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In this supplement, we provide the detailed proofs of the main theoretical results as well as
additional simulation studies. Appendix B gives a simple motivating example for the factor model
transformation stated in Proposition 2.1, Appendix C proves Propositions 2.1 and 3.1 for the
transformed factor model, Appendix D proves the asymptotic properties of the WBS-Cov for the
common components, Appendix E proves the asymptotic properties of the WSBS-Cov for the
idiosyncratic error components, and Appendix F reports additional simulation results. Throughout
the supplemental document, we let M be a generic positive constant whose value may change
from line to line.

Appendix B: A motivating example of factor model transforma-
tion
In this appendix, we provide a simple motivating example to show how to transform breaks in

factor loadings of a factor model to breaks in covariance of (transformed) factors, a transformation
mechanism summarised in Proposition 2.1. Consider an approximate factor model with K; = 2:

X = A(])<+1Ft +e, Me+1<t< T]§+1/

where k = 0,1,2, n§ = 0 and n§ = n. We assume that the number of factors and the column
ranks of the factor loading matrices are all equal to r. Furthermore, we assume the column rank
of (A}, A9) is 1, indicating that there exists an 1 x r matrix T such that AJ = AJT; and the column
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rank of (A3, AJ) is 2r (full column rank), indicating that Aj and Aj are linearly independent. Han
and Inoue (2015) call the first break a “type 2 break” and the second break a “type 1 break”!. The
transformed factor loadings and factors can be defined as A* = (A, AS) and

(F{,OT)T, 1<t<ns,
Fi={ (FT,07), n+1<
(0,F) , mns+1<

respectively. As a result, the original factor model can be equivalently written as
X =ANF+e, t=1,---,n, (B.1)

the same as (2.4) in Proposition 2.1. Note that the number of latent common factors has increased
from r to 2r in model (B.1). Letting Z(F) = Cov(F), Z((A, F) in (1.3) can be re-formulated as

A*diag {Z(F), O} (A*)", 1<t<ng,
Z(AF) = A’diag {TZ(F)T", 0} (A*)", nf+1<t<ns, (B2)
A*diag{O, Z(F)}(A*)", ng+1<t<n

where diag{A, B} denotes a block diagonal matrix with A and B being two square matrices and O
denotes a null matrix whose size may change from one place to another. As the transformed factor
loading matrix A* is time-invariant, structural breaks on Z (A, F) are purely caused by sudden
changes in the covariance matrix for the transformed factors F}.

Appendix C: Proofs of Propositions 2.1 and 3.1

PROOF OF PROPOSITION 2.1. Let £(A) be the space spanned by the column vectors of A},
k=1,---,K;+1, and qg be its dimension. It is straightforward to show that

Ki+1
max 1 < (o< E T (C1
1<k<Ky+17° Go S — —ks )

where 1, denotes the column rank of A}.. As £(A) is a qo-dimensional subspace of R¢, we may
construct a d x qo matrix A* by stacking a group of basis for this vector space. Noting that the
column vectors of /\% lie in the space £(A), there must exist a qo X Ty transformation matrix Ty

'For the intermediate case with the rank of (A, A}, ;) strictly between r and 2r, Han and Inoue (2015) call it a
“type 3 break”. In this case, the factors and factor loadings can be similarly transformed by separating the linearly
independent columns of AY and A}, ; from the linearly dependent ones.
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such that
A =AT, k=1, K +1. (C.2)

Then the transformed factors can be defined as

TiFeq, 1<t<ny,
Fr o TZI.:t,ZI ny+1 < t<n3, (C3)
TK1+1];t,K1+1/ Nk, +1 < t<n
With (2.2), (C.2) and (C.3), we readily have that, whennj_; +1 <t <ng,
X =AVF e +er = AT\ Fop + e = AF 4 ey (C.4)
The inequalities in (2.5) can be proved by combining (C.1) and the fact of 1, < ry. O

PROOF OF PROPOSITION 3.1. Letting £L(A) be defined as in the proof of Proposition 2.1, we may
obtain a group of basis vectors for £(A) directly from the column vectors of /\?(, fork=1,---K;+1.
Specifically, define A* = [/\(1), e ,/\?<] +1} S, where S is a ZESl Tk X o selection matrix whose
entries are either 1 or 0. By Assumption 2(ii) in Appendix A, A* is of full column rank and the
smallest eigenvalue of 2ZA*"A* is positive and bounded away from zero.

By (C.2) and von Neumann’s trace inequality (e.g., Marshall, Olkin and Arnold, 2011), we have
1OTO 1T*T* l*T*T al 1*T* T
tr( JAVAL ) =tr [ JTATAT ) =t SATATT, > AT g (T Ty,
j=1

where tr(-) denotes trace of a square matrix. This indicates that

T 1 T 1 *T A %
w (T Ty) < tr (EA(‘)‘ A%) /Ha (E/\ A )

which is bounded uniformly over k =1, --- ,K; + 1 by Assumption 2(ii), and thus

max ||Tyf? = max tr (TkTL)g( max rk>- max iy (TiTy) <M, (C.5)

1<k<Ky+1 1<k<K +1 1<k<K+1 1<k<K +1

for some positive constant M, as max;<k<k,+1 Tk is bounded by Assumption 2(i). Note that

1 n Ki+1 1

- ) FF| < — TyFeiFe Ty

n tht =X n"—nc kPt kbt k
t=1 F k=1 || 'k k=1 ¢me  +1<t<ng .



1 T
SRS reral D SR SN I N (C6)

c _ T]C
k=1 k k=1 gme  +1<t<ne

Asny; —ni_; = ki, = 0o, by Assumption 2(i) and the Law of Large Numbers for the x-mixing
sequence (e.g., Lin and Lu, 1996),

1 T
—— Y FuFy o Ipe k=1 K+ 1L (C.7)
e = M tmg+1<t<ng,,
Combining (C.5)(C.7), we have || L > | FiF{'||, = Op(1).
From (C.7), we readily have that
n Ki+1
1 T M — M 1 T
; ZFtFt - Z * n = c __ e Z TkFt’kFt'ka i) Zr (C8)
t=1 k=1 Me = M tmg +1<t<ng

where X is a weighted average of TkZ]:,kT]T< over k =1,---,K; + 1, and the weights are strictly
positive as k$ < n. We next only need to show that the smallest eigenvalue of X is positive, which
is to be proved by contradiction. Assume that there exists a qo-dimensional vector v # 0 such that
v'Z¢v = 0. This implies that v' T\ ¢ T, v = 0,and thus T, v = 0forallk = 1,-- -, K;+1, since ¢,
is positive definite by Assumption 2(i). As the rank of A* is qp, we may write v = (/\*)T v* for some
d-dimensional vector v*. Then, by (C.2), we have TLV = TL (A% v = (A*Ty) v = (/\(]1)T v* =0.
However, A* is constructed from the column vectors of /\%, k=1,---,K; +1, thus we must have
v =(A*) v* =0, leading to a contradiction. O

Appendix D: Proofs of the WBS-Cov theory for the common com-

ponents

As construction of the CUSUM statistics relies on PCA estimates of the transformed common
factors and idiosyncratic errors, we start with some uniform convergence results for the PCA
estimation which are analogous to those derived in Bai and Ng (2002), Fan, Liao and Mincheva
(2013) and Han and Inoue (2015).

LEMMA D.1. Suppose that Assumptions 1, 2 and 3(i) in Appendix A are satisfied. Then, if k§, < n, we

have (i) ”
~o (L N “_) , (D.1)

~

F. — HF!

max

1<t<n ‘ nt/2 = g1/2



where & = 6 /\ d; and (ii)

max

1<j<d )

P\j —(H)'N

logd\"? n¥?
ZZOP (( N ) +W , (D.2)

if, in addition, Assumption 3(ii) is satisfied and d = O (exp{n"}) with 0 < v < 1/5, where the rotation
matrix H is defined in (3.3), and ¥y and Ay are the transformed factors and factor loadings.

PROOF. (i) By the definition of PCA estimation, we may show that

= 1 n d R . 1 n d R . 1 n d N
Qq, (F —HF;) = ALY BENey+ 23 3 RRNey+ 23 3 RElegey

s=1 j=1 s=1 j=1 s=1 j=1
1 n d N
+ﬁ ; ]; Fs {€S)€t] E [ES)et]]}
= vnt,l + Vnt,Z + vnt,3 + vnt,4 (D3)
for any 1 < t < n, where € is defined in Section 3.1.

We first consider V1 1. As
1o
— Z F.F, =1,
by Proposition 3.1, using the Cauchy-Schwarz inequality, we have
> RF
s=1

By the C,-inequality(e.g., Theorem 9.1.a in Lin and Bai, 2010), we have

n

Z 'F = 0p(1

kU

= Op(n). (D.4)
.

de Ki+1 de

a
max E E ?\j*etj < ¢p - max E
j=1 2

1<t<n

A ey
1<t<n 4 Z kj =t

2

where ¢ is a positive constant. Then, by (A.2) in Assumption 3(i), the Bonferroni and Markov
inequalities, we may prove that for any ¢ > 0,

n

>/ <3P > /g2

Z?\ etJ

max
1<t<n

Z?\ et]



de

et] /(cded®/?) < (D.5)

by letting ¢; > [coto(K; + 1)/€]/%¢, where 1, is defined in Assumption 3(i). With (D.4) and (D.5),
we readily have that

max [Vaialla = Op(n'/®/d'2). (D.6)
By (C.5) and
max max E [||Ft,k||§F] < 00

1<k<K +1ng +1<t<ng

in Assumption 1(ii), we can prove that maxi<i<n |[Fi |l = Op (n'/®7), which together with - > | ?t/F\l =
I,,, (D.5) and the Cauchy-Schwarz inequality, implies that

n d
1 T r*T~
ma WVeale = g max ) 2 FFRIAes
s=17= 2
1 n 1/2 n d 2 1/2
< 3 ggHFtHz (Zl‘F ) Zl ;7\?%
S= S= = 2
_ % - Op (nl/ap) . Op (n1/2) . Op (n1/2+1/5€d1/2)
= Op (n¥?/d'?). (D.7)

By a basic inequality on the covariance bound for the x-mixing sequence (e.g., Lemma 1.2.4 in
Lin and Lu, 1996), we have

d
1 2/8¢ 1/5 1 V8 1-2/68c
> Elegey) <10 o0 Z{E [legl®}* {E [ley]}'* =0 (a- Leels — ' */*),
j=1
where x(s) = maxjci<k,+1 %k (s), indicating that

max ||Vaesla = — - max
1<t<n nd 1<t<n
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— Op (nq/z) (D.8)

asy o, [oc(k)]m*z/m < oo when (k) decays to zero at a geometric rate.

By (A.3) in Assumption 3(i) and using the Bonferroni and Markov inequalities again, we may

show that for any ¢ > 0,

u

<
<3y

(esjer; — Elesjeyl)| > 02n2/5€d1/2>

-

max
s,t<n

1

)

(esjer; — Elesjeyl)| > c2n2/5€d1/2>

-

_,
I
_

[y

s=1 t=1

<Yy

s=1 t=1

(€sj€tj —E [esjetj])

M=

—_

1

Se
] /(cgenzdée/z)

—.

< /ey <g,

where c; is chosen to be larger than (1y/¢)!/%<. As a result, we have

n d
1 ~
121&2; ||vnt,4H2 = n_d . 1%2); l FS JZl (€S]€t] E [€SJ€t)])
= - 2
1 n 12 [/ 4 a4 o 1/2
< 3 1@1}; ; HRH%) (; (; (esjeyy — E [esjet]-])> )
= % . Op (nl/Z) . Op (nl/ZnZ/éedl/Z)
= Op (n¥%/d'?). (D.9)

By (D.3) and (D.6)-(D.9), we can prove (D.1) if 2, is asymptotically invertible. The latter can
be proved by following the proof of Theorem 3(i) in Chen et al (2018). The proof of Lemma D.1(i) is
thus completed.

(ii) From Proposition 2.1 in Section 2.2 and by the factof L >, ftﬁ =1,,, we have

n

= ey, = 1 e ~
7\] — E ;Xt]Ft — E Z (}\) Ft + €t]') Ft

t=1

1 = = * Ty % 1 - i
= = > RFA+ - Y ek
t=1 t=1



= (H N+ Tll > Fe (F; — H—lﬁ)T A
t=1
1 ¢ 1 ¢ =
PH ; eFi+=) ey (Fo—HF;). (D.10)

By Lemma D.1(i), we readily have

Ly (FomR) A —op (L4 D.11
2w 2R (R K| =00 (G + G ). 1Y
and
1 — ~ . 1 n2/s
15<a E;etj (Ft _HFt) . O» (nl/z * dl/z)' (D12)

By (D.10)-(D.12) and noting that H = Op (1), to complete the proof of (D.2), we only need to show

that
1 n
max ||— Z eyiFi|| =09 ( (log d)/n) . (D.13)
t=1 2

1<d (|

The proof of (D.13) is standard. Let {i; = €;F; for notational simplicity. From E[e;F] = 0 in
Assumption 1(ii), we have E[(;;] = E [e;F{] = 0, indicating that

Gy = Gy —ElCy) = &y —E [Cy] + &y —E [ztj] ’

where
Cij = G - I ([|Gsll2 < calog(dn)), & = G - I ([|Cejll2 > cslog(dn)),

and c; is a positive constant to be determined later. Hence, in order to prove (D.13), we only have
to show that

1 n
11r£1ja<>fi T—LZ Ct]— Ct] :Op( (logd)/n) (D.14)
t=1 2
and
1 & [~ ~
max |3 (@ [a])] =or(Viogain). 015)

We first consider proving (D.15). From (A.4) in Assumption 3(ii) and the arguments in the proof
of Proposition 3.1, there exists a positive constant (j (which may be different from ;) such that

*
max max E lexp{illeqFi[2}l < oo



Choosing c3 such that c31{ > 1, we have

1/2
Elcull] } (P (g2 > cslog(an))}'”?

