
time series, which warrants the further study of parameter estimation
methods for the model.

Since the parameters are changing over time, a successful estima-
tor needs to perform well for small samples. We propose a kernel
normalised-least-squares (kernel-NLS) estimator which has a closed
form, and thus outperforms the previously proposed kernel quasi-
maximum likelihood (kernel-QML) estimator for small samples. The
kernel-NLS estimator is simple, works under mild moment assump-
tions, and avoids some of the parameter space restrictions imposed
by the kernel-QML estimator. Theoretical evidence shows that the
kernel-NLS estimator has the same rate of convergence as the kernel-
QML estimator. Due to the kernel-NLS estimator’s ease of computa-
tion, computationally intensive procedures can be used. A prediction-
based cross-validation method is proposed for selecting the band-
width of the kernel-NLS estimator. Also, we use a residual-based
bootstrap scheme to bootstrap the tvARCH process. The bootstrap
sample is used to obtain pointwise confidence intervals for the kernel-
NLS estimator. It is shown that distributions of the estimator using
the bootstrap and the “true” tvARCH estimator asymptotically co-
incide.

We illustrate our estimation method on a variety of currency ex-
change and stock index data for which we obtain both good fits to
the data and accurate forecasts.
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2 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

1. Introduction. Among models for log-returns X; = log(P;/P;—1) on specu-
lative prices P (such as currency exchange rates, share prices, stock indices, etc.),
the stationary ARCH(p) (Engle, 1982) and GARCH(p, q) (Bollerslev, 1986; Taylor,
1986) processes have gained particular popularity and have become standard in the
financial econometrics literature as they model well the volatility of financial mar-
kets over short periods of time. For a review of recent advances on those and related
models, we refer the reader to Fan & Yao (2003) and Giraitis et al. (2005).

The modelling of financial data using non-stationary time series models has re-
cently attracted considerable attention. Arguments for using such models were laid
out, for example, in Fan et al. (2003), Mikosch & Starica (2000, 2003, 2004), Mer-
curio & Spokoiny (2004a, 2004b), Starica & Granger (2005) and Fryzlewicz et al.
(2006).

Recently, Dahlhaus & Subba Rao (2006) generalised the class of ARCH(p) pro-
cesses to include processes whose parameters were allowed to change “slowly” through
time. The resulting model, called the time-varying ARCH(p) (tvARCH(p)) process,
is defined as

t u t
(1) Xt.N = 0t NZt, O’tz,N = ao <N) + Zaj <N) Xt2—j,N’
j=1

for t =1,2...,N, where {Z;}; are independent and identically distributed random
variables with E(Z;) = 0 and E(Z?) = 1. In this paper, we focus on how the
tvARCH(p) process can be used to characterise some of the features present in
financial data, estimation methods for small samples, bootstrapping the tvARCH(p)
process, and the fitting of the tvARCH(p) process to data.

In Section 2, we show how the tvARCH(p) process can be used to describe the slow
decay of the sample autocorrelations of the squared returns often observed in finan-
cial log-returns and usually attributed to the long memory of the underlying process.
This is despite the true non-stationary correlations decaying geometrically fast to
zero. Thus, the tvARCH(p) process, due to its nonstationarity, captures the appear-
ance of long memory, which is present in many financial datasets: a feature also
exhibited by a short memory GARCH(1,1) process with structural breaks (Mikosch
& Stéarica, 2000, 2003, 2004 — note that this effect goes back to Bhattacharya et
al., 1983).

The benchmark method for the estimation of stationary ARCH(p) parameters
is the quasi-maximum likelihood (QML) estimator. Motivated by this, Dahlhaus &
Subba Rao (2006) use a localised kernel-based quasi-maximum likelihood (kernel-
QML) method for estimating the parameters of a tvARCH(p) process. However,
the kernel-QML estimator for small sample sizes is not very reliable, since the QML
tends to be shallow about the minimum for small sample sizes (Shephard, 1996; Bose
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& Mukherjee, 2003). This is of particular relevance to tvARCH(p) processes, where
in regions of nonstationarity we need to base our estimator on only a few observations
to avoid a large bias. Furthermore, the parameter space of the kernel-QML estimator
is restricted to inf; a;(u) > 0. However, it is suggested in the examples in Section 6
that over large periods of time some of the higher order parameters should be zero.
This renders the assumption inf; a;(u) > 0 rather unrealistic. In addition, evaluation
of the kernel-QML estimator at every time point is computationally quite intensive.
Therefore, bandwidth selection based on a data driven procedure, where the kernel-
QML estimator has to be evaluated at each time point for different bandwidths,
may not be feasible for even moderately large sample sizes.

A rival class of estimators are least-squares-based, and are known to have good
small-sample properties (Bose & Mukherjee, 2003). These type of estimators will be
the focal point in this paper. In Section 3 and the following sections, we propose and
thoroughly analyse a (suitably localised and normalised) least-squares-type estima-
tor for the tvARCH(p) process which, unlike the kernel-QML estimator mentioned
above, enjoys the following properties: (i) very good performance for small samples,
(i) simplicity and closed form, and (iii) rapid computability. In addition, it does
allow inf;a;(u) = 0, thereby avoiding the parameter space restriction described
above.

In Section 3.1, we consider a general class of localised weighted least-squares
estimators for tvARCH(p) process and study their sampling properties. We show
that their small sample performance, sampling properties and moment assumptions
depend on the weight function used.

In Section 3.3, we investigate weight functions that lead to estimators which are
close to the kernel-QML estimator for large samples and easy to compute. In fact,
we show that the weight functions which have the most desirable properties contain
unknown parameters. This motivates us, in Section 3.4, to propose the two-stage
kernel normalised-least-squares (kernel-NLS) estimator, where in the first stage we
estimate the weight function, which we use in the second stage as the weight in the
least-squares estimator. The two-stage kernel-NLS estimator has the same sampling
properties as if the true weight function were a priori known, and has the same rate
of convergence as the kernel-QML estimator. In Section 3.6, we state some of the
results from extensive simulation studies which show that for small sample sizes the
two-stage kernel-NLS estimator performs better than the kernel-QML estimator.
This suggests that, at least in the non-stationary setup, the two-stage kernel-NLS
estimator is a viable alternative to the kernel-QML estimator.

In Section 4, we propose a cross-validation method for selecting the bandwidth
of the two-stage kernel-NLS estimator. The proposed cross-validation procedure for
tvARCH(p) processes is based on one-step-ahead prediction of the data to select the
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4 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

bandwidth. The closed form solution of the two-stage kernel-NLS estimator means
that, for every bandwidth, the estimator can be evaluated rapidly. The computation
ease of the two-stage kernel-NLS estimator means that it is simple to implement
a cross-validation method based on this scheme. We discuss some of the imple-
mentation issues associated with the procedure and show that its computational
complexity remains low.

In Section 5, we bootstrap the tvARCH(p) process. This allows us to obtain
finite sample pointwise confidence intervals for the tvARCH(p) parameter estima-
tors. The scheme is based on bootstrapping the estimated residuals, which we use,
together with the estimated tvARCH(p) parameters, to construct the bootstrap
sample. Again, the fact that the bootstrapping scheme is computationally feasible
is only due to the rapid computability of the two-stage kernel-NLS estimator. We
show that the distribution of the bootstrap tvARCH(p) estimator asymptotically
coincides with the “true” tvARCH(p) estimator. The method and results in this
section may also be of independent interest.

In Section 6, we demonstrate that our estimation methodology gives a very good
fit to data for the USD/GBP currency exchange and FTSE stock index datasets,
and we also exhibit bootstrap pointwise confidence intervals for the estimated pa-
rameters. In Section 7, we test the long-term volatility forecasting ability of the
tvARCH(p) process with p = 0,1,2, where the parameters are estimated via the
two-stage kernel-NLS estimator. We show that, for a variety of currency exchange
datasets, our forecasting methodology outperforms the stationary GARCH(1,1) and
EGARCH(1,1) techniques. However, it is interesting to observe that the latter two
methods give slightly superior results for a selection of stock index datasets.

Proofs of the results in the paper are provided in the Appendix.

2. The tvARCH(p) process: preliminary results and motivation. In
this section, we discuss some of the properties of the tvARCH(p) process.

2.1. Notation, assumptions and main ingredients. We first state the assumptions
used throughout the paper.

ASSUMPTION 1. Suppose {X; n}i is a tvARCH(p) process. We assume that the
time-varying parameters {a;(u)}; and the innovations {Z;}; satisfy the following
conditions

(i) There exist 0 < p1 < ps < o0 and 0 < § < 1 such that, for all u € (0,1],
p1 < ag(u) < p2, and sup, Z§:1 aj(u) <1—9;
(i) There exist 5 € (0,1] and a finite constant K > 0 such that for u,v € (0,1]

laj(u) —aj(v)| < Klu—wv|®  for each j=0,1,...,p;
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(iii) For some v >0, E (|Zt|4(1+7)) < 005
(i) For somen >0 and 0 <6 < 1, miqy,sup, Z§:1 aj(u) <1—9, where miq, =
{E(|Z,|2(H+m) 1/ Atn)

Assumption 1(i) implies that sup, x E (th N) < 00. Assumption 1(4,4i) means
that the tvARCH(p) process can locally be approximated by a stationary process.
We require Assumption 1(éii,iv) to show asymptotic normality of the two-stage
kernel-NLS estimator (defined in Section 3.4). Comparing my,sup, >-"_; aj(u) <
1 — 0 with the assumption required to show asymptotic normality of the kernel-
QML estimator (mq sup,, 21;:1 aj(u) < 1 — 6, where we note that m; = 1), it is
only a mildly stronger assumption, as we only require it to hold for some n >
0. In other words, if the moment function m, increases smoothly with v, and
mq Sup,, Z§:1 aj(u) < 1 —0, then there exists a n > 0 and 0 < 6; < 1 such that
M4y SUD, Z§:1 aj(u) <1 —6; (which satisfies Assumption 1(iv)).

In order to prove results concerning the tvARCH(p) process, Dahlhaus & Subba
Rao (2006) define the stationary process { X;(u)}:. Let u € (0, 1] and suppose that,
for each fixed u, {X;(u)}; satisfies the model

(2) Xi(u) =6:(u)Z, 67 (u) +Z% VX7

The following lemma is a special case of Corollary 4.2 in Subba Rao (2006),
where it was shown that {X?(u)}; can be regarded as a stationary approximation
of the non-stationary process {th,N}t about u ~ t/N, which is why {X; n}; can
be regarded as a locally stationary process. We can treat the lemma below as the
stochastic version of Holder continuity.

LEMMA 1.  Suppose {X: n}+ is a tvARCH(p) process which satisfies Assumption
1(i,ii), and let {X;(u)}; be defined as in (2). Then, for each fired u € (0,1], we have
that {X?(u)}; is a stationary, ergodic process such that

~ 1 B
(3) ‘XE,N — X2 (u)| < WVt’N + |u ’ Wy, almost surely,

and |X?(u) — X2(v)| < |u —v|[’W;, almost surely, where {Vi '} and {W;}; are
well-defined positive processes, and {Wi}s is a stationary process. In addition, if

we assume that Assumption 1(iv) holds, then we have sup; y E|V; x| < oo and
E[W 1" < .

Several of the estimators considered in this paper (e.g., the estimators defined in
(4) and (7), etc.) are local or global averages of functions of the tvARCH(p) process.

imsart-aos ver. 2005/02/28 file: trNLS-Rev.tex date: June 12, 2007



6 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

Unlike stationary ARCH(p) (or more general stationary) processes, we cannot study
the sampling properties of these estimators by simply letting the sample size grow.
Instead, we use the rescaling by IV to obtain a meaningful asymptotic theory. The
underlying principle to studying an estimator at a particular time ¢, is to keep
the ratio t/N fixed and let N — oo (Dahlhaus, 1997). However, the tvARCH(p)
process varies for different N, which is the reason for introducing the stationary
approximation. Throughout the paper, P and 2 denote convergence in probability

and in distribution, respectively.

2.2. The covariance structure and the long memory effect. The following propo-
sition shows the behaviour of the true autocovariance function of the squares of a
tvARCH(p) process.

PROPOSITION 1. Suppose {X¢ n}e is a tvARCH(p) process which satisfies As-
sumption 1(i,i1), and assume that {IE(Z;‘)}I/2 sup, 25—y aj(u) < 1 -6, for some
0 <6 < 1. Then, for some p € (1 —9,1) and a fized h > 0, we have

2 2 h
cup e (X2 X, < B
t7

for some finite constant K > 0 that is independent of h.

If the fourth moment of the process {X; n}; exists, then Proposition 1 implies
that { X7y} is a short memory process.

However, we now show that the sample autocovariance of the process {Xt2 N o
computed under the wrong premise of stationarity, does not necessarily decay to
zero. Typically, if we believed that the process {th N }+ were stationary, we would
use Sy (h) as an estimator of COV{Xt%N, Xt2+h7N}, where

1 = o2 . 1 =
4)  Snlh) =H— > Xin Xty — (Xn)" and Xy = N > Xin-
t=1 t=

Denote (1) = E(X?(u)) and ¢(u, h) = cov{Xf(u),Xﬁrh(u)} for each u € (0,1] and
h > 0.

The following proposition shows the behaviour of the sample autocovariance of
the squares of a tvARCH(p) process, evaluated under the wrong assumption of

stationarity.

PROPOSITION 2. Suppose {X¢ n}e is a tvARCH(p) process which satisfies As-
sumption 1(1,ii), and assume that, for some 0 < ( <2 and 0 < 4§ < 1,

1/(2
{E (]Zt\2(2+<))} /20 sup, >5_y aj(u) <1 —4. Then, for fived h >0, as N — oo,
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we have
» [l
(5) Sn(h) = /0 c(u, h)du + //{O<u<v<1} {p(u) — p(v)}? dudo.

According to Proposition 2, since the autocovariance of the squares of a tvARCH(p)
process decays to zero exponentially fast as h — oo, so does the first integral in (5).
However, the appearance of persistent correlations would still appear if the sec-
ond integral were non-zero. We consider the simple example when the mean of the
squares increases linearly, that is if u(u) = cu, for some nonzero constant c. In this
case, the second integral in (5) reduces to ¢2/12. In other words, the long memory
effect is due to changes in the unconditional variance of the tvARCH(p) process.

