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In this supplement, we provide the detailed proofs of the main theoretical results as well as
additional simulation studies. Appendix B gives a simple motivating example for the factor model
transformation stated in Proposition 2.1, Appendix C proves Propositions 2.1 and 3.1 for the
transformed factor model, Appendix D proves the asymptotic properties of the WBS-Cov for the
common components, Appendix E proves the asymptotic properties of the WSBS-Cov for the
idiosyncratic error components, and Appendix F reports additional simulation results. Throughout
the supplemental document, we let M be a generic positive constant whose value may change
from line to line.

Appendix B: A motivating example of factor model transforma-
tion

In this appendix, we provide a simple motivating example to show how to transform breaks in
factor loadings of a factor model to breaks in covariance of (transformed) factors, a transformation
mechanism summarised in Proposition 2.1. Consider an approximate factor model with K1 = 2:

Xt = Λ
0
k+1Ft + εt, η

c
k + 1 6 t 6 ηck+1,

where k = 0, 1, 2, ηc0 = 0 and ηc3 = n. We assume that the number of factors and the column
ranks of the factor loading matrices are all equal to r. Furthermore, we assume the column rank
of (Λ0

1,Λ0
2) is r, indicating that there exists an r× rmatrix T such thatΛ0

2 = Λ
0
1T ; and the column
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rank of (Λ0
2,Λ0

3) is 2r (full column rank), indicating thatΛ0
2 andΛ0

3 are linearly independent. Han
and Inoue (2015) call the first break a “type 2 break” and the second break a “type 1 break”1. The
transformed factor loadings and factors can be defined asΛ? = (Λ0

1,Λ0
3) and

F?t =


(
F

ᵀ

t, 0
ᵀ)ᵀ

, 1 6 t 6 ηc1 ,(
F

ᵀ

tT
ᵀ
, 0ᵀ)ᵀ , ηc1 + 1 6 t 6 ηc2 ,(

0ᵀ , F
ᵀ

t

)ᵀ
, ηc2 + 1 6 t 6 n,

respectively. As a result, the original factor model can be equivalently written as

Xt = Λ
?F?t + εt, t = 1, · · · ,n, (B.1)

the same as (2.4) in Proposition 2.1. Note that the number of latent common factors has increased
from r to 2r in model (B.1). Letting Σ(F) = Cov(Ft), Σt(Λ, F) in (1.3) can be re-formulated as

Σt(Λ, F) =


Λ?diag {Σ(F),O} (Λ?)

ᵀ

, 1 6 t 6 ηc1 ,
Λ?diag

{
TΣ(F)Tᵀ ,O

}
(Λ?)

ᵀ

, ηc1 + 1 6 t 6 ηc2 ,
Λ?diag {O,Σ(F)} (Λ?)

ᵀ

, ηc2 + 1 6 t 6 n.
(B.2)

where diag{A, B} denotes a block diagonal matrix with A and B being two square matrices andO
denotes a null matrix whose size may change from one place to another. As the transformed factor
loading matrix Λ? is time-invariant, structural breaks on Σt(Λ, F) are purely caused by sudden
changes in the covariance matrix for the transformed factors F?t .

Appendix C: Proofs of Propositions 2.1 and 3.1

PROOF OF PROPOSITION 2.1. Let L(Λ) be the space spanned by the column vectors of Λ0
k,

k = 1, · · · ,K1 + 1, and q0 be its dimension. It is straightforward to show that

max
16k6K1+1

rk 6 q0 6
K1+1∑
k=1

rk, (C.1)

where rk denotes the column rank of Λ0
k. As L(Λ) is a q0-dimensional subspace of Rd, we may

construct a d × q0 matrix Λ? by stacking a group of basis for this vector space. Noting that the
column vectors of Λ0

k lie in the space L(Λ), there must exist a q0 × rk transformation matrix Tk
1For the intermediate case with the rank of (Λ0

k,Λ0
k+1) strictly between r and 2r, Han and Inoue (2015) call it a

“type 3 break”. In this case, the factors and factor loadings can be similarly transformed by separating the linearly
independent columns ofΛ0

k andΛ0
k+1 from the linearly dependent ones.
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such that
Λ0
k = Λ?Tk, k = 1, · · · ,K1 + 1. (C.2)

Then the transformed factors can be defined as

F?t =


T 1Ft,1, 1 6 t 6 ηc1 ,
T 2Ft,2, ηc1 + 1 6 t 6 ηc2 ,

...
...

TK1+1Ft,K1+1, ηcK1
+ 1 6 t 6 n.

(C.3)

With (2.2), (C.2) and (C.3), we readily have that, when ηck−1 + 1 6 t 6 ηck,

Xt = Λ
0
kFt,k + εt = Λ

?TkFt,k + εt = Λ
?F?t + εt. (C.4)

The inequalities in (2.5) can be proved by combining (C.1) and the fact of rk 6 rk. �

PROOF OF PROPOSITION 3.1. Letting L(Λ) be defined as in the proof of Proposition 2.1, we may
obtain a group of basis vectors for L(Λ) directly from the column vectors ofΛ0

k, for k = 1, · · ·K1+1.
Specifically, define Λ? =

[
Λ0

1, · · · ,Λ0
K1+1

]
S, where S is a

∑K1+1
k=1 rk × q0 selection matrix whose

entries are either 1 or 0. By Assumption 2(ii) in Appendix A, Λ? is of full column rank and the
smallest eigenvalue of 1

d
Λ?ᵀΛ? is positive and bounded away from zero.

By (C.2) and von Neumann’s trace inequality (e.g., Marshall, Olkin and Arnold, 2011), we have

tr
(

1
d
Λ0ᵀ
k Λ

0
k

)
= tr

(
1
d
T

ᵀ

kΛ
?ᵀΛ?Tk

)
= tr

(
1
d
Λ?ᵀΛ?TkT

ᵀ

k

)
>

q0∑
j=1

µj

(
1
d
Λ?ᵀΛ?

)
µq0−j+1

(
TkT

ᵀ

k

)
,

where tr(·) denotes trace of a square matrix. This indicates that

µ1
(
TkT

ᵀ

k

)
6 tr

(
1
d
Λ0ᵀ
k Λ

0
k

)
/µq0

(
1
d
Λ?ᵀΛ?

)
,

which is bounded uniformly over k = 1, · · · ,K1 + 1 by Assumption 2(ii), and thus

max
16k6K1+1

‖Tk‖2
F = max

16k6K1+1
tr
(
TkT

ᵀ

k

)
6

(
max

16k6K1+1
rk

)
· max

16k6K1+1
µ1
(
TkT

ᵀ

k

)
6M, (C.5)

for some positive constantM, as max16k6K1+1 rk is bounded by Assumption 2(i). Note that∥∥∥∥∥ 1
n

n∑
t=1

F?tF
?ᵀ

t

∥∥∥∥∥
F

6
K1+1∑
k=1

∥∥∥∥∥∥ 1
ηck − η

c
k−1

∑
t:ηck−1+16t6ηck

TkFt,kF
ᵀ

t,kT
ᵀ

k

∥∥∥∥∥∥
F
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6
K1+1∑
k=1

µ1

 1
ηck − η

c
k−1

∑
t:ηck−1+16t6ηck

Ft,kF
ᵀ

t,k

 · ‖Tk‖2
F . (C.6)

As ηck − η
c
k−1 > κ

c
n → ∞, by Assumption 2(i) and the Law of Large Numbers for the α-mixing

sequence (e.g., Lin and Lu, 1996),

1
ηck − η

c
k−1

∑
t:ηck+16t6ηck+1

Ft,kF
ᵀ

t,k
P−→ ΣF,k, k = 1, · · · ,K1 + 1. (C.7)

Combining (C.5)–(C.7), we have
∥∥ 1
n

∑n
t=1 F

?
tF

?ᵀ

t

∥∥
F
= OP(1).

From (C.7), we readily have that

1
n

n∑
t=1

F?tF
?ᵀ

t =

K1+1∑
k=1

ηck − η
c
k−1

n
· 1
ηck − η

c
k−1

∑
t:ηck−1+16t6ηck

TkFt,kF
ᵀ

t,kT
ᵀ

k

P−→ ΣF, (C.8)

where ΣF is a weighted average of TkΣF,kT
ᵀ

k over k = 1, · · · ,K1 + 1, and the weights are strictly
positive as κcn � n. We next only need to show that the smallest eigenvalue of ΣF is positive, which
is to be proved by contradiction. Assume that there exists a q0-dimensional vector ν 6= 0 such that
ν

ᵀ
ΣFν = 0. This implies that νᵀ

TkΣF,kT
ᵀ

kν = 0, and thus T
ᵀ

kν = 0 for all k = 1, · · · ,K1+1, sinceΣF,k

is positive definite by Assumption 2(i). As the rank ofΛ? is q0, we may write ν = (Λ?)
ᵀ

ν? for some
d-dimensional vector ν?. Then, by (C.2), we have T

ᵀ

kν = T
ᵀ

k (Λ
?)

ᵀ

ν? = (Λ?Tk)
ᵀ

ν? =
(
Λ0
k

)ᵀ
ν? = 0.

