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We investigate the time-varying ARCH (tvARCH) process. It is

shown that it can be used to describe the slow decay of the sample

autocorrelations of the squared returns often observed in financial

time series, which warrants the further study of parameter estimation

methods for the model.

Since the parameters are changing over time, a successful estima-

tor needs to perform well for small samples. We propose a kernel

normalised-least-squares (kernel-NLS) estimator which has a closed

form, and thus outperforms the previously proposed kernel quasi-

maximum likelihood (kernel-QML) estimator for small samples. The

kernel-NLS estimator is simple, works under mild moment assump-

tions, and avoids some of the parameter space restrictions imposed

by the kernel-QML estimator. Theoretical evidence shows that the

kernel-NLS estimator has the same rate of convergence as the kernel-

QML estimator. Due to the kernel-NLS estimator’s ease of computa-

tion, computationally intensive procedures can be used. A prediction-

based cross-validation method is proposed for selecting the band-

width of the kernel-NLS estimator. Also, we use a residual-based

bootstrap scheme to bootstrap the tvARCH process. The bootstrap

sample is used to obtain pointwise confidence intervals for the kernel-

NLS estimator. It is shown that distributions of the estimator using

the bootstrap and the “true” tvARCH estimator asymptotically co-

incide.

We illustrate our estimation method on a variety of currency ex-

change and stock index data for which we obtain both good fits to

the data and accurate forecasts.
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2 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

1. Introduction. Among models for log-returns Xt = log(Pt/Pt−1) on specu-

lative prices Pt (such as currency exchange rates, share prices, stock indices, etc.),

the stationary ARCH(p) (Engle, 1982) and GARCH(p, q) (Bollerslev, 1986; Taylor,

1986) processes have gained particular popularity and have become standard in the

financial econometrics literature as they model well the volatility of financial mar-

kets over short periods of time. For a review of recent advances on those and related

models, we refer the reader to Fan & Yao (2003) and Giraitis et al. (2005).

The modelling of financial data using non-stationary time series models has re-

cently attracted considerable attention. Arguments for using such models were laid

out, for example, in Fan et al. (2003), Mikosch & Stărică (2000, 2003, 2004), Mer-

curio & Spokoiny (2004a, 2004b), Stărică & Granger (2005) and Fryzlewicz et al.

(2006).

Recently, Dahlhaus & Subba Rao (2006) generalised the class of ARCH(p) pro-

cesses to include processes whose parameters were allowed to change “slowly” through

time. The resulting model, called the time-varying ARCH(p) (tvARCH(p)) process,

is defined as

(1) Xt,N = σt,NZt, σ2
t,N = a0

(

t

N

)

+
p
∑

j=1

aj

(

t

N

)

X2
t−j,N ,

for t = 1, 2 . . . , N , where {Zt}t are independent and identically distributed random

variables with E(Zt) = 0 and E(Z2
t ) = 1. In this paper, we focus on how the

tvARCH(p) process can be used to characterise some of the features present in

financial data, estimation methods for small samples, bootstrapping the tvARCH(p)

process, and the fitting of the tvARCH(p) process to data.

In Section 2, we show how the tvARCH(p) process can be used to describe the slow

decay of the sample autocorrelations of the squared returns often observed in finan-

cial log-returns and usually attributed to the long memory of the underlying process.

This is despite the true non-stationary correlations decaying geometrically fast to

zero. Thus, the tvARCH(p) process, due to its nonstationarity, captures the appear-

ance of long memory, which is present in many financial datasets: a feature also

exhibited by a short memory GARCH(1,1) process with structural breaks (Mikosch

& Stărică, 2000, 2003, 2004 — note that this effect goes back to Bhattacharya et

al., 1983).

The benchmark method for the estimation of stationary ARCH(p) parameters

is the quasi-maximum likelihood (QML) estimator. Motivated by this, Dahlhaus &

Subba Rao (2006) use a localised kernel-based quasi-maximum likelihood (kernel-

QML) method for estimating the parameters of a tvARCH(p) process. However,

the kernel-QML estimator for small sample sizes is not very reliable, since the QML

tends to be shallow about the minimum for small sample sizes (Shephard, 1996; Bose
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& Mukherjee, 2003). This is of particular relevance to tvARCH(p) processes, where

in regions of nonstationarity we need to base our estimator on only a few observations

to avoid a large bias. Furthermore, the parameter space of the kernel-QML estimator

is restricted to infj aj(u) > 0. However, it is suggested in the examples in Section 6

that over large periods of time some of the higher order parameters should be zero.

This renders the assumption infj aj(u) > 0 rather unrealistic. In addition, evaluation

of the kernel-QML estimator at every time point is computationally quite intensive.

Therefore, bandwidth selection based on a data driven procedure, where the kernel-

QML estimator has to be evaluated at each time point for different bandwidths,

may not be feasible for even moderately large sample sizes.

A rival class of estimators are least-squares-based, and are known to have good

small-sample properties (Bose & Mukherjee, 2003). These type of estimators will be

the focal point in this paper. In Section 3 and the following sections, we propose and

thoroughly analyse a (suitably localised and normalised) least-squares-type estima-

tor for the tvARCH(p) process which, unlike the kernel-QML estimator mentioned

above, enjoys the following properties: (i) very good performance for small samples,

(ii) simplicity and closed form, and (iii) rapid computability. In addition, it does

allow infj aj(u) = 0, thereby avoiding the parameter space restriction described

above.

In Section 3.1, we consider a general class of localised weighted least-squares

estimators for tvARCH(p) process and study their sampling properties. We show

that their small sample performance, sampling properties and moment assumptions

depend on the weight function used.

In Section 3.3, we investigate weight functions that lead to estimators which are

close to the kernel-QML estimator for large samples and easy to compute. In fact,

we show that the weight functions which have the most desirable properties contain

unknown parameters. This motivates us, in Section 3.4, to propose the two-stage

kernel normalised-least-squares (kernel-NLS) estimator, where in the first stage we

estimate the weight function, which we use in the second stage as the weight in the

least-squares estimator. The two-stage kernel-NLS estimator has the same sampling

properties as if the true weight function were a priori known, and has the same rate

of convergence as the kernel-QML estimator. In Section 3.6, we state some of the

results from extensive simulation studies which show that for small sample sizes the

two-stage kernel-NLS estimator performs better than the kernel-QML estimator.

This suggests that, at least in the non-stationary setup, the two-stage kernel-NLS

estimator is a viable alternative to the kernel-QML estimator.

In Section 4, we propose a cross-validation method for selecting the bandwidth

of the two-stage kernel-NLS estimator. The proposed cross-validation procedure for

tvARCH(p) processes is based on one-step-ahead prediction of the data to select the
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bandwidth. The closed form solution of the two-stage kernel-NLS estimator means

that, for every bandwidth, the estimator can be evaluated rapidly. The computation

ease of the two-stage kernel-NLS estimator means that it is simple to implement

a cross-validation method based on this scheme. We discuss some of the imple-

mentation issues associated with the procedure and show that its computational

complexity remains low.

In Section 5, we bootstrap the tvARCH(p) process. This allows us to obtain

finite sample pointwise confidence intervals for the tvARCH(p) parameter estima-

tors. The scheme is based on bootstrapping the estimated residuals, which we use,

together with the estimated tvARCH(p) parameters, to construct the bootstrap

sample. Again, the fact that the bootstrapping scheme is computationally feasible

is only due to the rapid computability of the two-stage kernel-NLS estimator. We

show that the distribution of the bootstrap tvARCH(p) estimator asymptotically

coincides with the “true” tvARCH(p) estimator. The method and results in this

section may also be of independent interest.

In Section 6, we demonstrate that our estimation methodology gives a very good

fit to data for the USD/GBP currency exchange and FTSE stock index datasets,

and we also exhibit bootstrap pointwise confidence intervals for the estimated pa-

rameters. In Section 7, we test the long-term volatility forecasting ability of the

tvARCH(p) process with p = 0, 1, 2, where the parameters are estimated via the

two-stage kernel-NLS estimator. We show that, for a variety of currency exchange

datasets, our forecasting methodology outperforms the stationary GARCH(1,1) and

EGARCH(1,1) techniques. However, it is interesting to observe that the latter two

methods give slightly superior results for a selection of stock index datasets.

Proofs of the results in the paper are provided in the Appendix.

2. The tvARCH(p) process: preliminary results and motivation. In

this section, we discuss some of the properties of the tvARCH(p) process.

2.1. Notation, assumptions and main ingredients. We first state the assumptions

used throughout the paper.

Assumption 1. Suppose {Xt,N}t is a tvARCH(p) process. We assume that the

time-varying parameters {aj(u)}j and the innovations {Zt}t satisfy the following

conditions

(i) There exist 0 < ρ1 ≤ ρ2 < ∞ and 0 < δ < 1 such that, for all u ∈ (0, 1],

ρ1 ≤ a0(u) ≤ ρ2, and supu

∑p
j=1 aj(u) ≤ 1 − δ;

(ii) There exist β ∈ (0, 1] and a finite constant K > 0 such that for u, v ∈ (0, 1]

|aj(u) − aj(v)| ≤ K|u − v|β for each j = 0, 1, . . . , p;
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(iii) For some γ > 0, E

(

|Zt|4(1+γ)
)

< ∞;

(iv) For some η > 0 and 0 < δ < 1, m1+η supu

∑p
j=1 aj(u) ≤ 1 − δ, where m1+η =

{E(|Zt|2(1+η))}1/(1+η).

Assumption 1(i) implies that supt,N E

(

X2
t,N

)

< ∞. Assumption 1(i, ii) means

that the tvARCH(p) process can locally be approximated by a stationary process.

We require Assumption 1(iii, iv) to show asymptotic normality of the two-stage

kernel-NLS estimator (defined in Section 3.4). Comparing m1+η supu

∑p
j=1 aj(u) ≤

1 − δ with the assumption required to show asymptotic normality of the kernel-

QML estimator (m1 supu

∑p
j=1 aj(u) ≤ 1 − δ, where we note that m1 = 1), it is

only a mildly stronger assumption, as we only require it to hold for some η >

0. In other words, if the moment function mν increases smoothly with ν, and

m1 supu

∑p
j=1 aj(u) ≤ 1 − δ, then there exists a η > 0 and 0 < δ1 < 1 such that

m1+η supu

∑p
j=1 aj(u) ≤ 1 − δ1 (which satisfies Assumption 1(iv)).

In order to prove results concerning the tvARCH(p) process, Dahlhaus & Subba

Rao (2006) define the stationary process {X̃t(u)}t. Let u ∈ (0, 1] and suppose that,

for each fixed u, {X̃t(u)}t satisfies the model

X̃t(u) = σ̃t(u)Zt, σ̃2
t (u) = a0(u) +

p
∑

j=1

aj(u)X̃2
t−j(u).(2)

The following lemma is a special case of Corollary 4.2 in Subba Rao (2006),

where it was shown that {X̃2
t (u)}t can be regarded as a stationary approximation

of the non-stationary process {X2
t,N}t about u ≈ t/N , which is why {Xt,N}t can

be regarded as a locally stationary process. We can treat the lemma below as the

stochastic version of Hölder continuity.

Lemma 1. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assumption

1(i,ii), and let {X̃t(u)}t be defined as in (2). Then, for each fixed u ∈ (0, 1], we have

that {X̃2
t (u)}t is a stationary, ergodic process such that

|X2
t,N − X̃2

t (u)| ≤ 1

Nβ
Vt,N +

∣

∣

∣

∣

u − t

N

∣

∣

∣

∣

β

Wt, almost surely,(3)

and |X̃2
t (u) − X̃2

t (v)| ≤ |u − v|βWt, almost surely, where {Vt,N}t and {Wt}t are

well-defined positive processes, and {Wt}t is a stationary process. In addition, if

we assume that Assumption 1(iv) holds, then we have supt,N E|Vt,N |1+η < ∞ and

E|Wt|1+η < ∞.

Several of the estimators considered in this paper (e.g., the estimators defined in

(4) and (7), etc.) are local or global averages of functions of the tvARCH(p) process.
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Unlike stationary ARCH(p) (or more general stationary) processes, we cannot study

the sampling properties of these estimators by simply letting the sample size grow.

Instead, we use the rescaling by N to obtain a meaningful asymptotic theory. The

underlying principle to studying an estimator at a particular time t, is to keep

the ratio t/N fixed and let N → ∞ (Dahlhaus, 1997). However, the tvARCH(p)

process varies for different N , which is the reason for introducing the stationary

approximation. Throughout the paper,
P→ and

D→ denote convergence in probability

and in distribution, respectively.

2.2. The covariance structure and the long memory effect. The following propo-

sition shows the behaviour of the true autocovariance function of the squares of a

tvARCH(p) process.

Proposition 1. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i,ii), and assume that
{

E(Z4
t )
}1/2

supu

∑p
j=1 aj(u) ≤ 1 − δ, for some

0 < δ < 1. Then, for some ρ ∈ (1 − δ, 1) and a fixed h ≥ 0, we have

sup
t,N

∣

∣

∣cov
{

X2
t,N ,X2

t+h,N

}∣

∣

∣ ≤ Kρh,

for some finite constant K > 0 that is independent of h.

If the fourth moment of the process {Xt,N}t exists, then Proposition 1 implies

that {X2
t,N}t is a short memory process.

However, we now show that the sample autocovariance of the process {X2
t,N}t,

computed under the wrong premise of stationarity, does not necessarily decay to

zero. Typically, if we believed that the process {X2
t,N}t were stationary, we would

use SN (h) as an estimator of cov{X2
t,N ,X2

t+h,N}, where

(4) SN (h) =
1

N − h

N−h
∑

t=1

X2
t,NX2

t+h,N − (X̄N
)2

and X̄N =
1

N − h

N−h
∑

t=1

X2
t,N .

Denote µ(u) = E(X̃2
t (u)) and c(u, h) = cov{X̃2

t (u), X̃2
t+h(u)} for each u ∈ (0, 1] and

h ≥ 0.

The following proposition shows the behaviour of the sample autocovariance of

the squares of a tvARCH(p) process, evaluated under the wrong assumption of

stationarity.

Proposition 2. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i,ii), and assume that, for some 0 < ζ ≤ 2 and 0 < δ < 1,
{

E

(

|Zt|2(2+ζ)
)}1/(2+ζ)

supu

∑p
j=1 aj(u) ≤ 1 − δ. Then, for fixed h > 0, as N → ∞,
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we have

(5) SN (h)
P→
∫ 1

0
c(u, h)du +

∫ ∫

{0≤u<v≤1}
{µ(u) − µ(v)}2 dudv.

According to Proposition 2, since the autocovariance of the squares of a tvARCH(p)

process decays to zero exponentially fast as h → ∞, so does the first integral in (5).

However, the appearance of persistent correlations would still appear if the sec-

ond integral were non-zero. We consider the simple example when the mean of the

squares increases linearly, that is if µ(u) = cu, for some nonzero constant c. In this

case, the second integral in (5) reduces to c2/12. In other words, the long memory

effect is due to changes in the unconditional variance of the tvARCH(p) process.

3. The kernel-NLS estimator and its asymptotic properties. Typically,

to estimate the parameters of a stationary ARCH(p) process, a QML estimator is

used, where the likelihood is constructed as if the innovations were Gaussian. The

main advantage of the QML estimator is that, even in the case that the innovations

are non-Gaussian, it is consistent and asymptotically normal. In contrast, Strau-

mann (2005) has shown that under misspecification of the innovation distribution,

the resulting non-Gaussian maximum likelihood estimator is inconsistent. As it is

almost impossible to specify the distribution of the innovations, this makes the QML

estimator the benchmark method when estimating stationary ARCH(p) parameters.

A localised version of the QML estimator is used to estimate the parameters of

a tvARCH(p) process in Dahlhaus & Subba Rao (2006). To prove the sampling

results, the asymptotics are done in the rescaled time framework. In practice, a

good estimator is obtained if the process is close to stationary over a relatively large

region. However, the story is completely different over much shorter regions. As

noted in the Section 1, in estimation over a short period of time (which will often

be the case for nonstationary processes) the performance of the QML estimator is

quite poor.

Rival methods are least-squares-type estimators, which are known to have good

small sample properties. In this section, we focus on kernel weighted least-squares

as a method for estimating the parameters of a tvARCH(p) process. To this end,

we define the kernel W : [−1/2, 1/2] → R, which is a function of bounded variation

and satisfies the standard conditions:
∫ 1/2
−1/2 W (x)dx = 1 and

∫ 1/2
−1/2 W 2(x)dx < ∞.