3. The kernel-NLS estimator and its asymptotic properties. Typically,
to estimate the parameters of a stationary ARCH(p) process, a QML estimator is
used, where the likelihood is constructed as if the innovations were Gaussian. The
main advantage of the QML estimator is that, even in the case that the innovations
are non-Gaussian, it is consistent and asymptotically normal. In contrast, Strau-
mann (2005) has shown that under misspecification of the innovation distribution,
the resulting non-Gaussian maximum likelihood estimator is inconsistent. As it is
almost impossible to specify the distribution of the innovations, this makes the QML
estimator the benchmark method when estimating stationary ARCH(p) parameters.

A localised version of the QML estimator is used to estimate the parameters of
a tvARCH(p) process in Dahlhaus & Subba Rao (2006). To prove the sampling
results, the asymptotics are done in the rescaled time framework. In practice, a
good estimator is obtained if the process is close to stationary over a relatively large
region. However, the story is completely different over much shorter regions. As
noted in the Section 1, in estimation over a short period of time (which will often
be the case for nonstationary processes) the performance of the QML estimator is
quite poor.

Rival methods are least-squares-type estimators, which are known to have good
small sample properties. In this section, we focus on kernel weighted least-squares
as a method for estimating the parameters of a tvARCH(p) process. To this end,
we define the kernel W : [-1/2,1/2] — R, which is a function of bounded variation

and satisfies the standard conditions: f_152 W(z)dx =1 and f_lﬁz W2(x)dr < oco.

3.1. Kernel weighted least-squares for tvARCH(p) processes. It is straightfor-
ward to show that the squares of the tvARCH(p) process satisfy the autoregressive
representation X7y = ao (%) + Yhoia (%) XE_LN + (2} — 1)o} . For reasons
that will become obvious later, we weight the least squares representation with the
weight function (ug, Xy—1 n), where XI;[—LN = (1,X,3_1,N, . ’X]%—p,N)7 and define
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8 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

the following weighted least-squares criterion

N 2 P 2 2
1 to—k\ (Xigny—ao0o—> 5 a;Xi_
(6) ﬁto,N(Q): E WW( 0 )( kN 0 Z]—l Jk J,N) '

k=p+1 bN k(uo, Xp—1,n)?
If jug—to/N| < 1/N, we use d, y as an estimator of a(ug) = (ao(u), a1 (v), ..., ap(u))?,
where
(7) ay,, N = argming Ly, N (a)-

Since @, y is a least-squares estimator, it has the advantage of a closed form solution,

. ~ -1
Le., Qto,N = {Rto,N} fto,N? Where

N T
1 to— k\ Xe-1,8X;_
Rto,N = Z —W < 0 ) FoLNTh 171\;7
k=p+1 bN bN H,(’u,o, Xk—l,N)
N to—k\ XZnXe-1n
T4y, N = Z —W ’ 5+
’ k—pt1 bN bN /i(’LL(], Xk—l,N)

3.2. Asymptotic properties of the kernel weighted least-squares estimator. We
now obtain the asymptotic sampling properties of a,, x-

To show asymptotic normality we require the following definitions

G () Xpp—1 () X (u)

_ fk—l(u)/fg—1 (u)
K (o, ?Ek—l (u)*

® A= A )

, Dy (u) =

)

and

N <t0—k> [ {ngN—ao—E’;’:lan,f_j,N}z

9) B Q) = —W
( ) tO,N(_) k:;_l bN bN H(UO,Xk—l,N)z

{XP(u0) — a0 — 3_y o XE_(ug) }?
K (uo, ?Ek—l(u))2

)

where X;_1(u) = (I,Xf_l(u),...,Xf_p(u)). We point out that if {X; y}+ were a
stationary process then By, y(a) = 0.

In the following proposition we obtain consistency and asymptotic normality of
a, n- We denote V f(u,a) = (af(“’g),...,afa(sf))T, and set = (1,21, 22,...,2p)

Oag
and y= (17y17y27 v 7yp)’

PROPOSITION 3.  Suppose {X; n}+ is a tvARCH(p) process which satisfies As-
sumption 1(1,4i,iii), and let a, n, Ai(u), Di(u) and By, n(a), be defined as in (7),
(8) and (9), respectively. We further assume that k is bounded away from zero and
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we have a type of Lipschitz condition on the weighted least-squares; that is for all
1 <i<p,| < KZ?ZI |z — y;l|, for some finite constant K > 0.

Yi |

i

pluz)  w(wy)
X4

Also, assume for all 1 < i < p that supy yE <m> < 00, and suppose

|ug — to/N| < 1/N.

(i) Then we have 4y, 2 a(up), with b — 0,bN — 0o as N — oo.

(i) If in addition we assume for all 1 < i < p and some v > 0 that
8+42v

supy, v E <X’c—”v) < 00, then we have VB, n(a(ug)) = Oy(b°%) and

K(uo,Xp—1,N)4FV

VON (4, — alu) + 5 VINELA (o))~ VB v a(u)
(10) 2 N (0, wapaE[Ay (o)~ E[Ds (o) E[A(uo)] )
1/2

with b — 0, bBN — oo as N — oo, where wy = f_1/2 W2(z)dx and py =
var (Z2).

At first glance the above assumptions may appear quite technical, but we note
that in the case k(-) = 1, they are standard in least-squares estimation. Furthermore,
if the weight function x is bounded away from zero and Lipschitz continuous (i.e.,
sup, ,, [k(u, z) — k(u,y)| < KZ?ZI |z; — y;|, for some finite constant K > 0), then
it is straightforward to see that |ﬁ - %| <K Z§:1 |z; — y;|. In the following
section, we will suggest a k(-) that is ideal for tvARCH(p) estimation and satisfies

the required conditions.

3.3. Choice of weight function k. By considering both theoretical and empirical
evidence, we now investigate various choices of weight functions. To do this, we
study Proposition 3, and consider the x which yields an estimator which requires
only weak moment assumptions and has minimal error (see (10)). Considering first
the bias in (10), if VONbB? — 0, then the bias converges in probability to zero.
Instead we focus attention (i) on the variance E[A(ug)] ™ E[Ds(uo)E[A¢(uo)] ! and
(ii) on derivation under low moment assumptions.

In the stationary ARCH framework, Giraitis & Robinson (2001), Bose & Mukher-
jee (2003), Horvath & Liese (2004) and Ling (2006) have considered the weighted
least-squares estimator for different weight functions. Giraitis & Robinson (2001) use
the Whittle likelihood to estimate the parameters of a stationary ARCH(o0) process.
Adapted to the nonstationary setting, the local Whittle likelihood estimator and the
local weighted least-squares estimator are asymptotically equivalent when x(-) = 1.
Studying their assumptions, sup, y E(XéN) < 00 and sup; y E(XEJJ(,Z”) < oo, for
some v > 0, are required to show consistency and asymptotic normality. Assuming
normality of the innovations {Z;}; and interpreting these conditions in terms of the
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10 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

coefficients of the tvARCH(p) process, they imply that sup,, Z§:1 aj(u) < 1/v/3 is
required for consistency and sup,, ;-):1 a;(u) < 1/{E(Z5T2)}1/(4+Y) for asymptotic
normality. In other words, the tvARCH(p) process should be close to a white noise
process for the sampling results to be valid.

On the other hand, Bose & Mukherjee (2003) use a two-stage least-squares pro-
cedure to estimate the stationary ARCH(p) parameters. In the first stage, they
use least-squares with weight function x(-) = 1 and in the second stage — a least-
squares estimator with x = 67, where 67 is an estimator of the conditional variance.
An advantage of their scheme is that, asymptotically, it has the same distribution
variance as the QML estimator. However, because in the first stage they use the
weight k() = 1, their method requires the same set of assumptions as in Giraitis &
Robinson (2001).

To reduce the high moment restrictions, Horvath & Liese (2005) use random
weights of the form x(u, Xy—1 n) = 1—1—29721 X,%_j’N to estimate stationary ARCH(p)
parameters, and Ling (2006) uses a similar weighting to estimate the parameters of
a stationary ARMA-GARCH process. The main advantage of using this choice of
weight functions is that under Assumption 1(i,14i,4i7) the moment assumptions in
Proposition 3 are satisfied.

Motivated by the discussion above, let us consider weight functions which have
the form w(u, X —1n) = g(u) + XF_, pj(u)Xg_LN. We will make some compar-
isons with the kernel-QML estimator considered in Dahlhaus & Subba Rao (2006),
who showed that the kernel-QML estimator is asymptotically normal with variance
wa s B[S (ug)] !, where

?a;_l (uo)TQEt—l (UO) ‘

(11) Et(’LL(]) = &f(UO)

It is worth noting that if {p;(u)} are bounded away from zero, then the condi-
tions in Proposition 3 are fulfilled with no additional assumptions. For the pur-
poses of this discussion only, let us assume for a moment that inf;a;(u) > 0 (al-
though this is not a requirement for our estimation methodology to be valid). In
order to select g(-) and p;(-), we first observe that if a(ug) were known then letting
k(ug, Xp—1,n) = ao(uo) + Z§:1 aj(uo)Xl%_LN would be the ideal choice (provided
inf; aj(up) > 0) as the asymptotic variance of the resulting kernel weighted least-
squares estimator would be the same as the kernel-QML estimator. Clearly this
weight function is unknown, and for this reason we call it the ‘oracle’ weight. In-
stead, we look for a closely related alternative, which is computationally simple to
evaluate and avoids the requirement that inf; a;(ug) > 0. Let us consider a weight
function s(u, Xx—1n) = g(u) + 35, X,%_NV (which is in the spirit of the solution
proposed by Horvath & Liese (2005) for stationary ARCH(p) processes) and com-
pare it to the oracle weight. For convenience, we call the estimator using the weight
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ESTIMATION IN TIME-VARYING ARCH MODELS: TECHNICAL REPORT 11

function g(u) + Z§:1 X,f_j’ n the g-estimator, and the estimator using the oracle
weight — the oracle estimator.

Using Proposition 3, we see that the asymptotic distribution variance of the g-
estimator and the oracle estimator is ?,UQ,U4E[.A§Q) (u)]_lE[Dt(g) (u)]E[.Agg) (u)]~! and
wa s B[Y(ug)] 1, respectively, where

)Ek_l(u)&le(u) PO (u) ~]i‘(u)/'?k_1(u)~/1~’g_1(u)
lg(u) + 5 XZ_ ()2’ * lg(u) + 30—y X7 (w)]*

and ¥y(u) is defined in (11). Let a(u) = 3-7_; aj(u), B(u) = 1/min’_, a;(u) and
|Alger denote the determinant of a matrix. By bounding Agg) (u) and Dgg) (u) from

(12) AP (u) =

)

both above and below, we obtain

@(g) B @) < IEAY )] EDE (@)EAP ()] 7
(13) < w(9) S, (w7,

where

w(g) = <a0(U) J;(QU()U) Oé(U)) (Q(U) J;Oﬁ((;t))ao(u)> ,

Examining (13), we have an upper and lower bound for the asymptotic distribution
variance of the g-estimator in terms of the asymptotic variance of the oracle estima-
tor. Tt is easily seen that the difference (w(g)? — w(g)™*)|E[Z:(w)]|; and the up-

ao(u)
[mini <<y a;(u)] Z?Zl aj(u)’

However, g*(u) depends on unknown parameters and is highly sensitive to small

per bound w(g)*|E[%;(u)]|;.}, are minimised when g*(u) =

values of a;(u), hence it is inappropriate as a weight function. Instead, we consider
a close relative g(u) := u(u) = ag(u)/(1 — a(u)), where p(u) = E[X?(u)]. In this
case, using (13), we obtain the following upper and lower bound for the asymp-
totic variance of the kernel weighted least-squares estimator in terms of the oracle

B[S (w)][jho@) ™ < [EAY ()] EDHF (w)]EAF ()] et
(14) < |E[Se(w)]|ghw (),
where

wu) = <1 + ﬁ1<u_> [;(;)oz(u)] >4‘

We notice that the upper and lower bounds in (14) do not depend on the magnitude
of ap(u).

Since -2

1—a(u)
timated from {Xj n}. In the following section we use it to estimate the weight

= E(X?(u)) = u(u), which is the local mean, it can easily be es-
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12 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

function k(ug, Xy—1 n) = p(uo) + Sk—1,n, where Sp_1 N = Z§:1 X,f_j’N. An addi-
tional advantage of this weight function, s(ug, Xx—1,n), is that under Assumption

X i XN
i iy . .
1, sup, yE (m) < oo and supy, y E Rl XY | < 00 are immedi

ately satisfied. Furthermore, |x(u,2)—r(u,y)| < KZ§:1 |z; —y;|, thus |z;/k(u, z) —
yi/k(u,y) < K Z;}:l |z — y;|. Therefore, all the conditions in Proposition 3 hold.

3.4. The two-stage kernel-NLS estimator. We use fiz, v as an estimator of y(up)
(see Lemma 2 in the Appendix), where

N
—~ bNW< bN )kaN'

We use this to define the two-stage kernel-NLS estimator of the tvARCH(p) param-

eters.

(15) IatmN

The two-stage scheme:

(i) Evaluate fi;, v, given in (15), which is an estimator of p(uo);

(i) Let a;, n = {fzto,N} Ty v With Se oy = Y5 X7y, Ko N (Sk—1.v) =
(fito,N + Sk—1,n) and

N T
By 1 to—k\ Xe—1, N1 N
RtoJV = Z w ( )

k=p+1 b_N bIN mtO,N(Sk_l,N)Q ’
(16)
N 2
1 to—k\ XinAr—
Fon = Z WW< ObN ) k,NSk 1,N2.
M Kito,N (Sk—1,N)

If [ug — to/N| < 1/N, we use @, y as an estimator of a(ug). We call @, y the
two-stage kernel-NLS estimator.