However,Λ? is constructed from the column vectors ofΛ0
k, k = 1, · · · ,K1 + 1, thus we must have

ν = (Λ?)
ᵀ

ν? = 0, leading to a contradiction. �

Appendix D: Proofs of the WBS-Cov theory for the common com-
ponents

As construction of the CUSUM statistics relies on PCA estimates of the transformed common
factors and idiosyncratic errors, we start with some uniform convergence results for the PCA
estimation which are analogous to those derived in Bai and Ng (2002), Fan, Liao and Mincheva
(2013) and Han and Inoue (2015).

LEMMA D.1. Suppose that Assumptions 1, 2 and 3(i) in Appendix A are satisfied. Then, if κcn � n, we
have (i)

max
16t6n

∥∥∥F̂t −HF?t∥∥∥
2
= OP

(
1
n1/2 +

n2/δ

d1/2

)
, (D.1)
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where δ = δF ∧ δε; and (ii)

max
16j6d

∥∥∥λ̂j − (H−1)ᵀλ?j∥∥∥
2
= OP

((
logd
n

)1/2

+
n2/δ

d1/2

)
, (D.2)

if, in addition, Assumption 3(ii) is satisfied and d = O (exp{nν}) with 0 6 ν < 1/5, where the rotation
matrixH is defined in (3.3), and F?t and λ?j are the transformed factors and factor loadings.

PROOF. (i) By the definition of PCA estimation, we may show that

Ωq0

(
F̂t −HF

?
t

)
=

1
nd

n∑
s=1

d∑
j=1

F̂sF
?ᵀ

s λ
?
jεtj +

1
nd

n∑
s=1

d∑
j=1

F̂sF
?ᵀ

t λ
?
jεsj +

1
nd

n∑
s=1

d∑
j=1

F̂sE [εsjεtj]

+
1
nd

n∑
s=1

d∑
j=1

F̂s {εsjεtj − E [εsjεtj]}

=: Vnt,1 +Vnt,2 +Vnt,3 +Vnt,4 (D.3)

for any 1 6 t 6 n, whereΩq0 is defined in Section 3.1.

We first consider Vnt,1. As

1
n

n∑
t=1

F̂tF̂
ᵀ

t = Iq0 ,
1
n

n∑
t=1

F?tF
?ᵀ

t = OP(1),

by Proposition 3.1, using the Cauchy-Schwarz inequality, we have∥∥∥∥∥
n∑
s=1

F̂sF
?ᵀ

s

∥∥∥∥∥
F

= OP(n). (D.4)

By the Cr-inequality(e.g., Theorem 9.1.a in Lin and Bai, 2010), we have

max
16t6n

E

∥∥∥∥∥
d∑
j=1

λ?jεtj

∥∥∥∥∥
δε

2

 6 c0 · max
16t6n

K1+1∑
k=1

E

∥∥∥∥∥
d∑
j=1

λ0
k,jεtj

∥∥∥∥∥
δε

2

 ,

where c0 is a positive constant. Then, by (A.2) in Assumption 3(i), the Bonferroni and Markov
inequalities, we may prove that for any ε > 0,

P

max
16t6n

∥∥∥∥∥
d∑
j=1

λ?jεtj

∥∥∥∥∥
2

> c1n
1/δεd1/2

 6 n∑
t=1

P

∥∥∥∥∥
d∑
j=1

λ?jεtj

∥∥∥∥∥
2

> c1n
1/δεd1/2
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6 max
16t6n

E

∥∥∥∥∥
d∑
j=1

λ?jεtj

∥∥∥∥∥
δε

2

 /(cδε1 d
δε/2) 6

c0ι0(K1 + 1)
cδε1

< ε (D.5)

by letting c1 > [c0ι0(K1 + 1)/ε]1/δε , where ι0 is defined in Assumption 3(i). With (D.4) and (D.5),
we readily have that

max
16t6n

‖Vnt,1‖2 = OP(n
1/δε/d1/2). (D.6)

By (C.5) and
max

16k6K1+1
max

ηck−1+16t6ηck
E
[
‖Ft,k‖δF2

]
<∞

in Assumption 1(ii), we can prove that max16t6n ‖F?t‖2 = OP
(
n1/δF

)
, which together with 1

n

∑n
t=1 F̂tF̂

ᵀ

t =

Iq0 , (D.5) and the Cauchy-Schwarz inequality, implies that

max
16t6n

‖Vnt,2‖2 =
1
nd
· max

16t6n

∥∥∥∥∥
n∑
s=1

d∑
j=1

F̂sF
?ᵀ

t λ
?
jεsj

∥∥∥∥∥
2

6
1
nd
· max

16t6n
‖F?t‖2

(
n∑
s=1

∥∥∥F̂s∥∥∥2

2

)1/2
 n∑
s=1

∥∥∥∥∥
d∑
j=1

λ?jεsj

∥∥∥∥∥
2

2

1/2

=
1
nd
·OP

(
n1/δF

)
·OP

(
n1/2) ·OP (n1/2+1/δεd1/2)

= OP
(
n2/δ/d1/2) . (D.7)

By a basic inequality on the covariance bound for the α-mixing sequence (e.g., Lemma 1.2.4 in
Lin and Lu, 1996), we have

d∑
j=1

E [εsjεtj] 6 10 · α1−2/δε
|s−t|

d∑
j=1

{
E
[
|εsj|

δε
]}1/δε {E [|εtj|δε]}1/δε

= O
(
d · [α(|s− t|)]1−2/δε

)
,

where α(s) = max16k6K1+1 αk(s), indicating that

max
16t6n

‖Vnt,3‖2 =
1
nd
· max

16t6n

∥∥∥∥∥
n∑
s=1

d∑
j=1

F̂sE [εsjεtj]

∥∥∥∥∥
2

6
1
nd
· max

16t6n

(
n∑
s=1

‖F̂s‖2
2

)1/2
 n∑
s=1

(
d∑
j=1

E [εsjεtj]

)2
1/2

=
1
nd
·OP

(
n1/2) ·O

d · [ n∑
k=1

[α(k)]
2(1−2/δε)

]1/2


6



= OP
(
n−1/2) (D.8)

as
∑n
k=1 [α(k)]

2(1−2/δε) <∞when α(k) decays to zero at a geometric rate.

By (A.3) in Assumption 3(i) and using the Bonferroni and Markov inequalities again, we may
show that for any ε > 0,

P

(
max

16s,t6n

∣∣∣∣∣
d∑
j=1

(εsjεtj − E [εsjεtj])

∣∣∣∣∣ > c2n
2/δεd1/2

)

6
n∑
s=1

n∑
t=1

P

(∣∣∣∣∣
d∑
j=1

(εsjεtj − E [εsjεtj])

∣∣∣∣∣ > c2n
2/δεd1/2

)

6
n∑
s=1

n∑
t=1

E

∣∣∣∣∣
d∑
j=1

(εsjεtj − E [εsjεtj])

∣∣∣∣∣
δε
 /(cδε2 n

2dδε/2)

6 ι0/c
δε
2 < ε,

where c2 is chosen to be larger than (ι0/ε)
1/δε . As a result, we have

max
16t6n

‖Vnt,4‖2 =
1
nd
· max

16t6n

∥∥∥∥∥
n∑
s=1

F̂s

d∑
j=1

(εsjεtj − E [εsjεtj])

∥∥∥∥∥
2

6
1
nd
· max

16t6n

(
n∑
s=1

‖F̂s‖2
2

)1/2
 n∑
s=1

(
d∑
j=1

(εsjεtj − E [εsjεtj])

)2
1/2

=
1
nd
·OP

(
n1/2) ·OP (n1/2n2/δεd1/2)

= OP
(
n2/δε/d1/2) . (D.9)

By (D.3) and (D.6)–(D.9), we can prove (D.1) ifΩq0 is asymptotically invertible. The latter can
be proved by following the proof of Theorem 3(i) in Chen et al (2018). The proof of Lemma D.1(i) is
thus completed.

(ii) From Proposition 2.1 in Section 2.2 and by the fact of 1
n

∑n
t=1 F̂tF̂

ᵀ

t = Iq0 , we have

λ̂j =
1
n

n∑
t=1

XtjF̂t =
1
n

n∑
t=1

(
λ?

ᵀ

j F
?
t + εtj

)
F̂t

=
1
n

n∑
t=1

F̂tF
?ᵀ

t λ
?
j +

1
n

n∑
t=1

εtjF̂t
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= (H−1)
ᵀ
λ?j +

1
n

n∑
t=1

F̂t

(
F?t −H

−1F̂t

)ᵀ

λ?j

+H · 1
n

n∑
t=1

εtjF
?
t +

1
n

n∑
t=1

εtj

(
F̂t −HF

?
t

)
. (D.10)

By Lemma D.1(i), we readily have

max
16j6d

∥∥∥∥∥ 1
n

n∑
t=1

F̂t

(
F?t −H

−1F̂t

)ᵀ

λ?j

∥∥∥∥∥
2

= OP

(
1
n1/2 +

n2/δ

d1/2

)
, (D.11)

and

max
16j6d

∥∥∥∥∥ 1
n

n∑
t=1

εtj

(
F̂t −HF

?
t

)∥∥∥∥∥
2

= OP

(
1
n1/2 +

n2/δ

d1/2

)
. (D.12)

By (D.10)–(D.12) and noting thatH = OP(1), to complete the proof of (D.2), we only need to show
that

max
16j6d

∥∥∥∥∥ 1
n

n∑
t=1

εtjF
?
t

∥∥∥∥∥
2

= OP

(√
(logd)/n

)
. (D.13)