3.1. Kernel weighted least-squares for tvARCH(p) processes. It is straightfor-

ward to show that the squares of the tvARCH(p) process satisfy the autoregressive

representation X2
t,N = a0

( t
N

)

+
∑p

j=1 aj
( t

N

)

X2
t−j,N + (Z2

t − 1)σ2
t,N . For reasons

that will become obvious later, we weight the least squares representation with the

weight function κ(u0,Xk−1,N ), where X T
k−1,N = (1,X2

k−1,N , . . . ,X2
k−p,N ), and define
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the following weighted least-squares criterion

Lt0,N (α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) (X2
k,N − α0 −

∑p
j=1 αjX

2
k−j,N)2

κ(u0,Xk−1,N )2
.(6)

If |u0−t0/N | < 1/N , we use ât0,N as an estimator of a(u0) = (a0(u), a1(u), . . . , ap(u))T ,

where

ât0,N = argminaLt0,N (a).(7)

Since ât0,N is a least-squares estimator, it has the advantage of a closed form solution,

i.e., ât0,N =
{Rt0,N

}−1
rt0,N , where

Rt0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) Xk−1,NX T
k−1,N

κ(u0,Xk−1,N)2
,

rt0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k,NXk−1,N

κ(u0,Xk−1,N)2
.

3.2. Asymptotic properties of the kernel weighted least-squares estimator. We

now obtain the asymptotic sampling properties of ât0,N .

To show asymptotic normality we require the following definitions

Ak(u) =
X̃k−1(u)X̃ T

k−1(u)

κ(u0, X̃k−1(u))2
, Dk(u) =

σ̃4
k(u)X̃k−1(u)X̃ T

k−1(u)

κ(u0, X̃k−1(u))4
,(8)

and

Bt0,N (α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) [ {X2
k,N − α0 −

∑p
j=1 αjX

2
k−j,N}2

κ(u0,Xk−1,N )2
(9)

−
{X̃2

k(u0) − α0 −
∑p

j=1 αjX̃
2
k−j(u0)}2

κ(u0, X̃k−1(u))2

]

,

where X̃t−1(u) = (1, X̃2
t−1(u), . . . , X̃2

t−p(u)). We point out that if {Xt,N}t were a

stationary process then Bt0,N (α) ≡ 0.

In the following proposition we obtain consistency and asymptotic normality of

ât0,N . We denote ∇f(u, a) = (∂f(u,a)
∂a0

, . . . , ∂f(u,a)
∂ap

)T , and set x = (1, x1, x2, . . . , xp)

and y = (1, y1, y2, . . . , yp).

Proposition 3. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i,ii,iii), and let ât0,N , At(u), Dt(u) and Bt0,N(α), be defined as in (7),

(8) and (9), respectively. We further assume that κ is bounded away from zero and
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we have a type of Lipschitz condition on the weighted least-squares; that is for all

1 ≤ i ≤ p, | xi

κ(u,x) − yi

κ(u,y) | ≤ K
∑p

j=1 |xj − yj|, for some finite constant K > 0.

Also, assume for all 1 ≤ i ≤ p that supk,N E

(

X4
k−i,N

κ(u0,Xk−1,N )2

)

< ∞, and suppose

|u0 − t0/N | < 1/N .

(i) Then we have ât0,N
P→ a(u0), with b → 0, bN → ∞ as N → ∞.

(ii) If in addition we assume for all 1 ≤ i ≤ p and some ν > 0 that

supk,N E

(

X8+2ν
k−i,N

κ(u0,Xk−1,N )4+ν

)

< ∞, then we have ∇Bt0,N (a(u0)) = Op(b
β) and

√
bN

(

ât0,N − a(u0)
)

+
1

2

√
bNE[At(u0)]

−1∇Bt0,N(a(u0))

D→ N
(

0, w2µ4E[At(u0)]
−1

E[Dt(u0)]E[At(u0)]
−1
)

,(10)

with b → 0, bN → ∞ as N → ∞, where w2 =
∫ 1/2
−1/2 W 2(x)dx and µ4 =

var
(

Z2
t

)

.

At first glance the above assumptions may appear quite technical, but we note

that in the case κ(·) ≡ 1, they are standard in least-squares estimation. Furthermore,

if the weight function κ is bounded away from zero and Lipschitz continuous (i.e.,

supx,y |κ(u, x) − κ(u, y)| ≤ K
∑p

j=1 |xj − yj |, for some finite constant K > 0), then

it is straightforward to see that | xi

κ(u,x) −
yi

κ(u,y) | ≤ K
∑p

j=1 |xj − yj|. In the following

section, we will suggest a κ(·) that is ideal for tvARCH(p) estimation and satisfies

the required conditions.

3.3. Choice of weight function κ. By considering both theoretical and empirical

evidence, we now investigate various choices of weight functions. To do this, we

study Proposition 3, and consider the κ which yields an estimator which requires

only weak moment assumptions and has minimal error (see (10)). Considering first

the bias in (10), if
√

bNbβ → 0, then the bias converges in probability to zero.

Instead we focus attention (i) on the variance E[At(u0)]
−1

E[Dt(u0)]E[At(u0)]
−1 and

(ii) on derivation under low moment assumptions.

In the stationary ARCH framework, Giraitis & Robinson (2001), Bose & Mukher-

jee (2003), Horváth & Liese (2004) and Ling (2006) have considered the weighted

least-squares estimator for different weight functions. Giraitis & Robinson (2001) use

the Whittle likelihood to estimate the parameters of a stationary ARCH(∞) process.

Adapted to the nonstationary setting, the local Whittle likelihood estimator and the

local weighted least-squares estimator are asymptotically equivalent when κ(·) ≡ 1.

Studying their assumptions, supt,N E(X4
t,N ) < ∞ and supt,N E(X8+2ν

t,N ) < ∞, for

some ν > 0, are required to show consistency and asymptotic normality. Assuming

normality of the innovations {Zt}t and interpreting these conditions in terms of the
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10 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

coefficients of the tvARCH(p) process, they imply that supu

∑p
j=1 aj(u) < 1/

√
3 is

required for consistency and supu

∑p
j=1 aj(u) < 1/{E(Z8+2ν

t )}1/(4+ν) for asymptotic

normality. In other words, the tvARCH(p) process should be close to a white noise

process for the sampling results to be valid.

On the other hand, Bose & Mukherjee (2003) use a two-stage least-squares pro-

cedure to estimate the stationary ARCH(p) parameters. In the first stage, they

use least-squares with weight function κ(·) ≡ 1 and in the second stage – a least-

squares estimator with κ = σ̂2
t , where σ̂2

t is an estimator of the conditional variance.

An advantage of their scheme is that, asymptotically, it has the same distribution

variance as the QML estimator. However, because in the first stage they use the

weight κ(·) ≡ 1, their method requires the same set of assumptions as in Giraitis &

Robinson (2001).

To reduce the high moment restrictions, Horváth & Liese (2005) use random

weights of the form κ(u,Xk−1,N ) = 1+
∑p

j=1 X2
k−j,N to estimate stationary ARCH(p)

parameters, and Ling (2006) uses a similar weighting to estimate the parameters of

a stationary ARMA-GARCH process. The main advantage of using this choice of

weight functions is that under Assumption 1(i, ii, iii) the moment assumptions in

Proposition 3 are satisfied.

Motivated by the discussion above, let us consider weight functions which have

the form κ(u,Xk−1,N ) = g(u) +
∑p

j=1 ρj(u)X2
k−j,N . We will make some compar-

isons with the kernel-QML estimator considered in Dahlhaus & Subba Rao (2006),

who showed that the kernel-QML estimator is asymptotically normal with variance

w2µ4E[Σt(u0)]
−1, where

Σt

(

u0

)

=
X̃t−1(u0)

T X̃t−1(u0)

σ̃4
t (u0)

.(11)

It is worth noting that if {ρj(u)} are bounded away from zero, then the condi-

tions in Proposition 3 are fulfilled with no additional assumptions. For the pur-

poses of this discussion only, let us assume for a moment that infj aj(u) > 0 (al-

though this is not a requirement for our estimation methodology to be valid). In

order to select g(·) and ρj(·), we first observe that if a(u0) were known then letting

κ(u0,Xk−1,N) = a0(u0) +
∑p

j=1 aj(u0)X
2
k−1,N would be the ideal choice (provided

infj aj(u0) > 0) as the asymptotic variance of the resulting kernel weighted least-

squares estimator would be the same as the kernel-QML estimator. Clearly this

weight function is unknown, and for this reason we call it the ‘oracle’ weight. In-

stead, we look for a closely related alternative, which is computationally simple to

evaluate and avoids the requirement that infj aj(u0) > 0. Let us consider a weight

function κ(u,Xk−1,N ) = g(u) +
∑p

j=1 X2
k−j,N (which is in the spirit of the solution

proposed by Horváth & Liese (2005) for stationary ARCH(p) processes) and com-

pare it to the oracle weight. For convenience, we call the estimator using the weight
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function g(u) +
∑p

j=1 X2
k−j,N the g-estimator, and the estimator using the oracle

weight – the oracle estimator.

Using Proposition 3, we see that the asymptotic distribution variance of the g-

estimator and the oracle estimator is w2µ4E[A(g)
t (u)]−1

E[D(g)
t (u)]E[A(g)

t (u)]−1 and

w2µ4E[Σt(u0)]
−1, respectively, where

(12) A(g)
k (u) =

X̃k−1(u)X̃ T
k−1(u)

[g(u) +
∑p

j=1 X̃2
k−j(u)]2

, D(g)
k (u) =

σ̃4
k(u)X̃k−1(u)X̃ T

k−1(u)

[g(u) +
∑p

j=1 X̃2
k−j(u)]4

,

and Σt(u) is defined in (11). Let α(u) =
∑p

j=1 aj(u), β(u) = 1/minp
j=1 aj(u) and

|A|det denote the determinant of a matrix. By bounding A(g)
t (u) and D(g)

t (u) from

both above and below, we obtain

̟(g)−4 |E[Σt(u)]|−1
det ≤ |E[A(g)

t (u)]−1
E[D(g)

t (u)]E[A(g)
t (u)]−1|det

≤ ̟(g)4|E[Σt(u)]|−1
det,(13)

where

̟(g) =

(

a0(u) + g(u)α(u)

g(u)

)(

g(u) + β(u)a0(u)

a0(u)

)

.

Examining (13), we have an upper and lower bound for the asymptotic distribution

variance of the g-estimator in terms of the asymptotic variance of the oracle estima-

tor. It is easily seen that the difference (̟(g)4 − ̟(g)−4)|E[Σt(u)]|−1
det and the up-

per bound ̟(g)4|E[Σt(u)]|−1
det are minimised when g∗(u) = a0(u)

[min1≤j≤p aj(u)]
∑p

j=1
aj(u)

.

However, g∗(u) depends on unknown parameters and is highly sensitive to small

values of aj(u), hence it is inappropriate as a weight function. Instead, we consider

a close relative g(u) := µ(u) = a0(u)/(1 − α(u)), where µ(u) = E[X̃2
t (u)]. In this

case, using (13), we obtain the following upper and lower bound for the asymp-

totic variance of the kernel weighted least-squares estimator in terms of the oracle

variance

|E[Σt(u)]|−1
detω(u)−1 ≤ |E[A(µ)

t (u)]−1
E[D(µ)

t (u)]E[A(µ)
t (u)]−1|det

≤ |E[Σt(u)]|−1
detω(u),(14)

where

ω(u) =

(

1 + β(u)[1 − α(u)]

1 − α(u)

)4

.

We notice that the upper and lower bounds in (14) do not depend on the magnitude

of a0(u).

Since a0(u)
1−α(u) = E(X̃2

t (u)) = µ(u), which is the local mean, it can easily be es-

timated from {Xk,N}. In the following section we use it to estimate the weight
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12 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

function κ(u0,Xk−1,N ) = µ(u0) + Sk−1,N , where Sk−1,N =
∑p

j=1 X2
k−j,N . An addi-

tional advantage of this weight function, κ(u0,Xk−1,N ), is that under Assumption

1, supk,N E

(

X4
k−i,N

κ(u0,Xk−1,N )2

)

< ∞ and supk,N E

(

X8+2ν
k−i,N

κ(u0,Xk−1,N )4+ν

)

< ∞ are immedi-

ately satisfied. Furthermore, |κ(u, x)−κ(u, y)| ≤ K
∑p

j=1 |xj−yj|, thus |xi/κ(u, x)−
yi/κ(u, y)| ≤ K

∑p
j=1 |xj − yj|. Therefore, all the conditions in Proposition 3 hold.

3.4. The two-stage kernel-NLS estimator. We use µ̂t0,N as an estimator of µ(u0)

(see Lemma 2 in the Appendix), where

µ̂t0,N =
N
∑

k=1

1

bN
W

(

t0 − k

bN

)

X2
k,N .(15)

We use this to define the two-stage kernel-NLS estimator of the tvARCH(p) param-

eters.

The two-stage scheme:

(i) Evaluate µ̂t0,N , given in (15), which is an estimator of µ(u0);

(ii) Let ãt0,N =
{

R̃t0,N

}−1
r̃t0,N with Sk−1,N =

∑p
j=1 X2

k−j,N , κt0,N (Sk−1,N ) =

(µ̂t0,N + Sk−1,N) and

R̃t0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) Xk−1,NX T
k−1,N

κt0,N (Sk−1,N )2
,

(16)

r̃t0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k,NXk−1,N

κt0,N (Sk−1,N )2
.

If |u0 − t0/N | < 1/N , we use ãt0,N as an estimator of a(u0). We call ãt0,N the

two-stage kernel-NLS estimator.

3.5. Asymptotic properties of the two-stage kernel-NLS estimator. We derive the

asymptotic sampling properties of ãt0,N . (We note that because in the first stage we

need to estimate the weight function κ(u0,Xk−1) = µ(u0) + Sk−1,N , we require the

additional mild Assumption 1(iv), which we use to obtain a rate of convergence for

|µ̂t0,N − µ(u0)|.)

In the following proposition we obtain consistency and asymptotic normality of

ãt0,N .

Proposition 4. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i, ii), and let µ̂t0,N , ãt0,N , A(µ)
t (u) and D(µ)

t (u) be defined as in (15), the

two stage scheme and (12), respectively. Further, let µ(u) = E(X̃2
t (u)), and suppose

|u0 − t0/N | < 1/N .
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(i) Then we have ãt0,N
P→ a(u0), with b → 0, bN → ∞ as N → ∞.

(ii) If in addition we assume that Assumption 1(iii,iv) holds, then we have

√
bN

(

ãt0,N − a(u0)
)

+
1

2

√
bN{E[A(µ)

t (u0)]}−1∇B̃t0,N (a(u0))

(17)
D→ N

(

0, w2µ4{E[A(µ)
t (u0)]}−1

E[D(µ)
t (u0)]{E[A(µ)

t (u0)]}−1
)

,

where ∇B̃t0,N (a(u0)) = Op(b
β) and w2 and µ4 are defined as in Proposition 3,

with b → 0, bN → ∞ as N → ∞.

Comparing the two-stage kernel-NLS estimator with the kernel-QML estimator

in Dahlhaus & Subba Rao (2006), it is easily seen that they both have the same

rate of convergence.

Remark 1 (An asymptotically optimal estimator). We recall that the oracle

estimator asymptotically has the same variance as the kernel-QML estimator, but

in practice the oracle weight is never known. However, the two-stage kernel-NLS

estimator can be used as the basis of an estimate of the oracle weight. In other words,

using the two-stage kernel-NLS estimator, we define the weight function σ̂2
k,N(u0) =

ãt0,N (0)+
∑p

j=1 ãt0,N (j)X2
k−j,N , where ãt0,N = (ãt0,N (0), . . . , ãt0,N (p)). Then, we use

ăt0,N as an estimator of a(u0), where ăt0,N =
{

R̆t0,N

}−1
r̆t0,N , and R̆t0,N and r̆t0,N

are defined in the same way as R̃t0,N and r̃t0,N , with σ̂2
t,N (u0) replacing (µ̂t0,N +

∑p
j=1 X2

t−j,N ). The asymptotic sampling results can be derived using a similar proof

to Proposition 4. More precisely, if Assumption 1 holds, bβ
√

bN → 0, and aj(u0) > 0

for all j, then we have

√
bN

(

ăt0,N − a(u0)
)

D→ N
(

0, w2µ4{E[Σt(u0)]}−1
)

.(18)

In other words, by using the two-stage kernel-NLS estimator, we are able to estimate

the oracle weight sufficiently well for the parameter to have the same asymptotic

variance as the kernel-QML estimator. We note that, similarly to the kernel-QML

estimator, we require that infj aj(u) > 0. However, it is suggested in the examples in

Section 6 that over large periods of time some of the higher order parameters should

be zero. This renders the assumption infj aj(u) > 0 rather unrealistic. Furthermore,

to estimate ăt0,N , we require an additional stage of computation, which significantly

increases computation time in tasks such as cross-validatory bandwidth choice or

evaluation of bootstrap confidence intervals. Also, small sample evidence suggests

that the performance of the estimators ãt0,N and ăt0,N is similar. For this reason, in

the rest of this paper, we focus on ãt0,N , though our results can be generalised to

ăt0,N .
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N = 15 N = 30 N = 60 N = 100 N = 150 N = 250

a0 0.59 0.69 0.91 1.04 0.96 1.28

a1 0.84 0.73 0.97 0.97 1.10 1.11

a2 0.64 0.68 0.86 0.98 0.94 1.08

Table 1: Ratios of Mean Absolute Errors of two-stage NLS and QML estimators,

averaged over 100 simulated sample paths, for stationary ARCH(2) estimation with

Gaussian errors Zt and (a0, a1, a2) = (1, 0.6, 0.3). Sample sizes vary from N = 15 to

N = 250.