= {E[HCUHH {P (exp {t$]|C;ll2} > exp{tfes log(dn)})}?
0 ((dn)~5572) = o(n-112)

Cij

e[|l

] <
2

<

uniformly over j and t. Then, for any M > 0, we can show that

" (o %im w - fiogal/n)
P(lrgjag)fi i -4/ (logd)/n )

P (max max ||Ct]”2 > c3log(dn) >

1<j<d 1<t<n

/AN
EUs

N

3y Eleplilcyl)
= exp{ijcslog(dn)}
= O ((dn)'7%) = o(1),

N

leading to (D.15).

We next turn to the proof of (D.14). Using an exponential inequality for the x-mixing sequence
(e.g., Theorem 1.3(2) in Bosq, 1998) and noting that d = O (exp{n"}) with 0 < v < 1/5, we may
show that by taking M > 0 sufficiently large,

> M- 4/(log d)/n)

2

1 n
A2 (&)
/7Toga

= O(dexp{—cmlogd}) + O (d(log d)'*(log d + logn)**n¥?pewm logdﬂogn))

- 0 (dl—cM + TL(7\//4)—0—3/2 exp {nv _ (log p/CM)n(l/Z)—(Sv/2)}) — 0(1)’
where cp > 0 is a sufficiently large constant when M is large enough, completing the proof of
(D.14). O

With the uniform convergence result given in Lemma D.1(i), we can easily prove Proposition
3.2.



PROOF OF PROPOSITION 3.2. Note that

Cl.(s)—ClP(s) = \/(u—1+1 s—1+1) Zvech {( HF:) (ﬁ—HF;)T]
+\/( —1+1) s_1+1)Zvech{ HF* FTH' 1 HE: (ﬁ—HF;)T]
e 3 e () ()’
_\/(u_sl:—ll;_(i _Z {(

By (D.1) in Lemma D.1 and noting that n = O (d%/{**%)), we readily have

¢~ HF) FH + HF (Fo— HF:” .

(1,u):r1n<al)iu<ns:r&a§)iu\/(u—l+ 1)(s—1+1) ZVGCh |:< HFt) <Ft _HFt> :| ,
— _ ~1/2 -1 —
B (1,u):q1<al)iu<n(u t+1) Or (TL ) 11’1’<16$1)<(u \/ (s—1+1)
= max (u—14+1)"2.0p (n7!) =0p (n"?), (D.16)

(Lu): I<l<un

and similarly

N et G Ll |

= max (u—1+1)"2.0p (n’l) =Op (n’l/z) : (D.17)

(Lu): I<l<un

On the other hand, by the Cauchy-Schwarz inequality, Lemma D.1(i) and Proposition 3.1, we can
prove that

gvech [(ﬁ - HF:) F;THT] 2

S /2
< Fo— ) (Z llFtllz) - 0p(1)
t=1

— Op ((s—1+1)/n'7?),

HF;
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and similarly

Consequently, we have

max

(Lu): I<l<ugn s: I<s<u

max

(Lu): I<l<ugn

max

(Lu): 1I<l<usn

and

max

(Lu): I<l<un s: I<s<u

maXx

Y vech [(?t—HF;) F;THT} = Op ((u—s)/m'?).
t=s+1 2
u " +Ty T
s \/(u—1+1 s—1+1) ZVGCh[( ~HE)FTH| 2
. 71/2' 1/2 .
(u—1+1) Op (n~ )s{ré?i(u\/ (s—1+1)
(L—1+1)"2-0p (n"1/2) = Op (1)
s—1+1 N ity
oo e | 2 e (R oL
(u—1+1)"2.0p (n_l/z) =0p (1).

(Lu): IKl<usn

By (D.16)—~(D.19), we can complete the proof of (3.4).

(D.18)

(D.19)

O

We next turn to the proof of Theorem 3.1. In order to facilitate the proof, we first introduce

some additional notation. Let

zv
GH
2F
Define
Clou(s)
Then
Cluls) =

B \/(s—l+1)(u—
N u—1l+1

T
F*
Zt do( QO+1)/2> ’
F* !
» Giqof qo+1)/2> ¢

;
F* F*
(Zt,l/ T ’Zt,QO(QOJrl)/Z) :

vech (FiF;") = (257,
E [vech (FiF;")] = (GF, -+

F* ‘F*_
zZF —GF =

s) 1 R 1 — _p
/, — —— y4 .
(s—H—l; ou—s Z t)

t=s+1

u—=s

(s—=1+1)(u—s) 1 S = -
\/ u—1+1 (s—1+1ZGt_ ZGt)

t=s+1

(s—1+1)(u—s) . .
+\/ u—14+1 (s—l—l—lz F_uTZZt>

CEL (s) + CE (s).

t=s+1
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Recall that the two positive integers | and u denote the “lower” and “upper” bounds of a segment.
We assume that

nio << nio—kl < e K nio—o—kl <u< n§0+k1+1/ (D21)

where kg € {0,--- ,K; —kitand ky € {1,--- , Ky — ko}. The following two conditions are key to the
WBS-Cov asymptotic analysis: for some 1 < k < k;,

L <Mk — Caky <My T Caky <u (D.22)

and
{A=ng)A M =DV {u—n% ) A M ag1 — W) < cs08, (D.23)

where c4 and c5 are two positive constants, k¢, is defined in Assumption 4(ii), and ¢¢, is defined in
Theorem 3.1. Define the intervals

I =M+ ML —ni)/3 n5 . +2ng —n51)/3], k=1,--- Ky +1,
and the event
Dy = {Vk:lf"' ,Ki, 3m =1,.--,M; such that 1, € J; and u,, Eﬂﬁﬂ},

where M is defined in Section 2.3.
LEMMA D.2. Letting D, be the complement of D€, we have

c
c Mg

P (ﬁn) <K, [1 e/, (D.24)

where K¢, is defined in Assumption 4(ii).

PROOF. From the definition of 5?1 and noting that the two random points l,,, and u,, are drawn
uniformly from the set {L,1 +1,--- ,u—1,u} with1 <1< u < n, we readily have that

Ky M§
P(Dy) < Y TI[-P(medanduy e,)]
k=1 m=1
i Mk~ Mea M — Mk
CoMe T M M — M
s K nI:[_l (1 3n 3n )
< K [1-(k5/GBn)P?] (D.25)
completing the proof of Lemma D.2. O
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The following lemma derives an asymptotic order for Cf’f (s) uniformly over [, u and s.

LEMMA D.3. Suppose that Assumptions 1, 2 and 3(ii) are satisfied. If k5, < n, there exists a positive
constant cg such that

P max max HCZ’F* s H > ¢ - log”n | — 0, D.26
((1u):1<1<u<ns:1<s<u tu () , 67108 ( )

asn — oQ.

PROOF. Note that Cf,’fi* (s) is a column vector with dimension qo(qo +1)/2. Let Ci’ijk(s) be the k-th
element of Ci{* (s), i.e.,

z,F* (S_l+1)( ) 1 :
C‘“k(s)\/ u—1+1 <5—1+1 s & ) k=1,---,qo(qo+1)/2.

By the Bonferroni inequality and noting that q is assumed to be bounded, in order to prove (D.26),
we only need to show that

x 2cq
z,F
—1 D.27
P ((lu):r?gal)iugn s:rlrgi)iu ‘Cluk ‘ > Jo (q() + 1) 08 T\-) 0 ( )
foreachk=1,---,qo(qo + 1)/2. Letting
x u—s 1 S
CZ,F 8;1 _ F
tuxlsit) = u—l+1 s—t+1 t=1 e
and
2 F* s—1+1
/ 2 — ,
Clunls2) =\ T m tgﬂztk
it suffices to prove that
c -log? 0 D.28
P ((lu):rlngal)iugn s:rlr;as)iu‘cluk S ])’ > C(qO) 08 Tl) - ( )

forj =1and 2, where ¢(qo) = m-

The proof of (D.28) is similar to the proof of (D.13) in Lemma D.1(ii). Define
Zi = Ztk J (|Ztk| C710g11) Zf*k = Ztk J (‘ztk‘ > c710gn)

where c; > 0 is a sufficiently large constant. Letting Ef':k(S' 1) and éiﬁjk(s; 1) be defined similarly
to CF  (s;1) but with zF}, replaced by z{ —E [z}, ] and 2} —E [zF}], respectively. From Assump-
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tion 3(ii) and Proposition 3.1, there exists a positive constant 1, > 0 (which may be different from
t1) such that

'F*
1%%1 1<k<£1r<)1(ac1)§+1)/2 E [exp {6 ‘Ztlkm < 0.

Consequently, we can show that

| < e[} (P (25 > erlogm) )

. 1/2 .
= {E [ Zey 2] } {P (exp {16 |zt x|} > expliscy logn})}l/2
< O (n*”’”/z) =0 <n’1/2 log2 n)

S

N

uniformly over k and t, where the constant c; is chosen so that ¢yt > 1. Therefore, we can prove
that

P (“ | max max ‘éiﬁjk(s;l)‘ > C(SO) .logzn)

c1<l<ugn s: I<s<u

/ —S SF* 2

< .

= P <(lu):r{1<al>iu<n s:rlréasiu —l—I— 1 \/S _1+ Z IOg Tl)
Elexp{is ‘ztk‘}

< < . .

< P (lrgca<x !ztk| > Cy logn) < E oxpliser log n} =0(1) (D.29)

We next prove

P <(lu) max max ‘Eiijk(s;l)’ > 0(20)

c1<l<ugn s: I<s<u

-log® n) — 0. (D.30)

Consider the following two scenarios: (i) s — L +1 < cg log n,and (ii)) s — 1+ 1 > cg log n, where
cg is a sufficiently large positive constant. For scenario (i), it is easy to see that

—z,F* u—s T
’Cluk31 Vi—1+1 \/T Z }ka

< Vs—1+1:(2c7logn) < (2c708) logn

+E ‘ztk}

For scenario (ii), by Theorem 1.3(2) in Bosq (1998) (choosing p = v/s — 1), we then have
P ((1 )max max ‘Ei’fk(s;l)‘ > C(qu) -log2 n)

cI<l<un st I<s<u
Efi*k(s 1)‘ > [C(EO) —2c7c8} «logzn)

< P max max
(Lu): ISI<usn s: 14¢glog? n—1<s<u

14



< O (nPexp{—Mlogn}+n>"3/4pvesloen) = (1),

where c¢ is chosen to be sufficiently large such that @ — 2cycg is strictly larger than zero and the
constant M is larger than 3, and the constant cg is chosen to be larger than (—15/(41og p) )*. This
proves (D.30).

With (D.29) and (D.30), we can show (D.28), completing the proof of the lemma. O

The following lemma derives a lower bound for the CUSUM statistic in the WBS-Cov when 1
and u satisfy (D.22) and (D.23).

LEMMA D.4. Suppose that the assumptions in Lemma D.3 and Assumption 4(ii) are satisfied, and let 1
and u (the lower and upper bound of the segment, respectively) satisfy the conditions (D.22) and (D.23).
Conditional on that the rotation matrix H is non-singular, we have

> o (kW) ?) = 1 (D31)
2

as n — oo, where cq is a positive constant, m§ and s§ are defined as in Algorithm 2 of Section 2.3.

PROOF. From the definition of F; given in (C.3), we readily have the following time-varying

covariance structure for F}:

Hence, we have
0V a(AF) —Z0(AF) =AY [Z) L (F) — Z0(F)] A,

indicating that
1 0 0 2
7 15 (AP = 2 AR
1 TAx * * *T
= 5 - Trace {A [Z0 1 (F) = Z0(FI)] ATAY [Z) 4 (F) = Z0(F)] A}

= Trace { [Z0,,(F) — ZL(F)] [ATA*/d] [£).,(F) — 20 (F)] [A7A"/d] }
= [|[Z0 (F) = ZU(F)] [AT A /d]

From the proof of Proposition 3.1, all the eigenvalues of A*"A*/d are bounded and strictly positive.

15



Using the inequality
|21 (F) = 2R [ATA /][ <[220 (F) = Z2F) - 1f (AT A /)
with 1; (A*"A*/d) being the maximum eigenvalue of A*' A*/d, we then have

* * 2
ws, <o || Zh i (F) = ZR(FI) (D.32)

where ¢y is a positive constant.

Consider that | and u satisfy the two conditions: (D.22) and (D.23). These conditions imply that
L and u are close to the previously detected break points and bounded away from the previously
undetected break points. Without loss of generality, we let 1§, be one of these break points within
[1,u] satisfying 1 4+ c595 < 1§ < u — c59%. On the set DS, there exists 1 < my < MS such that
lyn, € J; and u,,, € J§ 4, indicating that both n; — l,,, and u,,, —nj§ are larger than «§, /3. Define

@, = vech (I}, (F) — Iy (F)) = (@El '@qu(qo“)/z) ' (D33

Fori=1,---,qo(qo+ 1)/2, we have

G, F*
Clmk Amy A

C

(M)

) (D.34)

K€ 1/2
> 2 oF.
Uy, — by + 1 ' (6) @

where ClGuF: (-) is the i-th element of ClGﬂ’f* (-) defined in (D.20). Thus

_ \/ (1 = I + 1)ty )|

C

(ng) c)!/?

n

> (K

HCG'F* (D.35)

lmk My

@k

27

where ¢;; is a positive constant. Let L, and D be the q(q + 1)/2 x ¢ elimination matrix and
the g x q(q + 1)/2 duplication matrix, transforming the vectorisation of a matrix to its half
vectorisation and vice versa, respectively. We have

Ci'F(s) =Lg, (H® H) Dy, Cl(s).
Noting that |[Lq, (H® H) Dy, ||i = Op(1), a combination of (D.32) and (D.35) leads to

> 2c (KEwS)! 2. (D.36)

lmk/umk 2

|LuHe D, - CET, mo)

By the definitions of m§ and s§ in Algorithm 2 and using Proposition 3.2 and Lemma D.3, we may

16



show that conditional on that H is non-singular,

F c F c
H Clm.grumg (SO ) 2 2 lmk/umk (T]k) ‘2
HF*
= ||t mg)|| +oe(1)

= L, (H@H)Dy, - CEF, (mf)

1mk Amy

‘2 + Op <log2 n>
> 20y (kw$)"? + Op (log’n).