The proof of (D.13) is standard. Let ζtj = εtjF?t for notational simplicity. From E[εtjFt] = 0 in
Assumption 1(ii), we have E[ζtj] = E [εtjF

?
t] = 0, indicating that

ζtj = ζtj − E[ζtj] = ζtj − E
[
ζtj
]
+ ζ̃tj − E

[
ζ̃tj

]
,

where
ζtj = ζtj · I (‖ζtj‖2 6 c3 log(dn)) , ζ̃tj = ζtj · I (‖ζtj‖2 > c3 log(dn)) ,

and c3 is a positive constant to be determined later. Hence, in order to prove (D.13), we only have
to show that

max
16j6d

∥∥∥∥∥ 1
n

n∑
t=1

(
ζtj − E

[
ζtj
])∥∥∥∥∥

2

= OP

(√
(logd)/n

)
(D.14)

and

max
16j6d

∥∥∥∥∥ 1
n

n∑
t=1

(
ζ̃tj − E

[
ζ̃tj

])∥∥∥∥∥
2

= OP

(√
(logd)/n

)
. (D.15)

We first consider proving (D.15). From (A.4) in Assumption 3(ii) and the arguments in the proof
of Proposition 3.1, there exists a positive constant ι�1 (which may be different from ι1) such that

max
16j6d

max
16t6n

E [exp {ι�1‖εtjF
?
t‖2}] <∞.
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Choosing c3 such that c3ι
�
1 > 1, we have

E
[∥∥∥ζ̃tj∥∥∥

2

]
6
{

E
[
‖ζtj‖2

2

]}1/2
{P (‖ζtj‖2 > c3 log(dn))}1/2

=
{

E
[
‖ζtj‖2

2

]}1/2
{P (exp {ι�1‖ζtj‖2} > exp{ι�1c3 log(dn)})}1/2

6 O
(
(dn)−ι

�
1c3/2) = o(n−1/2)

uniformly over j and t. Then, for anyM > 0, we can show that

P

(
max

16j6d

∥∥∥∥∥ 1
n

n∑
t=1

(
ζ̃tj − E

[
ζ̃tj

])∥∥∥∥∥
2

> M ·
√
(logd)/n

)

6 P

(
max

16j6d

∥∥∥∥∥ 1
n

n∑
t=1

ζ̃tj

∥∥∥∥∥
2

>
M

2
·
√

(logd)/n

)

6 P
(

max
16j6d

max
16t6n

‖ζtj‖2 > c3 log(dn)
)

6
d∑
j=1

n∑
t=1

E[exp{ι�1‖ζtj‖2}]

exp{ι�1c3 log(dn)}

= O
(
(dn)1−ι�1c3

)
= o(1),

leading to (D.15).

We next turn to the proof of (D.14). Using an exponential inequality for the α-mixing sequence
(e.g., Theorem 1.3(2) in Bosq, 1998) and noting that d = O (exp{nν}) with 0 6 ν < 1/5, we may
show that by takingM > 0 sufficiently large,

P

(
max

16j6d

∥∥∥∥∥ 1
n

n∑
t=1

(
ζtj − E

[
ζtj
])∥∥∥∥∥

2

> M ·
√
(logd)/n

)

= O (d exp {−cM logd}) +O
(
d(logd)1/4(logd+ logn)3/2n3/2ρ

√
n/ logd

cM(logd+logn)

)
= O

(
d1−cM + n(7ν/4)+3/2 exp

{
nν − (log ρ/cM)n(1/2)−(3ν/2)}) = o(1),

where cM > 0 is a sufficiently large constant when M is large enough, completing the proof of
(D.14). �

With the uniform convergence result given in Lemma D.1(i), we can easily prove Proposition
3.2.
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PROOF OF PROPOSITION 3.2. Note that

CF̂l,u(s) −C
HF?

l,u (s) =

√
u− s

(u− l+ 1)(s− l+ 1)

s∑
t=l

vech
[(
F̂t −HF

?
t

)(
F̂t −HF

?
t

)ᵀ]

+

√
u− s

(u− l+ 1)(s− l+ 1)

s∑
t=l

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
+HF?t

(
F̂t −HF

?
t

)ᵀ]

−

√
s− l+ 1

(u− l+ 1)(u− s)

u∑
t=s+1

vech
[(
F̂t −HF

?
t

)(
F̂t −HF

?
t

)ᵀ]

−

√
s− l+ 1

(u− l+ 1)(u− s)

u∑
t=s+1

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
+HF?t

(
F̂t −HF

?
t

)ᵀ]
.

By (D.1) in Lemma D.1 and noting that n = O
(
dδ/(δ+4)

)
, we readily have

max
(l,u): 16l<u6n

max
s: l6s<u

√
u− s

(u− l+ 1)(s− l+ 1)

∥∥∥∥∥
s∑
t=l

vech
[(
F̂t −HF

?
t

)(
F̂t −HF

?
t

)ᵀ]∥∥∥∥∥
2

= max
(l,u): 16l<u6n

(u− l+ 1)−1/2 ·OP
(
n−1) max

s:l6s<u

√
(u− s)(s− l+ 1)

= max
(l,u): 16l<u6n

(u− l+ 1)1/2 ·OP
(
n−1) = OP (n−1/2) , (D.16)

and similarly

max
(l,u): 16l<u6n

max
s: l6s<u

√
s− l+ 1

(u− l+ 1)(u− s)

∥∥∥∥∥
u∑

t=s+1

vech
[(
F̂t −HF

?
t

)(
F̂t −HF

?
t

)ᵀ]∥∥∥∥∥
2

= max
(l,u): 16l<u6n

(u− l+ 1)1/2 ·OP
(
n−1) = OP (n−1/2) . (D.17)

On the other hand, by the Cauchy-Schwarz inequality, Lemma D.1(i) and Proposition 3.1, we can
prove that ∥∥∥∥∥

s∑
t=l

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
]∥∥∥∥∥

2

6

(
s∑
t=l

∥∥∥F̂t −HF?t∥∥∥2

2

)1/2( s∑
t=l

‖F?t‖
2
2

)1/2

·OP(1)

= OP
(
(s− l+ 1)/n1/2) ,
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and similarly ∥∥∥∥∥
u∑

t=s+1

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
]∥∥∥∥∥

2

= OP
(
(u− s)/n1/2) .

Consequently, we have

max
(l,u): 16l<u6n

max
s: l6s<u

√
u− s

(u− l+ 1)(s− l+ 1)

∥∥∥∥∥
s∑
t=l

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
]∥∥∥∥∥

2

= max
(l,u): 16l<u6n

(u− l+ 1)−1/2 ·OP
(
n−1/2) max

s:l6s<u

√
(u− s)(s− l+ 1)

= max
(l,u): 16l<u6n

(u− l+ 1)1/2 ·OP
(
n−1/2) = OP (1) (D.18)

and

max
(l,u): 16l<u6n

max
s: l6s<u

√
s− l+ 1

(u− l+ 1)(u− s)

∥∥∥∥∥
u∑

t=s+1

vech
[(
F̂t −HF

?
t

)
F?

ᵀ

t H
ᵀ
]∥∥∥∥∥

2

= max
(l,u): 16l<u6n

(u− l+ 1)1/2 ·OP
(
n−1/2) = OP (1) . (D.19)

By (D.16)–(D.19), we can complete the proof of (3.4). �

We next turn to the proof of Theorem 3.1. In order to facilitate the proof, we first introduce
some additional notation. Let

ZF
?

t = vech
(
F?tF

?ᵀ

t

)
=
(
ZF

?

t,1, · · · ,ZF
?

t,q0(q0+1)/2

)ᵀ

,

GF
?

t = E
[
vech

(
F?tF

?ᵀ

t

)]
=
(
GF

?

t,1, · · · ,GF
?

t,q0(q0+1)/2

)ᵀ

,

zF
?

t = ZF
?

t −GF
?

t =
(
zF

?

t,1, · · · , zF
?

t,q0(q0+1)/2

)ᵀ

.

Define

CF
?

l,u(s) =

√
(s− l+ 1)(u− s)

u− l+ 1

(
1

s− l+ 1

s∑
t=l

ZF
?

t −
1

u− s

u∑
t=s+1

ZF
?

t

)
.

Then

CF
?

l,u(s) =

√
(s− l+ 1)(u− s)

u− l+ 1

(
1

s− l+ 1

s∑
t=l

GF
?

t −
1

u− s

u∑
t=s+1

GF
?

t

)

+

√
(s− l+ 1)(u− s)

u− l+ 1

(
1

s− l+ 1

s∑
t=l

zF
?

t −
1

u− s

u∑
t=s+1

zF
?

t

)
=: CG,F?

l,u (s) +Cz,F?
l,u (s). (D.20)
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Recall that the two positive integers l and u denote the “lower” and “upper” bounds of a segment.
We assume that

ηck0
6 l < ηck0+1 < · · · < ηck0+k1

< u 6 ηck0+k1+1, (D.21)

where k0 ∈ {0, · · · ,K1 − k1} and k1 ∈ {1, · · · ,K1 − k0}. The following two conditions are key to the
WBS-Cov asymptotic analysis: for some 1 6 k 6 k1,

l < ηck0+k
− c4κ

c
n < η

c
k0+k

+ c4κ
c
n < u (D.22)

and {
(l− ηck0

)∧ (ηck0+1 − l)
}
∨
{
(u− ηck0+k1

)∧ (ηck0+k1+1 − u)
}
6 c5ϕ

c
n, (D.23)

where c4 and c5 are two positive constants, κcn is defined in Assumption 4(ii), and ϕcn is defined in
Theorem 3.1. Define the intervals

Ick =
[
ηck−1 + (ηck − η

c
k−1)/3, ηck−1 + 2(ηck − η

c
k−1)/3

]
, k = 1, · · · ,K1 + 1,

and the event

Dcn =
{
∀ k = 1, · · · ,K1, ∃m = 1, · · · ,Mc

n such that lm ∈ Ick and um ∈ Ick+1

}
,

whereMc
n is defined in Section 2.3.