3.5. Asymptotic properties of the two-stage kernel-NLS estimator. We derive the
asymptotic sampling properties of Gy N- (We note that because in the first stage we
need to estimate the weight function x(ug, Xx—1) = p(ug) + Sk—1,n, we require the
additional mild Assumption 1(iv), which we use to obtain a rate of convergence for

|t N — pi(uo)]-)

In the following proposition we obtain consistency and asymptotic normality of
iy, -

PROPOSITION 4.  Suppose {X;n}+ is a tvARCH(p) process which satisfies As-
sumption 1(i,ii), and let iz, N, dy, N, AE”) (u) and Dﬁ”) (u) be defined as in (15), the
two stage scheme and (12), respectively. Further, let p(u) = E(X?(u)), and suppose
‘U() — t()/N’ < 1/N.
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(i) Then we have @, y LA a(ug), with b — 0, bN — oo as N — 0.

(ii) If in addition we assume that Assumption 1(iii,iv) holds, then we have

VN (i — alu0)) + 5 VIN{BLAL) (uo)]} ' VB, (a(uo))
(17)
2 N (0, wapa{BLAP (uo)]}E[D (o) {ELAY (uo)]} )

where VBtO,N(Q(uO)) = 0,(b°) and wy and puy are defined as in Proposition 3,
with b — 0, bN — o0 as N — oo.

Comparing the two-stage kernel-NLS estimator with the kernel-QML estimator
in Dahlhaus & Subba Rao (2006), it is easily seen that they both have the same

rate of convergence.

REMARK 1 (An asymptotically optimal estimator). We recall that the oracle
estimator asymptotically has the same variance as the kernel-QML estimator, but
in practice the oracle weight is never known. However, the two-stage kernel-NLS
estimator can be used as the basis of an estimate of the oracle weight. In other words,
using the two-stage kernel-NLS estimator, we define the weight function &li N(uo) =
dto’N(O)—FZ?:l dto,N(j)X;%_jW, where ay, y = (at,n(0), ..., at,n(p)). Then, we use
s, v as an estimator of a(ug), where d;, y = {ﬁto’N}_l T4, n» and ﬁtO,N and Ty n
are defined in the same way as 7~€t07 ~ and T n, with &z ~(uo) replacing (fi, N +

1;»’:1 XE_ j. ~)- The asymptotic sampling results can be derived using a similar proof
to Proposition 4. More precisely, if Assumption 1 holds, b%v/bN — 0, and a;(ug) >0
for all j, then we have

(18) VON (g, — a(uo)) 5 N (0, wapa{E[S:(uo)]} ).

In other words, by using the two-stage kernel-NLS estimator, we are able to estimate
the oracle weight sufficiently well for the parameter to have the same asymptotic
variance as the kernel-QML estimator. We note that, similarly to the kernel-QML
estimator, we require that inf; a;(u) > 0. However, it is suggested in the examples in
Section 6 that over large periods of time some of the higher order parameters should
be zero. This renders the assumption inf; a;(u) > 0 rather unrealistic. Furthermore,
to estimate d,, n, we require an additional stage of computation, which significantly
increases computation time in tasks such as cross-validatory bandwidth choice or
evaluation of bootstrap confidence intervals. Also, small sample evidence suggests
that the performance of the estimators a;, x and d,, y is similar. For this reason, in
the rest of this paper, we focus on @, y, though our results can be generalised to

Qt07N.
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N=15| N=30| N=60| N=100 | N =150 | N =250
ag 0.59 0.69 0.91 1.04 0.96 1.28
a1 0.84 0.73 0.97 0.97 1.10 1.11
a2 0.64 0.68 0.86 0.98 0.94 1.08

Table 1: Ratios of Mean Absolute Errors of two-stage NLS and QML estimators,
averaged over 100 simulated sample paths, for stationary ARCH(2) estimation with
Gaussian errors Z; and (ag, a1, a2) = (1,0.6,0.3). Sample sizes vary from N = 15 to
N = 250.

3.6. Comparison of two-stage kernel-NLS and kernel-QML estimators for small
samples. As mentioned earlier, in a non-stationary setting, it is essential for any
estimator of tvARCH(p) parameters to perform well for small sample sizes. We now
briefly describe the outcome of an extensive simulation study aimed at comparing
the performance of the two-stage NLS and QML estimators on short stretches of
stationary ARCH(2) data. We have tested the two estimators for Gaussian, Laplace
and Student-t errors Z;, and for various points of the parameter space (ag, a1, as).
The two-stage NLS estimator significantly outperformed the QML estimator for very
small sample sizes in almost all of the cases. More complicated patterns emerged
for sample sizes of about 150 and larger, where the performance depended on the
particular point of the parameter space. However, the two-stage NLS estimator was
never found to perform much worse than the QML estimator. We also found the
two-stage NLS estimator to be significantly faster than the QML estimator as it did
not involve an iterative optimisation procedure.

As an example, Table 1 shows the ratios of the Mean Absolute Errors of the
two-stage NLS and QML estimators, averaged over 100 simulated sample paths, for
the following parameter configuration: (ag,a1,a2) = (1,0.6,0.3). The errors Z; are
Gaussian. The above point of the parameter space is “typical” in the sense that it
lies in the interior of the parameter space (and thus is suitable for QML estimation
which requires aj,ag > 0) and that a; > ag as expected in a real-data setting. Also,
it is interesting in that a; + a2 > 1/v/3 and thus the classical (non-normalised)
least-squares estimator, corresponding to x(-) = 1, would not be consistent in this

setup.

4. A cross-validation method for bandwidth selection and implementa-
tion. In this section, we propose a data-driven method for selecting the bandwidth

of the two-stage kernel-NLS estimator.

4.1. The cross-validation bandwidth estimator. Several cross-validation methods

in nonparametric statistics consider the distance between an observation and a pre-
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dictor of that observation given neighbouring observations. For example, Hart (1996)
used a cross-validation method based on the best linear predictor of Y; given the
past to select the bandwidth of a kernel smoother, where Y; was a nonparametric
function plus correlated noise. The methodology we propose is based on the best
linear predictor of X? ' given the past, which is ag (%) + i ag( L) X2 IN

We estimate the parameters {a;(t/N)}; using the localised two stage kernel-NLS
method but omit the observation Xt% y in the estimation. More precisely, we use
@thv(b) (ag“(b),...,a, (b)) as an estimator of {a;(t/N)};, where

B B -1
(19) a k() = {RA®)] k().
with
N T
1 t—k\ X1 NY_in
Rin(b) = —W< > —— =,
e () k;pH bN ON ) (jfu,N + Sk-1,n)?
k#t,....t+p
N 2
1 t—k Xi NXk—1,
nx® = 2 b_NW< bN> ST
k=p+1 (:ut,N+ k—l,N)

By using a;_ L(b), the squared error in predicting Xt% N is given by (th N — g t(b) —

P D)X )2

To reduce the complexity, we suggest only evaluating the cross-validation crite-
rion on a subsample of the observations. Let h be such that h — oo, N/h — oo
as N — oo (in practice h >> p). We implement the cross-validation criterion on
only the subsampled observations {Xgn n : & = 1,...,N/h}. In other words, let
a,;ff?v(b) = (4" (), ... ,d;kh(b)) be the estimator defined in (19) and by normalis-
ing the squared error with the term (ﬂkh,N+Z§:1 X,fh_LN)Q, we define the following

cross-validation criterion

- - 2
Na(b) =+ |
N= (fkn,N 4 2251 X n)?

We then use Ef;pt as the optimal bandwidth, where l;f)‘pt = argminy, Gy p(b). Using
similar arguments to those in Hart (1996), asymptotically, one can show that Gy 5 (b)
is equivalent to the mean-squared error G N, (b), where
2
—kh ~—kh
p N (Xlgh,N —ag (b)) = X4 a; (b)XI%h—j,N)

=1 J
(21)  Gnald E -
Z (fikh,N + Z§:1 X/?h_j,]v)2

It follows that b”

opt is an estimator of by, where b,y = argmin, QNNJL(b). C;N,h(b) is

minimised if a;; v (b) = a(kh/N) and in that case it is asymptotically equal to

1 (Z2 _ 1)20.2(u)
(22) I E{wu) oS S RO } "
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16 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

Therefore, Bﬁ}pt is such that a, Jtv(i)f,‘pt) is close to a(t/N).

It is straightforward to show that the computational complexity of this algorithm
is O(B%N log N), where B is the cardinality of the set of bandwidths tested for the
minimum of the cross-validation criterion. We note that the above rate is unattain-

able for the kernel-QML estimator due to its iterative character.

4.2.  An illustrative example. We illustrate the performance of the proposed
cross-validation criterion by an interesting example of a tvARCH(1) process for
which the parameters ag(-) and a;(-) vary over time but the asymptotic uncondi-
tional variance E(X?(u)) = ag(u)/(1 — a1(u)) remains constant. This means that
sample paths of {X; v }+ will invariably ‘appear stationary’ on visual inspection, and
that more sophisticated techniques are needed to detect the non-stationarity.

The left-hand plot in Figure 1 shows a sample path of length 1024, simulated from
the above process using standard Gaussian errors. The true time-varying parameters
ap(-) and aq1(-) are displayed as dotted lines in the middle and right-hand plots,
respectively. In the estimation procedure, we used the Parzen kernel (a convolution
of the rectangular and triangular kernels) and, for simplicity, set fi; v to be the
sample mean of {Xt2 ~ }¢- To estimate a suitable bandwidth, we applied the proposed
cross-validation procedure described above with h = 10 (empirically, we have found
that for data of length of order 1000, the value h = 10 offers a good compromise
between speed and accuracy of our method). We examined the value of the cross-
validation criterion over a regular grid of bandwidths between 0 and 1, and obtained
the optimal bandwidth as E}O‘pt = 0.132.

The resulting parameter estimates are shown in the middle and right-hand plots
of Figure 1 as solid lines. While we can clearly observe a degree of bias due to
the small sample sizes involved in the estimation, it is reassuring to see that the
resulting estimates correctly trace the shape of the underlying parameters. Denoting
the empirical residuals from the fit by Zt, the p-value of the Kolmogorov-Smirnov
test for Gaussianity of 7, was 0.08, and the p-values of the Ljung-Box test for lack
of serial correlation in Zt, \Zt] and Zf were 0.71, 0.33 and 0.58, respectively.

5. Constructing bootstrap pointwise confidence intervals. In parameter
estimation of linear time series, bootstrap methods are often used to obtain a good
finite sample approximation of the distribution of the parameter estimators. Schemes
based on estimating the residuals are often used (Franke & Kreiss, 1992). Inspired
by these methods, we propose a bootstrap scheme for the tvARCH(p) process, which
we use to construct pointwise confidence intervals for the two-stage kernel-NLS es-
timator. The main idea of the scheme is to use the two-stage kernel-NLS estimator
to estimate the residuals. We construct the empirical distributions from the esti-
mated residuals, sample from it and use this to construct the bootstrap tvARCH(p)
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Flgure 1: Dotted lines in the middle and right plots: the true time-varying parameters ag(u) and aj (u), respectively. The
left plot: a sample path from the model, with Gaussian errors. Solid lines in the middle and right plots: the corresponding
estimates. See Section 4.2 for details.

sample. We show that the distribution of the two-stage kernel-NLS estimator using
the bootstrap tvARCH(p) sample and the “true” tvARCH(p) estimator asymptoti-
cally coincide. We mention that the scheme and the asymptotic results derived here
are also of independent interest and can be used to bootstrap stationary ARCH(p)
processes (for a recent review on resampling and subsampling financial time series
in the stationary context, see Paparoditis & Politis, 2007). We emphasise that un-
like the kernel-QML estimator, this computer-intensive procedure is feasible for the
kernel-NLS estimator due to its rapid computability.

Let ay, n = (aty,n(0), - - ., Gy, N (p)). We first note that Assumption 1(i) is usually
imposed in the tvARCH framework, because it guarantees that almost surely every
realisation of the resulting process is bounded. When the sum of the coefficients
is greater than one, the corresponding process is unstable. The following residual
bootstrap scheme constructs the tvARCH(p) process from estimates of the residuals
and the parameter estimators. Despite a;, x A a(up), it is not necessarily true that
the sum of the parameter estimates satisfies Z?Zl ary,N(7) < 1. To overcome this, we
now define a very slight modification of the two-stage kernel-NLS estimator which
guarantees that this sum is less than one. Let @, x = (a¢,,n(0), ..., Gy n(p)), where
dtmN(O) = dto,N(O) and, for j > 1,

_ ) ao N () if ) a () <1-6,
@) a0 =Y 1 gt @ S G () > 16

Z?:l atOyN(j)

Since @, n i a(up) and 21;:1 aj(u) <1—06 (Assumption 1(i)), it is straightforward

to see that a;, i aug) and 3-%_; ag, n(j) <1 —4.

The Residual bootstrap of the tvARCH(p) process:
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(i) If k € [to—bN,to+bN —1], using the parameter estimators construct residuals
2
52 _ Xin
Ao, N (0) + 3284 dto,N(j)Xi_j,N

(i) Define Z? = Z? — o ZZ‘):J;?)]X b_]\l, Z? 41 and consider the empirical distribution

function
) 1 to+bN—1 R
Ft07N(:E) = IN Z H(—oo,x}( 13)7
bN k=to—bN

where [4(y) = 1 if y € A, 0 otherwise. It is worth mentioning that we use Zf
rather than Z7? since we have E(Z?) = [ 2Fy, n(dz) = 1. (This result is used
in Proposition 8, in the Appendix.)

Set X;"%(ug) = 0 for t < 0. For 1 <t < tg+bN/2, sample from the distribution
function 13}07]\/(3:), to obtain the sample {Z;72};. Use this to construct the
bootstrap sample

p
X (uo) = 0 (u0) 2%, 07 (uo) = ay,n( Z o, N (7) X, (ug).

We note that by estimating the residuals from [to — bN,typ + bN — 1], the
distribution of X;" %(ug) will be suitably close to the stationary approximation
Xi(ug) whent € [tg—bN/2,to+bN/2—1], this allows us to obtain the sampling
properties of the bootstrap estimator.