We then complete the proof of (D.31) by noting that (kS w¢)/log*n — co by Assumption 4(ii). [

Define the function ¢(-) as

lax + b|

glx) = W,

0<x<1,

where a and b are two constants which do not depend on x. Lemma 2.2 in Venkatraman (1992)
proves that g(x) is a strictly quasi-convex function on [c, d] with0 < ¢ < d < 1, and

g(x) < max{g(c),g(d)}, Ve <x < d.

As the CUSUM statistics proposed in the present paper are multi-dimensional vectors, we next
provide an extension of Lemma 2.2 in Venkatraman (1992) (from the univariate binary segmentation
to the multi-dimensional binary segmentation).

LEMMA D.5. Define

(XM, lax + byP)"P

60 = "= T =72

, 0<e<x<d<], (D.37)

where a; and by, 1 =1,--- , m, are numbers independent of x, m is a positive integer and 1 < p < 2. The
function G(x) is quasi-convex over the interval [c, d].

PROOF. We first show that, for any positive convex function G*(x) on [c,d] and v € (0,1],
G*(x)/[x(1 — x)]Y is a quasi-convex function over [c,d]. To prove this, it is sufficient to show
that each sub-level set defined as

So = {x [ G*(x)/[x(1 —x)]Y < o}
is a convex set. Note that the sub-level set S, can be written as
So ={x| G*(x) — a[x(1 —x)]" < 0}.

17



As both G*(x) and —«a[x(1 — x)]” are convex, we readily prove that 8§, is a convex set. Choosing
G*(x) = X ", laix + bi[P which is positive and convex, we can then show that the function
> M laix + biP/[x(1 — x)]Y is quasi-convex. As a non-decreasing functional transformation
preserves the quasi-convexity, the function (}_ ", laix + by[? )P /Ix(1—x)]Y/7 is also quasi-convex.
Letting v = p/2, we prove that G(x) is quasi-convex, completing the proof of the lemma. O

Similarly to Zf", GI" and zf*, we define

Z'" = vech (HF{F;'H) =L, (H® H) Dy,vech (F;F;") = Ly, (H® H) Dy, Z},
GI'™ = Ly (H@H)DGEZ]] =Ly (H@H)Dg,GY,
2 = Ly, (HeH)Dy, (ZF' —GF) =L, (Ho H) Dz},

and then

Ci'''(s) = Lg (H®H)DgCl,(s)
= Lg (H®H)Dg,CE 7 (s) + Ly, (H® H) Do, CiL (s)

CEM (s) + CELT (s).

We next give an extension of Lemma 2.6 in Venkatraman (1992) to the case of multi-dimensional
WBS-Cov. In the following lemma and its proof, we use the notation v with appropriate subscript to
highlight the difference and similarity between Lemma 2.6 in Venkatraman (1992) and our lemma.

For example, vy, vi, v; and v, in the following lemma correspond to h, i, j and l in Venkatraman
(1992).

LEMMA D.6. Suppose that the assumptions of Lemma D.4 and (D.21)—(D.23) are satisfied. Let s{ €
G HF*

e, Wnc
™™

[Ling, Wmg] be the point of maximising H C (s) H2 with respect to s, i.e.,

s¢ =ar max CEHF (g ‘ , D.38
* glm8<3<u1n8 lms,umﬁ( ) 5 ( )

and definey,_as a change point satisfying
H SAG ] H CEMD (5], —3elog’m, (D.39)

where cq is a positive constant defined in Lemma D.3. Then there exists ¢, > 0 such that

C

(R, = lmg + 1) A (Umg —NE,) = c12K5, (D.40)

18



and we further have

H 1GHF (e )

c, U c o
CcEHF > H CEHF +v H (c13viKy, 2 D.41
H ]. cLL c(nko P 1 cu c nko 1 13 1 (u 6 1 8 1)2 ( )

where 0 < v < c1aY$, withys, = (Kfl/g;)l/z log2 n, and c13 and cq4 are two positive constants.
PROOF. Using Lemma D.5 with p = 2 and m = qo(qo + 1)/2, and noting

d —1+1
ol s (i)

(by appropriately choosing a; and b; in the definition of G), we may show that there exists a
positive integer k, such that s{ = ni . From the conditions (D.22) and (D.23), we have that
(Mg, — L+ 1) A (u—njf, ) is either smaller than c5@y, or larger than «§, — c5@},, where cs is defined
in (D.23). Note that

HCGHF* )H _ \/(5—1+1)(U—5)
2

1 > . 1 et .
GHF - GHF
s—l+1tZ_l t u—s Z t

u—1+1 Nt ,
< 2bpu/(s— 1+ 1) A (u—s), (D.42)
where
. 1 e .
biu = su oL — GHF
Kl ol u—1+1§ ©,

If (g, —l+DA(u—ng,) < cs7, holds, we have (Mg, —Ling +1) A (ums =y, ) < c507, as [Ling, Wime]
is a random sub-interval of [, u]. By Assumption 4(ii), we have

. 1/2 YA o
Dt S €15 (‘”fmﬁ,umg) < os (@f,) 7 < es (@)2, (D.43)

where cy5 is a positive constant and

1
—C
sy, = max
tu = g2 kiltcsp8 <nE<u—cs@§

) (AF) = Z2AB); (D.44)

With (D.42) and (D.43), we have

12 < 2¢45(c5m ¢ )12, (D.45)

Line, umc n k*

HCG HF*

< 2b1m(c] ,um(c) (C5 (ptcl )

Combining (D.36) with (D.45), we readily have that %ﬁ‘ . % is bounded. However, this leads to
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XWn 4 56 in Assumption 4(ii). Therefore, (nf;, — 1+ 1) A

log*n
(u—mnj§, ) cannot be smaller than c5¢y,, and we must have

contradiction with the condition %‘E .

(Mg, L+ DA (u—mg,) > Ky — 507, (D.46)

which further indicates that there exists m{ € M{ , such that L, € J; and uy,e € I ;.
We next strengthen (D.46) to

(M, = bng + DA (Wmg —7§,) = 1ok, (D.47)
Suppose that (D.47) fails, i.e., for any c, and N, there exists some n > N such that
(ﬂi* - lmS + 1A (umg —ﬂi*) < C*KTcl- (D.48)

Without loss of generality, we letny, — 1l +1 < ¢,k7, and consider the following two cases of wp::
(DMK, S Umg < Mgy O Mg i 41 — C5@n S U ST 4 and Ny < Umg S W,
(ii) Mgt k; S WS T4y, T 6505 and ng, < Mk < Umg < W

The main difference between cases (i) and (ii) is that in case (ii) there does not exist any m € My,
such that 1,, € Iy, and uy € J5 1y 1.

We first consider case (i). Following the proof of (D.36), we have

fesm g )

| > 200 (xi5,) "2, (D.49)
2

where cg is defined in Lemma D.4. On the other hand, if (D.48) holds, using (D.42) and (D.43), we
have
(S ANE ] EL S RER IR (e M (D.50)

Letting c,. be sufficiently close to zero, (D.49) and (D.50) would lead to a contradiction. As a result,
case (i) would not occur when n is sufficiently large. We next turn to case (ii). By (D.36) in the proof
of Lemma D.4, (D.49) still holds. On the other hand, since ng ., < Ums < U< Mg 4y, + 505, by
the triangle inequality, we have

HCG ME (e )

mg umg 5
Nk,
_ \/(Thi* - lmg + 1)(um§ _THC(*) _ 1 Z G}:[F* Z GHF*
Um5_1m8+1 nk*_lm8+1t . umo_nk*t ¢ +1
1]’1.0 *

2
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g
(T]]i* - lmg + 1)(um§ _n]C(*) L HF* HF*
S 1 1 " ne 1 Z Gy Z Gt/\uc c508)
Umg mg + Nk, e+ umo T]k* tent 41
ks
2

. \/ (f, — Umg + 1 (ums —n§,) 05@%bumgfcwa,um3

Ume — bmg +1 Umg _nﬁ*

< (2blm8,um8—C5(pg + CS(P%bumgfcmpg,umﬁ/K%) \/(n]i* - lmg +1) A (umg _n]i*)' (D.51)

Noting that

—_— 4 1/2
O5ue cspsing /K6 = O ((@5)2loghn/ (W) and 2by, e eson > (@5)'72,

1/2
as (:—?) ST 00 from assumption 4(ii), we have

(pnb mc C50%,U mC/K =0 (blmcu 0)/

which, together with (D.51), indicates that (D.50) holds as well. However, by letting c, approach
zero, (D.49) and (D.50) would lead to a contradiction. Hence, case (ii) would not occur when
n is sufficiently large. Combining the above arguments, we may complete the proof of (D.47).
Furthermore, following the similar arguments and using (D.39), we may prove (D.40).

We finally turn to the proof of (D.41). Consider two cases: (i) ums < Mg ,; and ()N L < Umg.
We start with case (i) of ume < ny_ ;. For notational simplicity, we let vi = ny_ — ln¢ + 1 and
. T .
Vh = Umgs —N§_, and define B = (B1, -+, Bag(qe+1)/2) With

1/2
G,HF* vi\)h
o= CEM e ) ()

Vi + Vh

where CSL’:}F* (-) is the k-th element of Cﬁ’ﬂf* (*). Asume <My, in this case, it is easy to verify
that

1/2

lmo um0

ViVh —1/2 CG,HF (n Ty ) B Vh — V1 ' Vi + Vh
Vi +Vn 7 hmg tmg et e ' Vh (vi +vi)(vh — W)
1,2
=Bl ()
Vi + vy

As (k§ws )/ log4 n — oo by Assumption 4(ii), we have v¢ = o(k$,) and consequently v; < v; when

COMF  (ne ) — B, (

and

G, HF*
H Clmg U.mc (nko
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n is large enough. Hence, we have

G, HF* GHF
HCmcu C ko ’ _H 1 CLL c nko—i_vl)Hz

= 8| Vit (v e —w
2 Vh Vi Vi +Wv;

= G,HF* (nc) . Vi +Vh
it A TV (VIR VL VYR — Vi)
> wi|Cool (R n
mirtmg AR V2vi (VVRV2Vi + V/VRy/Ve)
> || CEEL M0/ 20t — L + 1], (D.52)

which, together with (D.40), proves (D.41).

We next consider case (ii). Let vi =ng — Line + 1, viu = (ci2 A 1)k7, /3, vj = upme — My — vi and

* *
:G::C{FJF1 1 : E GHF
¢ mg — tmg T 1 2 L

From the condition (k& w¢ )/ log4 n — oo, we may show that 0 < v < v, when n is sufficiently
large. Then, using the definitions of v, v, v; and Vg, we readily have that

HCG JHF*

1/2
Vi +V; +Vh
mCU. c T]k<>+vl H - HB—’_VLV ”2 |: - ) ):| 4

(vi +vi)(v; + v —W

where f3 is defined as in case (i). Define

D(w) = | BN i,

CGHF
), = etk vl

and

GHF
g 15, = €50

1/2
Vi +Vn)v;
D; = [HC? e nko : n)Y, )] :

Ny, TV H} {
ko " Vi L(vi Fv)(vy Fvn—Ww

Note that

1/2
Dv)—D; = {1 v [( (Vi + Vi)V; J } . HCf“m:{E;O (Mk.)

Vi +V1)(V]’ +Vh —W

‘2

1/2

(Vi + Vh)V; / G, HF*
Cr.
Vi +V1)(\/’]‘ +Vh—\/‘1) ™07 Mo

_HCG JHF*

Lt (M, +v1) H : (T]§Q+Vh)H
v L( 2
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- Vi (Vi +vn)vj e G HF*
- 1__ Cl c,u c(nko)
Vi [(vi +vi)(v; + v — W) mG/thmg 2
. |: Vi +V)' + VvV
Vi (vi +v)(vy + v — Wy
[ (Vi + Vi)V ]1/2 {vi +v; +vh}1/2 18]
) B RASLERS BLERG. ) )
(vi +vi)(v; + v — V) Vi(Vj + Vi)

1/2
J (0B + v V[, — 1B + vV )

WV
——
—
|
3E

_{Wh—wﬁwrma+er”¢mn
V2 (vi +v1) (vy + Vi — ) 2

iy (D.53)
where
D, = 1Bl2vi(vih — Vi) \/Vi F V5 F Vi
VPV + i) Vv V) v vn =) (Vv v (v ve =) + il +vn))
and
D3 = (vi =vi)(vj —vi—W1)

(Vi V) (vi + v — ) + /(v +vi)v;) (VVilvs +vn) + /(v +Vh)vj).

As vy is smaller than vy, /2 for n large enough, we have

D, = HClG,HE* (T]i ) Vi(vh — V1)
6t 2 v v vy + v — v [V e V) (v 4 v — Vo) VVi(vy )]
> fegrr me) e
gm0 2 24 /205 (v + i) [V2vi (v 4 Vi) + Vi(vy )]
> 2(ci3viks) HCS - ()| /(g — L + 1)% (D.54)

On the other hand, since (v; —vi)(v; — vi —vi) reaches its minimum at v; — vi = vi/2, vi,vj, v, >
(c12 A1)k$ /3 and vi = o(k$,) for 0 < vi < c14YS,, we have

4 [\/viv; +vn /2+ VvV vi + v v]] [VVilvj +vi) + /(vi + v )]

4(14+v2)(vV2+ v2)[(c12 A 1)kE /312

when n large enough. Noting that k¢ =< n in Assumption 4(ii),

D; >

(D.55)

HCLG HE (ﬂlq>

0

— HCG (nk + ) ” —3c610g2n,
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and
log’n

G, HF*
H Clmc umc (nko) ’

—0

as (kSw¢)/log*n — oo, D; is dominated by D, when n is large enough. This, together with
(D.53)-(D.55), indicates that the lower bound of D(v;) is dominated by D, when n is large enough.
We have finally completed the proof of (D.41) for case (ii). O

LEMMA D.7. Suppose that the assumptions of Lemma D.4 and (D.21)—(D.23) are satisfied. There exists
ko +1 < ko < ko + kq such that
[s6 =i | < cuvyy (D.56)

1/2

with probability approaching one, as 1 — oo, where y<, = (k& /w¢ )"/ ? log” n and cy4 is a positive constant

defined as in Lemma D.6.