LEMMA D.2. Letting D
c

n be the complement of Dcn, we have

P
(
D
c

n

)
6 K1

[
1 − (κcn/(3n))

2
]Mc

n

, (D.24)

where κcn is defined in Assumption 4(ii).

PROOF. From the definition of D
c

n and noting that the two random points lm and um are drawn
uniformly from the set {l, l+ 1, · · · ,u− 1,u} with 1 6 l < u 6 n, we readily have that

P
(
D
c

n

)
6

K1∑
k=1

Mc
n∏

m=1

[
1 − P

(
lm ∈ Ick and um ∈ Ick+1

)]
6 K1

Mc
n∏

m=1

(
1 −

ηck − η
c
k−1

3n
·
ηck+1 − η

c
k

3n

)
6 K1

[
1 − (κcn/(3n))

2
]Mc

n

, (D.25)

completing the proof of Lemma D.2. �
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The following lemma derives an asymptotic order for Cz,F?
l,u (s) uniformly over l,u and s.

LEMMA D.3. Suppose that Assumptions 1, 2 and 3(ii) are satisfied. If κcn � n, there exists a positive
constant c6 such that

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∥∥∥Cz,F?
l,u (s)

∥∥∥
2
> c6 · log2 n

)
→ 0, (D.26)

as n→∞.

PROOF. Note that Cz,F?
l,u (s) is a column vector with dimension q0(q0 + 1)/2. Let Cz,F?

l,u,k(s) be the k-th
element of Cz,F?

l,u (s), i.e.,

Cz,F?
l,u,k(s) =

√
(s− l+ 1)(u− s)

u− l+ 1

(
1

s− l+ 1

s∑
t=l

zF
?

t,k −
1

u− s

u∑
t=s+1

zF
?

t,k

)
, k = 1, · · · ,q0(q0 + 1)/2.

By the Bonferroni inequality and noting that q0 is assumed to be bounded, in order to prove (D.26),
we only need to show that

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣∣Cz,F?
l,u,k(s)

∣∣∣ > 2c6

q0(q0 + 1)
· log2 n

)
→ 0 (D.27)

for each k = 1, · · · ,q0(q0 + 1)/2. Letting

Cz,F?
l,u,k(s; 1) =

√
u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

zF
?

t,k

and

Cz,F?
l,u,k(s; 2) =

√
s− l+ 1
u− l+ 1

· 1√
u− s

·
u∑

t=s+1

zF
?

t,k,

it suffices to prove that

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣∣Cz,F?
l,u,k(s; j)

∣∣∣ > c̄(q0) · log2 n

)
→ 0 (D.28)

for j = 1 and 2, where c̄(q0) =
c6

q0(q0+1) .

The proof of (D.28) is similar to the proof of (D.13) in Lemma D.1(ii). Define

zF
?

t,k = zF
?

t,k · I
(∣∣zF?t,k∣∣ 6 c7 logn

)
, z̃F

?

t,k = zF
?

t,k · I
(∣∣zF?t,k∣∣ > c7 logn

)
,

where c7 > 0 is a sufficiently large constant. Letting C
z,F?

l,u,k(s; 1) and C̃z,F?
l,u,k(s; 1) be defined similarly

to Cz,F?
l,u,k(s; 1) but with zF?t,k replaced by zF

?

t,k−E
[
zF

?

t,k

]
and z̃F?t,k−E

[
z̃F

?

t,k

]
, respectively. From Assump-
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tion 3(ii) and Proposition 3.1, there exists a positive constant ι6 > 0 (which may be different from
ι1) such that

max
16t6n

max
16k6q0(q0+1)/2

E
[
exp
{
ι6
∣∣zF?t,k∣∣}] <∞.

Consequently, we can show that

E
[∣∣z̃F?t,k∣∣] 6 {

E
[∣∣zF?t,k∣∣2]}1/2 {

P
(∣∣zF?t,k∣∣ > c7 logn

)}1/2

=
{

E
[∣∣zF?t,k∣∣2]}1/2 {

P
(
exp
{
ι6
∣∣zF?t,k∣∣} > exp{ι6c7 logn}

)}1/2

6 O
(
n−ι6c7/2) = o(n−1/2 log2 n

)
uniformly over k and t, where the constant c7 is chosen so that c7ι6 > 1. Therefore, we can prove
that

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣∣C̃z,F?
l,u,k(s; 1)

∣∣∣ > c̄(q0)

2
· log2 n

)
6 P

(
max

(l,u): 16l<u6n
max

s: l6s<u

∣∣∣∣∣
√

u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

z̃F
?

t,k

∣∣∣∣∣ > c̄(q0)

3
· log2 n

)

6 P
(

max
16t6n

∣∣zF?t,k∣∣ > c7 logn
)
6

n∑
t=1

E[exp{ι6
∣∣zFt,k∣∣}]

exp{ι6c7 logn}
= o(1). (D.29)

We next prove

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣∣Cz,F?

l,u,k(s; 1)
∣∣∣ > c̄(q0)

2
· log2 n

)
→ 0. (D.30)

Consider the following two scenarios: (i) s− l+ 1 6 c8 log2 n, and (ii) s− l+ 1 > c8 log2 n, where
c8 is a sufficiently large positive constant. For scenario (i), it is easy to see that

∣∣∣Cz,F?

l,u,k(s; 1)
∣∣∣ 6 √

u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

(∣∣zF?t,k∣∣+ E
[∣∣zF?t,k∣∣])

6
√
s− l+ 1 · (2c7 logn) 6 (2c7c8) · log2 n.

For scenario (ii), by Theorem 1.3(2) in Bosq (1998) (choosing p =
√
s− l), we then have

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣∣Cz,F?

l,u,k(s; 1)
∣∣∣ > c̄(q0)

2
· log2 n

)
6 P

(
max

(l,u): 16l<u6n
max

s: l+c8 log2n−16s<u

∣∣∣Cz,F?

l,u,k(s; 1)
∣∣∣ > [ c̄(q0)

2
− 2c7c8

]
· log2 n

)
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6 O
(
n3 exp {−M logn}+ n3+3/4ρ

√
c8 logn) = o(1),

where c6 is chosen to be sufficiently large such that c̄(q0)
2 − 2c7c8 is strictly larger than zero and the

constantM is larger than 3, and the constant c8 is chosen to be larger than (−15/(4 log ρ))2. This
proves (D.30).

With (D.29) and (D.30), we can show (D.28), completing the proof of the lemma. �

The following lemma derives a lower bound for the CUSUM statistic in the WBS-Cov when l
and u satisfy (D.22) and (D.23).

LEMMA D.4. Suppose that the assumptions in Lemma D.3 and Assumption 4(ii) are satisfied, and let l
and u (the lower and upper bound of the segment, respectively) satisfy the conditions (D.22) and (D.23).
Conditional on that the rotation matrixH is non-singular, we have

P
(∥∥∥CF̂lmc0 ,umc0

(sc0)
∥∥∥

2
> c9 · (κcnωcn)1/2

)
→ 1 (D.31)

as n→∞, where c9 is a positive constant,mc0 and sc0 are defined as in Algorithm 2 of Section 2.3.

PROOF. From the definition of F?t given in (C.3), we readily have the following time-varying
covariance structure for F?t :

Σt(F
?) =


Σ0

1(F
?), 1 6 t 6 ηc1 ,

Σ0
2(F

?), ηc1 + 1 6 t 6 ηc2 ,
...

...
Σ0
K1+1(F

?), ηcK1
+ 1 6 t 6 n.

Hence, we have
Σ0
k+1(Λ, F) − Σ0

k(Λ, F) = Λ?
[
Σ0
k+1(F

?) − Σ0
k(F

?)
]
Λ?ᵀ ,

indicating that

1
d2 ·

∥∥Σ0
k+1(Λ, F) − Σ0

k(Λ, F)
∥∥2
F

=
1
d2 · Trace

{
Λ?
[
Σ0
k+1(F

?) − Σ0
k(F

?)
]
Λ?ᵀΛ?

[
Σ0
k+1(F

?) − Σ0
k(F

?)
]
Λ?ᵀ
}

= Trace
{[
Σ0
k+1(F

?) − Σ0
k(F

?)
] [
Λ?ᵀΛ?/d

] [
Σ0
k+1(F

?) − Σ0
k(F

?)
] [
Λ?ᵀΛ?/d

]}
=

∥∥[Σ0
k+1(F

?) − Σ0
k(F

?)
] [
Λ?ᵀΛ?/d

]∥∥2
F

.