3.6. Comparison of two-stage kernel-NLS and kernel-QML estimators for small

samples. As mentioned earlier, in a non-stationary setting, it is essential for any

estimator of tvARCH(p) parameters to perform well for small sample sizes. We now

briefly describe the outcome of an extensive simulation study aimed at comparing

the performance of the two-stage NLS and QML estimators on short stretches of

stationary ARCH(2) data. We have tested the two estimators for Gaussian, Laplace

and Student-t errors Zt, and for various points of the parameter space (a0, a1, a2).

The two-stage NLS estimator significantly outperformed the QML estimator for very

small sample sizes in almost all of the cases. More complicated patterns emerged

for sample sizes of about 150 and larger, where the performance depended on the

particular point of the parameter space. However, the two-stage NLS estimator was

never found to perform much worse than the QML estimator. We also found the

two-stage NLS estimator to be significantly faster than the QML estimator as it did

not involve an iterative optimisation procedure.

As an example, Table 1 shows the ratios of the Mean Absolute Errors of the

two-stage NLS and QML estimators, averaged over 100 simulated sample paths, for

the following parameter configuration: (a0, a1, a2) = (1, 0.6, 0.3). The errors Zt are

Gaussian. The above point of the parameter space is “typical” in the sense that it

lies in the interior of the parameter space (and thus is suitable for QML estimation

which requires a1, a2 > 0) and that a1 > a2 as expected in a real-data setting. Also,

it is interesting in that a1 + a2 > 1/
√

3 and thus the classical (non-normalised)

least-squares estimator, corresponding to κ(·) ≡ 1, would not be consistent in this

setup.

4. A cross-validation method for bandwidth selection and implementa-

tion. In this section, we propose a data-driven method for selecting the bandwidth

of the two-stage kernel-NLS estimator.

4.1. The cross-validation bandwidth estimator. Several cross-validation methods

in nonparametric statistics consider the distance between an observation and a pre-
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dictor of that observation given neighbouring observations. For example, Hart (1996)

used a cross-validation method based on the best linear predictor of Yt given the

past to select the bandwidth of a kernel smoother, where Yt was a nonparametric

function plus correlated noise. The methodology we propose is based on the best

linear predictor of X2
t,N given the past, which is a0

(

t
N

)

+
∑p

j=1 aj
(

t
N

)

X2
t−j,N .

We estimate the parameters {aj(t/N)}j using the localised two-stage kernel-NLS

method but omit the observation X2
t,N in the estimation. More precisely, we use

â−t
t,N (b) = (â−t

0 (b), . . . , â−t
p (b)) as an estimator of {aj(t/N)}j , where

â−t
t,N (b) =

{

R−t
t,N (b)

}−1
r−t
t,N (b),(19)

with

R−t
t,N (b) =

N
∑

k=p+1

k 6=t,...,t+p

1

bN
W

(

t − k

bN

) Xk−1,NX T
k−1,N

(µ̂t,N + Sk−1,N)2
,

r−t
t,N (b) =

N
∑

k=p+1

k 6=t,...,t+p

1

bN
W

(

t − k

bN

) X2
k,NXk−1,N

(µ̂t,N + Sk−1,N)2
.

By using â−t
t,N (b), the squared error in predicting X2

t,N is given by (X2
t,N − â−t

0 (b) −
∑p

j=1 â−t
j (b)X2

t−j,N )2.

To reduce the complexity, we suggest only evaluating the cross-validation crite-

rion on a subsample of the observations. Let h be such that h → ∞, N/h → ∞
as N → ∞ (in practice h >> p). We implement the cross-validation criterion on

only the subsampled observations {Xkh,N : k = 1, . . . , N/h}. In other words, let

â−kh
kh,N(b) = (â−kh

0 (b), . . . , â−kh
p (b)) be the estimator defined in (19) and by normalis-

ing the squared error with the term (µ̂kh,N +
∑p

j=1 X2
kh−j,N)2, we define the following

cross-validation criterion

(20) GN,h(b) =
h

N

N/h
∑

k=1

(

X2
kh,N − â−kh

0 (b) −∑p
j=1 â−kh

j (b)X2
kh−j,N

)2

(µ̂kh,N +
∑p

j=1 X2
kh−j,N)2

.

We then use b̂h
opt as the optimal bandwidth, where b̂h

opt = arg minb GN,h(b). Using

similar arguments to those in Hart (1996), asymptotically, one can show that GN,h(b)

is equivalent to the mean-squared error G̃N,h(b), where

(21) G̃N,h(b) =
h

N

N/h
∑

k=1

E











(

X2
kh,N − â−kh

0 (b) −∑p
j=1 â−kh

j (b)X2
kh−j,N

)2

(µ̂kh,N +
∑p

j=1 X2
kh−j,N)2











.

It follows that b̂h
opt is an estimator of bopt, where bopt = arg minb G̃N,h(b). G̃N,h(b) is

minimised if â−t
kh,N(b) = a(kh/N) and in that case it is asymptotically equal to

∫ 1

0
E

{

(Z2
0 − 1)2σ2

0(u)

[µ(u) +
∑p

j=1 X2
−j(u)]2

}

du.(22)

imsart-aos ver. 2005/02/28 file: trNLS-Rev.tex date: June 12, 2007



16 FRYZLEWICZ, SAPATINAS AND SUBBA RAO

Therefore, b̂h
opt is such that â−t

t,N (b̂h
opt) is close to a(t/N).

It is straightforward to show that the computational complexity of this algorithm

is O(B N
h N log N), where B is the cardinality of the set of bandwidths tested for the

minimum of the cross-validation criterion. We note that the above rate is unattain-

able for the kernel-QML estimator due to its iterative character.

4.2. An illustrative example. We illustrate the performance of the proposed

cross-validation criterion by an interesting example of a tvARCH(1) process for

which the parameters a0(·) and a1(·) vary over time but the asymptotic uncondi-

tional variance E(X̃2
t (u)) = a0(u)/(1 − a1(u)) remains constant. This means that

sample paths of {Xt,N}t will invariably ‘appear stationary’ on visual inspection, and

that more sophisticated techniques are needed to detect the non-stationarity.

The left-hand plot in Figure 1 shows a sample path of length 1024, simulated from

the above process using standard Gaussian errors. The true time-varying parameters

a0(·) and a1(·) are displayed as dotted lines in the middle and right-hand plots,

respectively. In the estimation procedure, we used the Parzen kernel (a convolution

of the rectangular and triangular kernels) and, for simplicity, set µ̂t,N to be the

sample mean of {X2
t,N}t. To estimate a suitable bandwidth, we applied the proposed

cross-validation procedure described above with h = 10 (empirically, we have found

that for data of length of order 1000, the value h = 10 offers a good compromise

between speed and accuracy of our method). We examined the value of the cross-

validation criterion over a regular grid of bandwidths between 0 and 1, and obtained

the optimal bandwidth as b̂h
opt = 0.132.

The resulting parameter estimates are shown in the middle and right-hand plots

of Figure 1 as solid lines. While we can clearly observe a degree of bias due to

the small sample sizes involved in the estimation, it is reassuring to see that the

resulting estimates correctly trace the shape of the underlying parameters. Denoting

the empirical residuals from the fit by Ẑt, the p-value of the Kolmogorov-Smirnov

test for Gaussianity of Ẑt was 0.08, and the p-values of the Ljung-Box test for lack

of serial correlation in Ẑt, |Ẑt| and Ẑ2
t were 0.71, 0.33 and 0.58, respectively.

5. Constructing bootstrap pointwise confidence intervals. In parameter

estimation of linear time series, bootstrap methods are often used to obtain a good

finite sample approximation of the distribution of the parameter estimators. Schemes

based on estimating the residuals are often used (Franke & Kreiss, 1992). Inspired

by these methods, we propose a bootstrap scheme for the tvARCH(p) process, which

we use to construct pointwise confidence intervals for the two-stage kernel-NLS es-

timator. The main idea of the scheme is to use the two-stage kernel-NLS estimator

to estimate the residuals. We construct the empirical distributions from the esti-

mated residuals, sample from it and use this to construct the bootstrap tvARCH(p)
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Figure 1: Dotted lines in the middle and right plots: the true time-varying parameters a0(u) and a1(u), respectively. The

left plot: a sample path from the model, with Gaussian errors. Solid lines in the middle and right plots: the corresponding

estimates. See Section 4.2 for details.

sample. We show that the distribution of the two-stage kernel-NLS estimator using

the bootstrap tvARCH(p) sample and the “true” tvARCH(p) estimator asymptoti-

cally coincide. We mention that the scheme and the asymptotic results derived here

are also of independent interest and can be used to bootstrap stationary ARCH(p)

processes (for a recent review on resampling and subsampling financial time series

in the stationary context, see Paparoditis & Politis, 2007). We emphasise that un-

like the kernel-QML estimator, this computer-intensive procedure is feasible for the

kernel-NLS estimator due to its rapid computability.

Let ãt0,N = (ãt0,N (0), . . . , ãt0,N (p)). We first note that Assumption 1(i) is usually

imposed in the tvARCH framework, because it guarantees that almost surely every

realisation of the resulting process is bounded. When the sum of the coefficients

is greater than one, the corresponding process is unstable. The following residual

bootstrap scheme constructs the tvARCH(p) process from estimates of the residuals

and the parameter estimators. Despite ãt0,N
P→ a(u0), it is not necessarily true that

the sum of the parameter estimates satisfies
∑p

j=1 ãt0,N (j) < 1. To overcome this, we

now define a very slight modification of the two-stage kernel-NLS estimator which

guarantees that this sum is less than one. Let āt0,N = (āt0,N (0), . . . , āt0,N (p)), where

āt0,N (0) = ãt0,N (0) and, for j > 1,

āt0,N (j) =







ãt0,N (j) if
∑p

j=1 ãt0,N (j) ≤ 1 − δ,

(1 − δ)
ãt0,N (j)

∑p

j=1
ãt0,N (j)

if
∑p

j=1 ãt0,N (j) > 1 − δ.
(23)

Since ãt0,N
P→ a(u0) and

∑p
j=1 aj(u) ≤ 1− δ (Assumption 1(i)), it is straightforward

to see that āt0,N
P→ a(u0) and

∑p
j=1 āt0,N (j) ≤ 1 − δ.

The Residual bootstrap of the tvARCH(p) process:
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(i) If k ∈ [t0−bN, t0 +bN −1], using the parameter estimators construct residuals

Z̃2
k =

X2
k,N

ãt0,N (0) +
∑p

j=1 ãt0,N (j)X2
k−j,N

.

(ii) Define Ẑ2
t = Z̃2

t − 1
2bN

∑t0+bN−1
k=t0−bN Z̃2

k +1 and consider the empirical distribution

function

F̂t0,N (x) =
1

bN

t0+bN−1
∑

k=t0−bN

I(−∞,x](Ẑ
2
k),

where IA(y) = 1 if y ∈ A, 0 otherwise. It is worth mentioning that we use Ẑ2
t

rather than Z̃2
t since we have E(Ẑ2

t ) =
∫

zF̂t0,N(dz) = 1. (This result is used

in Proposition 8, in the Appendix.)

Set X+2
t (u0) = 0 for t ≤ 0. For 1 ≤ t ≤ t0+bN/2, sample from the distribution

function F̂t0,N (x), to obtain the sample {Z+2
t }t. Use this to construct the

bootstrap sample

X+2
t (u0) = σ+2

t (u0)Z
+2
t , σ+2

t (u0) = āt0,N(0) +
p
∑

j=1

āt0,N(j)X+2
t−j(u0).

We note that by estimating the residuals from [t0 − bN, t0 + bN − 1], the

distribution of X+2
t (u0) will be suitably close to the stationary approximation

Xt(u0) when t ∈ [t0−bN/2, t0+bN/2−1], this allows us to obtain the sampling

properties of the bootstrap estimator.

(iii) Define the bootstrap estimator

â+
t0,N =

{R+
t0,N

}−1
r+
t0,N ,(24)

where Xt−1(u0)
+ = (1,X+2

t−1(u0), . . . ,X
+2
t−p(u0))

T and

R+
t0,N =

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) Xk−1(u0)
+Xk−1(u0)

+T

(µ̂t0,N +
∑k

j=1 X+2
k−j(u0))2

,

r+
t0,N =

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

X+2
k (u0)Xk−1(u0)

+T

(µ̂t0,N +
∑k

j=1 X+2
k−j(u0))2

.

We observe that in Step (i,ii) of the bootstrap scheme we are constructing the

bootstrap sample {X+2
t (u0)}t whose distribution should emulate the distribution of

the stationary approximation {X̃2
t (u0)}t. In Step (iii) of the bootstrap scheme we

are constructing the bootstrap estimator â+
t0,N from the bootstrap samples. We note

that we have bootstrapped the stationary approximation X̃2
t (u0) since the limiting

distribution of ãt0,N is derived using the stationary approximation.

We now show that the distributions of
√

bN{â+
t0,N−āt0,N} and

√
bN{ât0,N−a(u0)}

asymptotically coincide.
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Proposition 5. Suppose Assumption 1 holds, and suppose either infj aj(u0) >

0 or E(Z4
t )1/2 supu[

∑p
j=1 aj(u)] < 1 − δ (which implies supk E(X4

k,N ) < ∞). Let

āt0,N and â+
t0,N be defined as in (23) and (24), respectively, and let bβ

√
bN → 0. If

|u0 − t0/N | < 1/N , then we have

√
bN

(

â+
t0,N − āt0,N

)

D→ N
(

0, w2µ4{E[A(µ)
t (u0)]}−1{E[D(µ)

t (u0)]}{E[A(µ)
t (u0)]}−1

)

,

with b → 0, bN → ∞ as N → ∞.

Comparing the results in Propositions 4(ii) and Propositions 5 we see if bβ
√

bN →
0, then, asymptotically, the distributions of (â+

t0,N − āt0,N ) and (ãt0,N − a(u0)) are

the same.

6. Volatility estimation: real data examples. The datasets analysed in this

and the following section fall into two categories:

1. Logged and differenced daily exchange rates between USD and a number of

other currencies running from 01/01/1990 to 31/12/1999: the data are avail-

able from the US Federal Reserve website

www.federalreserve.gov/releases/h10/Hist/default1999.htm.

We use the following acronyms: CHF (Switzerland Franc), GBP (United King-

dom Pound), HKD (Hong Kong Dollar), JPY (Japan Yen), NOK (Norway

Kroner), NZD (New Zealand Dollar), SEK (Sweden Kronor), TWD (Taiwan

New Dollar).

2. Logged and differenced daily closing values of the NIKKEI, FTSE, S&P500

and DAX indices, measured between a date in 1996 (exact dates vary) and

29/04/2005: the data are available from

www.bossa.pl/notowania/daneatech/metastock/.

The lengths N of each dataset vary but oscillate around 2500. In this section, we

exhibit the estimation performance of the two-stage kernel-NLS estimator on the

USD/GBP exchange rate and FTSE series. We examine the cases p = 0, 1, 2 and

use the Parzen kernel with bandwidths selected by the cross-validation algorithm of

Section 4.2.