PROOF. By the definitions of m§ and s§, Proposition 3.2 and Lemma D.3, we readily have for any

H s (1) \2 S [CIPANG \2 +(1+1/2)cslog?n
< Cfmg,umc (sg)|| + (1+71/2)ce logzn
< ||CBH L (85)|| + 2+ Deslogn (D.57)

with probability approaching one, where 7 is a very small positive constant and c, is defined in
Lemma D.3. Without loss of generality, assume that s§ € §,ng le) with kg +1 < k < ko + k1. We
next show the consequence when (D.56) fails and consider two cases.

Case (i): only one of ng and ng , locates within the interval [Li,¢, um¢ ). Without loss of generality,

assume that 1§ is in the interval [l, umo) Let ng, = ni. From Lemma D.5, without loss of

G, HF*

T s H (treated as a function of s) locally decreases in the

generality, we may consider that H C

interval M}, Wme) which includes the pomt s = s;. From (D.57),

G HF* c
l 81,L m¢

HCG JHF* (5¢)

].cuc

> et e

1.,c, U c
™m0

— 3¢ log2 n,
2

where k, is defined as in the proof of Lemma D.6. This indicates that (D.39) is satisfied with
ko = ke and s{ =7y, . By (D.41) in Lemma D.6, letting c14 > 0 be sufficiently large and noting that

n

K% = O(lumg — lmgl), we may show that there exists s; € (ng,,ny, + cayy] such that

HCGHP (ne.)

l,,c, U c

‘2 > HCG’HF* $1 H 2+T)c6log n
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with probability approaching one. If (D.56) fails, as H CG HE (s) H is locally decreasing, we must
2
have

7

HcG,HF* (T]i. H > HCG SHF* (Sl H > HcGHF (S(():) ,

11n8,um8 1 c, U mp u 0

and thus

HC1G JHF*

> et

Nube ‘2 + (2+T)cs log2 n,

1Tl

leading to a contradiction with (D.57).

Case (ii): both n§, and ng , locate in the interval [l,,¢, ums). By Lemma D.5 again, we may
show that H ClG ]ji H (treated as a function of s) is e1ther monotonic or first decreasing and

then increasing on the interval [n¢,n¢,,], and consequently

G HF* c
{lesy m

We further consider two scenarios: (ii.1) H C

Vet e} > e

‘ 2

G, HF*
g )]

locally decreases at the point s = s§; and

(ii.2) H ClG 115 ‘ H locally increases at the point s = s§. To save the space, we only give the proof

G,HF*
1 cu c

for scenario (ii.1) as that for (ii.2) is similar (by letting ny, =ng_,;). When H C H locally

decreases at the point s = s§, we let = ng. If (D.56) fails, following the arguments as in case (i),
there would be a contradiction with (D.57).

Combining cases (i) and (ii) above, the proof of the lemma has been completed. O

We next introduce some additional notation. Fork =1,---,qo(qo + 1)/2, let

;
HF*  _ HF* HF*
Zoje = (ZlmS'k’ L > ’

umﬁ,k
.
HF* HF* HF*
G = (Gl Gl
g
HF* HF* HF*
Zex T (ZL kst /Zumg,k) ’

* . * * * .
where ZHF", GHF" and 2! are the k-th element in the vectors Z{'"™", G}'"" and z!™", respectively.

The following lemma further improves the convergence rate of the estimated break points given in
Lemma D.7 above.

LEMMA D.8. Suppose that the conditions of Lemma D.7 are satisfied. With probability approaching one, we
have

|56 =ik | < 605, (D.58)

as n — oo, where cy¢ is a positive constant and ¢, = log4 n/ws.
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PROOF. Let (-, -) denote the inner product between two vectors and i, = (P§,--- ,P5)" be a

vector of constants such that V? is positive for t = 1,---,s and negative fort = s+ 1,--- ,u,
t 18P &
P =0and = 1. Note that, for any vector v = (vi,--- ,vy)', we have
R (W y
(V=¥ v—V)=(v—V,v—7V)— <V—\7,1biu>2, (D.59)

where ¥¢ = v+ (v—9,; )., Vv = [(5) 2121 Vi) lu—141, and 14 is a g-dimensional column

vector with all the elements being ones. From (D.59), we readily have
s 2 S s 2 <S S
(v =[(v=v ) == v =¥l +Ilv—¥;. (D.60)

From (D.60), we can derive the following useful inequality: for 1 < s < u and any vector

w = ((,Ul,' o /wu)T/
v =5 < [lv — @*lf3, (D.61)

where @° is defined similarly to ¥* with v replaced by w. In fact, (D.61) can be easily proved by
noting that

lv— @[}~ |v—¥°|3
= |v-@+(w— @b )i~ V= VIE+ (v,
”V - a)”i + <(,U - CD,II)iu>2 +2 <(.U - a)’ll)iu> <V - (Dlll)iu> - HV - \_/H; + <V - \_/Ill)iu>2

2 - o 2
= vl —lv=l+(v+w—v—@,i,) >0

since ||[v — @l > ||v—v|3.

Let Ctﬂf’;(s) be the k-th element in the vector C&f*(s). Using the notion of inner prod-
uct, we may write CHF . Ck(s) as (Zfl]f ,1j)1 ) FOr Lne <s < U, define QP (s;1) =
Moo
|<ZHF*, V] e )2, and let z * “and G!! . k " be defined similarly to ¥* but with {7 , replaced by

LU and v replaced by ZH]E and G]f{ , respectively. By (D.60), we readily have
ﬂlo

4
mc

2
HF* S HF”
Zo,k - Zo,k

7

HE* HF*
k S 1 _HZ ok 5

where Z, x " is defined as v but with v replaced by Zl{,f For e <'s <y, define

HF*||?

2
HF* HF*  ~HF* HF* 5
k S 2 - Hzo,k - Go,k 9 + Zo,k - Zo,k

) .
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By (D.61), we may show that

HP(5;1) > Q7 (s;2), k=1,---,qolqo +1)/2. (D.62)
Since Z:{ G.k + 2}, we readily have
HF (5. 1) _HGP{*_Z Gz H +2 (200, 20 -2,
and
1 (52) = — el — G|+ et - 2|2 (e el - 20,
Letting
* *S —_ * 2 * —_ *S —_ *
1 (5:3) = — @4 — G|+ et — 2 || v (i - 2,
by (D.61), we have
W (s;3) = QP (s;1) > 0. (D.63)

Next we prove the following result: there exists a sufficiently large constant cy; > 0,

qo(qo+1)/2
> [QHT(s5:3) — QEF (me,;2)] = —ar (D.64)

k=1

holds with probablhty approaching one. Let Qk(s 1) be defined similarly to Q}F" (s; 1) but with
HF; replaced by F.. By (D.62), (D.63), Proposition 3.2 and the definition of s§, we have

o(go+1)/ o(go+1)/ do(qo+1)/2
Z Q "(s§:3) > Z Q“F*(sg,-l): > QLs§;1) +0p(1)
k=1
q(qo+1)/2 R 0(qo+1)/
> Z Qi(mi,;mop(l): Z Q "ME.; 1) + Op(1)
qo+1
> Z Q 2) + Op(1),
proving (D.64).

Letting c14 > 0 be sufficiently large, we next show that the assertion of |s§ —ng, | > c169%
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would lead to a contradiction with (D.64), which consequently proves (D.58). Defining

+  AHF|]?

7

HF*  AHF*
——||et -6l

o (54) = (U Wi,

we have

K (s;3) — QU (nk. 2)

K
HF*  &HF |2 HF* 5HF S HF ke
G - Go,k Zo,k /Zo,k - Go,k

* ~HF*" ke
HGHF -G

= ok
+ SHF* A HF*ke * *
- 2<Zlﬁf Zee —Gox >— QKT (ng.;4) — QI (s;4)] . (D.65)
We next show that with probability approaching one,
do(qo+1)/2 CHES et —n¢ |- (w c)1/2 ”
Z <ZP1]<E Ly  —Gox >‘ < c15(log” n) max PAE ,[s§ —mE. | (@)2, log? n
k=1 Kn
(D.66)
and
o(do+1)/ o(qo+1)/
(D.67)

Z QHF*( '4) - Z Q (501 ) = ci9 ‘50 m‘i.\wi

where ¢35 and cy9 are two positive constants.
%.- Note that the left hand side of (D.66) can

Without loss of generality, we assume that s§ > ng

be decomposed as follows:

qo(qo+1)/2 " e qo(qo+1)/2 o o
HF* s HF*0 ~HF* ke . HF* s HF*0 ~HF*>0
z <Zo,k /Zo,k - Go,k - z Zo,k /Zo,k - Go,k
k=1

k=1

qo(qo+1)/ . ¢
* = *S( = *Mke
+ § <ztf,f,Glf{ —~G.Y > (D.68)

Following standard calculations, we have

s tmg
HF* ZHF*® < HF** HF*® HF*S
<Z.,k Ly —Gox = 2 + 2 Ztk Z G
t:lm(c) t=s+1
. 2 Unne 2
1 x 1 X
= — E ZHF + — E zHF (D.69)
s—Llyne +1 Lk Upme — S tk
0 0 t=s+1

t:1m8

28



for any s, where ZHF™ and G{IF" are the (t — Ling + 1)-th element in Z:{ES and Gﬂf*s, respectively.
By the definition of z{¥f", the Cauchy-Schwarz inequality, using Lemma D.3 and noting that
ILy, (H® H) Dg,||> < oo with probability approaching one, we have, uniformly over s

2 U c 2
—1 S HF* 4 1 T 4
Z Zix =0Op <log n) , Z Ziy = 0Op (log n) ,
sl +1 t=lng Ums =5 \ (S
which indicates that
<Zlflf*/zflf* -G °> ~ Oy (log*n) (D.70)

fork=1,---,qo(qo+ 1)/2. On the other hand,

c

c ke
HF* AHF*  ~HF*"ke HF* ( AHFS  <HF* ke
(Arer-ert) - (3 - > ey |er (e o)
t=ng, +1  t=s§+1
= IT1 + ﬂ2 + n3. (D71)
HF* HF* ,
Recall that bi, = sup ., [|GY'" — =55 2121 G ||,- Asin (D.43),

bl+C5cp%,ufcw% < ||I—qo (H®H)qu|lF' qo (CIO+ 1)/2 ( n)l/z Op ((w;)l/z) ’

which, together with Cauchy-Schwarz inequality and (D.70), indicates that

qo(qo+1)/2 qo(qo+1)/2 | TN, 1 G 1 UbR
HF* HF* HF*
Z |ﬂ1| < Z Z Z’t,k : SC . 1« . _|_ 1 Z Gt,k - c l c + 1 Gt,k
k=1 k=1 =Ly 0 ™o t=Lpg M. ™o =Ly
Nk 1 56 Nke
< ZHF* . GHF* GHF*
h Z s§ —lmg +1 ; t §—1m0+1 Z

2 g 2

<0 ((nc —Lns +1)" logn) - 85— %] busesonucson
DN & S¢ — Lps + 1

< Op (log*nss —ng.| - (@s/ke)") (D.72)

This is also the asymptotic order for > Lo+ D/2 77, Similarly, we may show that

qo(go+1)/2 12
Y m=0s (1og2n Is¢ — ¢ | (wg)l/z) . (D.73)
=1
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With (D.68) and (D.70)—(D.73), we can complete the proof of (D.66).
We next turn to the proof of (D.67). By (D.41), we have

qo(dgo+1)/2
HF*(_.c . HF*(.c.
E [ k (nk,/4) — Uk (30/4)}

- G HF* c G HF c
- mC U
o G HF* c G HF* c G HF* c G,HF* c
- |:H lmg umg lmg um(c) :| |:H lmg Umg k.)HZ + H Clmg um8 (SO) 2:|

G HF* G, HF* G, HF* c
> e i) HC sl s me)

( C/K )1/2 ( CwC)l/Z

TIT‘L

= Cp }So — Mk,

= cyo|s§ — g, | @ (D.74)

with probability approaching one. This completes the proof of (D.67).

Suppose that (D.58) fails, i.e.,|s§ — % | > c160S. By (D.65)—(D.67), Lemma D.7 and lettin
PP ke n- DY &

ci6 > 0 be sufficiently large, we have

qo(qo+1)/2
S QI (s6:3) - QI ng.;2)]
k=1
)1/2
$6 — Mk 1/2 _
< Ccig logznmax { ‘ 0 (k ‘)1/2 , 180 —nﬁ.] (wfl)l/z,loan} — C19 ‘38 —nf“‘ s,
n

< —cpylogin < —cy7, (D.75)

which contradicts with (D.64). We have finally proved (D.58), which completes the proof of Lemma
D.8. O

PROOF OF THEOREM 3.1. According to the WBS-Cov algorithm, we have |l =1 and u = n at the
start of the algorithm and (D.21)—(D.23) are automatically satisfied. Then, by (3.5), Lemmas D.4
and D.8, we can estimate a change point s§ which satisfies (D.58) with probability approaching one.
Furthermore, (D.40) in Lemma D.6 shows that s§ is not close to | or u, thus it is a newly detected
change point. By (D.58), we may show that (D.21)-(D.23) still hold within each segment until all
of the change points in the common component are detected, and consequently, the estimated
change points satisfy the convergence result (D.58) with probability approaching one. Once all
of the change points are detected, the bounds of each segment | and u must fall into one of the
following three scenarios: (i) there exists 1 < k < K; such thatn < 1 <u < ng,; (ii) there exists
1<k <Kjsuchthatl <n§{ <uand (M —1+ 1) A (u—ng) < ci60%; (iii) there exists 1 < k < Ky
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suchthatl <nf <ni,; <uand M —14+1)V (u—mg_ ;) < c169%, where ¢y is defined in Lemma
D.8. For | and u satisfy either of scenarios (i)—(iii), we may show that there exists a constant cyp > 0
such that

C{:mg,umg (S) H2 < Cyo - 10g2 Tl) —1 (D76)

P < max
lmc <s <Up,c
0 0
asn — oo. By (3.5), Lemmas D.4 and D.6, no further change point would be detected. Letting
L® = c16, the proof of Theorem 3.1 is completed. O

Appendix E: Proofs of the WSBS-Cov theory for the idiosyncratic

components

We next give the detailed proofs of the asymptotic theory in Section 3.2.