From the proof of Proposition 3.1, all the eigenvalues ofΛ?ᵀΛ?/d are bounded and strictly positive.
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Using the inequality∥∥[Σ0
k+1(F

?) − Σ0
k(F

?)
] [
Λ?ᵀΛ?/d

]∥∥2
F
6
∥∥Σ0

k+1(F
?) − Σ0

k(F
?)
∥∥2
F
· µ2

1

(
Λ?ᵀΛ?/d

)
with µ1

(
Λ?ᵀΛ?/d

)
being the maximum eigenvalue ofΛ?ᵀΛ?/d, we then have

ωcn 6 c10
∥∥Σ0

k+1(F
?) − Σ0

k(F
?)
∥∥2
F

, (D.32)

where c10 is a positive constant.

Consider that l and u satisfy the two conditions: (D.22) and (D.23). These conditions imply that
l and u are close to the previously detected break points and bounded away from the previously
undetected break points. Without loss of generality, we let ηck be one of these break points within
[l,u] satisfying l + c5ϕ

c
n < η

c
k < u − c5ϕ

c
n. On the set Dcn, there exists 1 6 mk 6 Mc

n such that
lmk
∈ Ick and umk

∈ Ick+1, indicating that both ηck − lmk
and umk

− ηck are larger than κcn/3. Define

$F
?

k = vech
(
Σ0
k+1(F

?) − Σ0
k(F

?)
)
=:
(
$F

?

k,1, · · · ,$F
?

k,q0(q0+1)/2

)ᵀ

. (D.33)

For i = 1, · · · ,q0(q0 + 1)/2, we have

∣∣∣CG,F?
lmk ,umk ,i(η

c
k)
∣∣∣ =√(ηck − lmk

+ 1)(umk
− ηck)

umk
− lmk

+ 1

∣∣$F?k,i

∣∣ > (κcn
6

)1/2 ∣∣$F?k,i

∣∣ , (D.34)

where CG,F?
l,u,i (·) is the i-th element of CG,F?

l,u (·) defined in (D.20). Thus∥∥∥CG,F?
lmk ,umk

(ηck)
∥∥∥

2
> c11 (κ

c
n)

1/2 ∥∥$F?k ∥∥2 , (D.35)

where c11 is a positive constant. Let Lq and Dq be the q(q + 1)/2 × q2 elimination matrix and
the q2 × q(q + 1)/2 duplication matrix, transforming the vectorisation of a matrix to its half
vectorisation and vice versa, respectively. We have

CHF
?

l,u (s) = Lq0 (H⊗H)Dq0C
F?

l,u(s).

Noting that ‖Lq0 (H⊗H)Dq0‖
2
F = OP(1), a combination of (D.32) and (D.35) leads to∥∥∥Lq0(H⊗H)Dq0 ·C

G,F?
lmk ,umk

(ηck)
∥∥∥

2
> 2c9 (κ

c
nω

c
n)

1/2 . (D.36)

By the definitions of mc0 and sc0 in Algorithm 2 and using Proposition 3.2 and Lemma D.3, we may
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show that conditional on thatH is non-singular,∥∥∥CF̂lmc0 ,umc0
(sc0)

∥∥∥
2
>

∥∥∥CF̂lmk ,umk
(ηck)

∥∥∥
2

=
∥∥∥CHF?lmk ,umk

(ηck)
∥∥∥

2
+OP(1)

=
∥∥∥Lq0(H⊗H)Dq0 ·C

G,F?
lmk ,umk

(ηck)
∥∥∥

2
+OP

(
log2 n

)
> 2c9 (κ

c
nω

c
n)

1/2
+OP

(
log2 n

)
.

We then complete the proof of (D.31) by noting that (κcnωcn)/ log4 n→∞ by Assumption 4(ii). �

Define the function g(·) as

g(x) =
|ax+ b|

[x(1 − x)]1/2 , 0 < x < 1,

where a and b are two constants which do not depend on x. Lemma 2.2 in Venkatraman (1992)
proves that g(x) is a strictly quasi-convex function on [c,d] with 0 < c < d < 1, and

g(x) < max{g(c),g(d)}, ∀ c < x < d.

As the CUSUM statistics proposed in the present paper are multi-dimensional vectors, we next
provide an extension of Lemma 2.2 in Venkatraman (1992) (from the univariate binary segmentation
to the multi-dimensional binary segmentation).

LEMMA D.5. Define

G(x) =
(
∑m
i=1 |aix+ bi|

p)
1/p

[x(1 − x)]1/2 , 0 < c 6 x 6 d < 1, (D.37)

where ai and bi, i = 1, · · · ,m, are numbers independent of x,m is a positive integer and 1 6 p 6 2. The
function G(x) is quasi-convex over the interval [c,d].

PROOF. We first show that, for any positive convex function G?(x) on [c,d] and γ ∈ (0, 1],
G?(x)/[x(1 − x)]γ is a quasi-convex function over [c,d]. To prove this, it is sufficient to show
that each sub-level set defined as

Sα = {x | G?(x)/[x(1 − x)]γ 6 α}

is a convex set. Note that the sub-level set Sα can be written as

Sα = {x | G?(x) − α[x(1 − x)]γ 6 0} .
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As both G?(x) and −α[x(1 − x)]γ are convex, we readily prove that Sα is a convex set. Choosing
G?(x) =

∑m
i=1 |aix + bi|

p which is positive and convex, we can then show that the function∑m
i=1 |aix + bi|

p/[x(1 − x)]γ is quasi-convex. As a non-decreasing functional transformation
preserves the quasi-convexity, the function (

∑m
i=1 |aix+ bi|

p)
1/p
/[x(1−x)]γ/p is also quasi-convex.

Letting γ = p/2, we prove that G(x) is quasi-convex, completing the proof of the lemma. �

Similarly to ZF
?

t ,GF
?

t and zF?t , we define

ZHF
?

t = vech
(
HF?tF

?ᵀ

t H
)
= Lq0 (H⊗H)Dq0vech

(
F?tF

?ᵀ

t

)
= Lq0 (H⊗H)Dq0Z

F?

t ,

GHF
?

t = Lq0 (H⊗H)Dq0E[Z
F?

t ] = Lq0 (H⊗H)Dq0G
F?

t ,

zHF
?

t = Lq0 (H⊗H)Dq0

(
ZF

?

t −GF
?

t

)
= Lq0 (H⊗H)Dq0z

F?

t ,

and then

CHF
?

l,u (s) = Lq0 (H⊗H)Dq0C
F?

l,u(s)

= Lq0 (H⊗H)Dq0C
G,F?
l,u (s) + Lq0 (H⊗H)Dq0C

z,F?
l,u (s)

=: CG,HF?
l,u (s) +Cz,HF?

l,u (s).

We next give an extension of Lemma 2.6 in Venkatraman (1992) to the case of multi-dimensional
WBS-Cov. In the following lemma and its proof, we use the notation vwith appropriate subscript to
highlight the difference and similarity between Lemma 2.6 in Venkatraman (1992) and our lemma.
For example, vh, vi, vj and vl in the following lemma correspond to h, i, j and l in Venkatraman
(1992).

LEMMA D.6. Suppose that the assumptions of Lemma D.4 and (D.21)–(D.23) are satisfied. Let sc? ∈
[lmc

0
,umc

0
] be the point of maximising

∥∥∥CG,HF?
lmc0

,umc0
(s)
∥∥∥

2
with respect to s, i.e.,

sc? = arg max
lmc0

6s<umc0

∥∥∥CG,HF?
lmc0

,umc0
(s)
∥∥∥

2
, (D.38)

and define ηck� as a change point satisfying∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
>
∥∥∥CG,HF?

lmc0
,umc0

(sc?)
∥∥∥

2
− 3c6 log2 n, (D.39)

where c6 is a positive constant defined in Lemma D.3. Then there exists c12 > 0 such that

(ηck� − lmc
0
+ 1)∧ (umc

0
− ηck�) > c12κ

c
n, (D.40)
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and we further have

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
>
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vl)
∥∥∥

2
+ (c13vlκ

c
n) ·

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2

(umc
0
− lmc

0
+ 1)2 , (D.41)

where 0 < vl < c14γ
c
n with γcn = (κcn/ω

c
n)

1/2 log2 n, and c13 and c14 are two positive constants.

PROOF. Using Lemma D.5 with p = 2 andm = q0(q0 + 1)/2, and noting∥∥∥CG,HF?
l,u (s)

∥∥∥
2
= G

(
s− l+ 1
u− l+ 1

)√
u− l+ 1

(by appropriately choosing ai and bi in the definition of G), we may show that there exists a
positive integer k? such that sc? = ηck? . From the conditions (D.22) and (D.23), we have that
(ηck? − l+ 1)∧ (u− ηck?) is either smaller than c5ϕ

c
n or larger than κcn − c5ϕ

c
n, where c5 is defined

in (D.23). Note that

∥∥∥CG,HF?
l,u (s)

∥∥∥
2

=

√
(s− l+ 1)(u− s)

u− l+ 1

∥∥∥∥∥ 1
s− l+ 1

s∑
t=l

GHF
?

t −
1

u− s

u∑
t=s+1

GHF
?

t

∥∥∥∥∥
2

6 2bl,u
√

(s− l+ 1)∧ (u− s), (D.42)

where

bl,u = sup
l6s6u

∥∥∥∥∥GHF?s −
1

u− l+ 1

u∑
t=l

GHF
?

t

∥∥∥∥∥
2

.