The left column in Figure 2 shows the results for USD/GBP. The top plot shows

the data, the next one down shows the estimates of a0(·) for p = 0 (dashed line),

p = 1 (dotted line) and p = 2 (solid line), the one below displays the positive parts of

the estimates of a1(·) for p = 1 (dotted) and p = 2 (solid), and the bottom plot shows

the positive part of the estimate of a2(·) for p = 2. Note that the negative values

arise since our estimator is not guaranteed to be nonnegative. The right column

shows the corresponding quantities for the FTSE data. It is interesting to observe
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Figure 2: Left (right) column: USD/GBP (FTSE) series and the corresponding estimation results. See Section 6 for

details.
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USD/GBP FTSE

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

bandwidth 0.02 0.032 0.04 0.024 0.028 0.028

L-B p-value for Ẑt 0.83 0.83 0.82 0.15 0.20 0.30

L-B p-value for |Ẑt| 0.17 0.71 0.03 0.10 0.07 0.07

L-B p-value for Ẑ2
t 0.09 0.79 0.26 0.13 0.35 0.52

skewness of Ẑt −0.05 −0.09 −0.08 −0.13 −0.15 −0.16

kurtosis of Ẑt 0.7 0.92 1.24 −0.01 0.06 0.15

Table 2: The values of bandwidth selected by cross-validation, the p-values of the

L-B test for white noise for Ẑt, |Ẑt|, Ẑ2
t , and the sample skewness and kurtosis

coefficients for Ẑt for the USD/GBP and FTSE data sets. The boxed value means

p-value is below 0.05.

that in both cases, the shapes of the estimated time-varying parameters are similar

for different values of p.

The goodness of fit for each choice of p = 0, 1, 2 is assessed in Table 2. In each case,

Ẑt denotes the sequence of empirical residuals from the given fit. For the USD/GBP

data, the best fit is obtained for p = 1. For the FTSE data, it is less clear which

order gives the best fit but the Ljung-Box (L-B) p-value for |Ẑt| is the highest for

p = 0 and thus it seems to be the preferred option, which is further confirmed

by the visual inspection of the sample autocorrelation function of |Ẑt| in the three

cases. In both cases, the empirical residuals are negatively skewed, and in the case

of USD/GBP they are also heavy-tailed.

We conclude this section by constructing bootstrap pointwise confidence intervals

for the estimated parameters, using the algorithm detailed in Section 5. Note that

our central limit theorem (CLT) of Proposition 4 could be used for the same purpose,

but this would require pre-estimation of a number of quantities, which we wanted

to avoid. We base our bootstrap pointwise confidence intervals on 100 bootstrap

samples. For clarity, we only display confidence intervals for the “preferred” orders

p: that is, for p = 1 in the case of the USD/GBP data, and p = 0 in the case of the

FTSE series. These are shown in Figure 3.

It is interesting to note that the pointwise confidence intervals for the “nonlin-

earity” parameter a1(·) in the USD/GBP series are relatively wide and that the

parameter can be viewed as only insignificantly different from zero most (but not

all) of the time. On the other hand, there exist time intervals where the parameter

significantly deviates from zero. This further confirms the observation made earlier

that the order p = 0 is an inferior modelling choice for this series and that the order
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Figure 3: Solid lines from left to right: estimates of a0(·) for USD/GBP, a1(·) for USD/GBP, and a0(·) for FTSE.

Dashed lines: the corresponding 80% symmetric bootstrap pointwise confidence intervals.

p = 1 is preferred.

7. Volatility forecasting: real data examples. In this section, we describe a

numerical study whereby the long-term volatility forecasting ability of the tvARCH(p)

process is compared to that of the stationary GARCH(1,1) and EGARCH(1,1) pro-

cesses with standard Gaussian errors. We compute the forecasts of the tvARCH(p)

process as follows: we use the available data to estimate the tvARCH(p) parameters,

and then forecast into the future using the “last” estimated parameter values, i.e.,

those corresponding to the right edge of the observed data. For a rectangular kernel

with span m, this strategy leads to the following algorithm: (a) treat the last m

data points as if they came from a stationary ARCH(p) process, (b) estimate the

stationary ARCH(p) parameters on this segment (via the two-stage NLS scheme),

and (c) forecast into the future as in the classical stationary ARCH(p) forecasting

theory (for the latter, see, e.g., Bera & Higgins, 1993).

We denote the mean-square-optimal h-step-ahead volatility forecasts at time t,

obtained via the above algorithm, by σ2,tvARCH(p)

t|t+h . Note that to obtain the analo-

gous quantities, σ2,GARCH(1,1)

t|t+h and σ2,EGARCH(1,1)

t|t+h , for the stationary GARCH(1,1) and

EGARCH(1,1) processes, we always use the entire available dataset, and not only

the last m observations.

To test the forecasting ability of the various models, we use the exchange rate

and stock index datasets listed in Section 6. For the tvARCH(p) process, we take

p = 0, 1, 2, and use the forecasting procedure described above with a rectangular

kernel, over a grid of span values m = 50, 100, . . . , 500. Note that the tvARCH(0)

process has the simple form Xt,N = a
1/2
0 (t/N)Zt and is also considered by Stărică

& Granger (2005). We select the span by a “forward validation” procedure, i.e.,
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choose the value of m that yields the minimum out-of-sample prediction error AMSE,

defined below.

For the stationary (E)GARCH(1,1) prediction, we use the standard S-Plus garch

and predict routines. The stationary (E)GARCH(1,1) parameters are re-estimated

for each t.

For each t = 1000, . . . , N − 250, we compute the quantities

σ2,model

t|t+250 =
250
∑

h=1

σ2,model

t|t+h ,

where “model” is one of: tvARCH(0), tvARCH(1), tvARCH(2), GARCH(1,1), and

EGARCH(1,1), and compare them to the “realised” volatility

X
2
t|t+250 =

250
∑

h=1

X2
t+h,

using the scaled Aggregated Mean Square Error (AMSE)

Rmodel
250,1000,N =

N−250
∑

t=1000

(

σ2,model

t|t+250 − X
2
t|t+250

)2
,

where the scaling is by the factor of 1/(N−1000). For a justification of this simulation

setup, see Stărică (2003).

Table 3 lists the AMSEs attained by tvARCH(0), tvARCH(1), tvARCH(2), sta-

tionary GARCH(1,1) and stationary EGARCH(1,1) processes: the best results are

boxed. The values in brackets indicate the selected span values. The bullets for the

USD/TWD and USD/HKD series indicate that the numerical optimisers performing

the QML estimation in stationary (E)GARCH(1,1) processes failed to converge at

several points of the series and therefore we were unable to obtain accurate forecasts.

We list below some interesting conclusions from this study.

• In most cases, the selected span values m are similar across orders p. These

values can be taken as an indication of how “variable” the time-varying param-

eters are. Exceptions to this rule occur mostly in data sets which are difficult

to model, such as the HKD series, which is extremely spiky. For the latter se-

ries, more thought is needed on how to model it accurately in the tvARCH(p)

(or indeed any other) framework.

• For the NZD series, it can clearly be seen how “adding more nonlinearity takes

away non-stationarity”: as p increases, a larger and larger span m is selected,

which means that more and more variability in the volatility of the data can

be attributed to the nonlinearity, rather than the non-stationarity.

• While the tvARCH(p) framework seems superior to stationary (E)GARCH(1,1)

methodology for the currency exchange data, the opposite is true for the stock
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Series Scaling R(E)GARCH(1,1)

250,1000,N RtvARCH(0)

250,1000,N RtvARCH(1)

250,1000,N RtvARCH(2)

250,1000,N

CHF 108 2395 2371 (500) 2254 (500) 3030 (500)

GBP 109 20282 7660 (250) 9567 (300) 9230 (300)

HKD 1012 • 230 (150) 170 (500) 150 (100)

JPY 108 8687 9713 (350) 9173 (300) 9450 (300)

NOK 108 1767 1552 (500) 1875 (250) 2221 (500)

NZD 108 11890 5270 (50) 4976 (100) 4955 (150)

SEK 109 37720 6639 (250) 6805 (250) 7321 (250)

TWD 108 • 2323 (500) 2372 (500) 2400 (500)

S&P500 105 33 43 (500) 43 (500) 40 (500)

FTSE 106 516 860 (500) 958 (500) 983 (500)

DAX 106 2602 4492 (150) 4483 (500) 4864 (150)

NIKKEI 107 2364 3418 (100) 3252 (250) 3432 (250)

Table 3: AMSE for long-term forecasts using tvARCH(0), tvARCH(1), tvARCH(2),

stationary GARCH(1,1) and stationary EGARCH(1,1) processes. R(E)GARCH(1,1)

250,1000,N is

the better result out of: RGARCH(1,1)

250,1000,N and REGARCH(1,1)

250,1000,N .

indices. This might be indicative of the fact that stock indices are “less non-

stationary” than currency exchange series.

We conclude with a heuristic investigation of the quality of our volatility forecasts.

Conditioning on the information available up to time t, the quantity σ2,model

t|t+250 predicts

the variance of the variable X
(250)
t :=

∑250
h=1 Xt+h. By CLT-type arguments, X

(250)
t

is approximately Gaussian, and thus we assess the quality of the predicted volatility

by measuring how often the process Yt := X
(250)
t /{σ2,model

t|t+250}1/2 falls into desired

confidence intervals for standard Gaussian variables.

However, this is less informative of the quality of the forecasting procedure than

one might hope, the reason being that the process Yt is strongly dependent, so

it is not reasonable to expect it to take values outside (1 − α)100% confidence

intervals exactly, or approximately, 100α% of the time. Figure 4 shows processes

Yt constructed for the GBP, NZD, and SEK series, with the “optimal” forecasting

parameters from Table 3 (i.e., those for which the results are boxed). For α = 0.05,

the coverages are, respectively, 100%, 79% and 95%. If the dependence in Yt were

weaker, we would expect the three coverages to be closer to 95%, provided the

forecasting procedure was “adequate”. However, here, the strong dependence in Yt

causes the variance of the coverage percentages to be high.

Nonetheless, it is reassuring to note that on average, across the datasets, we do
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Figure 4: From top to bottom: processes Yt for the GBP, NZD, SEK series. Horizontal lines: symmetric 95% confidence

intervals for standard Gaussian variables.
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obtain the correct coverage of around 95% To see this, let us consider the series for

which our forecasting procedure is satisfactory (i.e., those for which it outperforms

(E)GARCH(1,1) processes), bar the two series: HKD and TWD, which are extremely

spiky and thus difficult to model and forecast. These are: CHF, GBP, NOK, NZD,

SEK. Table 4 shows the coverages for the five series. The average coverage is 94.2%,

which is very close to the ideal coverage of 95%. Averaging across all series, excluding

HKD and TWD, we obtain a coverage of 95.7%.

Series CHF GBP NOK NZD SEK

Coverage 99% 100% 98% 79% 95%

Table 4: Coverage of 95% Gaussian prediction intervals for our method, using pa-

rameter configurations that gave the best results in Table 3.

APPENDIX A: AUXILIARY LEMMAS AND PROOFS

The aim of this Appendix is to prove the theoretical results stated in the previous

sections.

Before proving these results, we first obtain some results related to weighted sums

of tvARCH(p) processes that we use below.

In what follows, we use K to denote a generic finite positive constant, not neces-

sarily the same each time it is used, even within a single equation.

A.1. Properties of tvARCH(p) processes. Let f : R
n → R. If |f(x1, . . . , xn)−

f(y1, . . . , yn)| ≤ K
∑n

i=1 |xi−yi|, then we say that f is Lipschitz continuous of order

1 (f ∈ Lip(1)).

Lemma 2. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assumption

1(i,ii), let {X̃t(u)}t be defined as in (2), and let f : R
n → R be such that f ∈ Lip(1).

If |u0 − t0/N | < 1/N , then, for fixed i1, . . . , in, we have

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

f
(

X2
k,N ,X2

k+i1,N , . . . ,X2
k+in,N

)

P→ E

{

f
(

X̃2
k(u0), X̃

2
k+i1(u0), . . . , X̃

2
k+in(u0)

)}

,(25)

with b → 0, bN → ∞ as N → ∞.

PROOF. It follows easily by using Lemma 1 and the same methods as those given

in the proof of Lemma A.6 in Dahlhaus & Subba Rao (2006). We omit the details.

�
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Let us now define the following quantity

r(u) = E

{

X̃2
k(u)X̃k−1(u)

κ(u0,Xk−1,N )2

}

.(26)

Lemma 3. Suppose the conditions in Proposition 3(i) are satisfied, let µ(u) =

E{X̃2
t (u)}, and let At(u), Dt(u) and r(u) be defined as in (8) and (26), respectively.

If |u0 − t0/N | < 1/N , then we have

(i)

(27)
N
∑

k=1

1

bN
W

(

t0 − k

bN

)

X2
k,N

P→ µ(u0);

(ii)

(28) Rt0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) Xk−1,NX T
k−1,N

κ(u0,Xk−1,N)2
P→ E[At(u0)];

(iii)

(29) rt0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k,NXk−1,N

κ(u0,Xk−1,N )2
P→ r(u0).

(iv) Suppose further that the conditions in Proposition 3(ii) are satisfied, then

(30)
N
∑

k=p+1

1

bN
W 2

(

t0 − k

bN

) σ4
k,NXk−1,NX T

k−1,N

κ(u0,Xk−1,N)4
P→ w2E[Dt(u0)],

with b → 0, bN → ∞ as N → ∞, where w2 =
∫ 1/2
−1/2 W 2(x)dx.

PROOF. The proof of (i), (ii) and (iii) is a straightforward application of Lemma

2, while the proof of (iv) uses a minor modification of Lemma A.5 in Dahlhaus &

Subba Rao (2006), with W (·) replaced by W 2(·). We omit the details. �

Remark 2. By using similar arguments, it can be easily seen that the asymp-

totic results of Lemma 3 also hold with X2
k,N , Xk−1,N and σ4

k,N replaced by X̃2
k(u0),

X̃k−1(u0) and σ̃4
k(u0) respectively.

We now give some mixingale properties of the stationary approximation {X̃t(u)}t

of a tvARCH(p) process. Suppose 1 ≤ q < ∞, and let ‖ · ‖q denote the ℓq-norm of

a vector. Furthermore, let σ(Xt,Xt−1, . . .) be the σ-field generated by the sequence

of random variables {Xk}t
k=−∞ defined on the same probability space.
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Lemma 4. Suppose {φk : k = 1, 2, . . .} is a stochastic process which satisfies

E(φk) = 0 and E(φq
k) < ∞ for some 1 < q ≤ 2. Further, let Ft = σ(φt, φt−1, . . .),

and suppose that there exists a ρ ∈ (0, 1) such that ‖E(φk|Fk−j)‖E
q ≤ Kρj . Then we

have






E

∥

∥

∥

∥

∥

s
∑

k=1

akφk

∥

∥

∥

∥

∥

q

q







1/q

≤ K

1 − ρ

(

s
∑

k=1

|ak|q
)1/q

.(31)

PROOF. Under the stated assumptions, it is not difficult to see that {(φk,Fk) : k =

1, 2, . . .} is a mixingale (see, e.g., Davidson, 1994, Chapter 16). Therefore {(φk,Fk) : k =

1, 2, . . .} satisfies the representation

φk =
∞
∑

j=0

[Ek−j(φk) − Ek−j−1(φk)] , almost surely,(32)

where Ek−j(φk) = E(φk|Fk−j). By substituting (32) into the sum
∑s

k=1 akφk, we

obtain

s
∑

k=1

akφk =
s
∑

k=1

ak

∞
∑

j=0

[Ek−j(φk) − Ek−j−1(φk)]

=
∞
∑

j=0

(

s
∑

k=1

ak[Ek−j(φk) − Ek−j−1(φk)]

)

, almost surely.(33)

Keeping j constant, we see that {(Ek−j(φk)−Ek−j−1(φk),Fk−j) : k = 1, 2, . . .} is a

martingale difference (see, for example, Davidson, 1994, p. 250). Therefore, we can

apply inequality (15.52) in Davidson (1994, Theorem 15.17) to (33), and get







E

∥

∥

∥

∥

∥

s
∑

k=1

akφk

∥

∥

∥

∥

∥

q

q







1/q

≤
∞
∑

j=0







E

∥

∥

∥

∥

∥

s
∑

k=1

ak[Ek−j(φk) − Ek−j−1(φk)]

∥

∥

∥

∥

∥

q

q







1/q

≤
∞
∑

j=0

(

2
s
∑

k=1

|ak|qE‖Ek−j(φk) − Ek−j−1(φk)‖q
q

)1/q

.

Under the stated assumption, ‖Ek−j(φk)−Ek−j−1(φk)‖E
q ≤ 2Kρj. Substituting this

inequality into the above gives







E

∥

∥

∥

∥

∥

s
∑

k=1

akφk

∥

∥

∥

∥

∥

q

q







1/q

≤
∞
∑

j=0

(

2
s
∑

k=1

|ak|q(2Kρj)q
)1/q

≤ 2
1+q

q K
∞
∑

j=0

ρj

(

s
∑

k=1

|ak|q
)1/q

,

hence we obtain the required result. �

We apply Lemma 4 in the proof of the first part of Lemma 5 below (with ak =

W
(

t−k
bN

)

, φk = {X̃2
k (u) − µ(u)} and q = 1 + η, where µ(u) = E{X̃2

t (u)}). This,

however, requires the following proposition.
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Proposition 6. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i,ii,iv), and let {X̃t(u)}t be defined as in (2). Further, let Ft = σ(X̃2
t (u), X̃2

t−1(u), . . .).