(iii) Define the bootstrap estimator

-1
(24) at() N — {Rto N le(_) N>
where X;_1(uo) ™ = (1, X;"4 (ug), ..., X; (ug))” and

N

Riv = > oW (%) Yy (u0) Hica (1)
k=p+1 (fitg,N + 2271 Xk—j(uo))2

vty = g: L w ( k‘) i ijz(uo):fk 1(uo) ™™ .
; W= N ON ) (figgn + 25—y ;2](%))2

We observe that in Step (i,ii) of the bootstrap scheme we are constructing the
bootstrap sample {X; 2(ug)}; whose distribution should emulate the distribution of
the stationary approximation {X?2(ug)};. In Step (iii) of the bootstrap scheme we
are constructing the bootstrap estimator Q:g N from the bootstrap samples. We note
that we have bootstrapped the stationary approximation Xf(uo) since the limiting
distribution of a, y is derived using the stationary approximation.

We now show that the distributions of v/ bN{@:g’N—QtO,N} and VON{a;, y—a(uo)}
asymptotically coincide.
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PROPOSITION 5.  Suppose Assumption 1 holds, and suppose either inf; a;(ug) >
0 or E(ZHY?sup,| 1;»’:1 aj(u)] < 1 —46 (which implies sukaE(X;{N) < o0). Let
ay, N and @:(—),N be defined as in (23) and (24), respectively, and let b°/bN — 0. If
lug — to/N| < 1/N, then we have

VON (& = gy ) D N (0, wopa{ELAP (u)]} {EIDP (o) HELAY (uo)]} 1) ,
with b — 0, bN — o0 as N — oo.

Comparing the results in Propositions 4(ii) and Propositions 5 we see if b’V/bN —
0, then, asymptotically, the distributions of (@:g ~N — G, ) and (@, v — a(uo)) are
the same.

6. Volatility estimation: real data examples. The datasets analysed in this
and the following section fall into two categories:

1. Logged and differenced daily exchange rates between USD and a number of

other currencies running from 01,/01/1990 to 31/12/1999: the data are avail-
able from the US Federal Reserve website
www.federalreserve.gov/releases/h10/Hist/default1999.htm.
We use the following acronyms: CHF (Switzerland Franc), GBP (United King-
dom Pound), HKD (Hong Kong Dollar), JPY (Japan Yen), NOK (Norway
Kroner), NZD (New Zealand Dollar), SEK (Sweden Kronor), TWD (Taiwan
New Dollar).

2. Logged and differenced daily closing values of the NIKKEI, FTSE, S&P500
and DAX indices, measured between a date in 1996 (exact dates vary) and
29/04/2005: the data are available from

www.bossa.pl/notowania/daneatech/metastock/.

The lengths N of each dataset vary but oscillate around 2500. In this section, we
exhibit the estimation performance of the two-stage kernel-NLS estimator on the
USD/GBP exchange rate and FTSE series. We examine the cases p = 0,1,2 and
use the Parzen kernel with bandwidths selected by the cross-validation algorithm of
Section 4.2.

The left column in Figure 2 shows the results for USD/GBP. The top plot shows
the data, the next one down shows the estimates of ag(-) for p = 0 (dashed line),
p =1 (dotted line) and p = 2 (solid line), the one below displays the positive parts of
the estimates of a1 (+) for p = 1 (dotted) and p = 2 (solid), and the bottom plot shows
the positive part of the estimate of as(-) for p = 2. Note that the negative values
arise since our estimator is not guaranteed to be nonnegative. The right column
shows the corresponding quantities for the FTSE data. It is interesting to observe
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Figure 2 Left (right) column: USD/GBP (FTSE) series and the corresponding estimation results. See Section 6 for
details.
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USD/GBP FTSE
pZO\pzl\p=2 pZO\pzl\p=2
bandwidth 0.02 | 0.032 | 0.04 | 0.024 | 0.028 | 0.028

L-B p-value for Z, || 0.83 | 0.83 | 0.82 | 0.15 | 0.20 | 0.30
L-B p-value for |Z| || 0.17 | 0.71 0.10 | 0.07 | 0.07
L-B p-value for Z2 || 0.09 | 0.79 | 026 | 0.13 | 0.35 | 0.52
skewness of Zt —0.05 | —0.09 | —0.08 || —0.13 | —0.15 | —0.16
kurtosis of Z; 0.7 | 092 | 1.24 | —0.01 | 0.06 | 0.15

Table 2: The values of bandwidth selected by cross-validation, the p-values of the
L-B test for white noise for Z;, |Z;|, Z?, and the sample skewness and kurtosis
coefficients for Z; for the USD/GBP and FTSE data sets. The boxed value means
p-value is below 0.05.

that in both cases, the shapes of the estimated time-varying parameters are similar
for different values of p.

The goodness of fit for each choice of p = 0, 1, 2 is assessed in Table 2. In each case,
Z; denotes the sequence of empirical residuals from the given fit. For the USD /GBP
data, the best fit is obtained for p = 1. For the FTSE data, it is less clear which
order gives the best fit but the Ljung-Box (L-B) p-value for |Z;| is the highest for
p = 0 and thus it seems to be the preferred option, which is further confirmed
by the visual inspection of the sample autocorrelation function of \Zt] in the three
cases. In both cases, the empirical residuals are negatively skewed, and in the case
of USD/GBP they are also heavy-tailed.

We conclude this section by constructing bootstrap pointwise confidence intervals
for the estimated parameters, using the algorithm detailed in Section 5. Note that
our central limit theorem (CLT) of Proposition 4 could be used for the same purpose,
but this would require pre-estimation of a number of quantities, which we wanted
to avoid. We base our bootstrap pointwise confidence intervals on 100 bootstrap
samples. For clarity, we only display confidence intervals for the “preferred” orders
p: that is, for p = 1 in the case of the USD/GBP data, and p = 0 in the case of the
FTSE series. These are shown in Figure 3.

It is interesting to note that the pointwise confidence intervals for the “nonlin-
earity” parameter ai(-) in the USD/GBP series are relatively wide and that the
parameter can be viewed as only insignificantly different from zero most (but not
all) of the time. On the other hand, there exist time intervals where the parameter
significantly deviates from zero. This further confirms the observation made earlier
that the order p = 0 is an inferior modelling choice for this series and that the order
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Figure 3: Solid lines from left to right: estimates of ag(-) for USD/GBP, aj(-) for USD/GBP, and aq(-) for FTSE.
Dashed lines: the corresponding 80% symmetric bootstrap pointwise confidence intervals.

p =1 is preferred.

7. Volatility forecasting: real data examples. In this section, we describe a
numerical study whereby the long-term volatility forecasting ability of the tvARCH(p)
process is compared to that of the stationary GARCH(1,1) and EGARCH(1,1) pro-
cesses with standard Gaussian errors. We compute the forecasts of the tvARCH(p)
process as follows: we use the available data to estimate the tvARCH(p) parameters,
and then forecast into the future using the “last” estimated parameter values, i.e.,
those corresponding to the right edge of the observed data. For a rectangular kernel
with span m, this strategy leads to the following algorithm: (a) treat the last m
data points as if they came from a stationary ARCH(p) process, (b) estimate the
stationary ARCH(p) parameters on this segment (via the two-stage NLS scheme),
and (c) forecast into the future as in the classical stationary ARCH(p) forecasting
theory (for the latter, see, e.g., Bera & Higgins, 1993).

We denote the mean-square-optimal h-step-ahead volatility forecasts at time ¢,
igf;ﬁc}“p). Note that to obtain the analo-

gous quantities, aiﬁﬁlmml’l) and ai%iGhARCH(l’l), for the stationary GARCH(1,1) and

EGARCH(1,1) processes, we always use the entire available dataset, and not only

obtained via the above algorithm, by o

the last m observations.

To test the forecasting ability of the various models, we use the exchange rate
and stock index datasets listed in Section 6. For the tvARCH(p) process, we take
p = 0,1,2, and use the forecasting procedure described above with a rectangular
kernel, over a grid of span values m = 50,100, ...,500. Note that the tvARCH(0)
process has the simple form X; y = aé/ 2(t/N )Z; and is also considered by Starica
& Granger (2005). We select the span by a “forward validation” procedure, i.e.,
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choose the value of m that yields the minimum out-of-sample prediction error AMSE,
defined below.

For the stationary (E)GARCH(1,1) prediction, we use the standard S-Plus garch
and predict routines. The stationary (E)GARCH(1,1) parameters are re-estimated
for each t.

For each t = 1000, ..., N — 250, we compute the quantities

250
—2,model __ 2,model
Ttt+250 = Z Otlt+h >
h=1

where “model” is one of: tvARCH(0), tvARCH(1), tvARCH(2), GARCH(1,1), and
EGARCH(1,1), and compare them to the “realised” volatility

250

Xt|t+250 = Z Xt+h7
h=1

using the scaled Aggregated Mean Square Error (AMSE)

N—250 . 5
R559000.8 = Z (53{,5?;5% -X tz\t+2so) ;
t=1000
where the scaling is by the factor of 1/(IN—1000). For a justification of this simulation
setup, see Starica (2003).

Table 3 lists the AMSEs attained by tvARCH(0), tvARCH(1), tvARCH(2), sta-
tionary GARCH(1,1) and stationary EGARCH(1,1) processes: the best results are
boxed. The values in brackets indicate the selected span values. The bullets for the
USD/TWD and USD/HKD series indicate that the numerical optimisers performing
the QML estimation in stationary (E)GARCH(1,1) processes failed to converge at
several points of the series and therefore we were unable to obtain accurate forecasts.
We list below some interesting conclusions from this study.

e In most cases, the selected span values m are similar across orders p. These
values can be taken as an indication of how “variable” the time-varying param-
eters are. Exceptions to this rule occur mostly in data sets which are difficult
to model, such as the HKD series, which is extremely spiky. For the latter se-
ries, more thought is needed on how to model it accurately in the tvARCH(p)
(or indeed any other) framework.

e For the NZD series, it can clearly be seen how “adding more nonlinearity takes
away non-stationarity”: as p increases, a larger and larger span m is selected,
which means that more and more variability in the volatility of the data can
be attributed to the nonlinearity, rather than the non-stationarity.

e While the tvARCH(p) framework seems superior to stationary (E)GARCH(1,1)
methodology for the currency exchange data, the opposite is true for the stock
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Series | Scaling | Ryyooon | Rosoooon | Fosoooon | Fosodooon |
CHF 108 2395 2371 (500) | [2254] (500) | 3030 (500)
GBP 109 20282 (250) | 9567 (300) | 9230 (300)
HKD 10'2 . 230 (150) 170 (500) 150 | (100)
JPY 108 9713 (350) | 9173 (300) | 9450 (300)
NOK 108 1767 (500) | 1875 (250) | 2221 (500)
NZD 108 11890 5270 (50) | 4976 (100) (150)
SEK 10° 37720 (250) | 6805 (250) | 7321 (250)
TWD 108 . (500) | 2372 (500) | 2400 (500)
S&P500 | 105 43 (500) 43 (500) 40 (500)
FTSE 106 860 (500) | 958 (500) | 983 (500)
DAX 106 4492 (150) | 4483 (500) | 4864 (150)
NIKKEI | 107 2364 3418 (100) | 3252 (250) | 3432 (250)

Table 3: AMSE for long-term forecasts using tvARCH(0), tvARCH(1), tvARCH(2),
stationary GARCH(1,1) and stationary EGARCH(1,1) processes. R%Eﬁ%ﬁf}ffl’m is
the better result out of: Rg&?fo%&’}\} and Rggofﬁ]%%f}\}l).

indices. This might be indicative of the fact that stock indices are “less non-
stationary” than currency exchange series.

We conclude with a heuristic investigation of the quality of our volatility forecasts.

Conditioning on the information available up to time ¢, the quantity E?";ﬁr";;g

the variance of the variable Xt(250) = 2%5201 Xi+n. By CLT-type arguments,

predicts
X t(250)

is approximately Gaussian, and thus we assess the quality of the predicted volatility

E2,model }1/2 faHS into desired

by measuring how often the process Y; := Xt(%o)/ t[t+250

confidence intervals for standard Gaussian variables.

However, this is less informative of the quality of the forecasting procedure than
one might hope, the reason being that the process Y; is strongly dependent, so
it is not reasonable to expect it to take values outside (1 — «)100% confidence
intervals exactly, or approximately, 100a% of the time. Figure 4 shows processes
Y; constructed for the GBP, NZD, and SEK series, with the “optimal” forecasting
parameters from Table 3 (i.e., those for which the results are boxed). For a = 0.05,
the coverages are, respectively, 100%, 79% and 95%. If the dependence in Y; were
weaker, we would expect the three coverages to be closer to 95%, provided the
forecasting procedure was “adequate”. However, here, the strong dependence in Y;
causes the variance of the coverage percentages to be high.

Nonetheless, it is reassuring to note that on average, across the datasets, we do
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Flgure 4: From top to bottom: processes Y; for the GBP, NZD, SEK series. Horizontal lines: symmetric 95% confidence
intervals for standard Gaussian variables.
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obtain the correct coverage of around 95% To see this, let us consider the series for
which our forecasting procedure is satisfactory (i.e., those for which it outperforms
(E)GARCH(1,1) processes), bar the two series: HKD and TWD, which are extremely
spiky and thus difficult to model and forecast. These are: CHF, GBP, NOK, NZD,
SEK. Table 4 shows the coverages for the five series. The average coverage is 94.2%,
which is very close to the ideal coverage of 95%. Averaging across all series, excluding
HKD and TWD, we obtain a coverage of 95.7%.

Series CHF | GBP | NOK | NZD | SEK
Coverage | 99% | 100% | 98% | 79% | 95%

Table 4: Coverage of 95% Gaussian prediction intervals for our method, using pa-
rameter configurations that gave the best results in Table 3.

APPENDIX A: AUXILIARY LEMMAS AND PROOFS

The aim of this Appendix is to prove the theoretical results stated in the previous
sections.

Before proving these results, we first obtain some results related to weighted sums
of tvARCH(p) processes that we use below.

In what follows, we use K to denote a generic finite positive constant, not neces-
sarily the same each time it is used, even within a single equation.