PROOF OF PROPOSITION 3.3. By (A.4) in Assumption 3(ii) and Proposition 3.1, the Bonferroni and
Markov inequalities, we may show that

max |[|Fi||> = Op <\/logn> . (E.1)

1<t<n

Then, by the definition (2.7), (D.1), (D.2), (E.1), Proposition 3.1 and Assumption 4(i), we readily
have

~ TTE 15T T
max max [€y — €/ = max max |AF — ((H h AY) HF;
1I<t<n 1<i<d I<t<n 1<j<d

1/2
_ o, <[(logdzl(logn)1 ) (E2)

Following the proof of Proposition 3.2 and using Assumption 5, we may complete the proof of
Proposition 3.3. O

We next turn to proof of Theorem 3.2. As in Appendix D, we let the two positive integers 1 and
u denote the “lower” and “upper” bounds of a segment, and assume that

T]]e(() < ]’ < n]i0+1 << n]e(0+k1 <u < ni0+k1+1/ (E‘3)

where kg € {0,--- ,K, —kj}and k; €{1,--- , K, — ko}. Like in the proofs of the lemmas in Appendix
D, the following two conditions are key to the WSBS-Cov asymptotic analysis: for some 1 < k < k;,

L <mg, 1k — CuKy <M pp + Ca1ky, <u (E4)
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and
{=mg)AME =DV {u—nf 0 ) AME e — W} < 0l o (E.5)

where ¢y and ¢, are two positive constants, k, and Phq are defined in Theorem 3.2. Define the
intervals

I =i+ Mg —ng)/3 ng+2ng —ng 1)/3], k=1,--- , Ky +1,
and the event
DéE={Vk=1---,Ky, Im=1,--- ,M¢ such that l,,, € I} and u,, € J§,,},

where M is defined in Section 2.4. The following lemma is an extension of Lemma D.2 to
WSBS-Cov.
LEMMA E.1. Letting D., be the complement of D€, we have

ME

P(D5) <Ka [1-(xs/B0)7] (E.6)
where k£ is defined in Theorem 3.2.
PROOF. The proof is the same as Lemma D.2. Details are omitted here. 0
Note that
€ri€y = Eleieyl + (eriey —Elewieyl) = Gte,ij + Zt€,ij
and from (3.7)
€5 s 1 (s—=1+1)(u—s) 1 - 1 =
Cl,u(srlll) - al,u(i/j)\/ (u—H—l) s—1+1 ;etlet) u_sté_l €ti€yj
1 \/(s—l+1)(u—s)( 1 Z 1 &
= =7 Gf,i)' T < Z G’f,ij
oLu(ij) (u—1+1) s—1+14& u—s —
1 (s—1+1)(u—s) 1 = . 1 =
+81,u(i,)')\/ (u—1+1) s—l+1§zt’ij u—st_;qzt’ij
1 G,e T 1 z€ ..
= L&) =———=culs
Gl,u(lij) b ( ]) O-l,u(ll)) b ( J)
S CAB A G )] (E7)

Let C{,(s) denote half-vectorisation of a symmetric d x d matrix with the (i,j)-entry being
cff(s; 1,3). The definitions of Cﬁ’f (s) and C{(s) are similar to Cy , (s) but with cﬁf(s; i,j) replaced
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z,€,0
Lu

G,e,0

by c;’;“(s;1,j) and ¢’ ° (s;1,j), respectively. Note that

C{u(s) =CIS(s) +Cos(s), 1<s<u

(E.8)

The following lemma derives an asymptotic order for ||C7’; (s)||o uniformly over ,u and s, where

|| - [|o denotes the lo,-norm.

LEMMA E.2. Suppose that Assumptions 1, 3(ii) and 5 in Appendix A are satisfied. There exists a positive

constant co3 such that

P <“ )max max ]’Cﬁf(s)“m > Co3 - logz(nd)) —0

c1<l<ugn s I<s<u

asn,d — oo.

PROOF. From the definition of the l-norm, we only need to show that

P max max max
(Lu): I<l<un (1,j): 1<1,j<d s: I<s<u

cf,’fl’a(s;i,j)‘ > Co3 logz(nd)) -0,

where cf/’ft’a(s; i,j) is defined in (E.7).

By Assumption 5, we readily have

1 1
max max —————~ < —.
(Lw): I<l<usgn (i): 1<ij<d 014 (1,§) O
Letting
u—s 1 u
crals;1,3,1) =4/ . . zE€..
l,u( ) ) u—1+1 m ; t,i)
and

ver [s —1+1 1 =
Cl,’u(s;ll)lz) = w—1+1 : \/m Z Zi,ijs

t=s+1
it suffices to prove that
Z€( a s C230 2
P max max max |cl’u(s;1,),k)‘ > ——log"(nd) ) =0,
(Lu): I<l<u<n (ij): 1<i,j<d s: I<s<u ' 7 2

fork =1and 2.
The proof of (E.11) is similar to the proof of (D.28) in Lemma D.3. Define

Zoy =26y - I (J264] <culognd)), zHy =z - I (|25 4] > culog(nd)),
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where ¢y > 0 is a sufficiently large constant to be determined later. Let c’;(s;1,j,1) and
Cr(s;1,3,1) be defined similarly to ¢y (s;1,j,1) but with z{;; replaced by z;;; — E [2&;-} and
ziy —E [Z’f,ij}t respectively.

From (A.4) in Assumption 3(ii), there exists a positive constant 1 > 0 such that

(i))nllgi(1<d1r<nta<>;E [exp {Ll |Zt 1]’}} < 0.

Consequently, we can show that

Effz5ul) < {E[lz5ul]} " {P (2] > calogina))}

- {E “Zf,ij }2] }1/2 {P (exp{u |z§ij]} > exp{tiCos log(nd)})}l/2
< 0 ((nd)ﬂ1cZ4/2) N (n’l/z)

uniformly over 1,j and t, where the constant cy4 is chosen so that co41 > 2. Therefore, we can prove
that

P( max max max ‘clu s;1, J,1)‘ > S -log (nd))
(ij): 1<1j<d (Lu): 1<l<u<n s: I<s<u 4
—s
< P max ma ma 5= Jog?(nd
= ((i,j):lgi,jgd(l,u):lgl)iugns:lés)iu Vu —l—|—1 \/s—H— tZI vy g )>
< P( max  max |z{ u‘ > Co4 log(nd))
(1,j): 1<1,j<a I<tgn
a d
<y y HewlE)
= P s - exp{uicas log(nd)}
= O(a* eun!ue) = o(1). (E.12)
We next prove
C230
P j,1)| > == -log"(nd) ] — 0. E.13
<(i,)')¥r112)i(/j<d (Lu): I%Lai)iu<ns Illla;)iu ‘Clu S ) )‘ 4 08 ( )) ( )

As in the proof of (D.30), we consider the following two scenarios: (i) s — 1+ 1 < c5 log (nd), and
(i) s—14+1 > cp5 log (nd), where cy5 is a sufficiently large positive constant. For scenario (i), it is
easy to see that

u—s 1 > e
}C 51]/1)‘ < \/u_l_'_l'm'Z(‘Ztii’—i_EHZtiiH)

t=1
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< Vs—1+1-(2culog(nd)) < (2c24v/C25) log (nd).

For scenario (ii), by Theorem 1.3(2) in Bosq (1998), we have

230
P max max max [crs(s;1,§,1) > L= -log*(nd)
(1,j): 1<1,j<d (Lu): 1<l<ugn s: I<s<u 4
e . €230
< P max max max }cl’u(s;l,],l)‘ — 2Co4+/Co5 log (nd)
(17): 1< <d (Lw): IKl<un g; l+cz5log2(nd)—1<s<u ! 4

< O (d*n’exp{—Mlog(nd)} + d*n**3/4pveslesnd)) — (1),

where the constant cy;3 is chosen to be sufficiently large such that CBG — 2Cp44/Cp5 is strictly larger
than zero and M > 3, and the constant cs is chosen to be larger than (—15/(41ogp) )2. This proves
(E.13).

With (E.12) and (E.13), we can show (E.11), completing the proof of the lemma. O

For notational simplicity, we let

cfj{fm(s;i,j) =cy0, (s:1,5) -7 ( max ’cf/f(t,’i,j)’ > Ei)

t:l<t<u

and
ch eu‘”(s;i,)) = ch eu“ (s;1,j) -7 ( max )cﬁf "(t;i,j)‘ > Ei)

tl<t<u
form € Mg such that [l,,, u,,] is a random sub-interval of [l, u], where clu (s i,j) is defined in
(2.12) and cG €9 (s;1,j) is defined in (E.7). Define ClmIUm(s) and Cﬁf{&( ) as half-vectorisation
of the two symmetric d x d matrices with the (i,j)-entry being clgffm(s ;1,j) and cﬁf{iﬂ (s;1,3),
respectively. By (2.13) in Section 2.4, we readily have that

~p 2
o (8) = [ €5 9]

Let
TE, = U Ty (E.14)

Kil+cn@f SNESu—cn @] 4

be a set of index pairs which have breaks between 1 + ¢ @5, 4 and u — cn @}, 4, where Jy is defined
in Assumption 4(iii). Define

t:l<t<u

%ﬁu =7 {(i,j) : max )cfue cr(t;i,j)‘ > &5, 1<1,j< d} (E.15)
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and
‘/T\fu =7 {(i,j) : max

t:l<t<u ‘

Cf,’f(t;i,j)( > &, 1< < d}, (E.16)

which can be regarded as the infeasible and feasible estimates of T, respectively. Let

2
Wi, = max wy with wg = Z , (E.17)

of — oy,
= K+111,j kIt
Kil+cn@f gSNESu—cn @] 4 " v

(Lj)ed
where 0% ; ; is defined in Assumption 4(iii).

The following lemma derives the asymptotic property of ﬁ'fu and a'fu as well as a lower bound
of the CUSUM statistic when there exists a change point which is an extension of Lemma D.4 to
the WSBS-Cov method.

LEMMA E.3. Suppose that the assumptions in Lemma D.3, Assumptions 4(iii) and 5 are satisfied, and let 1
and u satisfy the conditions (E.4) and (E.5). If the condition (3.10) in Theorem 3.2 is satisfied, we have

P (T8, =T5.) =1, P(Teu=T5.) 21 (E.18)

as n, d — oo. There exists a positive integer k satisfying 1 + cn @} 4 <NE < W — 0@y, 4, and

(ITTul/K2) - wiy <1kl - wiy < wi <7, < (T3, |- 5. (E.19)
Furthermore,
(HCf ] S (ITﬁulKigi)l/z) 1 (E20)
2

asn,d — oo, where | - | denotes the cardinality of a set and c, is a positive constant.

PROOF. We start with the proof of (E.18). The conditions (E.4) and (E.5) imply that | and u are
sufficiently bounded away from the previously undetected break points. Note that from (E.7),

(s—=1+1)(u—s) 1 >
eri ()] = \/ u—1+1 s—H—lZ s Z Gy

t=s+1
u—1+1 u—s < —1+1 o«
= GE.. — Gs
\/(S—H—l)(u—s) u—H—lZ tY H—ltél Y

(E.21)

u—1+1 s—1+1
B \/(S—H—l)(u—s) —H—lZGt” ZG“’

Without loss of generality, we assume that ) ;' | G¢

t1j = 0. For a given index pair (i,j), we consider

the following three cases: (i) there is no change point within [, u); (ii) there are change points
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within [l,u) but (i,j) ¢ J7,; (iii) (i,j) € Tf,. For case (i), it is obvious that ‘c (s;1,7 ‘ =0
Vs € [l,u). Case (ii) indicates that the change points may have been detected but are close to
either | or u and there are at most two such change points. By Lemma 2.2 in Venkatraman (1992),
‘c (s;1,j)| takes the maximum at one of the change points, which, together with the first equality
in (E.21), leads to

max }clu S; 1])| (czchnd)l/z-Z(w V2 <2 /o log (nd). (E.22)

s:l<s<u

Consider case (iii) and let kg and k be defined in (E.3) and (E.4). As

€ € e\1/2
‘Gn§0+k+1ﬂl Gagp o] 2 (W)
: € e\1/2 : :
we readily have ’Gne ‘Gnk0+k +145] = (WR)7#/2, implying that
Thi(ﬁk Tllec0+k+c7-1 Kn
€ € 1/2
Z th) Z Gt,ij > Co1Ky ( ) /2

t:nlio-#kfcﬂ'(n t:ni0+k+1

where cy; is defined in (E.4). Without loss of generality, we only consider that

e
Mg+k

Z G’f,ij > Ky (w )1/2/2 (E.23)

_ne
t=n k0+k7C21 K%

By the triangle inequality, we have that

T]le<0+k nﬁ0+k_021 kn—1 The<0+k
E E — § € E €
maXx Gt Aj > Gt Al T Gt 1] Gt Aj
s:l<s<u R
t=1 t:nk0+k7C21 Kn
nle<0+k The<0+kfcll kn—1
€ €
> 2 Gt Ajl 2 Gt A
t:ﬂ]e{0+k7C21 Kn t=1
nle<0+k
€
> E Giy| — max E Giijl,
. s:l<s<u
t:nk0+kfc21'<n

which, together with (E.23), leads to

max coik (w®)12/4. (E.24)

s:il<s<u

Zthl
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Combining (E.21) and (E.24) and noting that
(s—1+1Du—s)/(u—14+41) < (u—-14+1)/4<n/4
as (s —1+1)(u — s) achieves the maximum when s — 1+ 1 = u — s, we readily have that

max_[efe(s;1,9)] > eankS (@S /m)2/2. (E.25)
s:l<s<u 4

Combining the above three cases and using (3.10), we can prove P <‘I§u = ‘j'fu) — 1.

By Proposition 3.3 and Lemma E.2, we readily have that, uniformly over 1 <1 <j < d,

J (t max ch(f’a(t; i,j)’ > &7 + co7y/ (log d)(logn) + co3 logz(nd))
A<t<u .