Then, there exists a ρ ∈ (1 − δ, 1) such that, for any f ∈ Lip(1) and all u ∈ (0, 1],

we have

{

E

∥

∥

∥E
[

f{X̃t(u)} | Ft−k

]− E
[

f{X̃t(u)}]
∥

∥

∥

1+η

1+η

}1/(1+η)

≤ Kρk
(

1 +
{

E‖X̃ 2
t−k(u)‖1+η

1+η

}1/(1+η)
)

,

where the constant K is independent of u, k and t.

PROOF. The proof follows from Proposition 3.1 in Dahlhaus & Subba Rao (2006).

We omit the details. �

Let us define the following quantities

µ1(u, d, h) = E{X̃2
t (u)X̃2

t+h(u + d)},(34)

c(u, d, h) = cov{X̃2
t (u), X̃2

t+h(u + d)},(35)

and set µ1(u, 0, h) = µ1(u, h) and c(u, 0, h) = c(u, h).

Moreover, we apply Lemma 4 in the proof of the second part of Lemma 5 below

(with ak = 1, φk = {X̃2
k (u)X̃2

k+h(u) − µ1(u, h, d)} and q = 1 + ζ/2). This requires

the following proposition, which is a variant of Proposition 6 above.

Proposition 7. Suppose {Xt,N}t is a tvARCH(p) process which satisfies As-

sumption 1(i,ii), and let {X̃t(u)}t be defined as in (2). Let µ1(u, d, h) be defined

as in (34), and suppose that
{

E

(

|Zt|2(2+ζ)
)}1/(2+ζ)

supu

∑p
j=1 aj(u) ≤ 1 − δ for

some 0 < ζ ≤ 2 and δ > 0. Let also Ft = σ(X̃2
t (u), X̃2

t−1(u), . . .). Then, for all

0 < u ≤ u + d ≤ 1, there exists a ρ ∈ (1 − δ, 1) such that

{

∥

∥

∥E
[

X̃2
t (u)X̃2

t+h(u + d) | Ft−k

]− µ1(u, d, h)
∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2)

≤ Kρk
(

1 +

{

E

∥

∥

∥X̃t−k(u)
∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2)

+

{

E

∥

∥

∥X̃t−k(u + d)
∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ)

+

{

E

∥

∥

∥X̃t−k(u)X̃ T
t−k(u + d)

∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2) )

,

where the constant K is independent of u, d, k and t.

PROOF. It follows easily by using the same steps as in the proof of Proposition 6.

We omit the details. �
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Define also the following quantities

Sk,bN(u) =
1

bN

(k+1)bN−1
∑

s=kbN

X̃2
s (u),(36)

Sk,bN (u, h, d) =
1

bN

(k+1)bN−1
∑

s=kbN

X̃2
s (u)X̃2

s+h(u + d).(37)

Lemma 5. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assump-

tion 1(i,ii,iv), and let {X̃t(u)}t be defined as in (2). Let µ(u) = E{X̃2
t (u)}, and let

µ1(u, d, h), Sk,bN (u) and Sk,bN (u, h, d) be defined as in (34), (36) and (37), respec-

tively. Then, we have











E

∥

∥

∥

∥

∥

∥

N
∑

k=p+1

1

bN
W

(

t − k

bN

)

{

X̃2
k(u) − µ(u)

}

∥

∥

∥

∥

∥

∥

1+η

1+η











1/(1+η)

≤ K(bN)
− η

1+η(38)

and
{

E
∥

∥Sk,bN (kb) − µ(kb)
∥

∥

1+η

1+η

}1/(1+η)
≤ K(bN)−

η
1+η ,(39)

where the constant K is independent of u.

Further, if
{

E

(

|Zt|2(2+ζ)
)}1/(2+ζ)

supu

∑p
j=1 aj(u) ≤ 1 − δ for some 0 < ζ ≤ 2

and δ > 0, then we have

{

E
∥

∥Sk,bN (u, h, d) − µ1(u, d, h)
∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2)
≤ K(bN)−

ζ
2+ζ ,(40)

where the constant K is independent of u and d.

PROOF. We will first prove (38). We use Lemma 4, with ak = W
(

t−k
bN

)

, φk =
{

X̃2
k(u)−µ(u)

}

and q = 1+ η, and take into consideration inequality (6). Note that

E(φk) = 0 and, by using Proposition 6, we then have

{

E

∥

∥

∥E

(

X̃2
k(u) | Fk−j

)

− µ(u)
∥

∥

∥

1+η

1+η

}1/(1+η)

≤ Kρj
(

1 +
{

E‖X̃k−j(u)‖1+η
1+η

}1/(1+η)
)

,

where Ft = σ(X̃2
t (u), X̃2

t−1(u), . . .). Since {X̃2
t (u)}t is a stationary process, then by

using (31) and that the support of W
(

t−k
bN

)

is proportional to bN , we have that











E

∥

∥

∥

∥

∥

∥

N
∑

k=p+1

1

bN
W

(

t − k

bN

)

{

X̃2
k(u) − µ(u)

}

∥

∥

∥

∥

∥

∥

1+η

1+η











1/(1+η)

≤ 1

bN

K

1 − ρ





N
∑

k=p+1

∣

∣

∣

∣

W

(

t − k

bN

)∣

∣

∣

∣

1+η




1/(1+η)

≤ K(bN)
− η

1+η .
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Thus, we have proved (38). The proof of (39) is identical to the proof of (27),

hence we omit the details. The proof of (40) uses Lemma 4, with ak = 1, φk =

{X̃2
k (u)X̃2

k+h(u) − µ1(u, h, d)} and q = 1 + ζ/2, takes into account Proposition 7,

and is similar to the proof of (27), hence we omit the details. �

A.2. The covariance structure and the long memory effect of tvARCH(p)

processes. In this section, we prove results for the covariance structure and the

long memory effect of tvARCH(p) processes

PROOF OF PROPOSITION 1. It follows easily by making a time-varying Volterra

series expansion of the tvARCH(p) process (see Section 5 in Dahlhaus & Subba Rao,

2006) and using Lemma 2.1 in Giraitis et al. (2000). We omit the details. �

The following lemma is used to prove Proposition 2.

Lemma 6. Suppose {Xt,N}t is a tvARCH(p) which satisfies Assumption 1(i,ii,iv),

and let {X̃t(u)}t be defined as in (2). Let h := h(N) be such that h/N → d ∈ [0, 1)

as N → ∞. Then we have

1

N − h

N−h
∑

s=1

X2
s,N

P→
∫ 1−d

0
E{X̃2

t (u)}du.(41)

Further, if
{

E

(

|Zt|2(2+ζ)
)}1/(2+ζ)

supu

∑p
j=1 aj(u) ≤ 1 − δ for some 0 < ζ ≤ 2

and δ > 0, then we have

1

N − h

N−h
∑

s=1

X2
s,NX2

s+h,N
P→
∫ 1−d

0
E{X̃2

t (u)X̃2
t+h(u + d)}du.(42)

PROOF. We first prove (42). Let b := b(N) be such that 1/b is an integer, b → 0

and b(N − h) → ∞ as N → ∞. We partition the left hand side of (42) into 1/b

blocks, i.e.,

1

N − h

N−h
∑

s=1

X2
s,NX2

s+h,N = b

1/b−1
∑

k=0

1

b(N − h)
×

b(N−h)−1
∑

r=0

X2
kb(N−h)+r,NX2

kb(N−h)+r+h,N .(43)

Let kb = kb[1 − d], and replace the terms X2
kb(N−h)+r,N and X2

kb(N−h)+r+h,N with

X̃2
kb(N−h)+r(kb) and X̃2

kb(N−h)+r+h(kb + d) respectively. Let N ′ = (N − h). If s ∈
[kbN ′, (k + 1)bN ′) then we replace X2

s,N with X̃2
s (kb) and X2

s+h,N with X̃2
s (kb + d).
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Now, by using Lemma 1 and that kb(N−h)
N ≤ s

N < (k+1)b(N−h)
N , we have

|X2
s,N − X̃2

s (kb)| ≤ 1

Nβ
Vs,N +

∣

∣

∣

∣

s

N
− kb(1 − d)

∣

∣

∣

∣

β

Ws

≤ 1

Nβ
Vs,N +

∣

∣

∣

∣

(k + 1)b(N − h)

N
− kb(1 − d)

∣

∣

∣

∣

β

Ws

≤ 1

Nβ
Vs,N +

∣

∣

∣

∣

b − b

(

h

N
− d

) ∣

∣

∣

∣

β

Ws ≤
1

Nβ
Vs,N + (2b)βWs.

Similarly, we obtain

|X2
s+h,N − X̃2

s (kb + d)|

≤ 1

Nβ
Vs+h,N +

∣

∣

∣

∣

s + h

N
− kb(1 − d) − d

∣

∣

∣

∣

β

Ws+h

≤ 1

Nβ
Vs+h,N +

∣

∣

∣

∣

(k + 1)b(N − h) + h

N
− kb(1 − d) − d

∣

∣

∣

∣

β

Ws+h

≤ 1

Nβ
Vs+h,N +

∣

∣

∣

∣

b − b

(

h

N
− d

)

+

(

h

N
− d

) ∣

∣

∣

∣

β

Ws+h

≤ 1

Nβ
Vs+h,N +

(

2b +

∣

∣

∣

∣

h

N
− d

∣

∣

∣

∣

)β

Ws+h

Therefore, by using the above, we get

|X2
s,NX2

s+h,N − X̃2
s (kb)X̃

2
s+h(kb + d)|

≤ X2
s,N |X2

s+h,N − X̃2
s+h(kb + d)| + X̃2

s+h(kb + d)|X2
s,N − X̃2

s (kb)|

≤ X2
s,N

(

1

Nβ
Vs+h,N +

(

2b +

∣

∣

∣

∣

h

N
− d

∣

∣

∣

∣

)β

Ws+h

)

+

X̃2
s+h(kb + d)

(

1

Nβ
Vs,N + (2b)βWs

)

.(44)

Substituting (44) into (43), we have

1

N − h

N−h
∑

s=1

X2
s,NX2

s+h,N =

b

1/b−1
∑

k=0

1

b(N − h)

b(N−h)−1
∑

r=0

X̃2
kb(N−h)+r(kb)X̃

2
kb(N−h)+r+h(kb + d) + RN .(45)
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where

|RN |

≤ b

1/b−1
∑

k=0

1

bN ′

bN ′−1
∑

r=0

(

X2
kbN ′+r,NX2

kbN ′+r+h,N − X̃2
kbN ′+r(kb)X̃

2
kbN ′+r+h(kb + d)

)

≤ b

1/b−1
∑

k=0

1

bN ′

bN ′−1
∑

r=0

{

X2
kbN ′+r,N

(

1

Nβ
VkbN ′+r+h,N +

(

2b +

∣

∣

∣

∣

h

N
− d

∣

∣

∣

∣

)β

WkbN ′+r+h

)

+ X̃2
kbN ′+r+h(kb + d)

(

1

Nβ
VkbN ′+r,N + (2b)βWkbN ′+r

)}

.

Now, taking expectations of the above, we have

(E|RN |1+ζ/2)1/(1+ζ/2) ≤ K

{(

2b + b

∣

∣

∣

∣

d − h

N

∣

∣

∣

∣

)β

+
1

Nβ

}

.

Therefore, RN
P→ 0 as N → ∞. Recall the notation Sk,bN (u, h, d) and µ1(u, d, h)

given in (34) and (37) respectively. By using (43) and (45), we have that

{

E

∥

∥

∥

∥

1

N − h

N−h
∑

s=1

X2
s,NX2

s+h,N −
∫ 1−d

0
µ1(u, d, h)du

∥

∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2)

≤ b

1/b−1
∑

k=0

{

E‖Sk,b(N−h)(kb, h, d) − µ1(kb, d, h)‖1+ζ/2
1+ζ/2

}1/(1+ζ/2)

+

∣

∣

∣

∣

1/b−1
∑

k=0

µ1(kb, d, h) −
∫ 1−d

0
µ1(kb, d, h)du

∣

∣

∣

∣

+ O

{(

b + kb

∣

∣

∣

∣

d − h

N

∣

∣

∣

∣

)β

+
1

Nβ

}

.(46)

We note that, by using (40), we have

(47) b

1/b−1
∑

k=0

{

E‖Sk,b(N−h)(kb, h, d) − µ1(kb, d, h)‖1+ζ/2
1+ζ/2

}1/(1+ζ/2)
≤ K(bN)

− ζ
2+ζ .

Now, by substituting (47) and

b

1/b−1
∑

k=0

µ1(kb, d, h) =

∫ 1−d

0
E

{

X̃2
t (u)X̃2

t+h(u + d)
}

du + O(b)

into (46), we have

{

E

∥

∥

∥

∥

1

N − h

N−h
∑

s=1

X2
s,NX2

s+h,N −
∫ 1−d

0
E

{

X̃2
t (u)X̃2

t+h(u + d)
}

du

∥

∥

∥

∥

1+ζ/2

1+ζ/2

}1/(1+ζ/2)

→ 0,
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which give us (42). The proof of (41) is similar and we omit the details. �

PROOF OF PROPOSITION 2. We first consider the more general case where

h := h(N) is such that h/N → d ∈ [0, 1) as N → ∞. Then, for fixed h > 0, we

obtain (5) as special case with d = 0.

Let SN (h) = AN − BN , where

AN =
1

N − h

N−h
∑

t=1

X2
t,NX2

t+h,N and BN = (X̄N )2.

We consider the asymptotic behaviour of the terms AN and BN separately. By using

(41) and (42), we have

AN
P→
∫ 1−d

0
µ1(u, h, d)du and BN

P→
∫ 1−d

0

∫ 1−d

0
µ(u)µ(v)dudv.

Recall that µ(u) = E{X̃2
t (u)}, and that µ1(u, d, h) and c(u, d, h) are defined in (34)

and (35) respectively. By using the formula µ1(u, d, h) = c(u, d, h) + µ(u)µ(u + d),

we obtain

(48) SN (h)
P→
∫ 1−d

0

{

c(u, d, h) + µ(u)µ(u + d)
}

du −
{

∫ 1−d

0
µ(u)du

}2

.

Let us now consider the special case of (48) where d = 0. Then, for fixed h > 0,

we have

SN (h)
P→

∫ 1

0
c(u, h)du +

∫ 1

0

∫ 1

0
µ2(u)dudv −

∫ 1

0

∫ 1

0
µ(u)µ(v)dudv

=

∫ 1

0
c(u, h)du +

∫ 1

0

∫ 1

0

{

µ2(u) −
∫ 1

0

∫ 1

0
µ(u)µ(v)dudv

}

dudv

=

∫ 1

0
c(u, h)du +

∫ ∫

{0≤u<v≤1}

{

µ2(u) −
∫ 1

0

∫ 1

0
µ(u)µ(v)dudv

}

dudv

+

∫ ∫

{0≤v<u≤1}

{

µ2(u) −
∫ 1

0

∫ 1

0
µ(u)µ(v)dudv

}

dudv

=

∫ 1

0
c(u, h)du +

∫ ∫

{0≤u<v≤1}
{µ(v) − µ(u)}2 dudv, as N → ∞.

This proves (5) and, hence, the desired result follows. �

A.3. Proofs in Section 3.2. In this section, we prove consistency and asymp-

totic normality of the weighted kernel-NLS estimator.

PROOF OF PROPOSITION 3(i). By using (28), (29) and Slutsky’s theorem, we

have

ât0,N =
{Rt0,N

}−1
rt0,N

P→ {

E[At(u0)]
}−1

r(u0).
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To show that ât0,N
P→ a(u0), we show that a(u0) =

{

E[At(u0)]
}−1

r(u0). By using

(2) and dividing my κ(u0,Xk−1,N ), {X̃2
k(u0)}k satisfies the representation

(49)
X̃2

k(u0)

κ(u0,Xk−1,N )
=

aT (u0)X̃k−1(u0)

κ(u0,Xk−1,N)
+ (Z2

k − 1)
σ̃2

k(u0)

κ(u0,Xk−1,N )
.

Finally, multiplying (49) by X̃k−1(u0)/κ(u0,Xk−1,N) and taking expectations, we

have

E

{

X̃k(u0)X̃k−1(u0)

κ(u0,Xk−1,N )2

}

= E

{

X̃k−1(u0)X̃ T
k−1(u0)

κ(u0,Xk−1,N )2

}

a(u0).