A.1. Properties of tvARCH(p) processes. Let f: R” — R.If | f(z1,...,2,)—
flyi, . oun)| < K30 |x —yil, then we say that f is Lipschitz continuous of order
1(f € Lip(1)).

LEMMA 2. Suppose {X: n}+ is a tvARCH(p) process which satisfies Assumption
1(i,ii), let {X;(u)}; be defined as in (2), and let f : R — R be such that f € Lip(1).
If lug — to/N| < 1/N, then, for fized iy,...,i,, we have

N 1 to—k ) , ,
k WW bN f(Xk’N7Xk+i17N’"'7Xk+in,N)
=p+1

P % e ~
(25) P B{f (XEuo) K244 (w0), -, KRy, (w0)) }
thhb_)O} bN — o as N — oo.

PROOF. It follows easily by using Lemma 1 and the same methods as those given
in the proof of Lemma A.6 in Dahlhaus & Subba Rao (2006). We omit the details.
O
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Let us now define the following quantity

(26) r(u) = E{M}

K(ug, Xg—1,n7)?

LEMMA 3. Suppose the conditions in Proposition 3(i) are satisfied, let p(u) =
E{X?(u)}, and let A;(u), Di(u) and r(u) be defined as in (8) and (26), respectively.
If lug — to/N| < 1/N, then we have

(i)
N
1 —k P
(27) Z:: N ( oN ) Xin — p(uo);
(it)
(28) R > L (t° '“) BN g ()
o hpi1 OV bN ) k(ug, Xy—1,n)? n
(iii)
N 2
to — k‘> Xi NnXe—1N P
2 = : .
> sl kZ bNW( bN ) kK(uo, Xy—1,8)? — o)
(iv) Suppose further that the conditions in Proposition 3(ii) are satisfied, then
N
9 to—k) Tp N1 N P
— E[D
(30) kz bNW ( bN K(ug, Xp—1,n)4 = waE{Di(wo)l,

with b — 0, bN — 00 as N — oo, where wy = II{% W2(z)dz.

PROOF. The proof of (i), (i) and (ii7) is a straightforward application of Lemma
2, while the proof of (iv) uses a minor modification of Lemma A.5 in Dahlhaus &
Subba Rao (2006), with W (-) replaced by W?2(-). We omit the details. O

REMARK 2. By using similar arguments, it can be easily seen that the asymp-
totic results of Lemma 3 also hold with X,%’N, Xp—1,n and Ul%,N replaced by X%(uo),
Xy _1(up) and &7 (up) respectively.

We now give some mixingale properties of the stationary approximation {X;(u)};
of a tvARCH(p) process. Suppose 1 < ¢ < oo, and let || - ||, denote the ¢,-norm of
a vector. Furthermore, let o(Xy, X;_1,...) be the o-field generated by the sequence
of random variables {Xj}t_ __ defined on the same probability space.
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LEMMA 4. Suppose {¢r : k = 1,2,...} is a stochastic process which satisfies
E(¢x) = 0 and E(¢]) < oo for some 1 < q < 2. Further, let Fy = o(¢y, pr—1,-..),
and suppose that there exists a p € (0,1) such that |E(¢y|Fr—;)||F < Kp?. Then we

have
1/q
(31) E o K S Ja? v
= 1o\ & k .
q -
PROOF. Under the stated assumptions, it is not difficult to see that {(¢x, Fr) : k =
1,2,...} is amixingale (see, e.g., Davidson, 1994, Chapter 16). Therefore {(¢x, Fr) : k =
1,2,...} satisfies the representation

S
> ardi
k=1

(32) Ok = Z [Ex—j(¢dr) —Er—j—1(¢r)], almost surely,
7=0

where E;_;(¢r) = E(¢r|Fr—;). By substituting (32) into the sum > 7_; apdr, we
obtain

ZS: agdr = ZS: ag i[Ek—j(%) — Ei—j—1(w)]
k=1 k=1  j=0

(33) = i (28: ak[Ex—j(dx) — Ek—j—l(¢k)]> ,  almost surely.

=0 \k=1

Keeping j constant, we see that {(Ex—;(¢r) —Ep—j_1(¢r), Fr—j) : k=1,2,...} isa
martingale difference (see, for example, Davidson, 1994, p. 250). Therefore, we can
apply inequality (15.52) in Davidson (1994, Theorem 15.17) to (33), and get

q 1/q o) q l/q
q J=0 q

00 s 1/q

> <2 > la| B Eg—;(dr) — Ek—j—l(%)HZ) :
Under the stated assumption, ||[Eg—;(¢x) — Ex—j—1(¢x)||5 < 2Kpl. Substituting this
inequality into the above gives

7=0 k=1
S
E|> ardr
k=1

hence we obtain the required result. O

i ar[Ex—j(or) — Ex—j—1(ox)]

k=1

IN

S
> ardr
k=1

IN

/q

q 1/a [e's} s 1/q 1+ 00 s 1
< Z(?Zlakiq@w)q) é?TKZM(ZIaqu> :
q j=0 \ k J=0 k=1

=1

We apply Lemma 4 in the proof of the first part of Lemma 5 below (with a; =
W (55#), o = {XP(w) — p(w)} and g = 1+ 7, where p(u) = E{X?(u)}). This,
however, requires the following proposition.
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PROPOSITION 6. Suppose {X; n}+ is a tvARCH(p) process which satisfies As-
sumption 1(i,ii,iv), and let {X;(u)}; be defined as in (2). Further, let F; = o(X2(u), X2 1 (u),...).
Then, there exists a p € (1 —0,1) such that, for any f € Lip(1) and all u € (0,1],
we have

14 1/ ()
1+n}

{E\(E[f{it(u)} | Fo] —E[f{)?t(u)}]H < KpF (1+ {EH??E_k(u)H}IZ}”(H")>,

where the constant K is independent of u, k and t.

PROOF. The proof follows from Proposition 3.1 in Dahlhaus & Subba Rao (2006).
We omit the details. O

Let us define the following quantities

(34) :ul(u7 d, h) = E{XE(U)XE—HL(U + d)},
(35) c(u,d,h) = cov{)z't2 (u), Xt2+h(u +d)},

and set 1 (u,0,h) = pi(u, h) and c(u, 0, h) = c(u, h).

Moreover, we apply Lemma 4 in the proof of the second part of Lemma 5 below
(with ap = 1, ¢p, = {X’,%(u)f(&_h(u) — pi(u, h,d)} and ¢ = 1 4 ¢/2). This requires
the following proposition, which is a variant of Proposition 6 above.

PROPOSITION 7.  Suppose {X;n}+ is a tvARCH(p) process which satisfies As-
sumption 1(i,ii), and let {X,(u)}; be defined as in (2). Let py(u,d,h) be defined
as in (34), and suppose that {E (|Zt|2(2+o)}1/(2+o sup,, 21;»’:1 aj(u) <1 -4 for
some 0 < ¢ <2 and & > 0. Let also Fy = o(X?(u), X? |(u),...). Then, for all
0<u<u+d<1, there exists a p € (1 —0,1) such that

1+¢/2) 1/(1+¢/2)
1+C/2}
. . 1+¢/2) 1/ (1+¢/2) . 1+¢/2) /(140
< Kp (1+{EHXt—’“(“)H1+</2 + E‘(Xt_k(u—’_d)ul-i-g/z +
1+¢/2) 1/ (1+¢/2)
1+</2} >’

(B2 %200 d) | Fims]) = pir (s )|

(B %0 @ i+
where the constant K is independent of u,d, k and t.

PROOF. It follows easily by using the same steps as in the proof of Proposition 6.
We omit the details. O
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Define also the following quantities

| (+DbN-1
(36) Skan(u) = N > X2 (),
s=kbN
| (+DbN-1
(37) Skon(u, h,d) = N Z X2(u) X2, (u+ d).
s=kbN

LEMMA 5. Suppose {Xi N}t is a tvARCH(p) process which satisfies Assump-
tion 1(i,ii,iv), and let {X;(u)}; be defined as in (2). Let p(u) = B{X2(u)}, and let
pi(u,d,h), Sppn(u) and S pn(u, h,d) be defined as in (34), (36) and (37), respec-
tively. Then, we have

Ly 1/

N
1 o
< T+
) 18| 3 55w (S ) (X2 - utw)} < KON) T
=p+1 1+n
and
/(1+n) _n
(39) (E)Suan (k) — p(p)]| 17} < K o)~ T
where the constant K is independent of u.
Further, if {E (|Zt| )} SUpy 25— aj(u) <1 -0 for some 0 < ( <2
and § > 0, then we have
1+¢/2) 1/(1+¢/2) _L
(40)  {B|Skpn(u, hyd) = pr(u,d, b)| T < K(bN) " 7¢
where the constant K is independent of u and d.
PROOF. We will first prove (38). We use Lemma 4, with a; = (—Nk) o =

{XZ(u) — pu(u)} and ¢ = 1+, and take into consideration inequality (6). Note that
E(¢x) = 0 and, by using Proposition 6, we then have

14 1/(4)
1+77}

{E |E (X2 (w) | Frey) = ntw)| < Kpf (1 +{ENR @) 1+n>> |

where F; = o(X?(u), X2 ,(u),...). Since {X?(u)}; is a stationary process, then by
using (31) and that the support of W (%) is proportional to b/N, we have that

L) 1/0+)

Yoo t—k\ o
Bl > oW (55) (R - u(w)
bN bN
k=p+1 Ln
1 K i\,: b 1/(14n)
bNT—p |, 2, bN
< K(bN) T
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Thus, we have proved (38). The proof of (39) is identical to the proof of (27),
hence we omit the details. The proof of (40) uses Lemma 4, with a; = 1, ¢ =
{X’,%(u)f(&_h(u) — p1(u,h,d)} and ¢ = 1+ (/2, takes into account Proposition 7,
and is similar to the proof of (27), hence we omit the details. O

A.2. The covariance structure and the long memory effect of tvARCH(p)
processes. In this section, we prove results for the covariance structure and the
long memory effect of tvARCH(p) processes

PROOF OF PROPOSITION 1. It follows easily by making a time-varying Volterra
series expansion of the tvARCH(p) process (see Section 5 in Dahlhaus & Subba Rao,
2006) and using Lemma 2.1 in Giraitis et al. (2000). We omit the details. O

The following lemma is used to prove Proposition 2.

LEMMA 6. Suppose {X; n}s is a tvARCH(p) which satisfies Assumption 1(i,4,v),
and let {X;(u)}; be defined as in (2). Let h := h(N) be such that h/N — d € [0,1)
as N — oco. Then we have

1 N—h

1—-d
41 —— Yy x2. 2 / E{ X2(u)Vdu.
( ) N —h = s,N 0 { t ( )}

1/(2
Further, if {E (|Zt|2(2+o)} /24 sup,, Z§:1 aj(u) <1 =20 for some 0 < ¢ <2
and § > 0, then we have

1 N—h P 1-d - -
(12) e L XXl B [ B+ @)
s=1

PROOF. We first prove (42). Let b := b(IN) be such that 1/b is an integer, b — 0
and b(N — h) — oo as N — oo. We partition the left hand side of (42) into 1/b

blocks, i.e.,

1 N—h 1/b—1 1
2 w2 _
N-h z::l XowXopnn =0 ;; BN —h)
1 )
(43) D XNen) s N XN =)t h N
r=0

LNet ky = kb[1 — d], al}d replace the terms X,fb(N_h)M’N and Xl%b(N—h)-‘,—r—i—h,N with
Xl%b(N—h)Jrr(kb) and X,fb(N_h)JrT,Jrh(kb + d) respectively. Let N' = (N —h). If s €

[kON', (k + 1)bN’) then we replace XS27N with X2(ky) and Xs2+h,N with X2(ky + d).
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Now, by using Lemma 1 and that w <x< W, we have
X2y — X2k)| < —Vin |2 — kb(1 —d) "W
s,N s \vb = NB s,N s
1 (k +1)b(N — h) p
< _ _
< Nﬁ‘/S,N + ~ kb(1 d)’ W
< v+l b(h d>'ﬁW< Ly, + (20)°W,
= N8 s,N N s X NB s,N ER

Similarly, we obtain

X2, v — X2(ky + d)|

1 s+h s
< aVerna + | = k(1= @) =] Wi
1 k4 1)b(N —h)+h p
< stﬁ-h,N+ ( )(N ) —k‘b(l_d)_d‘ Wein
1 h h p
< WVsHL,N-F b—b<N—d>+(ﬁ—d>'Ws+h
1 h A
S W%—i_h’N + 2b + N - d W8+h

Therefore, by using the above, we get

|Xs2,NXs2+h,N - st(k‘b))zgﬁ-h(kb + d)|
XEnIX2 N — X2 in (ko + d)| + X2 (K + )| X2y — X3 (Fs)|

B
) Ws+h> +

- 1
(44) X2+ d) (Ve + (20)°WL)

IN

IN

1 h
2
XN (WVerh,N + (2b+ ‘N —d

Substituting (44) into (43), we have

| Nk
2 32
N_ z:l XoNXiynN =
-l MN=R)-L ]
45) b Y BN = 1) Y Xiv—nyrr (k) Xipv—nyren (ko + d) + Ry
k=0 r=0
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where

RN
1/b—1 ] N1 ~ ~
< b Z N > (Xisz'+r,NX1§bN’+r+h,N—Xi%bN/Jrr(kb)Xi%bN/Jth(kb+d))
r=0

l/b 1 bN'—1 3
< b Z bN/ Tgo {XkbN’—i-rN <N5kaN’+r+hN + (2b+ ‘— — d’) kaN/_Hd_i_h)

+ Xionr g (K + d) (vabN’-i-nN + (2b)ﬁkaN’+r) }

Now, taking expectations of the above, we have
(E|Ry|"H¢/2)14¢/2) - < K{ <2b + b‘d _ D Nﬁ}

Therefore, Ry 2,0 as N — oo. Recall the notation Skpn(u, h,d) and pi(u,d, h)
given in (34) and (37) respectively. By using (43) and (45), we have that