< J(max cff(t;i,j))>5i)

t:l<t<u

< J (t max chl'f’a(t; i,j)’ > &5 —co7y/ (log d)(logn) — co3 logz(nd)) (E.26)
<t<u ’

with probability approaching one, where cy; > 0 is a constant. Furthermore, following the proof of
P (T T = T fu> — 1 and using (3.10) again, we may show that

J ( max )cf{f’&(t; i,j)‘ > &v + 74/ (log d)(logn) + c23 10g2(nd))
tl<t<u ’
=7 ( max )c&f’a(t; i,j)‘ > &5 —cy7y/ (log d)(logn) — co3 logz(nd)) ,
tl<t<u |

which, together with (E.26), indicates that, uniformly over 1 <i<j <d,

J( max )cff(t;i,j)’ > ag) :J( max ‘cff’a(t;i,j)‘ > Ei), (E.27)

t:l<t<u t:l<t<u

with probability approaching one, i.e., P <‘j’fu = Afu) — 1. We have completed the proof of the
two equalities in (E.18).

The proof of
Jiel - i, < wg < @7, < |Ti,]- @5
is straightforward. Then we can prove the inequalities in (E.19) by noting that [T7,| < K; - [Ji| for
at least one k satisfying 1 + cn @7 4 <NE < u—cn@f 4

Finally, we turn to the proof of (E.20). As in the proof of Lemma D.4, on the set Dy, there exists
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1 < my < M§ such that 1, € J§ and u,,,, € J¢,,, indicating that bothnj — 1,,,, and u,,, —nj are
larger than k7 /3. For 1 <1 <j < dand k such that 1 + ¢ @5, 4 <nf < u— @5, 4, we have

e e e ) )
cS umk(nk;l’])‘ — \/(nk my )( my ﬂk) ‘wk,ij’ > Czs(Kn)l/2|®k,i]- ’ (E.28)

Ly, U, — lmk +1

e _ e e : .y .
where @ ;; = 0%y, ; — 0% ; and cag is a positive constant. By (E.28) and Assumption 5, we have

efes | M519)] > ea (6)'2 @y | /0 (E.29)

1mk Am

Following the proof of Proposition 3.3, and using Lemma E.2 and P (‘}fu = Aﬁu> — 1 from (E.18),
we have, for k such that 1 + ¢ @5, 4 <N <u—cn@f 4,

Linge Uy tl<t<u
€,0 e 2 €5 (1.1 =
> ()cﬁ;k,umk (nﬁ/l,])‘ — co74/ (log d)(logn) — cz3 log (nd)) -J (t;?%?i(u ‘cfu (t,m)‘ > Ei)

with probability approaching one uniformly over 1 < i < j < d. This, together with (E.29), implies

that
- [cm /(log d)(logn) + cp3 logz(nd)] TE LI

> (cas/0) - (KEwE)'? — {027 (log d)(logn) + c23 logz(nd)] T8/ AE-30)

et (mi;i,j)\ﬂ( max \ﬁfmn\»ﬁ)

lmk Smy

o> el mo)
2

with probability approaching one. Then, by the definitions of m§ and sg, (E.19) and (E.30), and
noting that k{ w¢ / log4(nd) — oo in Assumption 4(iii), we have

eJ

C/é,j\ Se > max e ’
H 1“3’“”5( 0) 2 - kil+en@f g<ng<u—cn @7 4 ]'mk’umk(nk) 2
— 1/2
> eas/(20)] - (1T lkpwr /Ka) (E.31)

with probability approaching one. Choosing cys = cp3/ (2K§/ ’G), we can complete the proof of
(E.20). The proof of Lemma E.3 has been completed. O

LEMMA E.4. The function H CEed (s) H (as a function of s) is either monotonic or first decreasing and
2

Lmg tmg
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then increasing on the interval [ﬂ%ﬂ% +1] if s§ € [ne } - [1mg,um5). Furthermore,

e
MR

GeJ e
{H leuen]z

v esn mea], | = e )

TI’LU

(E.32)
2

PROOF. As the involvement of the indicator function (which does not depend on s) does not change
the quasi-convexity of the function, the result directly follows from Lemma D.5. O

We next provide an extension of Lemma 2.6 in Venkatraman (1992) and Lemma D.6 in Appendix
D to the WSBS-Cov method. Note that some notation used in Lemma E.5 below and its proof is
similar to that in Lemma D.6.

LEMMA E.5. Suppose that the assumptions of Lemma E.3 and (E.3)~(E.5) are satisfied. Let s{ € [Ling, Ume]

0

CGEJ

be the point of maximising H s) H2 with respect to s, i.e.,

CEe? (s)H (E.33)

me umg

S —arg max
1 e<s<u mg

and defineny,_ as a change point that satisfies

G,eJ
H le'LL e(nko

> sz

le,W e
Mo

— 3023|Tfu|1/2 logz(nd), (E.34)
2
where cy;3 is defined in Lemma E.2. Then, there exists a positive constant cyg such that
Mk, = bng + DA (Wmg — i) = cookyy (E.35)

when n is sufficiently large, and furthermore,

Gej

ﬂ'Le u e

G,e,J
H 1mgu e(nko

>

My, +vu) H +C30V1HC1 o

(nko) ) Ki/(umg - lmg + 1)2/ (E36)

me

where 0 < vy < ca1YE and yE = (k&/ Qfl)l/ 2 logz(nd), cso and cz1 are two positive constants.

PROOF. The proof is similar to the proof of Lemma D.6 in Appendix D. From the definition of s{ in
(E.33) and using Lemma E.4, there exists a positive integer k, (whose value is often different from
k, used in the proof of Lemma D.6) such that s{ =y, . First we prove that

Mg, —L+FDA(u—ng) 2 Ky — 205 4 (E.37)

where ¢y, is the same as that in (E.5). By (E.4) and (E.5), we have (ni, — 1+ 1) A (u—ng ) is either
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smaller than co @7, ; or larger than kj, — ¢ @7, 4. Let

G = {Geu J (t{giix ‘cﬁf“(t; 1,1)‘ > Ei) ,GSda J( max ‘cﬁf“(t; d, d)‘ > Eﬁ)] ,
A<t<u

tl<t<u

a d(d + 1)/2 column vector which denotes half-vectorisation of a d x d symmetric matrix with the
(1,j)-entry being G¢; 4y J (maxtKKu ’csl’f’a(t; 1) > éﬁ). Note that

|CSe (s )], < 1‘\/(3—14‘1)(“—5)
o

1 S
Geﬂ__
s—1+1; t

u—L1l+1 Nt ,
< 2bﬁﬁ (s—=1+1)A(u—s)/0o, (E.38)
where
1 u
b’ = sup |G — ——— ) G
= 5P u—1+1; Y,

If (g, =1+ 1D A(u—mg) < cney 4, we must have (Mg, — bne + 1) A (Wing —1§,) < 207, 4,
implying that

= ,€, €, 1/2
s (ITEulkns) /o < el i) <208 (en0ta) /e (E.39)

mE ume

where the first inequality is proved by (E.19) and (E.29), and the second inequality is obtained
using (E.38). Noting that
b, < KallTEJ@7)'2, (E.40)

lmg 'umg

the inequalities in (E.39) would lead to a contradiction with the condition «§ w? / log4(nd) — 00 in
Assumption 4(iii). Hence (E.37) has been proved, which indicates that there exists m{ € M¢{ , such
that L, € 7 and uye € I ;.

We next prove that for n large enough,
(Mx, — bmg + DA (wmeg — Mg, ) = cookyy (E.41)
Suppose that (E.41) fails, i.e., for any c, and N, we have some n > N such that
Mk, = lmng + DA (Ume —Mg,) < cokp (E.42)

As in the proof of (D.48), without loss of generality, we letng, — L +1 < c,k3;, and consider the
following two cases of we:

e e e e .
@) T]k S Umg < ﬂk0+k1 OrﬂkﬁhH C22Pn g S US Mg, 41 and Mk, <Mkt < Umg S W
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(i) NE 1, S U SN+ e20n gand Ny, <N 4, < Umg < U
The difference between cases (i) and (ii) is that in case (ii) we cannot find m € M7, such that
ln € 95,4y, and uy, € I3 1 4. Consider case (i) first. By (E.39) and (E.40), we readily have that

e 12— /€,
cos (1T ke ws) % /5 < HCG v .(mg)

me ume

| < 2K (clTEIkETE) o, (E43)
2

which would result in a contradiction if we choose a sufficiently small ¢, > 0. We next consider
case (ii). Since Mk, S Wme S U KT 4, T @7 4 in this case, we may show that

1/2
eas (T8 LIk @) /o<‘cG€f’ (g

l.e,u
mgHmg )
e 1 1 e ni* Hmg
< 1_\/(le*— mg + 1) (Umg — 1§ ) 1 G’ _ 1 Z Ge?
X t t
(%) umg - lmg +1 n]e{* — ng +1 t:]-mg umo _n]i* t=n¢ +1
2
e 1 1 e Nk, tmg
< 1\/(nk*_ m§+ )(U—mg_ﬂk*) . 1 Z Ge’J— 1 Z Gej
S t A ( e—
o Umg — lmg +1 Thi* — lmo +1 N Ume _n]i* t=ng +1 A ™o €2®5.q) ,
e €,J
+1 \/(Tlﬁ* —lmg + 1) (umg —mg,) sz(pn,dbumg—czzwi,d/umg
o

e
Ume — lmg +1 Ume — Mg,

€ (200 e EROR DL g /45 ) 72| I~ g+ DA g )

K%Qﬁ . . e
As gl (na) 7 01N Assumption 4(iii), we have
€,J
(pnd Ue— cz2<pndu 1 o172 4 __eN1/2

e~ 0 ((17e - @5) ' log* )/ ) = o (178, @) ),
Kn Kn

which, together with the fact that 2b;~ je et Z Dt 2 (17¢, Jwe / K2)1/2, leads to

mo n !

e,J e __ €,J
(pn dbumg sz(pndu O/Kn =0 (blmg,umS—CQZ(p;d) :

Hence, we have

Co8 (|Tfu|K$1Q$1)1/2 0 < HCGEJ (Thi*)H < 2K, (C*"TfulKe_e)l/z/g

e, U e
m my

which would lead a contradiction as @y, < w¢, in Assumption 4(iii) when ¢, > 0 is chosen to be
sufficiently small. Combining the above arguments, neither case (i) nor case (ii) holds, completing
the proof of (E.41). Following the similar argument and using (E.34), we may prove (E.35).
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We finally give the proof of (E.36). Consider two cases: (i) ume < ng_,; and (i) Ng 1 < Umg-
For case (i), we define vi =N — e + 1and vip = ujpe — Mg . Let B = (By, -+, Ba(at1),2) with

~ ViV 1/2
Tt () o (e |eset i) 65

t:l<t<u

and k :=k(i,j) = (i—1)d +j — (i — 1)j/2. Then we readily have that

Coo (si13) = elet (1) J( max ‘Cff"(t;i,j)‘>£§) zﬁk(

t:l<t<u

1/2
Vi +Vh /
ViVh

and similarly

AV AV Vi +Vv 172
G,e,0,J h — V1 i h

C + v, . ,
bmg 1t e(nk° vig) = Bk( Vh ) |:(Vi +V1)(Vh_vl):|

where the subscript k = (1 —1)d +j — (i — 1)j/2. Following the same arguments as in the proof of

(D.52), we can show that
G,eJ G,eJ V1+Vh Vh VR —W1
2, -l o+, - -
Jegen, o], ~ese o +w, = I8l P ( )

G,eJ
Vl Hcl e, e(nko

Z(umo - lm0 + 1)

> (E.44)

For case (ii), we let vi =ng —lne +1, vy = (C20 AN 1)KE /3, vy = Ume — Mg, — v, and

u

1
e e,J e,J
Ve =G - _1+1ZGt .
t=1
Then, for 0 < v; < v, we readily have that
1/2
it Vv;+vs
cee? +v H = [|B +w V¢ [ Al } ,
H Ling g s ! 1B WVl (vi +vi)(v; +vh — V)

where 3 is defined as in case (i). Define

E(w) = HCG (T]ko

et |
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and

. _{Hcg,eg T [ M [ (Vi +vi)v; v
1 LaeUpe k<> L eLL € Ko h i V1+VL)(V]' +Vh_\)l)
Following the same argument in the proof of (D.53), we have
E(vi) —E; 2 E; x (1 +E3), (E.45)
where
B, — [Bll2vi(vi — Vi) Vi vy + Vi
2 — ’
\/vi(vj +Vh)\/(Vi +vi)(vj + Vi —VL)(\/(Vi +v) (v + v =) + vilvy; +vn))

and

Ea— (Vj _Vi)(Vj —Vvi —W) .
(\/(Vi +v)(vy v =) + \/(Vi +Vh)Vj)(\/Vi(Vj +vn) + \/(Vi +Vh)vj)

Noting that v, is smaller than vy, /2 and v; for large n, we have

E, = HCGeJ (e ) Vi(Vh — V1)
bmg g TR Vi V) (v 4+ v —v) [V (vi + V) (v + v — V) + /iy 4 ve)]
2)
> cGed (Vivh/
H L, 5 e(nko) \/2\)1 Vj +Vh) [\/2\)1(\))' +\)h) + \/Vi(\/']' —i—\)h”
> (2c3vike) HC? g M| /(g = L + 102 (E.46)

Meanwhile, as (v; —v;)(v; —vi —Vy) reaches its minimum at v; —v; =vi/2, vi,vj, v = (C29/A1)k§ /3
by (E.35) and v, = o(k,), following the proof of (D.55), we have

4(14+2) \/_+\/_ )(c2o A 1)ke /3)2

Following the same arguments as in the proof of Lemma D.6, E; is dominated by E, when n is
sufficiently large, which, together with (E.45)—(E.47), indicates that the lower bound of E(v) is
dominated by E, when n is large enough. Combining the arguments for cases (i) and (ii), we may
complete the proof of (E.36). O

— 0. (E.47)

The following lemma can be seen as an extension of Lemma D.7 from WBS-Cov to WSBS-Cov.

LEMMA E.6. Suppose that (3.10), Assumptions 1-3, 4(i)(iii) and 5 in Appendix A, and (E.3)—(E.5) are
satisfied. There exists kKo + 1 < ko < ko + kg such that

|s6 =i, | < cavna (E.48)
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1/2
)/

with probability approaching one, as n — oo, where vy, 4 = (K7 /ws, log®(nd) and c3; is a positive

constant defined as in Lemma E.5.