Therefore, a(u0) =
{

E[At(u0)]
}−1

r(u0), hence we obtain the desired result. �

We use the following lemma to prove the remaining part of Proposition 3. Let

Lt0(u, α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

h(u, X̃k(u), X̃k−1(u), α).(50)

where h(u0, y0, y, α) = κ(u0, y)−2
(

y2
0 − α0 −

∑p
j=1 αjy

2
p−j+1

)2
.

Lemma 7. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assumption

1(i,ii,iii). Let Σt(u) and Lt0(u, α) be defined as in (11) and (50) respectively. If

|u0 − t0/N | < 1/N , then we have

√
bN∇Lt0(u0, a(u0))

D→ N (0, 4w2µ4Σt(u0)) ,(51)

with b → 0, bN → ∞ as N → ∞, where w2 =
∫ 1/2
−1/2 W 2(x)dx and µ4 = var(Z2

t ).

PROOF. We easily see that

√
bN∇Lt0(u0, a(u0)) = −2

N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

×

(Z2
k − 1)σ̃2

k(u0)

κ(u0,Xk−1(u0))
X̃k−1(u0).(52)

Since
√

bN∇Lt0(u0, a(u0)) is a weighted sum of martingale differences, we use the

martingale central limit theorem (see, e.g., Hall & Heyde, 1980, Corollary 3.1) to

prove asymptotic normality. First, it is seen that the conditional Lindeberg condition

is satisfied. By using (30) and Remark 2, we have that the conditional variance

satisfies

4
N
∑

k=p+1

1

bN
W 2

(

t0 − k

bN

)

E

{

(

Z2
k − 1

)2 σ̃4
k(u0)X̃k−1(u0)X̃ T

k−1(u0)

κ(u0,Xk−1(u0))4
| Fk−1

}

P→ 4w2µ4Σ(u0),
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where Fk−1 = σ
(

X̃2
k−1(u0), X̃

2
k−2(u0) . . .

)

. By using the Cramér-Wold device (see,

e.g., Billingsley, 1995, Theorem 29.4), we now get (51), thus obtaining the desired

result. �

PROOF OF PROPOSITION 3(ii). We first prove (10). By using the decomposi-

tion

∇Lt0,N (a(u0)) = ∇Lt0(u0, a(u0)) + ∇Bt0,N (a(u0)),(53)

we have that

∇Lt0,N

(

ât0,N

)

= ∇Lt0,N (a(u0)) + ∇2Lt0,N{ât0,N − a(u0)}

=
{

∇Lt0(u0, a(u0)) + ∇Bt0,N (a(u0))
}

+∇2Lt0,N{ât0,N − a(u0)}.

By using (28), we easily see that ∇2Lt0,N(a(u0))
P→ 2 E[At(u0)], and since ∇Lt0,N

(

ât0,N

)

=

0, we have

{ât0,N − a(u0)} =
{

−∇Lt0(u0, a(u0)) −∇Bt0,N (a(u0))
}

×

×
{

1

2
{E[At(u0)]}−1 + op(1)

}

,

which leads to
√

bN{ât0,N − a(u0)} +
1

2

√
bN{E[At(u0)]}−1∇Bt0,N(a(u0))

= −1

2

√
bN{E[At(u0)]}−1∇Lt0(u0, a(u0)) + op(1).(54)

By combining (51) and (54), we get (10).

We now prove ∇Bt0,N (a(u0)) = Op(b
β). By using decomposition (53), applying

Lemma 1, and following the arguments of Lemma A.6 in Dahlhaus & Subba Rao

(2006), it can be shown that ∇Bt0,N (a(u0)) = Op(b
β). Hence, the required result

follows. �

A.4. Proofs in Section 3.3: Upper and lower bounds for the asymptotic

distribution variance. In this section, our object is to obtain an upper and lower

bound for E(At(u))−1
E(Bt(u))E(At(u))−1. We use the standard (matrix) notation

that A < B if for all i, j we have Aij < Bij. Let also |A|det be the determinant of

A. Let β(u) = 1
minj aj(u) and α(u) =

∑p
j=1 aj(u).

We first need to bound A(g)
t (u) and D(g)

t (u), which are defined in (12), in terms

of Σt(u), which is defined in (11). Bounding D(g)
k (u) from above, we have

(55) D(g)
k (u) = Σt(u)

σ̃8
t (u)

[g(u) +
∑p

j=1 X̃2
t−j(u)]4

≤ Σt(u)





a0(u)

g(u)
+

p
∑

j=1

aj(u)





4

.
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We next bound D(g)
k (u) from below. Since

∑p
j=1 aj(u) < 1 and σ̃2

t (u) = a0(u) +
∑p

j=1 aj(u)X̃2
t−j(u), we note that

σ2
t (u)

[g(u) +
∑p

i=1 X̃2
t−j(u)]

≥




σ2
t (u)

g(u) + 1
minj aj(u0) [a0(u) +

∑p
j=1 aj(u)X̃2

t−j(u)]





≥




1

[ g(u)
a0(u) + 1

minj aj(u)]



 =

(

g(u)

a0(u)
+

1

minj aj(u)

)−1

≥
(

a0(u)

g(u) + β(u)a0(u)

)

.(56)

Using the above, we can bound D(g)
t (u) from below, i.e.,

D(g)
t (u) = Σt(u)

(

σ4
t (u)

[g(u) +
∑p

j=1 X̃2
t−j(u)]2

)2

≥ Σt(u)

(

a0(u)

g(u) + β(u)a0(u)

)4

.(57)

We now obtain upper and lower bounds for E[A(g)
t (u)]. It is straightforward to show

that

A(g)
t (u) = Σt(u)

(

σ2
t (u)

[g(u) +
∑p

j=1 X̃2
t−j(u)]

)2

≤




a0(u)

g(u)
+

p
∑

j=1

aj(u)





2

Σt(u).(58)

By using (56), we bound A(g)
t (u) from below to obtain

A(g)
t (u) = Σt(u)

(

σ4
t (u)

[g(u) +
∑p

j=1 X̃2
t−j(u)]2

)

≥
(

a0(u)

g(u) + β(u)a0(u)

)2

Σt(u).(59)

Since A(g)
t (u) and Σt(u) are positive matrices which are positive-definite, we have

|E[A(g)
t (u)]−1|det ≤

(

a0(u)

g(u) + β(u)a0(u)

)−2

|E[Σt(u)]−1|det,

|E[A(g)
t (u)]−1|det ≥





a0(u)

g(u)
+

p
∑

j=1

aj(u)





−2

|E[Σt(u)]−1|det.(60)

By using (60) and (57), we obtain the lower bound

|E[A(g)
t (u)]−1

E[D(g)
t (u)]E[A(g)

t (u)]−1|det ≥ ̟(g)−4|E[Σt(u)]−1|det,
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where

̟(g) =

(

a0(u) + g(u)α(u)

g(u)

)(

g(u) + β(u)a0(u)

a0(u)

)

.

By using (60) and (55), we obtain the upper bound

|E[A(g)
t (u)]−1

E[D(g)
t (u)]E[A(g)

t (u)]−1|det ≤ ̟(g)4|E[Σt(u)]−1|det.

Altogether this gives

|E[Σt(u)]−1|det ̟(g)−4 ≤ |E[A(g)
t (u)]−1

E[D(g)
t (u)]E[A(g)

t (u)]−1|det

≤ |E[Σt(u)]−1|det ̟(g)4.

Letting f(g) = [̟(g)4 − ̟(g)−4] and using the chain rule, we get

df(g)

dg
= 4[̟(g)3 − ̟(g)−5]

d̟(g)

dg
= 4̟(g)−5[̟(g)8−]

d̟(g)

dg

= 4̟(g)−5(̟(g) − 1)(1 + ̟(g) + . . . + ̟(g)7)
d̟(g)

dg
.

Hence, we see that df(g)
dg = 0 when ̟(g) = 1 or d̟(g)

dg = 0. Altogether this means, by

differentiating |E[Σt(u)]−1|det[̟(g)4 −̟(g)−4] with respect to g, that the difference

is minimised when

g(u) =
a0(u)

[min1≤j≤p aj(u)]
∑p

j=1 aj(u)
.

Similarly, the upper bound |E[Σt(u)]−1|det ̟(g)4 is minimised when g takes the

above value, hence the upper and lower bounds for the asymptotic variance follow.

A.5. Proofs in Section 3.4. In this section, we prove consistency and asymp-

totic normality of the two-stage kernel-NLS estimator. To prove these asymptotic

properties, we need the following two lemmas.

Lemma 8. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assumption

1(i,ii,iv), let µ(u) = E{X̃2
t (u)}, and let µ̂t0,N be defined as in (15). If |u0 − t0/N | <

1/N , then, for 0 ≤ i, j ≤ p, we have

(61)
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k−i,NX2

k−j,N

(µ̂t0,N + Sk−1,N )2
P→ E

(

X̃2
k−i(u0)X̃

2
k−j(u0)

(µ(u0) + Sk−1(u0))2

)

,

with b → 0, bN → ∞ as N → ∞.
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PROOF. To prove the result we use techniques similar to those in Bose & Mukher-

jee (2003). By using the inequality |1/x2 − 1/y2| ≤ 2|x − y|{(1/x)[1 + x/y]}3, for

x, y > 0, we bound the difference
∣

∣

∣

∣

∣

X2
k−i,NX2

k−j,N

(µ̂t0,N + Sk−1,N)2
−

X2
k−i,NX2

k−j,N

(µ(u0) + Sk−1,N )2

∣

∣

∣

∣

∣

≤ 2X2
k−i,NX2

k−j,N |µ̂t0,N − µ(u0)|
∣

∣

∣

∣

∣

1

µ(u0) + Sk−1,N

(

1 +
µ̂t0,N + Sk−1,N

µ(u0) + Sk−1,N

)∣

∣

∣

∣

∣

3

≤ 2 |µ̂t0,N − µ(u0)|
(

1 +
|µ(u0)|
|µ̂t0,N |

)

X2
k−i,NX2

k−j,N

(µ(u0) + Sk−1,N)3
.(62)

Let us now define the following quantities

Γ(u0) = E

(

X̃2
k−i(u0)X̃

2
k−j(u0)

{µ(u0) + Sk−1(u0)}2

)

,

At0,N =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k−i,NX2

k−j,N

{µ̂t0,N + Sk−1,N}2
,

Ct0,N (u0) =

∣

∣

∣

∣

∣

∣

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k−i,NX2

k−j,N

{µ(u0) + Sk−1,N}2
− Γ(u0)

∣

∣

∣

∣

∣

∣

.

Then, by using the bound (62), we have

∣

∣

∣

∣

At0,N − Γ(u0)

∣

∣

∣

∣

≤
∣

∣

∣

∣

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X2
k−i,NX2

k−j,N

{µ(u0) + Sk−1,N}2
− Γ(u0)

∣

∣

∣

∣

+ 2 |µ̂t0,N − µ(u0)|
(

1 +
|µ(u0)|
|µ̂t0,N |

)

N
∑

k=p+1

1

bN

∣

∣

∣

∣

W

(

t0 − k

bN

)∣

∣

∣

∣

X2
k−i,NX2

k−j,N

{µ(u0) + Sk−1,N}3

≤ Ct0,N (u0) + 2 |µ̂t0,N − µ(u0)|
(

1 +
|µ(u0)|
|µ̂t0,N |

)

N
∑

k=p+1

1

bN

∣

∣

∣

∣

W

(

t0 − k

bN

)∣

∣

∣

∣

.(63)

Since µ̂t0,N
P→ µ(u0), by using Slutsky’s Lemma we have

|µ̂t0,N − µ(u0)|
(

1 +
|µ(u0)|
|µ̂t0,N |

)

P→ 0.

Furthermore, by using (28) we have Ct0,N (u0)
P→ 0. Altogether this gives |At0,N −

Γ(u0)| P→ 0, and the desired result follows. �

Let

r̃(u) = E

{

X̃2
k(u)X̃k−1(u)

[µ(u) +
∑p

j=1 X̃t−j(u)2]2

}

.(64)
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Corollary 1. Let R̃t0,N , r̃t0,N , A(µ)
t (u) and r̃(u) be defined as in (16), (12)

and (64), respectively. If |u0 − t0/N | < 1/N , then we have

R̃t0,N
P→ E[A(µ)

t (u0)],(65)

r̃t0,N
P→ r̃(u0),(66)

with b → 0, bN → ∞ as N → ∞.

PROOF. It follows easily from Lemma 8. We omit the details. �

To show asymptotic normality, we need to define the following least squares cri-

teria

L̃t0,N (α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

h̃t0,N (Xk,N ,Xk−1,N , α),(67)

L̃t0(u, α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

h̃t0,N (X̃k(u), X̃k−1(u), α)(68)

L(µ)
t0 (u, α) =

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

h̃(u, X̃k(u), X̃k−1(u), α)(69)

where h(u0, y0, y, α) = κ(u0, y)−2
(

y2
0 − α0 −

∑p
j=1 αjy

2
p−j+1

)2
,

h̃t0,N (y0, y, α) =
1

(µ̂t0,N +
∑p

j=1 y2
j )

2







y2
p − α0 −

p
∑

j=1

αjy
2
j







2

.

h̃(u, y0, y, α) =
1

(µ(u) +
∑p

j=1 y2
j )

2)2







y2
0 − α0 −

p
∑

j=1

αjy
2
j







2

.

We recall that ãt0,N = arg mina L̃t0,N (a). In Lemma 7, we show that the asymptotic

normality of
√

bN∇L(µ)
t0 (u0, a(u0)) can easily be established by verifying the condi-

tions of the martingale central limit theorem. However, the same theorem cannot be

used to show the asymptotic normality of
√

bN∇L̃t0(u0, a(u0)), since L̃t0(u0, a(u0))

is not a sum of martingale differences. In Lemma 9 below, we overcome this problem

by showing that L̃t0(u0, a(u0)) is ‘close’ enough to L(µ)
t0 (u0, a(u0)) for us to replace

L̃t0(u0, a(u0)) with L(µ)
t0 (u0, a(u0)), and then use it to prove Proposition 4.

Hereafter, ‖ · ‖1 denotes the ℓ1-norm of a vector.
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Lemma 9. Suppose {Xt,N}t is a tvARCH(p) process which satisfies Assumption

1. Let µ(u) = E{X̃2
t (u)}, and µ̂t0,N , L̃t0(u, α) and L(µ)

t0 (u, α) be defined as in (15)

(68) and (69), respectively. If |u0 − t0| < 1/N , then we have

|µ̂t0,N − µ(u0)| = Op

(

bβ + (bN)
− η

1+η

)

,(70)

and

√
bN

[

∇L̃t0(u0, a(u0)) −∇L(µ)
t0 (u0, a(u0))

]

= op(1),(71)

with b → 0, bN → ∞ as N → ∞.