{ 1 Nih , ) 1—d ( | 14¢/2y Y/ (A+¢/2)
E’ ~ 7 2 XenXinN —/ p(u, d, h)du }
N—h s=1 i 0 1+¢/2
e Lic/2 1/ (+/2)
< b > {EISkpv—n G by d) — pua (ks d, )1 TS5}
k=0
1/b-1 1d
NTCRAD —/ (ki d, )
k=0 0
(46) +0{(b+kb’d—ﬁ’)ﬁ+i}
N NB [
We note that, by using (40), we have
Pk 1+¢/2) 1/ (1+¢/2) <
CHENDY {E”Sk,b(N—h)(km h,d) — pu (ky, d, h)HH.g/Q} < K(bN) 2+,
k=0
Now, by substituting (47) and
1/b-1 d )
b mlknd) = [ E{XXE A+ d)}dutOW)
k=0

into (46), we have

— 0,

1+C/2}1/(1+C/2)

1—d
XINX2 N — / E X2 (uw) X2, (u+d)}du
{ HN h Z N o { ! i } 14¢/2
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which give us (42). The proof of (41) is similar and we omit the details. O
PROOF OF PROPOSITION 2. We first consider the more general case where
h := h(N) is such that h/N — d € [0,1) as N — oo. Then, for fixed h > 0, we

obtain (5) as special case with d = 0.
Let Sy(h) = Ay — By, where

1 N—h B
Ay = —— Z XinXtny and By =(Xy)
N-h &

We consider the asymptotic behaviour of the terms Ay and By separately. By using
(41) and (42), we have

1-d 1-d 1-d
AN—>/ (b, d)du and BN—>/ / ) u(v)dudv,

Recall that p(u) = E{X?(u)}, and that p1(u,d, k) and c(u,d, h) are defined in (34)
and (35) respectively. By using the formula pi(u,d, h) = c(u,d, h) + p(u)pu(u + d),

we obtain

_ _ 2
(48) Sn(h) i /01 ’ {c(u,d,h) + p(u)p(u + d) pdu — {/01 d,u(u)du} )

Let us now consider the special case of (48) where d = 0. Then, for fixed h > 0,
we have

Sw(h) B / uhdu—i—// dudv—// v)dudy
_ /(]c(u,h)du+/0 /0{ //u dudv}dudv
_ /0 ' c(u, h)du + / /{O<u<v<1}{ / / dudv}dudv
v / /{o<v<u<1}{ / / e dudv} dudv

1
= [ etwmau+ [ (1(v) — p(w)}? dudv, as N — co.
0 {0<u<v<1}

This proves (5) and, hence, the desired result follows. g

A.3. Proofs in Section 3.2. In this section, we prove consistency and asymp-
totic normality of the weighted kernel-NLS estimator.

PROOF OF PROPOSITION 3(i). By using (28), (29) and Slutsky’s theorem, we
have

1

r(ug).
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To show that a,, v i a(ug), we show that a(ug) = {E[At(’LLQ)]}_lf(’LLQ). By using
(2) and dividing my #(ug, Xx_1.n), {X?(uo)}x satisfies the representation
X7 (uo) a" (u) Xj—1 (uo)

(49) )W) gy i)
K(ug, Xp—1,N) K(ug, Xp—1,N) b k(ug, Xp—1,n)

Finally, multiplying (49) by fk_l(uo)/m(uo,Xk_l,N) and taking expectations, we

have
(1) Ty (u0) T
& Xk(UO)Xk—l(Ug) gl 1(uo) k—l(ZO) a(ug).
k(ug, Xp—1,N) K(ug, Xp—1,n7)
Therefore, a(ug) = {E[At(uO)]}_lﬂ(’LL(]), hence we obtain the desired result. O

We use the following lemma to prove the remaining part of Proposition 3. Let

N
1 to—k
W(O

(50)  Li(wa) = oW () il B, B (1), ).

k=p+1
_ 2
where h(uo, yo,y,a) = k(uo,y) 2(y3 — ap — Z?:l ajyg_jﬂ) )

LEMMA 7. Suppose {X; n}+ is a tvARCH(p) process which satisfies Assumption
1(i,i1,33). Let ¥,(u) and Ly (u,) be defined as in (11) and (50) respectively. If
lug — to/N| < 1/N, then we have

(51) VONV Ly (ug, aug)) B N (0, 4wzpa%, (uo))

with b — 0, bN — 00 as N — oo, where wy = f1{32 W?2(x)dr and pg = var(Z}).

PROOF. We easily see that

VONV L, (uo,a(up) = —22 \/_ (to_k)x

k=p+1
(2} — Dag(uo) 5
/‘i(uo,?\ﬁc—l(uo))x

Since VONV L, (ug,a(ug)) is a weighted sum of martingale differences, we use the

(52) 1(uo)-

martingale central limit theorem (see, e.g., Hall & Heyde, 1980, Corollary 3.1) to
prove asymptotic normality. First, it is seen that the conditional Lindeberg condition
is satisfied. By using (30) and Remark 2, we have that the conditional variance

satisfies

—k G X ug) X, U,
4 Z ( bN )E{(Zﬁ—l)z k( ()u:’);f_izuj))zl}( 0) ‘fk—l}

ki1

L dwo s ¥ (ug),
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where Fj,_1 = o (X,f_l(uo),le_Q(uo) .. ) By using the Cramér-Wold device (see,
e.g., Billingsley, 1995, Theorem 29.4), we now get (51), thus obtaining the desired
result. O

PROOF OF PROPOSITION 3(ii). We first prove (10). By using the decomposi-

tion
(53) VL, n(a(uw)) = VL, (uo,a(uo)) + VB, n(a(uo)),

we have that

Vﬁt()JV (@to,N) = VﬁtmN(Q(U())) + vzﬁto,N{Qt(),N - Q(UQ)}
= {VL,(uo,a(u0)) + VB, x(a(uo)) }
+V2£t0,N{@to,N - Q(UO)}

By using (28), we easily see that V2L, n(a(uo)) Uy E[A¢(uo)], and since VL, (@to,N) =
0, we have

{ay,n —aluo)} = {=VL,(uo,a(u0)) — VB, y(aluo))} x
{5 @AD" + o0},
which leads to
VBN (g, — aluo)} + 5 VENAE[A (o))} VB, v (a(uo))
(4) = 5 VAN(EL A0} VL (w0, a(u0) + 0p(1).

By combining (51) and (54), we get (10).

We now prove VB, y(a(ug)) = Op(b°%). By using decomposition (53), applying
Lemma 1, and following the arguments of Lemma A.6 in Dahlhaus & Subba Rao
(2006), it can be shown that VB, y(a(ug)) = O,(V%). Hence, the required result
follows. O

A.4. Proofs in Section 3.3: Upper and lower bounds for the asymptotic
distribution variance. In this section, our object is to obtain an upper and lower

bound for E(A(u)) " 'E(B;(u))E(A:(u)) . We use the standard (matrix) notation
that A < B if for all ¢,j we have A;; < B;;. Let also |A|4e be the determinant of

A. Let B(u) = W and a(u) = Y0_; a;(u).
We first need to bound A,gg) (u) and Dﬁg) (u), which are defined in (12), in terms
of ¥¢(u), which is defined in (11). Bounding D,(f ) (u) from above, we have

4
9 () — 5 (1 &3 (u) o[ @@ S~
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We next bound D,(Cg) (u) from below. Since Z§:1 aj(u) < 1 and 62(u) = ap(u) +

Z§:1 aj(u)Xf_j (u), we note that

o) N o? () ]
l900) + 0 X2 )]~ \ 9(0) o an(u) + Sy oy () X2 (u)]

1 _ (9w 1 B
* ()~ (6 )
ap(u)
o0 (s prarmomm)
Using the above, we can bound Dﬁg) (u) from below, i.e.,
@) — % oi (u) C e alw '
BN = Efy <[g<u> n zgzl;zg_jw) 250 (G Baaom)

We now obtain upper and lower bounds for E[Agg ) (w)]. It is straightforward to show
that

AP = zxu)( 7 ) )
lg(u) + 325, th—j(u)]

2
a(v) |y a;(u u
(58) < (g(u) +j§ i )) S (w).
By using (56), we bound Aﬁg ) (u) from below to obtain
W = s )
v BN G T ST

aop(u)

(g<u> T B(wyao(w) ) )

(59)

Since A§9 ) (u) and X4(u) are positive matrices which are positive-definite, we have

(9)(, \1-1 ao(u) 2 1
EAT @] M < (s ) B ] e
-2
(60) BLAL ()] aer > (jf(f))+zaj<u>) B[S ()]~ et
7j=1

By using (60) and (57), we obtain the lower bound

ELAY (w)] T EDE (w)EAL ()] i > w(9) [ESe(w)] ™ et
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where

w(g) = (ao(u) + g(u)a(u)) (g(u) + ﬁ(u)ao(u)> .

ao(u)
By using (60) and (55), we obtain the upper bound

ELA ()] " ED ()BT )] i < w(9) [BIS ()] e
Altogether this gives

IELAL (u)] T ED (w)ELAL ()]~ der
B[S ()] aer (9)*.

IE[S (w)] ™ et @ (9) ™"

IN

IN

Letting f(g) = [w@(g9)* — w(g9)~*] and using the chain rule, we get

df (9) 3 _5,dw(g) -5 s ,dw(g)
a5 [@(9)” —=(9)™] i @(9)”[wl9)~]—; ’
_ dw
= 4wl (o) - D1+ (o) + .+l DL,
Hence, we see that dfd—(gg) = 0 when w(g) =1 or dz;g) = 0. Altogether this means, by

differentiating |E[X(u)] ™! get [ (9)* — w(g9)~*] with respect to g, that the difference

is minimised when

_ aop(u)
glu) = @S a(a)

[mini<j<p a;

4

Similarly, the upper bound |E[X;(u)] ™| @ (g)* is minimised when g takes the

above value, hence the upper and lower bounds for the asymptotic variance follow.

A.5. Proofs in Section 3.4. In this section, we prove consistency and asymp-
totic normality of the two-stage kernel-NLS estimator. To prove these asymptotic
properties, we need the following two lemmas.

LEMMA 8.  Suppose {X¢ n '}t is a tvARCH(p) process which satisfies Assumption
1(iyii, ), let p(u) = B{X2(u)}, and let jis, n be defined as in (15). If |ug — to/N| <
1/N, then, for 0 <i,j < p, we have

(61) i LW <t0 - k‘> Xlg—i7NX]3_j,N g B X%—i(uo)X]%_j(uo)
kopia OV ON ) (fitg,N + Sk—1,8)? (o) + Sp—1(ug))2 )’

with b — 0, bBN — o0 as N — oo.
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PROOF. To prove the result we use techniques similar to those in Bose & Mukher-
jee (2003). By using the inequality |1/z? — 1/y?| < 2|z — y|{(1/z)[1 + x/y]}?, for
xz,y > 0, we bound the difference

Xi nXiin B X inXijn
(fito. 5 +Sk—1,8)?  ((uo) + Sp—1,5)?
3
R 1 fitg,N + Sk—1,N
< 2XE L NXP o n i — plug 1 - ’
k—i, N}k j,N| 0, ( )| M(U0)+Sk—l,N M(U0)+Sk—l,N

f |1 (o) Xl%—i NXI%—jN
62) < 2 — u(uw 14+ = : : .

oy~ o)l Ao, N | ) ((uo) + Sp—1,n5)?
(62) |
Let us now define the following quantities

X2 (uo)X?_.(u

F('LLO) — E k)—Z( 0) k‘—j( 0)2 ,

{1(uo) + Sk-1(uo)}

N 2 2
1 [to—k\ X2, NXE.
AtoJV = E —W ( 0 ) _ k—i,N“*k—j,N =
k=p+1 bN bN {fitg,n + Sk—1,n}

Cio,n(u0) =

> Lw (%) i Xicior
ki1 bN bN {,U(U()) + Sk_LN}z '

Then, by using the bound (62), we have

2 2
XiinXi—j N

Nooq to —k
L (ahy r6
k:;—l bN bN ) {u(uo) + Sk—1,n}? (o)

. lu(uo)]) o= 1 ‘ <to - k‘>‘ Xp NXI%—j N
+ 2 — u(u 1+ — — W ’ ’
to,v = 1) ( ool ) 2,58 Y o8 )| o) + S

5 v (5%

:p—|—1

<

‘Ato,N — F(’LL(])

(63) < Cron(tt0) + 2 |firg v — piuo)| (1 n "f<“°)')
’MtO,N‘ k

Since fit,, N L w(ug), by using Slutsky’s Lemma we have

~ U,
|fitg, N — p(uo)| | 1+ M %o
|Mt0,N|

Furthermore, by using (28) we have Cy, n(uo) 2 0. Altogether this gives |As n —

I (up)| i 0, and the desired result follows. O
Let
ol o
(64) i(w) = E{ L) (u) — } .
[1e(u) + Zj:l Xi—j(u)?]
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COROLLARY 1. Let 7~2t0’N, Ttg,N 5 Ag”)(u) and 7(u) be defined as in (16), (12)
and (64), respectively. If |ug — to/N| < 1/N, then we have

(65) Rig.n 2 ELAM (ug)),
(66) Foy v 2 F(ug),

with b — 0, bBN — o0 as N — oo.

PROOF. It follows easily from Lemma 8. We omit the details. O

To show asymptotic normality, we need to define the following least squares cri-

teria
. N to—k\ ~
(67) Lyn@) = > WW< N >hto,N(Xk,N,Xk—1,N,Q)7
k=p+1
. AN to—k\ - . .
09 Lywa) = 3 W (N5 (K. B w).0)
k=p+1
N to—k _
09 £fwa) = Y oW () b K, Foa(w).a)
k=p+1

_ 2
where h(uo, Yo, y, @) = K(uo, y) > (45 — a0 — Xh—y ayp i)

1

2
p
hy, (Yo, y,0) = — Y2 —ap— Y au?y .
0. (80,4 (fuo, N + 201 93)% | 7P ]z::l e

2
- 1 P
h(u7y07ga Q) = (M(U) T Zp )2)2 {yg —ag — j;lajy?} .