If (ηck? − l+1)∧ (u−ηck?) 6 c5ϕ
c
n holds, we have (ηck? − lmc

0
+1)∧ (umc

0
−ηck?) 6 c5ϕ

c
n as [lmc

0
,umc

0
]

is a random sub-interval of [l,u]. By Assumption 4(ii), we have

blmc0 ,umc0
6 c15

(
ωclmc0 ,umc0

)1/2
6 c15

(
ωcl,u

)1/2
6 c15 (ω

c
n)

1/2 , (D.43)

where c15 is a positive constant and

ωcl,u =
1
d2 · max

k:l+c5ϕcn6η
c
k6u−c5ϕcn

∥∥Σ0
k+1(Λ, F) − Σ0

k(Λ, F)
∥∥2
F

. (D.44)

With (D.42) and (D.43), we have∥∥∥CG,HF?
lmc0

,umc0
(ηck?)

∥∥∥
2
6 2blmc0 ,umc0

(c5ϕ
c
n)

1/2 6 2c15(c5ω
c
nϕ

c
n)

1/2. (D.45)

Combining (D.36) with (D.45), we readily have that ω
c
n

ωcn
· κ

c
nω

c
n

log4n
is bounded. However, this leads to
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contradiction with the condition ωcn
ωcn
· κ

c
nω

c
n

log4n
→∞ in Assumption 4(ii). Therefore, (ηck? − l + 1)∧

(u− ηck?) cannot be smaller than c5ϕ
c
n, and we must have

(ηck? − l+ 1)∧ (u− ηck?) > κ
c
n − c5ϕ

c
n, (D.46)

which further indicates that there existsmc? ∈Mc
l,u such that lmc

?
∈ Ick? and umc

?
∈ Ick?+1.

We next strengthen (D.46) to

(ηck? − lmc
0
+ 1)∧ (umc

0
− ηck?) > c12κ

c
n. (D.47)

Suppose that (D.47) fails, i.e., for any c? and N, there exists some n > N such that

(ηck? − lmc
0
+ 1)∧ (umc

0
− ηck?) < c?κ

c
n. (D.48)

Without loss of generality, we let ηck? − lmc
0
+ 1 < c?κcn and consider the following two cases of umc

0
:

(i) ηck? 6 umc
0
< ηck0+k1

, or ηck0+k1+1 − c5ϕ
c
n 6 u 6 η

c
k0+k1+1 and ηck0+k1

< umc
0
6 u;

(ii) ηck0+k1
6 u 6 ηck0+k1

+ c5ϕ
c
n and ηck? < η

c
k0+k1

< umc
0
6 u.

The main difference between cases (i) and (ii) is that in case (ii) there does not exist anym ∈Mc
l,u

such that lm ∈ Ick0+k1
and um ∈ Ick0+k1+1.

We first consider case (i). Following the proof of (D.36), we have∥∥∥CG,HF?
lmc0

,umc0
(ηck?)

∥∥∥
2
> 2c9

(
κcnω

c
l,u

)1/2 , (D.49)

where c9 is defined in Lemma D.4. On the other hand, if (D.48) holds, using (D.42) and (D.43), we
have ∥∥∥CG,HF?

lmc0
,umc0

(ηck?)
∥∥∥

2
6 2blmc0 ,umc0

(c?κ
c
n)

1/2 6 2c15
(
c?κ

c
nω

c
l,u

)1/2 . (D.50)

Letting c? be sufficiently close to zero, (D.49) and (D.50) would lead to a contradiction. As a result,
case (i) would not occur when n is sufficiently large. We next turn to case (ii). By (D.36) in the proof
of Lemma D.4, (D.49) still holds. On the other hand, since ηck0+k1

6 umc
0
6 u 6 ηck0+k1

+ c5ϕ
c
n, by

the triangle inequality, we have∥∥∥∥CG,HF?
lmc0

,umc0
(ηck?)

∥∥∥∥
2

=

√
(ηck? − lm

c
0
+ 1)(umc

0
− ηck?)

umc
0
− lmc

0
+ 1

∥∥∥∥∥∥∥
1

ηck? − lm
c
0
+ 1

ηck?∑
t=lmc0

GHF
?

t −
1

umc
0
− ηck?

umc0∑
t=ηck?+1

GHF
?

t

∥∥∥∥∥∥∥
2
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6

√
(ηck? − lm

c
0
+ 1)(umc

0
− ηck?)

umc
0
− lmc

0
+ 1

·

∥∥∥∥∥∥∥
1

ηck? − lm
c
0
+ 1

ηck?∑
t=lmc0

GHF
?

t −
1

umc
0
− ηck?

umc0∑
t=ηck?+1

GHF
?

t∧(umc0
−c5ϕcn)

∥∥∥∥∥∥∥
2

+

√
(ηck? − lm

c
0
+ 1)(umc

0
− ηck?)

umc
0
− lmc

0
+ 1

·
c5ϕ

c
nbumc0 −c5ϕcn,umc0
umc

0
− ηck?

6
(

2blmc0 ,umc0
−c5ϕcn + c5ϕ

c
nbumc0 −c5ϕcn,umc0

/κcn

)√
(ηck? − lm

c
0
+ 1)∧ (umc

0
− ηck?). (D.51)

Noting that

ϕcnbumc0 −c5ϕcn,umc0
/κcn = O

(
(ωcn)

1/2 log4 n/(ωcnκ
c
n)
)

and 2blmc0 ,umc0
−c5ϕcn > (ωcn)

1/2 ,

as
(
ωcn
ωcn

)1/2
· κ

c
nω

c
n

log4n
→∞ from assumption 4(ii), we have

ϕcnbumc0 −c5ϕcn,umc0
/κcn = o

(
blmc0 ,umc0

)
,

which, together with (D.51), indicates that (D.50) holds as well. However, by letting c? approach
zero, (D.49) and (D.50) would lead to a contradiction. Hence, case (ii) would not occur when
n is sufficiently large. Combining the above arguments, we may complete the proof of (D.47).
Furthermore, following the similar arguments and using (D.39), we may prove (D.40).

We finally turn to the proof of (D.41). Consider two cases: (i) umc
0
6 ηck�+1 and (ii) ηck�+1 < umc

0
.

We start with case (i) of umc
0
6 ηck�+1. For notational simplicity, we let vi = ηck� − lmc

0
+ 1 and

vh = umc
0
− ηck� , and define β =

(
β1, · · · ,βq0(q0+1)/2

)ᵀ
with

βk = CG,HF?
lm0 ,um0 ,k(η

c
k�
)

(
vivh

vi + vh

)1/2

,

where CG,HF?
l,u,k (·) is the k-th element of CG,HF?

l,u,k (·). As umc
0
6 ηck�+1 in this case, it is easy to verify

that

CG,HF?
lm0 ,um0 ,k(η

c
k�
) = βk

(
vivh

vi + vh

)−1/2

, CG,HF?
lm0 ,um0 ,k(η

c
k�

+ vl) = βk ·
vh − vl
vh

·
[

vi + vh
(vi + vl)(vh − vl)

]1/2

and ∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
= ‖β‖2

(
vivh

vi + vh

)−1/2

.

As (κcnωcn)/ log4 n→∞ by Assumption 4(ii), we have γcn = o(κcn) and consequently vl < vi when
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n is large enough. Hence, we have∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
−
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vl)
∥∥∥

2

= ‖β‖2 ·
√
vi + vh
vh

(√
vh

vi
−

√
vh − vl
vi + vl

)
= vl

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
· vi + vh√
vh
√
vi + vl

(√
vh
√
vi + vl +

√
vh − vl

√
vi
)

> vl

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
· vi + vh√
vh
√

2vi
(√
vh
√

2vi +
√
vh
√
vi
)

> vl

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
/
[
2(umc

0
− lmc

0
+ 1)

]
, (D.52)

which, together with (D.40), proves (D.41).

We next consider case (ii). Let vi = ηck� − lmc
0
+ 1, vh = (c12 ∧ 1)κcn/3, vj = umc

0
− ηck� − vh and

VcG = GHF
?

ηck�+1 −
1

umc
0
− lmc

0
+ 1

umc0∑
t=lmc0

GHF
?

t .

From the condition (κcnω
c
n)/ log4 n → ∞, we may show that 0 6 vl 6 vh when n is sufficiently

large. Then, using the definitions of vi, vh, vj and VcG, we readily have that

∥∥∥CG,HF?
lmc0

,umc0
(ηck� + vl)

∥∥∥
2
= ‖β+ vlV

c
G‖2 ·

[
vi + vj + vh

(vi + vl)(vj + vh − vl)

]1/2

,

where β is defined as in case (i). Define

D(vl) =
∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2
−
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vl)
∥∥∥

2

and

D1 =

[∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
−
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vh)
∥∥∥

2

]
· vl
vh
·
[

(vi + vh)vj
(vi + vl)(vj + vh − vl)

]1/2

.