PROOF. We first prove (70). Since the kernel W (·) is of bounded variation sat-

isfying the condition
∫ 1/2
−1/2 W (x)dx = 1, it is easy to see that

µ(u0) = µ(u0)
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

+ O

(

1

bN

)

.(72)

By replacing {X2
k,N}k with its stationary approximation {X̃2

k(u)}k about u ≈ k/N ,

and using (72), we have

µ̂t0,N − µ(u0) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

{

X2
k,N − X̃2

k(u0)
}

+

N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

{

X̃2
k(u0) − µ(u0)

}

+ O

(

1

bN

)

:= Bt0,N (u0) + Ht0(u0) + O

(

1

bN

)

.(73)

We consider the first term in (73). Under the stated assumptions, and by using

Lemma 1, we have

‖Bt0,N (u0)‖E
1+η = O

(

bβ
)

.(74)

We now consider the second term in (73). By using (38), we have

‖Ht0(u0)‖E
1+η = O

(

(bN)−
η

1+η

)

.(75)

Therefore, by using (74) and (75), we have

‖µ̂t0,N − µ(u0)‖E
1+η = O

(

bβ + (bN)−
η

1+η

)

,

which gives us (70).
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We now prove (71). Let Mk(u0) = (Z2
k − 1)σ̃2

k(u0)X̃k−1(u0). Then it is easily seen

that

√
bN

[

∇L̃t0(u0, a(u0)) −∇L(µ)
t0 (u0, a(u0))

]

= −2
N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

×

×
{

1

[µ̂t0,N + Sk−1(u0)]2
− 1

[µ(u0) + Sk−1(u0)]2

}

Mk(u0)

= 2[µ̂t0,N − µ(u0)]
N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

×

×
{

[µ̂t0,N + µ(u0)] + 2Sk−1(u0)

[µ(u0) + Sk−1(u0)]4

}

Mk(u0)

−2[µ̂t0,N − µ(u0)]
2

N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

×

×
{

{[µ̂t0,N + µ(u0)] + 2Sk−1(u0)}2

[µ̂t0,N + Sk−1(u0)]2[µ(u0) + Sk−1(u0)]4

}

Mk(u0)

:= 2 {[µ̂t0,N − µ(u0)]It0,N − Jt0,N} .(76)

We first consider It0,N . It can be rewritten as

It0,N = [µ̂t0,N + µ(u0)]
N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

Mk(u0)

[µ(u0) + Sk−1(u0)]4

+ 2
N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

Mk(u0)Sk−1(u0)

[µ(u0) + Sk−1(u0)]4
.(77)

We note that if {(Zk,Fk) : k = 1, 2, . . .}, where Fk = σ(Zk,Zk−1, . . .), is a sequence

of martingale differences with E
(Z2

k

)

< ∞, then

E







N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

Zk







2

=
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)2

E

(

Z2
k

)

= O(1).(78)

By taking Zk = Mk(u0)/[µ(u0) + Sk−1(u0)]
4 or Zk = Mk(u0)Sk−1(u0)/[µ(u0) +

Sk−1(u0)]
4, and applying the bound given in (78) to both parts of (77), we have

N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

Mk(u0)

[µ(u0) + Sk−1(u0)]4
= Op(1),

N
∑

k=p+1

1√
bN

W

(

t0 − k

bN

)

Mk(u0)Sk−1(u0)

[µ(u0) + Sk−1(u0)]4
= Op(1).
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Since µ̂t0,N
P→ µ(u0), we have It0,N = Op(1) and

‖(µ̂t0,N − µ(u0))It0,N‖1 ≤ |µ̂t0,N − µ(u0)|‖It0,N‖1
P→ 0.(79)

We now consider the second term Jt0,N . The problem here is the appearance of

µ̂t0,N in the denominator of Jt0,N . Let

K(u0) = E

({

[2µ(u0) + 2Sk−1(u0)]
2

[µ(u0) + Sk−1(u0)]6

}

(Z2
k + 1)σ̃2

k(u0)(1 + Sk−1(u0))

)

.

By using arguments identical to those given in the proof of Lemma 8, we can show

that

Kt0,N :=
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

{

{[µ̂t0,N + µ(u0)] + 2Sk−1(u0)}2

[µ̂t0,N + Sk−1(u0)]2[µ(u0) + Sk−1(u0)]4

}

×

× (Z2
k + 1)σ̃2

k(u0)(1 + Sk−1(u0))
P→ K(u0).(80)

From the definition of Kt0,N , and using (70), we have

‖Jt0,N‖1 ≤ |µ̂t0,N − µ(u0)|2
√

bNKt0,N ≤ K
√

bN

{

bβ + (bN)
−η
1+η

}2

Kt0,N

If b is such that

√
bN

{

bβ + (bN)
−η
1+η

}2

→ 0, as N → ∞,(81)

and taking into account (80), then ‖Jt0,N‖1
P→ 0. However, if (81) is not satisfied,

we need to go through the same procedure in (76) of replacing the denominator in

[µ̂t0,N + Sk−1(u0)]
2 in Jt0,N with [µ(u0) + Sk−1(u0)]

2 and taking differences as was

done in (76). We must iterate this n times until

√
bN

{

bβ + (bN)
−η
1+η

}n

→ 0.(82)

At this point all the terms which contain µ(u0) in the denominator will converge to

zero (using the martingale argument given above). Moreover, it is straightforward

to show that the term which contains µ̂t0,N in the denominator will be of order√
bN{bβ +(bN)

−η
1+η }n. By (82) this term goes to zero, hence we have that ‖Jt0,N‖1

P→
0. Since the details for the nth iteration are similar to those of the first iteration we

omit the details.

In summary, for every b and η, there will always be an n which satisfies (82), it

then follows that

‖Jt0,N‖1
P→ 0.(83)
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Now, by using (79) and (83), we have

√
bN

∥

∥

∥∇L̃t0(u0, a(u0)) −∇L(µ)
t0 (u0, a(u0))

∥

∥

∥

1

≤ 2 (|µ̂t0,N − µ(u0)‖It0,N‖1 + ‖Jt0,N‖1)
P→ 0,

which yields (71). Hence, we get the desired result. �

To prove Proposition 4(ii), we need to define the following quantity

B̃t0,N (α) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

[

h̃t0,N (Xk,N ,Xk−1,N , α) − h̃t0,N (X̃k,N , X̃k−1(u0), α)
]

.

PROOF OF PROPOSITION 4. (i) It is straightforward to show consistency using

(65) and (66). We omit the details.

(ii) By using (70), we see that

−1

2

{

∇h̃t0,N (Xk,N ,Xk−1,N , a(u0)) −∇h̃t0,N (X̃k(u), X̃k(u0), a(u0))
}

=

(

X2
k,N − aT (u0)Xk−1,N

µ̂t0,N
+ Sk−1,N

− X̃2
k(u0) − aT (u0)X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

)

Xk−1,N

µ̂t0,N
+ Sk−1,N

+

(

Xk−1,N

µ̂t0,N
+ Sk−1,N

− X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

)(

X̃2
k(u0) − aT (u0)X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

)

.(84)

We now consider

X2
k,N − aT (u0)Xk−1,N

µ̂t0,N
+ Sk−1,N

− X̃2
k(u0) − aT (u0)X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

=
{X2

k,N − X̃2
k(u0)} − aT (u0){Xk−1,N − X̃k−1(u0)}

µ̂t0,N + Sk−1,N
+

+
Sk−1,N − Sk−1(u0)

µ̂t0,N
+ Sk−1(u0)

{X̃2
k(u0) − aT (u0)X̃k−1(u0)}.

By using Lemma 1, we have

∣

∣

∣

∣

∣

X2
k,N − aT (u0)Xk−1,N

µ̂t0,N
+ Sk−1,N

− X̃2
k(u0) − aT (u0)X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

∣

∣

∣

∣

∣

≤ K

(

∣

∣

∣

∣

k

N
− u0

∣

∣

∣

∣

β

+

(

p + 1

N

)β
)

×

×






Vk,N + Wk

µ̂t0,N

+

(

1 +
1 + Z2

k

µ̂t0,N

) p
∑

j=1

(Vk−j,N + Wk−j)







.(85)
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Similarly, we can show that
∥

∥

∥

∥

∥

Xk−1,N

µ̂t0,N
+ Sk−1,N

− X̃k−1(u0)

µ̂t0,N
+ Sk−1(u0)

∥

∥

∥

∥

∥

1

≤ K

(

∣

∣

∣

∣

k

N
− u0

∣

∣

∣

∣

β

+

(

p + 1

N

)β
)(

1 +
1

µ̂t0,N

) p
∑

j=1

(Vk−j,N + Wk−j).(86)

Since
∣

∣

∣X̃2
k(u0) − aT (u0)X̃k−1(u0)

∣

∣

∣

µ̂t0,N
+ Sk−1(u0)

≤ K

(

1 +
1 + Z2

k

µ̂t0,N

)

and
‖Xk−1,N‖1

µ̂t0,N
+ Sk−1,N

≤ K,

by using substituting (85) and (86) into (84), we have
∥

∥

∥∇h̃t0,N (Xk,N , a(u0)) −∇h̃t0,N (X̃k(u0), a(u0))
∥

∥

∥

1

≤ 2K

(

∣

∣

∣

∣

k

N
− u0

∣

∣

∣

∣

β

+

(

p + 1

N

)β
)

×

×






Vk,N + Wk

µ̂t0,N

+

(

1 +
1 + Z2

k

µ̂t0,N

) p
∑

j=1

(Vk−j,N + Wk−j)







+ 2K

(

∣

∣

∣

∣

k

N
− u0

∣

∣

∣

∣

β

+

(

p + 1

N

)β
)(

1 +
1 + Z2

k

µ̂t0,N

) p
∑

j=1

(Vk−j,N + Wk−j).(87)

Finally, since

∥

∥

∥∇B̃t0,N (a(u0))
∥

∥

∥

1
≤

N
∑

k=p+1

1

bN

∣

∣

∣

∣

W

(

t0 − k

bN

)∣

∣

∣

∣

×

×
∥

∥

∥∇h̃t0,N (Xk,N ,Xk−1,N , a(u0)) −∇h̃t0,N (X̃k(u), X̃k−1(u0), a(u0))
∥

∥

∥

1
,(88)

by substituting (87) into (88), it can be shown that ∇B̃t0,N (a(u0)) = Op(b
β).

To prove (17) it is easy to see that the following decomposition holds

∇L̃t0,N(a(u0)) = ∇L(µ)
t0 (u0, a(u0)) + ∇B̃t0,N(a(u0))

+
{∇L̃t0(u0, a(u0)) −∇L(µ)

t0 (u0, a(u0))
}

.

Since ∇L̃t0,N (ãt0,N ) = 0, we have

−∇L(µ)
t0 (u0, a(u0)) +

{∇L̃t0(u0, a(u0)) −∇L(µ)
t0 (u0, a(u0))

}−
−∇B̃t0,N(a(u0)) = ∇2L̃t0,N{ãt0,N − a(u0)}.

By using (65), we easily see that ∇2L̃t0,N (a(u0))
P→ 2 A(µ)(u0), and, using (71), we

have

{ãt0,N − a(u0)} =
{

−∇L(µ)
t0 (u0, a(u0)) −∇B̃t0,N (a(u0))

}

×

×
{

1

2
{A(µ)(u0)}−1 + op(1)

}

,
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which leads to

√
bN{ãt0,N − a(u0)} +

1

2

√
bN
{

E[A(µ)
t (u0)]

}−1∇B̃t0,N (a(u0))

= −1

2

√
bN
{

E[A(µ)
t (u0)]

}−1∇L(µ)
t0 (u0, a(u0)) + op(1).(89)

By combining (51) and (89), we easily get (17). Hence, the required result follows.

�

A.6. Proofs in Section 5. In this section, we prove the results in Section 5.

Some of the results in this section have been inspired by corresponding results in

the residual bootstrap for linear processes literature (c.f. Franke & Kreiss, 1992).

However, the proofs are technically very different, because the tvARCH(p) process

is a nonlinear, nonstationary process, and the normalisation of the two-stage kernel-

NLS estimator with random weights.

In order to show that the distribution of the bootstrap sample â+
t0,N − āt0,N

asymptotically coincides with the asymptotic distribution of ãt0,N − a(u0), we will

show convergence of the distributions under the Mallows distance. The Mallows

distance between the distribution H and G is defined as

d2(H,G) = inf
X∼H,Y ∼G

{E(X − Y )2}1/2.

Roughly speaking, if d2(Fn, Gn) → 0, then the limiting distributions of Fn and

Gn are the same (Bickel & Freedman, 1981). Following Franke & Kreiss (1992), to

reduce notation, we let d2(X,Y ) = d2(H,G), where the random variables X and Y

have measures H and G, respectively.

We also require the following definitions. Let

R̃N (u0) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

) X̃k−1(u0)X̃k−1(u0)
T

(µ̂t0,N +
∑k

j=1 X2
k−j(u0))

,

r̃N (u0) =
N
∑

k=p+1

1

bN
W

(

t0 − k

bN

)

X̃2
k(u0)X̃k−1(u0)

T

(µ̂t0,N +
∑k

j=1 X̃2
k−j(u0))2

.

Proposition 8. Suppose Assumption 1 holds, and suppose either infj aj(u0) >

0 or E(Z4
t )1/2 supu[

∑p
j=1 aj(u)] ≤ 1 − δ (which implies supk E(X4

k,N ) < ∞). Let F

be the distribution function of Z2
t . Then we have

d2(F̂t0,N , F )
P→ 0.(90)

Furthermore, if we suppose bβ
√

bN → 0, then we have

d2

(√
bN

(

r+
t0,N −R+

t0,N āt0,N

)

,
√

bN
(

r̃N (u0) − R̃N (u0)a(u0)
))

P→ 0,(91)
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and

R+
t0,N

P→ E{A(µ)
t (u0)},(92)

with b → 0, bN → ∞ as N → ∞.

PROOF. We prove each part of the proposition below.

[Proof of (90)] To prove this result, we define the empirical distribution function of

the true residuals, i.e.,

Ft0,N (x) =
1

2bN

t0+bN−1
∑

k=t0−bN

I(−∞,x](Z
2
t ),

noting that Ẑ2
t is an estimator of Z2

t . (It is worth pointing out that in a different con-

text, the empirical distribution of the estimated residuals of a stationary ARCH(p)

process was considered in Horváth, Kokoszka & Teyssiére (2001).) We first ob-

serve that since d2 is a distance it satisfies the triangle inequality d2(F̂t0,N , F ) ≤
d2(F̂t0,N , Ft0,N

) + d2(Ft0,N , F ). By using Lemma 8.4 in Bickel & Freedman (1981),

it can be shown that d2(Ft0,N , F )
P→ 0. Therefore, to prove (90), we need only show

that d2(F̂t0,N , Ft0,N
)

P→ 0.

By definition of d2 and the measures F̂t0,N and Ft0,N , we have

d2(F̂t0,N , Ft0,N)2 = inf
Z+2

t ∈F̂t0,N ,Z2
t ∈Ft0,N

E(Z+2
t − Z2

t )2,

where the infinimum is taken over all joint distributions on (Z+2
t , Z2

t ) which have

marginals F̂t0,N and Ft0,N . Let us suppose P (J = i) = (i + bN)/2bN , for i ∈
{−bN, . . . , bN − 1}, and define Z+2

t = Ẑ2
J and Z2

t = Z2
J . Then, since (Ẑ2

J , Z2
J) both

have marginals F̂t0,N and Ft0,N , respectively, we have

d2(F̂t0,N , Ft0,N )2 ≤ E(Ẑ2
J − Z2

J)2 =
1

2bN

t0+bN−1
∑

k=t0−bN

(Ẑ2
k − Z2

k)2

≤ 1

2bN

t0+bN−1
∑

k=t0−bN



Z2
k − Ẑ2

k +
1

2bN

t0+bN
∑

k=t0−bN

Ẑ2
k − 1





2

.

By adding and subtracting 1
2bN

∑t0+bN
k=t0−bN Z2

k , and using that 1
2bN

∑t0+bN
k=t0−bN (Z2

k −
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1)2
P→ 0, we have

d2(F̂t0,N , Ft0,N
)2

≤ 1

2bN

t0+bN−1
∑

k=t0−bN



Z2
k − Ẑ2

k +
1

2bN

t0+bN−1
∑

k=t0−bN

(Ẑ2
k − Z2

k) +
1

2bN

t0+bN−1
∑

k=t0−bN

(Z2
k − 1)





2

≤ K

bN

t0+bN−1
∑

k=t0−bN

(Ẑ2
k − Z2

k)2 +
K

bN

t0+bN−1
∑

k=t0−bN

(Z2
k − 1)2

≤ K

bN

t0+bN−1
∑

k=t0−bN

[

Z2
k

σ̂2
k,N

{

a0(k/N) − ãt0,N (0) +
p
∑

j=1

[aj(k/N) − ãt0,N (j)]X2
k−j,N

}

]2

+ op(1),

where σ̂2
k,N = ãt0,N (0) +

∑p
j=1 ãt0,N(j)X2

k−j,N . Now by bounding the above in two

different ways we obtain

d2(F̂t0,N , Ft0,N
)2

≤ min











K
(

∑p
j=0

|aj(k/N)−ãt0,N (j)|

|ãt0,N (j)|

)2 (
1

2bN

∑t0+bN/2
k=t0−bN Z4

k

)

K
(

∑p
j=0

|aj(k/N)−ãt0,N (j)|

|ãt0,N (0)|

)2 (
1

2bN

∑t0+bN/2
k=t0−bN Z4

kX4
k−j,N

)











+ op(1).

To show (90) we need to use the bounds above, noting that the bound we use

depends on the conditions we have placed on the parameters {aj(·)}. By using that

|aj(u) − aj(v)| ≤ K|u − v|β and k ∈ [t0 − bN, t0 + bN − 1], we have

|a(k/N) − ãt0,N | ≤ |a(k/N) − a(u0)| + |a(u0) − ãt0,N | ≤ Kbβ + |a(u0) − ãt0,N |.

Since |ãt0,N − a(u0)| P→ 0, by using the above, it is straightforward to show

Kp

(

bβ+|a(u0)−ãt0,N |

minj |ãt0,N (j)|

)2 (
1

2bN

∑t0+bN−1
k=t0−bN Z4

k

)

P→ 0 if infj aj(u) > 0,

Kp

(

bβ+|a(u0)−ãt0,N |

|ãt0,N (0)|

)2 (
1

2bN

∑t0+bN−1
k=t0−bN Z4

kX4
k−j,N

)

P→ 0 if supk,N E(X4
k,N) < ∞,

with b → 0, bN → ∞ as N → ∞. Therefore, under the stated assumptions, and

by using the above convergence in probability, we have that d2(F̂t0,N , Ft0,N
)

P→ 0.