2
j=1Yj

We recall that a,, y = argming £, y(a). In Lemma 7, we show that the asymptotic

normality of VON Vﬁgf ) (uo, a(up)) can easily be established by verifying the condi-
tions of the martingale central limit theorem. However, the same theorem cannot be
used to show the asymptotic normality of vbNV Ly, (o, a(ug)), since Ly, (ug, a(ug))

is not a sum of martingale differences. In Lemma 9 below, we overcome this problem

(1)
to

Ly, (ug, a(ug)) with EESL) (up, a(up)), and then use it to prove Proposition 4.

by showing that Ly, (uo,a(uo)) is ‘close’ enough to £;* (ug, a(ug)) for us to replace

Hereafter, || - |1 denotes the ¢1-norm of a vector.
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LEMMA 9. Suppose {X¢ n '}t is a tvARCH(p) process which satisfies Assumption
1. Let p(u) = BE{X?(u)}, and jiy.N, Lty (u,) and ng)‘)(u,g) be defined as in (15)
(68) and (69), respectively. If |ug — to] < 1/N, then we have

(70) it = (o) = O (b7 + (BN) 747 ),
and
(71) VBN [V Liy (o, a(uo)) = VL (uo, auo))] = 0p(1),

with b — 0, bN — oo as N — oo.

PROOF. We first prove (70). Since the kernel W (-) is of bounded variation sat-
isfying the condition f_lﬁz W (x)dx = 1, it is easy to see that

N

(72) w(ug) = p(up) k:zp;rl bLNW (tob]—vk’) +0 (bLN) .

By replacing {XE,N}R with its stationary approximation {X7(u)}y about u ~ k/N,
and using (72), we have

N
) 1 to—k )
Htg, N — M(UO) = Z WW ( ObN ) {Xl%,]\/' - X}%(’U,O)} +

1

(73) = Bugn(u) + Hi(u0) +0 ().

We consider the first term in (73). Under the stated assumptions, and by using

Lemma 1, we have

(74) | Bio.x (o) Iy, = O (5) -
We now consider the second term in (73). By using (38), we have
o
(75) | iy (u0) [y, = O (bN)T5) .
Therefore, by using (74) and (75), we have
. o
i, = (o) |[fiy = O (b7 + (BN) 7)),

which gives us (70).
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We now prove (71). Let My, (uo) = (2% —1)67(uo)Xk_1(uo). Then it is easily seen
that

VIR [V L4 (0, a(u0)) = V£ (u0, (o))
N 1 to—k
= =2 Z VON <ObN )X

k=p+1

1 1
X{[ﬂto,N + Sk 1(u0)]2  [(uo) 4 Sp—1(uo))? }Mk(uo)

= 2[fig,n — p(uo)] Z \/— (to_k>x

k=p+1
[fitg, N + p(uo)] + 28k —1(uo)
{ [11(ug) + Sp— 1(U0)]4 } Mi(uo)

—2[ iy, N — p(up)] Z \/— ( k>><

h=p+1
" { {14, N + p1(u0)] + 28k 1 (uo) }
[fito,N + Sk—1(u0)]?[1(uo) + Sk—1(uo)
(76) = 2 {[ﬂto,N - :u(uo)]]to,N - Jto,N} .

]4 } Mk(uo)

We first consider Iy, y. It can be rewritten as

B —k M (up)
Ty n = [fitg,n + p(uo)] _zp;rl \/_ < > [11(uo) + Sg—1(uo)]*
N to—k\  Mi(up)Sk—1(uo)
(77) +2 _z; \/WW ( bN ) [1(uo) + Sp—1(uo)]*

We note that if {(Zg, Fr) : k=1,2,...}, where F, = 0(Zg, Zx_1,...), is a sequence
of martingale differences with E (Z?) < oo, then

2
—k N to — k\?
{;1\/_ ( >Z’“} - kglﬁw<obN > E(2F)
(78) = 0(1).

By taking Zj, = My (uo)/[1(uo) + Sg—1(uo)]* or 2, = My (uo)Sk—1(uo)/ (o) +
Sk—1(up)]*, and applying the bound given in (78) to both parts of (77), we have

—k M (uo) B

—%—1 \/_ < > [,u(uo) +Sk—1(u0)]4 = Op(l),
—k\ My (uo)Sk—1(uo)

Z \/_ ( ) [(uo) + Sp_1(uo)]* Op(1).

k=p+1
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Since fit,, N LA p(up), we have I, n = Op(1) and
N N P
(79) [(fitg, N = (o) oo, N ll1 < |frtg, v = pwo) [ i, 5 [l1 = O

We now consider the second term Ji, n. The problem here is the appearance of
fity, N in the denominator of Jy, n. Let

K(’u,o) - ({ [2N(U0) + 2Sk—l(u0)]2 } (le + 1)5,2(”0)(1 + Sk—l(“O))) )

[1(uo) + Sk—1(uo)]®

By using arguments identical to those given in the proof of Lemma 8, we can show
that

N

Kto,N = Z LW (t(] — k) { {[ﬂto,N + ,U(UO)] + 2Sk_1(uO)}2 } «

hepri1 OV bN [fitg,N + Sk—1(u0)]?[11(uo) + Sp—1(uo)]*

(80) X (23 +1)57 (uo) (1 + Sk—1(uo)) 2 K (ug).

From the definition of K, n, and using (70), we have

_ 2
[ Jeo,n 11 < |t v — pu(uo) PVON Ky v < KVBN {bﬁ + (bN)ﬁ} Kiy N
If b is such that

_ 2
(81) VbN {bﬁ + (bN)r’%} 0, as N — oo,

and taking into account (80), then ||Jy, n |1 Zo. However, if (81) is not satisfied,
we need to go through the same procedure in (76) of replacing the denominator in
[fitg. N + Sk—1(u0))? in Jyy v with [u(ug) + Sk—1(up)]* and taking differences as was
done in (76). We must iterate this n times until

(82) VON {bﬁ + (bN) T }n —0.

At this point all the terms which contain p(ug) in the denominator will converge to
zero (using the martingale argument given above). Moreover, it is straightforward
to show that the term which contains fit, v in the denominator will be of order
\/bW{bﬁ—l—(bN)% }™. By (82) this term goes to zero, hence we have that ||.Jy, v|1 LA
0. Since the details for the nth iteration are similar to those of the first iteration we
omit the details.

In summary, for every b and 7, there will always be an n which satisfies (82), it
then follows that

(83) [ Jio,n]l1 2 0.
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Now, by using (79) and (83), we have

VON VL4, (uo, aluo)) — VLY )(uo,g(uo))H

< 2 (ljutg,n = (o) [ o, 11 + 120, [I1) 20,

which yields (71). Hence, we get the desired result. (]

To prove Proposition 4(ii), we need to define the following quantity

N

) 1 [te—k\ S

By n(a)= > i (bT) [htO,N (XN Xp—1,n, @) — htO,N(Xk,N7Xk—1(U0)7Q)} :
k=p+1

PROOF OF PROPOSITION 4. (i) It is straightforward to show consistency using
(65) and (66). We omit the details.
(74) By using (70), we see that

5 At (X, Hi1.v,8(00)) = Tt 0 (B (1), B, (o) }
_ <X13,N —a’ (u)Xem1n XP(ug) — QT(UO)/\?k—l(UO)> Xp—1,8
(u

/lto,N + Sk—l,N /“]tO,N + Sk_l(uo) latO,N + ‘Sk—l,N

Xp—1,N Xi—1(uo) X2 (ug) — a” (o) Xy—_1(uo)
(84) - - = i :
fito. v + Sk—1,N  fitg x T Sk—1(uo) fito,n + Sk—1(uo)

We now consider

Xl%,N - QT(UO)Xk—l,N B X%(UO) - QT(UQ).)E'k_l(UQ)
ﬂto,N + Sk—l,N IatoyN + Sk—l(uo)
{Xin— X?(uo)} — a” (uo){Xk—1.n — X—1(uo)} N

fitg,N + Sk—1,N

Sk_l,N _Sk—l(UQ) ~ ~
fitg x + Sk—1(u0) { X (uo) — QT(uo)Xk_l(uo)}_

+

By using Lemma 1, we have

|X]%7N - QT(UO)Xk—l,N B X%(UO) — QT(UQ).)E'k_l(UQ)

ﬂtO,N + Sk—l,N /j[/t(),]\r + Sk—l(uo)
k p 1\?
< K<N (5 )
Ven + W, 1+ 2722\ &
(85) X 7k7]y b + < ) Z Vk—j,N + Wk—j) .
Hto n Fito, =1
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Similarly, we can show that

Xean  Xa(ug)
fitg xn +Sk—1,N  fltgn T Sk—1(u0)

1
k B rp+1\P 1 P

86 < K U —i—(—) 1+ - (Vi + W,

(86) <N 0 N oo ]z::l k—j,N k—j)-

Since

)62 U —-QT Ug ii_. U 2
’ i (uo) (o) Xp—1( )’§K<1+1+Z’“> and |-~ 11

h . _ <K,
fitg n + Sk—1(u0) U o n + Sk—1,N

by using substituting (85) and (86) into (84), we have

[P (X 2(00)) — T (i), (o))

k s 1
<o [+ (252 )
p
X M < 1+Zk> Z Vi—in + Wi—j)
Hto N Hto n j=1

6 2\ P
+1 14+ 7
p ><1+ — k) E (Vie—j N + Wi—;).
Jj=1

1

87)  +2K (‘% o

Fto, N
Finally, since

| VB watw), < % v (5

k=
(88) X HVhtoJV (X, s Xo—1,5, @(u0)) — Vg v (X (1), X1 (uo), (Uo))‘

1’

by substituting (87) into (88), it can be shown that VB, n(a(uo)) = O,(b%).
To prove (17) it is easy to see that the following decomposition holds

VLin(a(u) = VL (ug,aluo)) + VB n(aluo))
+{V L1y (uo, alug)) — VLY (ug, alup))}.

Since Vﬁto’N (Gty,n) = 0, we have

—VLE (ug, a(uo)) + {V Liy (o, a(ug)) — VLE (up, a(uo)) } -
VB, n(a(u )) V2L NN — a(uo)}-

By using (65), we easily see that V2£~t07N(Q(u0)) = 2 AW (ug), and, using (71), we
have

{ar, v —a(uo)} = {=VLE (uy,a(u0)) — VB n(a(uo)) } x

< {SAD W)} 40,1},
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which leads to
VN (i x — a(ug)} + 5 VIN{ELAL (uo)]} ' V By, v (a(uo))
(89) = g VIN{EAY ()]} VL (un,au) + 0,(1).

By combining (51) and (89), we easily get (17). Hence, the required result follows.
O

A.6. Proofs in Section 5. In this section, we prove the results in Section 5.
Some of the results in this section have been inspired by corresponding results in
the residual bootstrap for linear processes literature (c.f. Franke & Kreiss, 1992).
However, the proofs are technically very different, because the tvARCH(p) process
is a nonlinear, nonstationary process, and the normalisation of the two-stage kernel-
NLS estimator with random weights.

In order to show that the distribution of the bootstrap sample Q:g N — Oy N
asymptotically coincides with the asymptotic distribution of @,  x —a(uo), we will
show convergence of the distributions under the Mallows distance. The Mallows
distance between the distribution H and G is defined as

dy(H,G) = XN% B - Y2}/,
Roughly speaking, if dy(F,,,G,) — 0, then the limiting distributions of F), and
G, are the same (Bickel & Freedman, 1981). Following Franke & Kreiss (1992), to
reduce notation, we let do(X,Y) = do(H, G), where the random variables X and Y
have measures H and G, respectively.

We also require the following definitions. Let

)

N _ Nooq to—k Xi—1(ug) Xp—1 (ug) "
R(uo) = Y _W< bN ) (fug N + Z§:1X§_j(uo))
N

Pn(w) = LW <t0_k) : X2 (uo) Xp—1(uo)”

k=p+1 bN bN fito,N + Z?zl X,%_j(uo))Q ‘

PROPOSITION 8.  Suppose Assumption 1 holds, and suppose either inf; a;(ug) >
0 or E(ZH'/? sup,[ "_1aj(w)] <16 (which implies supy, E(X,iN) < o0). Let F
be the distribution function of Z}. Then we have

(90) da(Fyy v F) 55 0.
Furthermore, if we suppose bPv/bDN — 0, then we have

(91) da (VBN (1, x = Rif wiigg ) - VON (T () — Rov(uo)a(uo)) ) © 0,
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and
(92) R v D E{AP (uo)},
with b — 0, bN — oo as N — oo.

PROOF. We prove each part of the proposition below.

[Proof of (90)] To prove this result, we define the empirical distribution function of

the true residuals, i.e.,

1 to+bN—1 )
F, = — I_ Z
t(LN(‘T) 29BN k:tOZ_bN ( 00750]( t )7

noting that Z? is an estimator of Z?2. (It is worth pointing out that in a different con-
text, the empirical distribution of the estimated residuals of a stationary ARCH(p)
process was considered in Horvath, Kokoszka & Teyssiére (2001).) We first ob-
serve that since do is a distance it satisfies the triangle inequality dg(ﬁ}m N, F) <
dg(FtO,N, Fiy ) + do(Fyy N, F'). By using Lemma 8.4 in Bickel & Freedman (1981),
it can be shown that da(Fi, v, F) 2. 0. Therefore, to prove (90), we need only show
that da(Fy,n, Fi ) = 0.
By definition of do and the measures Fto, ~ and Fy, n, we have

day(Fiy.ns Frgn)? = inf E(Z? - Z})?,

0 -
Z} el N Z2EF ) N

where the infinimum is taken over all joint distributions on (Z;72, Z?) which have
marginals Fj, v and Fj, y. Let us suppose P(J = i) = (i + bN)/2bN, for i €
{=bN,...,bN — 1}, and define Z;> = Z% and Z? = Z3. Then, since (23, Z2) both

have marginals Fy, v and Fj, v, respectively, we have

R R 1 to+bN—1 R
dy(Fyy N, Fron)? < E(Z5—Z3)° = BN > (28 -2y
k=to—bN

1 to+bN—1 ) 1 to+bN ) 2
< — > NG -Z+—= > Zi-1] .
2bN k=to—bN 2bN k=to—bN

By adding and subtracting ﬁ ZZ‘);?)]L}N Z?2, and using that ﬁ ZOLzZXbN(ZE —
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1)2 i 0, we have

d2 (Fto,N’ BO,N )2

| fo+bN-1 A | fo+bN-1 | fotbN-1 2
< — Y | Z-Z = > (Z-ZH+=— > (Z2-1)
20N TN 2N i Zon 2N i Zon
K to+bN—1 R K to+bN—1
< = Y (B +~ >, (Zi-1)?
ON TN ON | TN
KON g2 p ) 2
< N > { {ao(k/N) — gy, n(0) + Y _[a;(k/N) &tO,N(j)]Xk—j,N}} + op(1),
k=to—bN OF N j=1

where 6’,%7]\, = a, N(0) + E§=1 dtO,N(j)le_%N. Now by bounding the above in two
different ways we obtain
d2(Eo7N7Eto,N)2

p laj(k/N)—az,,~n(5)] to+bN/2 4

K( i=0 " Tam NG| ) (2bN 2 k=to—bN )

laj (k/N)=ar, v (5)]\ 2 to+bN/2 4 -4
K (S0 ™) (o i in 2% )

< min + 0p(1).