Note that

D(vl) −D1 =

{
1 −

vl

vh
·
[

(vi + vh)vj
(vi + vl)(vj + vh − vl)

]1/2
}
·
∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2

−
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vl)
∥∥∥

2
+
vl

vh
·
[

(vi + vh)vj
(vi + vl)(vj + vh − vl)

]1/2 ∥∥∥CG,HF?
lm0 ,um0

(ηck� + vh)
∥∥∥

2
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=

{
1 −

vl

vh
·
[

(vi + vh)vj
(vi + vl)(vj + vh − vl)

]1/2
}
·
∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2

−

[
vi + vj + vh

v2
h(vi + vl)(vj + vh − vl)

]1/2

(‖vhβ+ vhvlV
c
G‖2 − ‖vlβ+ vhvlV

c
G‖2)

>

{
1 −

vl

vh
·
[

(vi + vh)vj
(vi + vl)(vj + vh − vl)

]1/2
}
·
[
vi + vj + vh
vi(vj + vh)

]1/2

· ‖β‖2

−

[
(vh − vl)

2(vi + vj + vh)

v2
h(vi + vl)(vj + vh − vl)

]1/2

· ‖β‖2

= D2 × (1 +D3), (D.53)

where

D2 =
‖β‖2vl(vh − vl)

√
vi + vj + vh√

vi(vj + vh)
√

(vi + vl)(vj + vh − vl)(
√

(vi + vl)(vj + vh − vl) +
√
vi(vj + vh))

,

and
D3 =

(vj − vi)(vj − vi − vl)

(
√

(vi + vl)(vj + vh − vl) +
√

(vi + vh)vj)(
√
vi(vj + vh) +

√
(vi + vh)vj)

.

As vl is smaller than vh/2 for n large enough, we have

D2 =
∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2

vl(vh − vl)√
(vi + vl)(vj + vh − vl)

[√
(vi + vl)(vj + vh − vl) +

√
vi(vj + vh)

]
>

∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2

vlvh

2
√

2vi(vj + vh)
[√

2vi(vj + vh) +
√
vi(vj + vh)

]
> 2 (c13vlκ

c
n)
∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2
/(umc

0
− lmc

0
+ 1)2. (D.54)

On the other hand, since (vj − vi)(vj − vi − vl) reaches its minimum at vj − vi = vl/2, vi, vj, vh >
(c12 ∧ 1)κcn/3 and vl = o(κcn) for 0 < vl < c14γ

c
n, we have

D3 >
−v2

l

4
[√
vi(vj + vh)/2 +

√
(vi + vh)vj

] [√
vi(vj + vh) +

√
(vi + vh)vj

]
>

−v2
l

4(1 +
√

2)(
√

2 +
√

2)[(c12 ∧ 1)κcn/3]2
→ 0 (D.55)

when n large enough. Noting that κcn � n in Assumption 4(ii),∥∥∥CG,HF?
lmc0

,umc0
(ηck�)

∥∥∥
2
−
∥∥∥CG,HF?

lmc0
,umc0

(ηck� + vh)
∥∥∥

2
> −3c6 log2 n,
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and
log2 n∥∥∥CG,HF?

lmc0
,umc0

(ηck�)
∥∥∥

2

→ 0

as (κcnω
c
n)/ log4 n → ∞, D1 is dominated by D2 when n is large enough. This, together with

(D.53)–(D.55), indicates that the lower bound of D(vl) is dominated by D2 when n is large enough.
We have finally completed the proof of (D.41) for case (ii). �

LEMMA D.7. Suppose that the assumptions of Lemma D.4 and (D.21)–(D.23) are satisfied. There exists
k0 + 1 6 k• 6 k0 + k1 such that ∣∣sc0 − ηck•

∣∣ 6 c14γ
c
n (D.56)

with probability approaching one, as n→∞, where γcn = (κcn/ω
c
n)

1/2 log2 n and c14 is a positive constant
defined as in Lemma D.6.

PROOF. By the definitions ofmc0 and sc0 , Proposition 3.2 and Lemma D.3, we readily have for any
ηck ∈ [lmc

0
,umc

0
], ∥∥∥CG,HF?

lmc0
,umc0

(ηck)
∥∥∥

2
6

∥∥∥CF̂lmc0 ,umc0
(ηck)

∥∥∥
2
+ (1 + τ/2)c6 log2 n

6
∥∥∥CF̂lmc0 ,umc0

(sc0)
∥∥∥

2
+ (1 + τ/2)c6 log2 n

6
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2
+ (2 + τ)c6 log2 n (D.57)

with probability approaching one, where τ is a very small positive constant and c6 is defined in
Lemma D.3. Without loss of generality, assume that sc0 ∈ [ηc

k̄
,ηc
k̄+1) with k0 + 1 6 k̄ 6 k0 + k1. We

next show the consequence when (D.56) fails and consider two cases.

Case (i): only one of ηc
k̄

and ηc
k̄+1 locates within the interval [lmc

0
,umc

0
). Without loss of generality,

assume that ηc
k̄

is in the interval [lmc
0
,umc

0
). Let ηck• = ηc

k̄
. From Lemma D.5, without loss of

generality, we may consider that
∥∥∥CG,HF?

lmc0
,umc0

(s)
∥∥∥

2
(treated as a function of s) locally decreases in the

interval [ηck• ,umc
0
) which includes the point s = sc0 . From (D.57),∥∥∥CG,HF?
lmc0

,umc0
(ηck•)

∥∥∥
2
>
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2
>
∥∥∥CG,HF?

lmc0
,umc0

(ηck?)
∥∥∥

2
− 3c6 log2 n,

where k? is defined as in the proof of Lemma D.6. This indicates that (D.39) is satisfied with
k� = k• and sc? = ηck? . By (D.41) in Lemma D.6, letting c14 > 0 be sufficiently large and noting that
κcn = O(|umc

0
− lmc

0
|), we may show that there exists s1 ∈ (ηck• ,η

c
k•

+ c14γ
c
n] such that∥∥∥CG,HF?

lmc0
,umc0

(ηck•)
∥∥∥

2
>
∥∥∥CG,HF?

lmc0
,umc0

(s1)
∥∥∥

2
+ (2 + τ)c6 log2 n
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with probability approaching one. If (D.56) fails, as
∥∥∥CG,HF?

lmc0
,umc0

(s)
∥∥∥

2
is locally decreasing, we must

have ∥∥∥CG,HF?
lmc0

,umc0
(ηck•)

∥∥∥
2
>
∥∥∥CG,HF?

lmc0
,umc0

(s1)
∥∥∥

2
>
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2
,

and thus ∥∥∥CG,HF?
lmc0

,umc0
(ηck•)

∥∥∥
2
>
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2
+ (2 + τ)c6 log2 n,

leading to a contradiction with (D.57).

Case (ii): both ηc
k̄
, and ηc

k̄+1 locate in the interval [lmc
0
,umc

0
). By Lemma D.5 again, we may

show that
∥∥∥CG,HF?

lmc0
,umc0

(s)
∥∥∥

2
(treated as a function of s) is either monotonic or first decreasing and

then increasing on the interval
[
ηc
k̄

,ηc
k̄+1

]
, and consequently{∥∥∥CG,HF?

lmc0
,umc0

(ηck̄)
∥∥∥

2
∨
∥∥∥CG,HF?

lmc0
,umc0

(ηck̄+1)
∥∥∥

2

}
>
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2
.

We further consider two scenarios: (ii.1)
∥∥∥CG,HF?

lmc0
,umc0

(s)
∥∥∥

2
locally decreases at the point s = sc0 ; and

(ii.2)
∥∥∥CG,HF?

lmc0
,umc0

(s)
∥∥∥

2
locally increases at the point s = sc0 . To save the space, we only give the proof

for scenario (ii.1) as that for (ii.2) is similar (by letting ηck• = ηc
k̄+1). When

∥∥∥CG,HF?
lmc0

,umc0
(s)
∥∥∥

2
locally

decreases at the point s = sc0 , we let ηck• = η
c
k̄

. If (D.56) fails, following the arguments as in case (i),
there would be a contradiction with (D.57).

Combining cases (i) and (ii) above, the proof of the lemma has been completed. �

We next introduce some additional notation. For k = 1, · · · ,q0(q0 + 1)/2, let

ZHF
?

•,k =
(
ZHF

?

lmc0
,k, · · ·ZHF?umc0

,k

)ᵀ

,

GHF
?

•,k =
(
GHF

?

lmc0
,k, · · · ,GHF

?

umc0
,k

)ᵀ

,

zHF
?

•,k =
(
zHF

?

lmc0
,k, · · · , zHF

?

umc0
,k

)ᵀ

,

where ZHF?t,k , GHF?t,k and zHF?t,k are the k-th element in the vectors ZHF
?

t ,GHF
?

t and zHF?t , respectively.
The following lemma further improves the convergence rate of the estimated break points given in
Lemma D.7 above.

LEMMA D.8. Suppose that the conditions of Lemma D.7 are satisfied. With probability approaching one, we
have ∣∣sc0 − ηck•

∣∣ 6 c16ϕ
c
n (D.58)

as n→∞, where c16 is a positive constant and ϕcn = log4 n/ωcn.