Altogether this means that d2(F̂t0,N , F )
P→ 0, with b → 0, bN → ∞ as N → ∞,

thus we obtain the result. �

It follows from the above (Bickel & Freedman, 1981, Lemma 8.3) that

(93) E(Z+2
t )

P→ E(Zt), E(Z+4
t )

P→ E(Z4
t ) and inf E(Z+2

t − Z2
t )2

P→ 0,

where the infinimum is taken over all joint distributions on (Z+2
t , Z2

t ) which have

marginals F̂t0,N and Ft0,N . We use these limits to prove the results below.
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To prove Proposition 8 we require the following definitions

X̃+2
t (u0) = σ̃+2

t (u0)Z
+2
t , σ̃+2

t (u0) = a0(u0) +
p
∑

j=1

aj(u0)X̃
+2
t−j(u0),

and the Lemma 10, below. We note that X̃+2
t (u0) is very similar to X̃+2

t (u0), but

the estimated parameters āt0,N have been replaced by the true parameters a(u0).

In the lemma below we show that for t ∈ [t0−bN/2, t0+bN/2−1], the distributions

of X+2
t (u0) and Xt(u0) are sufficiently close and the difference is uniformly bounded

over t.

Lemma 10. Suppose assumptions in Proposition 8 hold, then we have

E|X+2
t (u0) − X̃+2

t (u0)| ≤ C|āt0,N
− a(u0)|

∞
∑

k=1

k2(1 − δ)k
P→ 0,(94)

where b → 0, bN → ∞ as N → ∞ and where the expectation is conditioned on

{Xk,N}. Furthermore for t0 + bN/2 ≤ t ≤ t0 + bN/2 we have

inf E|X̃+2
t (u0) − X̃2

t (u0)| ≤ C
∞
∑

k=1

(

1 + (E|Z+2
t |)k+bN/(2p)

)

(1 − δ)k +

C inf E|Z+2
1 − Z2

t |
∞
∑

k=1

{

1 + E(Z+2
1 ) + . . . + [E(Z+2

1 )]k−1
}

(1 − δ)k + op(1)
P→ 0,(95)

where b → 0, bN → ∞ as N → ∞. The expectation is with respect to the measure

on all independent pairs {(Z+2
t , Z2

t )}t, and the infinimum is taken over all joint

distributions on (Z+2
t , Z2

t ) which have marginals F̂t0,N and Ft0,N , respectively.

PROOF. It can be shown that the stationary ARCH(∞) process has a solution

which can be written in terms of a Volterra series (Giraitis, Kokoszka & Leipus,

2000). Define for all j > p, aj(u0) = 0 and āt0,N(j) = 0. Then, by following Giraitis,

Kokoszka & Leipus (2000), X+2
t (u0), X̃

+2
t (u0) and X̃2

t (u0) have the solutions

X+2
t (u0) =

N
∑

k=0

∑

jk<...j0:j0=t

{

k
∏

s=0

āt0,N (js − js+1)

}

k
∏

s=1

Z+2
js

,

X̃+2
t (u0) =

N
∑

k=0

∑

jk<...j0:j0=t

{

k
∏

s=0

ajs−js+1(u0)

}

k
∏

s=1

Z+2
js

,

X̃2
t (u0) =

∞
∑

k=0

∑

jk<...j0:j0=t

{

k
∏

s=0

ajs−js+1(u0)

}

k
∏

s=1

Z2
js

,

respectively. We first consider

E|X+2
t (u0) − X̃+2

t (u0)| = E

∣

∣

∣

∣

∣

∣

N
∑

k=0

∑

jk<...j0:j0=t

{

āt0,N (js − js+1) −
k
∏

s=0

ajs−js+1(u0)

}

k
∏

s=1

Z+2
js

∣

∣

∣

∣

∣

∣

.
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Now, by repeatedly taking differences, and using that supu

∑p
j=1 aj(u) ≤ 1 − δ,

∑p
j=1 āt0,N (j) ≤ 1 − δ and ‖āt0,N − a(u0)‖2

P→ 0, we obtain (94).

To prove (95), we first note that expectation is taken with respect to the joint mea-

sure on the independent pairs {(Z+2
t , Z2

t )}t. Using the Volterra expansions above,

we have

E|X̃+2
t (u0) − X̃2

t (u0)| ≤
∞
∑

k=0

∑

1≤j1,...,jk≤p

k
∏

s=0

ajs(u0)E

∣

∣

∣

∣

k
∏

s=1

Z+2
t−
∑s

i=1
ji
−

k
∏

s=1

Z2
t−
∑s

i=1
ji

∣

∣

∣

∣

+op(1).(96)

We see from (93), if t0 − bN ≤ k ≤ t0 + bN − 1 and by setting Z+2
k = Ẑk, we have

E|Z+2
k −Z2

k |
P→ 0. Therefore for all t ∈ [t0−bN/2, t0+bN/2−1], and t−bN/2 ≤ i ≤ t,

we will show that inf E|∏k
s=1 Z+2

t−
∑s

i=1
ji
−∏k

s=1 Z2
t−
∑s

i=1
ji
| P→ 0. This allows us to

obtain a uniform rate of covergence for E|X̃+2
t (u0) − X̃2

t (u0)| for all t0 − bN/2 ≤
k ≤ t0 + bN/2 − 1. To obtain this rate, we partition the inner sum above into two

sums, where
∑k

i=1 js ≤ bN/2 and
∑k

i=1 js > bN/2. We further note that since for

all i, 1 ≤ ji ≤ p, if
∑k

j=1 js > bN/2, then this implies k > bN/(2p). Altogether this

gives

E|X̃+2
t (u0) − X̃2

t (u0)| ≤ I + II + op(1),(97)

where

I = a0(u0)
∞
∑

k=0

∑

∑k

i=1
js≤bN/2

k
∏

s=1

ajs(u0)E

∣

∣

∣

∣

k
∏

s=1

Z+2
t−
∑s

i=1
ji
−

k
∏

s=1

Z2
t−
∑s

i=1
ji

∣

∣

∣

∣

and

II =
∞
∑

k>bN/(2p)

∑

1≤j1,...,jk≤p

k
∏

s=0

ajs(u0)
{

(E|Z2
t |)k + (E|Z+2

t |)k
}

.

We now study I and consider, in particular, the difference E
∣

∣

∏k
s=1 Z+2

js
−∏k

s=1 Z2
js

∣

∣.

By repeatedly taking differences, we have

E|
k
∏

s=1

Z+2
js

−
k
∏

s=1

Z2
js
| ≤ E

∣

∣

∣Z+2
js

− Z2
js

∣

∣

∣

{

1 + E(Z+2
js

) . . . + [E(Z2
js

)]k−1
}

.

Substituting the above into I, taking the infinimum over all joint measures on

(Z+2
t , Z2

t ), and using supu

∑p
j=1 aj(u) ≤ 1 − δ, we obtain

a0(u0)
∞
∑

k=0

∑

∑k

i=1
js≤bN/2

k
∏

s=0

ajs(u0) inf E

∣

∣

∣

∣

k
∏

s=1

Z+2
t−
∑s

i=1
ji
−

k
∏

s=1

Z2
t−
∑s

i=1
ji

∣

∣

∣

∣

≤

C{inf E|Z+2
t − Z2

t |}
N
∑

k=1

{

1 + E(Z+2
1 ) + . . . ,+[E(Z+2

1 )]k
}

(1 − δ)k + op(1).(98)
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We note that in the above we have extended the sum beyond
∑k

i=1 js ≤ bN/2 to

make the summands easier to handle. Our aim is to show that the right hand side

of (98) converges in probability to 0. For any ε > 0, define Bε
N := {E|Z+2

1 | > 1+ ε}.
By (93), we have P (Bε

N ) → 0 as N → ∞. Denote further

Aε
n :=

{

C{inf E|Z+2
t − Z2

t |}
N
∑

k=1

{

1 + E(Z+2
1 ) + . . . + [E(Z+2

1 )]k
}

(1 − δ)k > ε

}

.

For ε1 < δ/(1 − δ), we have

P (Aε
n) = P (Aε

n|Bε1
n )P (Bε1

n ) + P (Aε
n|(Bε1

n )c)P ((Bε1
n )c)

≤ P (Bε1
n ) + P

(

C{inf E|Z+2
t − Z2

t |}
N
∑

k=1

(k + 1)(1 + ε1)
k(1 − δ)k > ε

)

≤ P (Bε1
n ) + P

(

C1 inf E|Z+2
t − Z2

t | > ε
)

→ 0,

which demonstrates the convergence in probability of on the right hand side of (98).

We now consider the second term II. Since k > bN/(2p) and supu

∑p
j=1 aj(u) ≤

1 − δ, it is straightforward to show

II ≤ a0(u0)
∞
∑

k>bN/(2p)

(

1 + (E|Z+2
t |)k

)

(1 − δ)k

≤ a0(u0)(1 − δ)bN/(2p)
∞
∑

k=1

(

1 + (E|Z+2
t |)k+bN/(2p)

)

(1 − δ)k.

Now it is straightforward to show that II
P→ 0 with b → 0, bN → ∞ as N → ∞.

Altogether we obtain (95), and the desired result follows.

�

We note that the bounds given in Lemma 10 are uniform for all t0 − bN/2 ≤ t ≤
t0 + bN/2, this is required to prove (91). As a byproduct of Lemma 10, we have the

following result.

Corollary 2. Suppose the assumptions in Lemma 10 hold. Then, for all t ∈
[t0 − bN/2, t0 + bN/2 − 1], we have

E|σ+2
t (u0) − σ̃+2

t (u0)| P→ 0,(99)

inf E|σ̃+2
t (u0) − σ̃2

t (u0)| P→ 0,(100)

where b → 0, bN → ∞ as N → ∞, and the expectations are defined in the same

way as in Lemma 10.
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PROOF. By using the expressions σ+2
t (u0) = āt0,N (0) +

∑p
j=1 āt0,N (j)X+2

t−j(u0)

and σ̃2
t (u) = a0(u) +

∑p
j=1 aj(u)X̃2

t−j(u), and taking also into account that āt0,N
P→

a(u0), the desired result follows immediately from Lemma 10. �

In order to prove (91), we require the following inequalities.

Let us suppose σ2
x = α0 +

∑p
j=1 αjxj, σ2

y = β0 +
∑p

j=1 βjyj with {αj}, {βj}, {xj}
and {yj} positive. Then, it can be shown that

∣

∣

∣

∣

∣

zxσ2
xxi

(µ̂t0,N +
∑p

j=1 xj)2
− zxσ2

yyi

(µ̂t0,N +
∑p

j=1 yj)2

∣

∣

∣

∣

∣

2

≤ Kz2
x(A + B)2

µ̂t0,N

{

2
p
∑

j=1

|xj − yj| + |σ2
x − σ2

y |
}

,

(101)

where A = α0
µ̂t0,N

+
∑p

j=1 αj and B = β0

µ̂t0,N
+
∑p

j=1 βj . Similarly, we have

∣

∣

∣

∣

∣

zxσ2
xxi

(µ̂t0,N +
∑p

j=1 xj)2
− zyσ

2
yyi

(µ̂t0,N +
∑p

j=1 yj)2

∣

∣

∣

∣

∣

2

≤ K (A + B) |zx − zy|2

+
Kz2

x(A + B)2

µ̂t0,N

{

2
p
∑

j=1

|xj − yj | + |σ2
x − σ2

y |
}

.(102)

We use these inequalities to prove the following result.

[PROOF of (91)] By definition of Mallows metric, independence of the pairs {(Z+2
t , Z2

t )}t,

and that E(Z+2
t ) = 1, we have

d2

{√
bN

(

r+
t0,N −R+

t0,N āt0,N

)

,
√

bN
(

r̃N (u0) − R̃N (u0)a(u0)
)}

≤ (bN) inf E

{(

r+
t0,N −R+

t0,N āt0,N

)

−
(

r̃N (u0) − R̃N (u0)a(u0)
)}2

≤ 2

bN

p
∑

j=1

N
∑

k=p

W

(

t0 − k

b

)2

inf E

(

(Z+2
k − 1)σ+2

k (u0)X
+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X+2
k−j(u0)]2

− (Z2
k − 1)σ̃2

k(u0)X̃
2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X̃2
k−j(u0)]2

)2

,

(103)

where the infinimum is taken over all joint measures on (Z+2
t , Z2

t ). We now consider

E

(

(Z+2
k − 1)σ+2

k (u0)X
+2
t−i(u0)

[µ̂t0,N +
∑p

j=1 X+2
k−j(u0)]2

− (Z2
k − 1)σ̃2

k(u0)X̃
2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X̃2
k−j(u0)]2

,

)2

≤ 2(I + II),

where

I = E

(

(Z+2
k − 1)σ+2

k (u0)X
+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X+2
k−j(u0)]2

− (Z+2
k − 1)σ̃+2

k (u0)X̃
+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X̃+2
k−j(u0)]2

)2

,

II = E

(

(Z+2
k − 1)σ+2

k (u0)X
+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X+2
k−j(u0)]2

− (Z2
k − 1)σ̃2

k(u0)X̃
2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X̃2
k−j(u0)]2

)2

.
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Studying first I, and using (101), we have

I ≤ KE(Z+2
k − 1)2E

(

σ+2
k (u0)X

+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X+2
k−j(u0)]2

− σ̃+2
k (u0)X̃

+2
k−i(u0)

[µ̂t0,N +
∑p

j=1 X̃+2
k−j(u0)]2

)2

≤ KE(Z+2
k − 1)2(A1 + B1)

2

µ̂t0,N

{

2
p
∑

j=1

E|X+2
k−j(u0) − X̃+2

k−j(u0)| + E|σ+2
k (u0) − σ̃+2

k (u0)|
}

,

where A1 =
ât0,N (0)

µ̂t0,N
+
∑p

j=1 ât0,N (j) and B1 = a0(u0)
µ̂t0,N

+
∑p

j=1 aj(u0). Therefore, by

using (93), (94) and (99), we have I
P→ 0. Bounding II by using (102), we have

II ≤ (A1 + B1) E|Z+2
k − Z2

k |2 +

KE(Z+2
k )(A1 + B1)

2

µ̂t0,N

{

2
p
∑

j=1

E|X̃+2
k−j(u0) − X̃2

k−j(u0)| + E|σ̃+2
k (u0) − σ̃2

k(u0)|
}

.

Substituting the above bounds into (103), we have

d2

{√
bN

(

r+
t0,N −Rt0,N (u0)

+ât0,N )
)

,
√

bN
(

r̃N (u0) − R̃N (u0)a(u0)
)}

≤ Ĩ + ĨI,

where

Ĩ =





4E(Z+2
k − 1)2(A1 + B1)

2

µ̂t0,N

{

2
p
∑

j=1

E|X+2
k−j(u0) − X̃+2

k−j(u0)| + E|σ+2
k (u0) − σ̃+2

k (u0)|
}



ωN ,

ĨI =
4E(Z+2

k )(A1 + B1)
2

µ̂t0,N

{

2
p
∑

j=1

inf E|X̃+2
k−j(u0) − X̃2

k−j(u0)| + inf E|σ̃+2
k (u0) − σ̃2

k(u0)|
}

ωN ,

and ωN = 1
bN

∑p
j=1

∑bN/2
k=bN/2 W ( t0−k

b )2. By using (93), (94) and (99), we have Ĩ
P→ 0.

By using (93), (95) and (100), we have ĨI
P→ 0. Altogether we obtain the required

result. �

[PROOF of (92)] We use the same methods as those in the proof of (91) to show that

d2(R+
t0,N , R̃N (u0))

P→ 0. Then, by using Lemma 8.3 in Bickel & Freedman (1981),

and R̃N (u0)
P→ E[A(µ)

t (u)] we have R+
t0,N

P→ E[A(µ)
t (u)], thus obtaining the desired

result. �

We now have the necessary ingredients to prove Proposition 5.

PROOF OF PROPOSITION 5. We observe that
√

bN
(

â+
t0,N − āt0,N

)

=
√

bN(R+
t0,N )−1

(

r+
t0,N −R+

t0,N āt0,N

)

.

Now, since by (92) we have R+
t0,N

P→ E[A
(µ)
t (u0)], we can replace in the above R+

t0,N

with E[A
(µ)
t (u0)], and then use the delta method and (91) to get the required result.

�
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