To show (90) we need to use the bounds above, noting that the bound we use
depends on the conditions we have placed on the parameters {a;(-)}. By using that
laj(v) — a;j(v)| < Klu—v|? and k € [ty — bN,to + bN — 1], we have

la(k/N) = dy, n| < lalk/N) = a(uo)| + la(uo) — &y, v| < KV +|a(uo) — dy, nl-
Since |a;, n — a(uo)| %, 0, by using the above, it is straightforward to show

bﬁ+|2(“0)—@ ~l 2 1 to+bN—1 4\ P . .
2 . .
Kp (Aminj \flto,NEj)\ (2bN D to—bN Zk) -0 if inf; a;(u) > 0,

bP+Ha(o)=a, 1\ [ 1 totbN—1 o414 P .
L] —_
Kp( \atO,N(O))i (2bN 2 ktg—bN & Xk—j,N) =0 if sup, v E(X} x) < oo,

with b — 0, bDN — oo as N — oo. Therefore, under the stated assumptions, and
by using the above convergence in probability, we have that dg(ﬁto’ Ny Fro n) Zo.

Altogether this means that dg(FtO,N,F) Z 0, with b — 0, bN — o0 as N — oo,
thus we obtain the result. O

It follows from the above (Bickel & Freedman, 1981, Lemma 8.3) that

P

93)  E(z?) L2 Ez), EZ™ ZEZYH and infE(Z}?-2z2)?% Lo,

where the infinimum is taken over all joint distributions on (Z;72, Z?) which have
marginals Fto, ~ and Fy, . We use these limits to prove the results below.
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To prove Proposition 8 we require the following definitions

p
X2 (uo) =67 (w0) 2,2, 612 (uo) = ao(uo) + Y aj(uo) X;2 (uo),
j=1
and the Lemma 10, below. We note that X; 2 (ug) is very similar to X;7(ug), but
the estimated parameters a,, y have been replaced by the true parameters a(uo).
In the lemma below we show that for t € [tg—bN/2,tq+bN/2—1], the distributions
of X;"2(ug) and X;(ug) are sufficiently close and the difference is uniformly bounded

over t.

LEMMA 10.  Suppose assumptions in Proposition 8 hold, then we have
o0
y _ P
(94) E|X;"(uo) — X2 (uo)| < Clagy v — aluo)| Y k(1 - 6)"

where b — 0, bBN — 00 as N — oo and where the expectation is conditioned on
{Xk .~} Furthermore for tg +bN/2 <t <ty + bN/2 we have

inf E|X; (ug) — X2 (uo)| < C > (1 - (E\Zﬂ)“bw@p)) (1-0)F+
k=1

(95) CinfE|Zi2 = Z2) > {1+ B(Z{) + ... + [E(Z72))F 7} (1= 6)F +0,(1) B0,
k=1
where b — 0, bBN — oo as N — oo. The expectation is with respect to the measure

on all independent pairs {(Z;2,Z%)}s, and the infinimum is taken over all joint
distributions on (Z;2, Z?) which have marginals Fto, N and Fy N, respectively.

PROOF. It can be shown that the stationary ARCH(oco) process has a solution
which can be written in terms of a Volterra series (Giraitis, Kokoszka & Leipus,
2000). Define for all j > p, aj(uo) = 0 and a4, n(j) = 0. Then, by following Giraitis,
Kokoszka & Leipus (2000), X; % (ug), X;72(ug) and X2(ug) have the solutions

N k
XPw) = Y Y {H — Jss1 }HZ;?
=1

k= 0]k< Jo:jo=t

) — Y Y {H o }Hz;f,
k=07,<...jo:jo=t
k

XP(uo) = Z > {H“ﬁs —Js+1 UO}H

k=0 jr<...jo:jo=t

respectively. We first consider

Z Z {(_lto,N(js _js+1 H Ajs—jst1 uo } H Z;;Q ’

k=07 <...Jo:jo=t

E|X; 2 (uo) — X, (uo)| =
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Now, by repeatedly taking differences, and usmg that supuz 1ai(u) <1 -4,
iy N(j) <1 -0 and [l@,, y — a(uo)ll2 2.0, we obtain (94).

To prove (95), we first note that expectation is taken with respect to the joint mea-
sure on the independent pairs {(Z; 2, Z2)};. Using the Volterra expansions above,
we have

k
E|X; (uo) — X7 (uo)| Z > I e (wo)E

k=0 1<j1omjn<p s=0
(96) +op(1).

We see from (93), if to — bN < k < to +bN — 1 and by setting Z, = Z,, we have
E|Z}? - 72| 2. 0. Therefore for all t € [to—bN/2, t0+bN/2 1] and t—bN/2 < i <'t,

we will show that inf E|TT%_, Z:rzz —T1k, 2 t 5 | 2. 0. This allows us to
i= 1 i=1 Ji

obtain a uniform rate of covergence for E|X+2(u0) X?(up)| for all tg — bN/2 <
k <ty+ bN/2 — 1. To obtain this rate, we partition the inner sum above into two
sums, where Y% | j < bN/2 and Y8, j, > bN/2. We further note that since for
all 3, 1 < j; < p, if 2?21 Js > bN/2, then this implies & > bN/(2p). Altogether this

gives

2
sl:[Z:_Zﬂjl sl;[ 27131

(97) E|X;?(uo) — XP(uo)l < I+1I+0p(1),

where

00 k
=ao(uo) >, > ] aj(uo)E

k=0 k . s=1
IR

k

H t= 27191_81;[ =3 i i

and
[e9) k
=Y ¥ [lao) {EIZ2)" + EZ7) ).
k>bN/(2p) 1<71,..,Jk<p s=0
We now study I and consider, in particular, the difference E| [T%_, Z;f—]_[l;:l Z JZS |.
By repeatedly taking differences, we have

k k
BI] 22 - [1 221 <E|zf? - 22| {1+ E(Z?) ... + [E(Z2 )}
s=1 s=1

Substituting the above into I, taking the infinimum over all joint measures on
(Z;72,Z2), and using sup,, >7_, a;(u) < 1 — §, we obtain

=1
ao(ug) Y > Ha] ug) inf E HZ:FQZ : 1:[ S <

k= OZZ 1 S<bN/2S 0

(98) C{infE|Z;? — Z?|} Z {1 +E(Z) + ..., +[E(Zl+2)]k} (1= 8)% + 0,(1).
k=1
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We note that in the above we have extended the sum beyond Y5, 5, < bN/2 to
make the summands easier to handle. Our aim is to show that the right hand side
of (98) converges in probability to 0. For any & > 0, define B := {E|Z;"?| > 1 +¢}.
By (93), we have P(B%) — 0 as N — oco. Denote further

AS = {C’{infE|Zt+2 - 72 i {1 +E(Z?) + ..+ [E(Z#)]k} (1—0)k > s} .
k=1

For &1 < d/(1 — §), we have

P(A7)

P(ALIBRY)P(B!) + P(AG|(B;')) P((B')°)

< P(B:)+P (C{inﬂayzj2 - 72} ivj(k + 1)1 +e)k(1 -6k > a>
k=1

< P(BY)+ P (CiinfE|Z/? - Z}| > £) — 0,

which demonstrates the convergence in probability of on the right hand side of (98)
We now consider the second term I1. Since k > bN/(2p) and sup,, Z 1aj(u) <
1 — 9, it is straightforward to show

IT < aolu) Y (1+(EIZ)DF) (-0
k>bN/(2p)
< ap(u)(l bN/ 2p) Z (1+ E|Z+2| k+bN/(2p))( 5)1@.

Now it is straightforward to show that 1T 20 with b — 0, bN — oo as N — oc.
Altogether we obtain (95), and the desired result follows.
O

We note that the bounds given in Lemma 10 are uniform for all tg —bN/2 <t <
to 4+ bN/2, this is required to prove (91). As a byproduct of Lemma 10, we have the
following result.

COROLLARY 2. Suppose the assumptions in Lemma 10 hold. Then, for all t €
[to — bN/2,to + bN/2 — 1], we have

(99) Elo; (uo) — &7 (uo)| = 0,
(100) inf E|6;2(uo) — 62(ug)| 2 0,

where b — 0, bN — oo as N — oo, and the expectations are defined in the same
way as in Lemma 10.
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PROOF. By using the expressions o;72(ug) = Gy, n(0) + Yo atO,N(j)X;%(uo)
and 62 (u) = ao(u) + Sy aj(u )th_j (u), and taking also into account that @, LS
a(up), the desired result follows immediately from Lemma 10. 0

In order to prove (91), we require the following inequalities.

Let us suppose 02 = ag + 21;:1 a;xj, 05 = fo+ Z§:1 Biy; with {a;}, {55}, {z;}
and {y;} positive. Then, it can be shown that

2

2 2 P
2y O Tj Znyyi < KZ (A+ B) { 9 9
R - — < ———92) |zj—yj|+|og — o,
(futo,N + Z‘?:l )% (figo,N + Z§:1 y;)? fitg, N ]z::l ! ! ’ Y
(101)
where A = _10ajand B = ut ~ T Z —1 Bj. Similarly, we have

2

2,.. Z 0'2 i
2505, yIyYi < K(A+ B)|z _Zy‘2

(o + 201 25)% (g v + 25— yj)?

Kz:(A+ B)
———————{2§:mj i+ lo = ot}

Htog,N
We use these inequalities to prove the following result.

(102)

[PROOF of (91)] By definition of Mallows metric, independence of the pairs {(Z;72, Z2)}+,
and that E(Z;"?) = 1, we have

d2 {M(EZ),N _R;—),N@tmN) ,\/W(EN(U()) RN UQ UQ )}
2

2 N (to— k>2. (B ((ZEr2 - 1)0§2(UO)X§_21-(U0) (2} = 1)57 (u0) X} (uo)
[fito, 5 + 51 X2 (uo)? [ + S0_) X2 (u0))?

IA
=l
N
N
S

where the infinimum is taken over all joint measures on (Z;72, Z?). We now consider

E <(Z,j2 -1) 1?2(U0)X;2i(u0) (Zk - 1)5k(u0)~Xk ;(uo)
(Ao, v + Zj:l le_zj(UO)P (g, N + Z X J(UO)P,

2
) <21+ 1D,

where

E ((lez — Do (uo) X2 (wo) (2 -1)5 JQ(UO)X;ffi(Uo)f
[futo, v + X251 X325 (o)l [fiwg,n + X5y X2 (w0))? )
II = E ((Z]j? — Do * (o) X% (wo) (2} — 1)51%(%)}213_2-(“0) )2
[fito, v + 350 X2 (uo) ) [fing, v + 35y X5 (wo)]2)
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Studying first I, and using (101), we have

I < KE(Z+2 _ 1)2E< ]—:2(UO)X];|—_27,(UO) B ;’2(UO)X;—_2Z(U0) >2
B ‘ [fito, v + X5—1 X2 (uo)]? (g n + S5_y X2, (wo))?

KE(Z7? - 1)%(A1 4+ B)? (. & . 5
< A {22 B 0) - X2 o) + Bl (o) - 57 (w0l .
0, j=1

where A; = 2N vO iy iy N(j) and By = ao(uo) | 30—y aj(up). Therefore, by

Ay, N Py, N
using (93), (94) and (99), we have [ 2. 0. Bounding IT by using (102), we have
IT < (A1 + B1)E|Z,? - Z2)* +

KE(ZIH(A1+B1)? (I~ - .
BRI S B, (o) — R (uo)| + Elo (o) — (o) .
05 ]:1

Substituting the above bounds into (103), we have

da { VBN (r, = Rao (o) gy x)) - VEN (Ew (o) = Rov(uo)a(uo)) } < T+ 17,

where
. AB(Z;72 = 1)2(A1 + B1)? [ & .
= G — 4+ By {QZE|X§—2J(UO)—Xzﬁj(uo)lJrEWZrz(u )—022(u0)|} WN,
Hto,N j=1
- AE(ZF?) (A1 + B1)? [ &~ . . P .
I = (2 A)( ! ) {221nfE|X2’_2j(uo)—X,f_j(uo)|—|—1anE|0,":2(u0)—Ji(u0)|}w]v,
Hto,N j=1
and wy = 7k Yo ZZN{E\W W (4 ;k)2. By using (93), (94) and (99), we have T 2.

By using (93), (95) and (100), we have IT 2 o. Altogether we obtain the required
result. 0

[PROOF of (92)] We use the same methods as those in the proof of (91) to show that
dg(RLN,?@N(uo)) 2. 0. Then, by using Lemma 8.3 in Bickel & Freedman (1981),

and Ry (ug) LS E[AEM)(U)] we have R:(_),N i E[AE”) (u)], thus obtaining the desired
result. (]

We now have the necessary ingredients to prove Proposition 5.

PROOF OF PROPOSITION 5. We observe that
VON (@Z_),N - @to,N) = VON(Ry n)~ (T:g N~ RN ato,N) :

Now, since by (92) we have 722(’) N LS E[Ag” ) (up)], we can replace in the above R;g N

with E[AE” ) (up)], and then use the delta method and (91) to get the required result.
(]
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