PROOF. The proof is similar to the proof of Lemma D.7 in Appendix D. Without loss of generality,
assume that s§ € [n]‘f;,ng +1) for ko < k < ko + k1. We next show the consequence if (E.48) fails and
consider two cases.

Case (i): only one of n{ and n¢ .1 locates in the interval [Lme, ume). Without loss of generality,
consider that n§ belongs to the interval [li,e, e ) and choose ng | =n§. By the definitions of m§
and s§, (E.18) and following the proof of Proposition 3.3, we readily have that

HCGm:' fl.me (M, 5

t {627 (log d)(logn) + ca3 logz(nd)} TE 12

ot {czm /(log d)(logn) + c23 logz(nd)} T¢ 12
+2 [0271 /(log d)(logn) + ca3 logz(nd)} T5 12
2

(E.49)

< Cf je S (nko)

7
< Cfeu <(s0)

< CGeJ (50)

with probability approaching one, where cy3 is defined in Lemma E.2 and cy; is defined as in (E 26).
On the other hand, by Lemma E.4, without loss of generality, we only consider that H cse? H
mg s

(treated as a function of s) locally decreases at n§_, 1me) which includes the point of s = s. When
(E.48) fails, we have

(E.50)

].eu

G,e,J
HC], e, U, SO

CGeJ H < H Geﬂ (Thio)

for any s € (ng_,my. + ca1vgnl. By (E.34) and (E.36) in Lemma E.5 and (E.39), following the same
arguments as in case (i) in the proof of Lemma D.7, we have

G,e,J G,e,J
esen me, > essa. (s

+2 {c27 (log d)(logn) + ca3 logz(nd)} 7€ V2 (E51)
2

by choosing c3; in Lemma E.5 to be sufficiently large. This leads to a contradiction with (E.49).

Case (ii): both ng, and n§ , are in the interval [Limg, Wmel. As in the proof of Lemma D.7,

G,e,J

we consider two scenarios: (ii.1) HCl ot

H locally decreases at the point s = s§; and (ii.2)

H coe? H locally increases at the pomt s = s5. For scenario (ii.1), we choose n; =g, and for

1eue

scenarlo (11 2), we choose ng, =n; ;. In either of the two scenarios, we can similarly prove (E.51)
when (E.48) fails. This would lead to a contradiction with (E.49). The proof of the lemma has been

completed. m
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We next introduce some additional notation to be used in the subsequent proof. Let Z{;; =

€¢i€¢j and recall that
Z;] = Eleriey] + (eriey — Elerieyl) = GEU + Z‘f,ij-

For (i,j) satisfying 1 <1i <j < d, consider a one-to-one map: k(i,j) =d(i—1)+j—j(i—1)/2 and

g >ae)>
)

(t;
Gf/’lz = (Gfmg,ij -J( max ’cﬁf c(t;i,j)‘ > Eﬁ) PR ’Gimg,ij -J( max ‘cﬁf" (t;1, ) > &¢ )

let k := k(i,j) for notational simplicity. Define

eJ € . G,e,0 (g2 2 e € X G,e,0
Zo,k - (Zlmg,ij j(t:{g?‘éulclu (t’ll))‘>an>/ /Zu g,ij j( max ‘clu

t:l<t<u

t:l<t<u t:l<t<u

zf/’]z = (zfmg,i)--f}< max ‘cfeg(t;i,j)’>£i),---,zim8,ﬁ-3( max ’cfectt) >£e>)

t:l<t<u t:l<t<u

The following lemma further improves the break point estimation rate obtained in Lemma E.6.
LEMMA E.7. Suppose that the conditions of Lemma E.6 are satisfied. With probability approaching one, we
have

[s6 =i, | < cxefa (E.52)
as . — oo, where c3; is a positive constant and @3, 4 is defined in Theorem 3.2.
PROOF. For1 <1i<j<d, weletk:=k(i,j) =d(i—1)+j—j(i—1)/2 throughout the proof. Let
Cti(s; k) be the k-th element of C{,(s) and write Cr ’ g (s;k) =(Z eﬁ,lpfme . e)/ﬁ\lu(i j) using

™o
the notion of inner product, where 1])1 . is defined as in the proof of Lemma D. 8 For Lne <8 < Umg,
define QF” (5;1) = (254, Wi, )|
! ™M
of Lemma D.8 with v replaced by Z{, and G{, respectively.
By (D.60), we readily have

,and let Z,,k and G,,k be defined similarly to ¥* in the proof

2
eJi.. _ €,J =€,J° €, J 7 €,
k (S,l) __Hzo,k_zc,k H2+ HZ.,k_Zo,k

7

2

where Zfi is defined as v but with v replaced by Zfl’g. For le <'s < e, define

2 2
eJ(... _ €J ~¢€,J° eJ =€,J
(52 =—|zei - 6sl | + ||z - 222

By (D.61), we may show that

I(s;1) = Q(s;2), k=1,---,d(d+1)/2. (E.53)
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Since ZJy = G4 + z¢4, we have

SICIVE [ Acil I e A1 YESS T Sy A4 )
and
2 = |65t Gel | + st - zei|| 2 (et 6il — 222).
Letting
(53) = |est G|+ |est - zei| 2 (zsp zel ~ 230,
by (D.61), we have
©(5;3) > Q¢ (51) > 0. (E54)

By (E.18), (E.53), (E.54), Proposition 3.3 and the definition of s, we have

d(d+1)/ 9 d(d+1)/ €J d(d+1)/ ]
Qg (s5:3) 2 Qe (s8:1) 2 QN (s8:1)
_ > —~k 707 _ —————— + 0p (|7 ,/(log d)(logn)
Z O-%me,ume (k) Z O—%me,ume (k) Z O—%me,ume (k) p (178 l(log gn))
0 0 0 0 0 0
d(d+1)/2 § (nﬁ 1) d(d+1)/2 J(nﬁ 1)
> ) S+ 0p (ITfullog d)(logn)) = Y FE—s 4 Op(1TF, [ (log d) (log )
k=1 Ulmgrumg (k) k=1 Glmg,umg (k)

d(d+1)/2 ~e,J
Q ’ (ne ;2) e
> Z AZkik(k) + Op (|77 4 [(log d)(logn)),

(0}
k=1 1m§ /umg

where 07 ., (k) := 81 (k(1,j)) = 01 (1,j), and QEj(S' 1) is defined similarly to Qf”(s; 1) but with
Z¢” replaced by Zf . Hence, there exists a sufficiently large constant c33 > 0 such that

d(d+1)/2
]‘ €, € e e
Z /\Z—(k)[ 3(30/3) - k'j(ﬂko}z)] = —C33|71,u|(10g d)(logn) (E.55)
k=1 11118/1"'17163

holds with probability approaching one.

Letting c3, > 0be sufficiently large, we next show that the assertion of [s§ —ng_| > ca log*(nd)/w
would lead to a contradiction with (E.55), which consequently proves (E.52). Defining

e,J e s 2 €,J ~e€,J° 2 €,J ~e€,J 2
K (3;4) = ‘<Go,,k/1plm8,um§> = HG.,’k o Go,k H + HG.,’k o Go,k ’
we have
€,J [N €,J _Gjnﬁo ? €,J €,J® —ejn‘io
k, (8;3) . kr (nko;z) — G./’k _ G.,k — HG.”k H + 2 . k/ ZO,k i G.,k
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= 2<zf;i,Zf:is—Gf:i k°>—[ g s4) — Qe (s;4)] - (E.56)

We next show that with probability approaching one,

d(d+1)/2 1 ) e
e,J 5€7I% _ @ed ko
Z 6:% (k) <Zo,k’ Zo,k Go,k >‘
k=1 mgfumg
)1/2
S5 — Mk, 1/2
< c34|Tﬁu|10g2(nd) max {| (ke ‘)1/2 /S0 — Nk, ‘ w<)?, log (nd)} (E.57)
T‘L
and
d(d+1)/2 1
> T gl FMes4) — QY (s§4)] = sl Tyl [s§ —mi, | we (k& /m)%, (E.58)
k=1 lmgfumg
where c34 and ¢35 are two positive constants.
Without loss of generality, we assume that s§ > n;_. Note that
a(d+1)/2 " d(d+1)/2
s _ ko _ s _ s
> <zf£,2.i° Gei > = 2 <zfi,Z. - G: >
k=1 k=1
d(d+1)/ . "
= 50 = o
+ Z <zf;{i, Giw — Gl > (E.59)
Following standard calculations, we have
J 7€ =elf Js g8
<Zf,klzf,k - G.x > = Z Z Ztk (ka - Gfk )
t=s+1
1 s 2 1 umg 2
- - 2+ — z&7 E.60
$—Llme +1 _Z Lk Ume — S t_grl Lk (E-60)

for any s, where Ze’js and Gf’j " are the (t — Lme + 1)-th element in Zfl’is and G fl’is, respectively. By
the definition of z{} J and the Cauchy-Schwarz inequality, we have

2 1w e 2
1 - e,] - 4 1 ™o 9 B .
J——— t_%gzt,k = Oy (log*(na)), i t_;lzt'k =0y (log'(nd)), (E61)
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uniformly over s and k. This indicates that

d(d+1)/2 1 <8 458
eJ €370 ~€,J°0 e
> (% <z,,’£,Z,Ik — G >< (cas/4) - 1T¢,|log* (nd) (E.62)
k=1 mg umoe

with probability approaching one. On the other hand,

e e
~€,JMko eJ [ A e,Jsg ~e,9 ko
<Z oy G -G, % > = E E E Zix Gt,k - Gt,k

t= nk +1 t=s{+1

= E1 + Ez + .:3. (E63)
For =;, we note that
ng, 1 s§ 1 ng,
211 < /Mg, — ling + 1 D | G~ =17 Gl
e 2 e I e 1
and recall that
1 et /
J ,J ,J __eN1/2
by, = sup |Gy — ] D> Gl <Ky (I7F Jw8)
1<t<u P )
Let

eJ € . G,e,0 (4. e € . G,e,0(y. e
FAGIE |:Zs,11 J (t:{rgéu ‘clu (t; 1,1)‘ > &n) s Zgqatd (t:{g?ﬁu ‘clu (t;d, d)’ > E,n)} ,
which is a d(d + 1)/2 column vector obtained via half-vectorisation of a d x d symmetric matrix
with the (i, j)-entry being z¢ 4 J (maxmgku ‘c&f’a(t; i,j)’ > &fl). Then, by (E.61), Assumption 5
and the Cauchy-Schwarz inequality,

d(d+1)/2
Y o
= g =
k=1 lLe,uw e(k)

N
3
~o | |
o
|
—
Q
osm c;a
+ ~
=1 3
S
—_
M7
0o
o
N
m
[
—_
[
o
D)
+m
«Q
|
—_
M7
Fksl
o
)
-+ m
&Y

2 t _ _
e M, —lmg + 10 S ng +1 t=le 1ﬂ"io 1mg +1 t=le
2 0 0 2
K
T]]P;o - lmg +1 0 b1€+c @ Ju—cne
< .0 <Te 1/2] 2 d) 295 ar 205 4
o2 P \Tiul""log"(nd) 5§ — g + 1
= Op (1T¢ullog’(nd) [s§ —ng, | - (@ /x8)"?), (E64)
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where G is defined in the proof of Lemma E.5. The asymptotic order for 3 '9 /2=, Glmg/umg (k)
is the same as that for Zk (a+1)/2 [ =/0 Ol U (k)|. Similarly, we may show that

d(d+1)/2 —_

Y o < lew/4) - 1TE log?(nd) [s§ — | (@) (E.65)
k=1 O-lmgfumg (k)

with probability approaching one. Using (E.59) and (E.62)—(E.65), we compete the proof of (E.57).
By Lemmas E.3 and E.5, we have

1 J
Z ~2 ( ) [ ]i’ (ﬂio;‘l) - (50/4)]
k=1 lmS'umE
G,e,J G,e,J
= [t i), - el sl
G ,J G,eJ G ,J G ,J
— |:H [ ::u e nko Z_HClmgu e :| |:H ]. :LL e nko 2_{_H 1 ju e(SO) 2:|
G ,J G 3 G,e,J
> |:H m:ume T]ko - H o :| HC m:u (The(.o) 5
> c35rfrl,ur\so—nko|gn Kn/n)% (E.66)

completing the proof of (E.58).
Finally, by (E.57), (E.58) and Lemma E.6, we have

d(d+1)/2

1 € e €, e
Z 02 (k) : [ k'j(so??’) - kj(nko;Z)]
k=1 meu g
e 2 | nk ‘ 1/2 e 172 —e 1/2 2
< eIy, /log”(nd) max P )1/2 /150 — Nk, ‘ (wr)"/,log”(nd)
—casl TPl |6 — i, | @i (k5 /m)?,
< —culTf,llog!(nd), (E67)

which would lead to a contradiction with (E.55) if we choose c3, to be sufficiently large. The proof
of Lemma E.7 has been completed. 0

PROOF OF THEOREM 3.2. When starting with the WSBS-Cov algorithm, we havel =land u =n
and we may show that (E.3)—(E.5) are satisfied. Then, by (3.10), Lemmas E.3 and E.6, the estimated
change point s§ satisfies (E.52) with probability approaching one. In addition, Lemma E.5 shows
that s§ is not close to 1 and u, so it is a newly detected change point. By (E.52), we may show
that (E.3)—(E.5) still hold within each segment until all of the change points in the idiosyncratic
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error component are detected. By Lemma E.7, the estimated change points satisfy the convergence
result (E.52) with probability approaching one. Once all of the change points are detected, the
bounds of each segment | and u must fall into one of the following three scenarios: (i) there exists
1 <k < Kjysuchthatny <1 <u < ng,y; (ii) there exists 1 < k < Ky such that 1 <nf <uand
My =1+ DA (u—n§) < ey, 4 (iii) there exists 1 < k < Ky such that 1 <ng <ng; <uand
My =1+ 1)V (u—mg ) < 05, 4, Where c3; is defined in Lemma E.7. For 1 and u satisfy either
of scenarios (i)-(iii), we may show that

€ e.: = _ 2
| ax, lmgggxumg Ol U (so,m)( =Op (log (nd)), (E.68)
which together with (3.10), Lemmas E.3 and E.5, indicates that no further change point could be
detected. Letting 1° = c3,, the proof of Theorem 3.2 is completed. O

Appendix F: Additional simulation results

We next provide simulation studies to further compare the finite-sample performance between the
proposed methods and various other competing methods. As in Section 5 of the main document,
we consider the following factor model to generate data:

Xti - Z Aij,tth + \/66’(1'./ i= 1/ Tty d/ t= 1/ s, T (Fl)

j=1

The replication number in each simulation cases is set to R = 100. For the 100 simulated samples,
we report the estimated number of break(s) as well as the accuracy measure ACUy, for each break
defined in (5.2). In Example F.1 below, we compare the numerical performance among the WBS-
Cov and WSBS-Cov, BS-Cov and SBS-Cov algorithms, and examine the finite-sample influence
of different norms used in aggregation of the CUSUM quantities and various transformation
techniques used in construction of the CUSUM statistics.

EXAMPLE FE.1. Consider the factor model in (F.1) with 6 = 1. The sample size is n = 200, and
the dimension is d = 200. In this example, we consider the scenario of a single break in both the
common and idiosyncratic components: n{ = [n/3] +1 =67 and n{ = [2n/3| = 133. The number
of factors is set to be r = 5, and each factor process is generated via an AR(1) model:

th = ijtfl,j + utj, t= 1/ e ,n, (FZ)

where uy; follows a standard normal distribution independently over t and j, and p; = 0.4 —
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0.05(j —1) forj =1,---,5. The factor loadings A;; ; are first generated from a standard normal
distribution independently over i and j when t is from 1 to n{; whereas after the break point n{, the
factor loadings Ay; ¢ are shifted by a random amount N(0, 4) as in Barigozzi, Cho and Fryzlewicz
(2018). The sudden change on the factor loadings leads to break in the second-order moment
structure of the common components. The idiosyncratic errors € follow a multivariate normal
distribution N4 (0, £ ) independently over t, where ¢;, the square root of the j-th diagonal element
of X, is generated from an independent uniform distribution U(0.5,1.5), and the (i, j)-entry of
L. is ¢id;(—0.5)7 for 1 < i #j < d. After the break point n¢, we swap the orders of |p$d/2|
randomly selected pairs of elements of e; (c.f., Cho and Fryzlewicz, 2015) with p{ chosen as
0.1, 0.5 or 1. Note that pf = 0.1 indicates that the structural breaks are relatively sparse in the
high-dimensional error components, whereas pf = 1 indicates that the breaks are dense.

Table 1: Comparison of detection results using different BS-based methods

Common components Idiosyncratic error components

Methods # break(%) ACU1(%) Methods # break(%) ACU1(%)

<1l 1 >1 nf=67 <1l 1 >1 nf=133
pf =1 BS-Cov 0 99 1 100 BS-Cov 0 97 3 100
SBS-Cov 0 97 3 100
WBS-Cov 0 99 1 100 WBS-Cov 0 98 2 98
WSBS-Cov 0 99 1 100
pf =0.5 BS-Cov 0 100 O 100 BS-Cov 0 96 4 99
SBS-Cov 0 99 1 98
WBS-Cov 0 100 O 100 WBS-Cov 0 94 6 95
WSBS-Cov 0 100 O 98
pf =0.1 BS-Cov 0 99 1 100 BS-Cov 24 72 4 53
SBS-Cov 20 80 0 61
WBS-Cov 0 99 1 100 WBS-Cov 28 70 2 31
WSBS-Cov 20 80 0 61

In Table 1, we compare the proposed WBS-Cov with the classical BS-Cov in detecting breaks
in the common components, and compare the proposed WSBS-Cov with the BS-Cov, WBS-Cov
and SBS-Cov in detecting breaks in the idiosyncratic components. For the break detection in the
common component, the finite-sample performance of WBS-Cov and BS-Cov are the same. For
the break detection in the idiosyncratic components, the four methods behave differently in finite
samples. When the breaks are sparse in the high-dimensional error covariance matrix (pf = 0.1),
the sparsified detection techniques (WSBS-Cov and SBS-Cov) outperform the non-sparsified ones
(BS-Cov and WBS-Cov) in both the break number and location estimation; when the breaks are
dense (pf = 0.5 and 1), the proposed WSBS-Cov has the best performance in estimating the break
number whereas the BS-Cov performs better than the other three methods in estimating the break
location.

In Table 2, we examine the finite-sample influence of different norms used in the aggregation
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Table 2: Comparison of detection results using different norms in the CUSUM statistics

Common components Idiosyncratic error components
# break(%) ACU; (%) # break(%) ACU; (%)
<1l 1 >1 mnf=67 <1l 1 >1 n{ =133
Breaks in common components

pf =1 U 0 99 1 99 0 99 1 98
b 0 99 1 100 0 99 1 100
le O 79 21 64 0 90 10 77
op O 100 O 99 0 89 11 89
pf =05 1 0 100 O 100 0 97 3 94
b 0 100 O 100 0 100 O 98
le O 79 21 69 0 94 6 69
op O 99 1 99 0 94 6 74
pf =01 0 99 1 100 23 72 5 50
) 0 99 1 100 20 80 0 61
low O 78 22 65 23 75 2 42
op O 100 O 98 32 66 2 39

of the CUSUM quantities. For the idiosyncratic components, as in (2.12), the CUSUM statistic
aggregated with the 1;-norm is defined by

d
c&o s;1,7 ’J max ‘Caa t;i," e
S Y [etfun st 7 ((max [efd )] > e

and the CUSUM statistic aggregated with the l,,-norm is defined by

¢’ (s ’J max
A CA ) [max

izl > &)

max
I<igi<d

and the construction is similar for the common components. In addition, we also consider aggre-
gating via the operator norm, as suggested in Wang, Yu and Rinaldo (2021). For the idiosyncratic
components, let C {\ﬁim (s) be a d x d matrix with the (i, j)-th entry being

i 51 (max [ef 617 > 23

I<t<u

and then obtain the CUSUM statistic by taking the operator norm of C{\i’im (s). For the common
components, the CUSUM statistic is defined by taking the operator norm of the matrix:

(s—1+1)(u—s) 1 > 1 & =<
F.F, — F.F,.|.
\/ u—1+1 s—l-l-l; ot u—st_g+1 tt

It is obvious from Table 2 that the 1,-based detection method has the best finite-sample performance
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with more accurate estimated break number and higher ACU. The operator norm based detection
method performs well in break detection for the common components, but it performs poorly
when breaks are sparse in the idiosyncratic components.

Table 3: Comparison of detection results using different transformations in break detection

Common components Idiosyncratic error components

Methods # break(%) ACU1(%) Methods # break(%) ACU1(%)

<1 1 >1 nf=67 <1 1 >1 nf=133
pf =1 BCF 0 95 5 100 BCF(D) 0 100 O 100
BCF 0 100 O 100
WBS-Cov 0 99 1 100 WSBS-Cov(D) 0 100 O 99
WSBS-Cov 0 99 1 100
WAVELET 0 92 8 100 WAVELET 0 93 7 100
ADD-MNS 0 99 1 100 ADD-MNS 0 83 17 98
pf =05 BCF 0 94 6 100 BCEF(D) 0 100 O 100
BCF 0 100 O 100
WBS-Cov 0 100 O 100 WSBS-Cov(D) 0 100 O 100
WSBS-Cov 0 100 O 98
WAVELET 0 96 4 100 WAVELET 0 100 O 98
ADD-MNS 0 100 O 100 ADD-MNS 0 90 10 95
pf =0.1 BCF 0 96 4 100 BCF(D) 24 76 0 55
BCF 50 50 0 44
WBS-Cov 0 99 1 100 WSBS-Cov(D) 21 79 0 65
WSBS-Cov 20 80 0 61
WAVELET 0 92 8 100 WAVELET 7 77 16 64
ADD-MNS 0 100 O 100 ADD-MNS 0 87 13 61

Table 3 reports the simulation result when different transformation techniques are used in
construction of the CUSUM statistics. In the table, “BCF” denotes the method proposed by
Barigozzi, Cho and Fryzlewicz (2018) which combines the wavelet-based transformation and the
double-CUSUM method, “WBS-Cov” denotes the proposed method in Section 2.3, and “WSBS-
Cov” denotes the proposed method in Section 2.4. For structural breaks in the covariance matrix of
the error components, we may detect the breaks only for its diagonal elements (variance) rather
than all the elements in the high-dimensional covariance matrix in order to save computational
time. This is considered in our simulation with “BCF(D)” and “WSBS-Cov(D)” denoting the “BCF”
and “WSBS-Cov” methods by only detecting breaks for the diagonal elements. Letting a; and q;
be either the common factors or the idiosyncratic errors, “ADD-MNS” denotes a transformation
of (a; + aj)2 and (a; — a)~)2 (e.g., Cho and Fryzlewicz, 2015) in the construction of the CUSUM
statistics (instead of a;a; in our proposed method), whereas “WAVELET” denotes the wavelet
transformation on a; and q; (e.g., Barigozzi, Cho and Fryzlewicz, 2018) in the construction of the
CUSUM statistics. The algorithms introduced in Sections 2.3 and 2.4 are used after making the
“WAVELET” and “ADD-MINS” transformations. The R package “factorcpt” is used to implement
Barigozzi, Cho and Fryzlewicz (2018)’s method in the simulation.
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From the table, the proposed WBS-Cov algorithm and the “ADD-MINS” method have the best
tinite-sample performance in estimating the break in the common components. In terms of the
idiosyncratic components, the “WSBS” method has similar performance to the “BCF” method, and
the best performance is from the “WSBS-Cov(D)” method. In terms of “WAVELET” method, we
find that the thresholding parameter £¢ selected in pre-estimation is too small, and thus use v/2&¢
as the threshold. However, this method tends to over-estimate the break number. The performance
of the “ADD-MINS” method in estimating the break location is not as good as the other methods,
which might be caused by selection of the thresholding parameter &5,.

In the following example, we consider an alternative weak factor structure which is different
from that in Example 5.2 of the main document. The factor loadings are not sparse but have small
magnitude.

EXAMPLE F.2. We use model (E.1) to generate the data in simulation, where the number of factors
is r = 3, the sample size is n = 400, the dimension is d = 200, and 6 = 1. The factor process
F. is generated from a multivariate normal distribution N; (0, X¢) independently over t, where
X is the covariance matrix specified as follows: the square root of the j-th diagonal element of
X, is independently generated from a uniform distribution U(0.5,1.5), and the (i, j)-entry of Z;
is defined as ¢f¢F(0.5) 7 for 1 <1i#j < 3. For1 <t <nf = 100, the factor loadings for the
first factor, A;; are independently generated from a uniform distribution U(—w, w), and the factor
loadings for the second and third factors, Ai; and A3, are independently generated from a uniform
distribution U(—1,1); for n{ <t <3 = 300, the factor loadings Ai; are regenerated from a uniform
distribution U(—w, w); whereas for n5 < t < 400, the factor loadings corresponding to the first two
factors are regenerated by uniform distribution U(—w, w) and U(—1, 1), respectively. We consider
five different cases by setting w = n(®~1/2 with (a,,-- -, as) = (1,0.85,0.75,2/3,0.6).

The idiosyncratic errors € follow a multivariate normal distribution N4 (0, £ ) independently
over t, where ¢;, the square root of the j-th diagonal element of X, is generated from an indepen-
dent uniform distribution U(0.5,1.5), and the (i, j)-entry of Z. is ¢:id;(—0.5)' I for 1 <1 #j < d.
We set three breaks n{ = [n/8] =50, n§ = [n/2] =200 and n§ = [7n/8] = 350. At each of the
three break points n{ and n§, we swap the orders of |0.8d/2| randomly selected pairs of elements
of €;.

Table 4 shows that under-estimation of the factor number would negatively impact break
detection. In this example, the number of factors for the transformed factor model (2.4) is 6 (3
original factors plus 3 factors due to factor transformation accommodating breaks). However,
the mean value of q is only 5.01 when w = 1 in case 1 and is even smaller in other cases when
factors are weaker. The information criterion tends to under-estimate the number of factors in
all cases. To see the impact of under-estimating the factor number, we set r to be 6 and 9, and
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Table 4: Break detection results for the weak factor model with non-sparse factor loadings

Common components Idiosyncratic error components
q # break(%) ACU1(%)  ACU,(%) # break(%) ACU1(%)  ACUy(%)  ACUs3(%)
0 1 2 >2 nf=100 mn$ =300 <3 3 >3 nf=50 n5=200 nj5 =350
Casel 5.01 1 12 87 0 77 89 0 99 1 99 100 99
q =9fixed 0 0 100 0 79 94 1 98 1 99 100 99
q =6fixed 0 0 100 0 81 95 0 100 0 99 100 100
q=3fixed 3 52 25 0 42 75 13 84 3 53 88 49
Case2 4.11 3 33 64 0 54 78 0 99 1 98 100 99
q=09fixed 0 3 97 0 77 92 0 99 1 99 100 100
q==6fixed 0 7 93 0 75 93 0 100 0 99 100 100
q =3fixed 3 68 29 0 26 68 2 93 5 84 98 81
Case3 3.42 4 64 32 0 21 69 0 98 2 99 100 100
q=09fixed 0 16 84 0 68 86 0 99 1 99 100 100
q==6fixed 0 16 84 0 69 86 0 100 0 99 100 100
q =3fixed 3 89 8 0 6 68 0 96 4 94 100 97
Case4 3.01 10 74 16 0 12 65 0 98 2 98 100 100
q=09fixed 0 34 66 0 52 83 1 99 0 99 100 99
q=6fixed 0 36 64 0 54 83 0 100 0 99 100 100
q =3fixed 1 98 1 0 2 73 0 98 2 98 100 100
Case5 281 10 88 2 0 2 65 0 99 1 98 100 100
q=09fixed 0 53 47 0 35 76 1 99 0 99 100 99
q==6fixed 0 58 42 0 31 78 0 100 0 99 100 100
q=3fixed 0 100 0 0 0 75 0 99 1 98 100 100

then detect the breaks again. We find that the performance of detection is improved significantly.
On the contrary, if we set r to be 3, the proposed break detection method performs worse for the
common components. Although under-estimation of the factor number also affects the detection
of breaks in the idiosyncratic components, the impact is not as significant as that on the common
components.
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