25



PROOF. Let 〈·, ·〉 denote the inner product between two vectors and ψsl,u = (ψsl , · · · ,ψsu)
ᵀ be a

vector of constants such that ψst is positive for t = l, · · · , s and negative for t = s + 1, · · · ,u,∑u
t=lψ

s
t = 0 and

∑u
t=l(ψ

s
t)

2 = 1. Note that, for any vector ν = (νl, · · · ,νu)
ᵀ , we have

〈ν− ν̄s,ν− ν̄s〉 = 〈ν− ν̄,ν− ν̄〉− 〈ν− ν̄,ψsl,u〉2, (D.59)

where ν̄s = ν̄+ 〈ν− ν̄,ψsl,u〉ψ
s
l,u, ν̄ =

[(
1

u−l+1

)∑u
t=l νt

]
1u−l+1, and 1q is a q-dimensional column

vector with all the elements being ones. From (D.59), we readily have∣∣〈ν,ψsl,u〉
∣∣2 = ∣∣〈ν− ν̄,ψsl,u〉

∣∣2 = − ‖ν− ν̄s‖2
2 + ‖ν− ν̄‖2

2 . (D.60)

From (D.60), we can derive the following useful inequality: for l 6 s 6 u and any vector
ω = (ωl, · · · ,ωu)

ᵀ ,
‖ν− ν̄s‖2

2 6 ‖ν− ω̄s‖2
2 , (D.61)

where ω̄s is defined similarly to ν̄s with ν replaced byω. In fact, (D.61) can be easily proved by
noting that

‖ν− ω̄s‖2
2 − ‖ν− ν̄s‖2

2

=
∥∥ν− ω̄+ 〈ω− ω̄,ψsl,u〉ψ

s
l,u

∥∥2
2 − ‖ν− ν̄‖2

2 +
〈
ν− ν̄,ψsl,u

〉2

= ‖ν− ω̄‖2
2 +
〈
ω− ω̄,ψsl,u

〉2
+ 2

〈
ω− ω̄,ψsl,u

〉 〈
ν− ω̄,ψsl,u

〉
− ‖ν− ν̄‖2

2 +
〈
ν− ν̄,ψsl,u

〉2

= ‖ν− ω̄‖2
2 − ‖ν− ν̄‖2

2 +
〈
ν+ω− ν̄− ω̄,ψsl,u

〉2
> 0

since ‖ν− ω̄‖2
2 > ‖ν− ν̄‖2

2.

Let CHF?l,u,k(s) be the k-th element in the vector CHF
?

l,u (s). Using the notion of inner prod-
uct, we may write CHF?lmc0

,umc0
,k(s) as 〈ZHF

?

•,k ,ψslmc0 ,umc0
〉. For lmc

0
6 s < umc

0
, define QHF?k (s; 1) =

|〈ZHF
?

•,k ,ψslmc0 ,umc0
〉|2, and let Z̄HF

?s

•,k and ḠHF
?s

•,k be defined similarly to ν̄s but with ψsl,u replaced by

ψslmc0 ,umc0
, and ν replaced by ZHF

?

•,k andGHF
?

•,k , respectively. By (D.60), we readily have

QHF
?

k (s; 1) = −
∥∥∥ZHF?•,k − Z̄

HF?s

•,k

∥∥∥2

2
+
∥∥∥ZHF?•,k − Z̄

HF?

•,k

∥∥∥2

2
,

where Z̄HF
?

•,k is defined as ν̄ but with ν replaced by ZHF
?

•,k . For lmc
0
6 s < umc

0
, define

QHF
?

k (s; 2) = −
∥∥∥ZHF?•,k − Ḡ

HF?s

•,k

∥∥∥2

2
+
∥∥∥ZHF?•,k − Z̄

HF?

•,k

∥∥∥2

2
.
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By (D.61), we may show that

QHF
?

k (s; 1) > QHF
?

k (s; 2), k = 1, · · · ,q0(q0 + 1)/2. (D.62)

Since ZHF
?

•,k = GHF
?

•,k + zHF
?

•,k , we readily have

QHF
?

k (s; 1) = −
∥∥∥GHF?•,k − Z̄

HF?s

•,k

∥∥∥2

2
+
∥∥∥GHF?•,k − Z̄

HF?

•,k

∥∥∥2

2
+ 2

〈
zHF

?

•,k , Z̄HF
?s

•,k − Z̄
HF?

•,k

〉
,

and
QHF

?

k (s; 2) = −
∥∥∥GHF?•,k − Ḡ

HF?s

•,k

∥∥∥2

2
+
∥∥∥GHF?•,k − Z̄

HF?

•,k

∥∥∥2

2
+ 2

〈
zHF

?

•,k , ḠHF
?s

•,k − Z̄
HF?

•,k

〉
.

Letting

QHF
?

k (s; 3) = −
∥∥∥GHF?•,k − Ḡ

HF?s

•,k

∥∥∥2

2
+
∥∥∥GHF?•,k − Z̄

HF?

•,k

∥∥∥2

2
+ 2

〈
zHF

?

•,k , Z̄HF
?s

•,k − Z̄
HF?

•,k

〉
,

by (D.61), we have
QHF

?

k (s; 3) > QHF
?

k (s; 1) > 0. (D.63)

Next we prove the following result: there exists a sufficiently large constant c17 > 0,

q0(q0+1)/2∑
k=1

[
QHF

?

k (sc0 ; 3) −QHF
?

k (ηck• ; 2)
]
> −c17 (D.64)

holds with probability approaching one. Let QF̂k(s; 1) be defined similarly to QHF?k (s; 1) but with
HF?t replaced by F̂t. By (D.62), (D.63), Proposition 3.2 and the definition of sc0 , we have

q0(q0+1)/2∑
k=1

QHF
?

k (sc0 ; 3) >
q0(q0+1)/2∑

k=1

QHF
?

k (sc0 ; 1) =
q0(q0+1)/2∑

k=1

QF̂k(s
c
0 ; 1) +OP(1)

>
q0(q0+1)/2∑

k=1

QF̂k(η
c
k•

; 1) +OP(1) =
q0(q0+1)/2∑

k=1

QHF
?

k (ηck• ; 1) +OP(1)

>
q0(q0+1)/2∑

k=1

QHF
?

k (ηck• ; 2) +OP(1),

proving (D.64).

Letting c16 > 0 be sufficiently large, we next show that the assertion of
∣∣sc0 − ηck•

∣∣ > c16ϕ
c
n
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would lead to a contradiction with (D.64), which consequently proves (D.58). Defining

QHF
?

k (s; 4) =
∣∣∣〈GHF?•,k ,ψslmc0 ,umc0

〉
∣∣∣2 = −

∥∥∥GHF?•,k − Ḡ
HF?s

•,k

∥∥∥2
+
∥∥∥GHF?•,k − Ḡ

HF?

•,k

∥∥∥2
,

we have

QHF
?

k (s; 3) −QHF
?

k (ηck• ; 2)

=

∥∥∥∥GHF?•,k − Ḡ
HF?

ηc
k•

•,k

∥∥∥∥2

−
∥∥∥GHF?•,k − Ḡ

HF?s

•,k

∥∥∥2
+ 2

〈
zHF

?

•,k , Z̄HF
?s

•,k − Ḡ
HF?

ηc
k•

•,k

〉
= 2

〈
zHF

?

•,k , Z̄HF
?s

•,k − Ḡ
HF?

ηc
k•

•,k

〉
−
[
QHF

?

k (ηck• ; 4) −QHF
?

k (s; 4)
]

. (D.65)

We next show that with probability approaching one,

q0(q0+1)/2∑
k=1

∣∣∣∣〈zHF?•,k , Z̄HF
?s
c
0

•,k − Ḡ
HF?

ηc
k•

•,k

〉∣∣∣∣ 6 c18(log2 n)max


∣∣∣sc0 − ηck?

∣∣∣ · (ωcn)1/2

(κcn)
1/2 ,

∣∣sc0 − ηck•
∣∣1/2

(ωcn)
1/2, log2 n


(D.66)

and
q0(q0+1)/2∑

k=1

QHF
?

k (ηck• ; 4) −
q0(q0+1)/2∑

k=1

QHF
?

k (sc0 ; 4) > c19
∣∣sc0 − ηck•

∣∣ωcn, (D.67)

where c18 and c19 are two positive constants.

Without loss of generality, we assume that sc0 > η
c
k•

. Note that the left hand side of (D.66) can
be decomposed as follows:

q0(q0+1)/2∑
k=1

〈
zHF

?

•,k , Z̄HF
?s
c
0

•,k − Ḡ
HF?

ηc
k•

•,k

〉
=

q0(q0+1)/2∑
k=1

〈
zHF

?

•,k , Z̄HF
?s
c
0

•,k − Ḡ
HF?s

c
0

•,k

〉

+

q0(q0+1)/2∑
k=1

〈
zHF

?

•,k , ḠHF
?s
c
0

•,k − Ḡ
HF?

ηc
k•

•,k

〉
. (D.68)

Following standard calculations, we have

〈
zHF

?

•,k , Z̄HF
?s

•,k − Ḡ
HF?s

•,k

〉
=

 s∑
t=lmc0

+

umc0∑
t=s+1

 zHF?t,k

(
Z̄HF

?s

t,k − ḠHF
?s

t,k

)

=
1

s− lmc
0
+ 1

 s∑
t=lmc0

zHF
?

t,k

2

+
1

umc
0
− s

 umc0∑
t=s+1

zHF
?

t,k

2

(D.69)
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for any s, where ZHF?
s

t,k and ḠHF?
s

t,k are the (t− lmc
0
+ 1)-th element in Z̄HF

?s

•,k and ḠHF
?s

•,k , respectively.
By the definition of zHF?t,k , the Cauchy-Schwarz inequality, using Lemma D.3 and noting that
‖Lq0 (H⊗H)Dq0‖

2
F <∞with probability approaching one, we have, uniformly over s

1
s− lmc

0
+ 1

 s∑
t=lmc0

zHF
?

t,k

2

= OP

(
log4 n

)
,

1
umc

0
− s

 umc0∑
t=s+1

zHF
?

t,k

2

= OP

(
log4 n

)
,

which indicates that 〈
zHF

?

•,k , Z̄HF
?s
c
0

•,k − Ḡ
HF?s

c
0

•,k

〉
= OP

(
log4 n

)
(D.70)

for k = 1, · · · ,q0(q0 + 1)/2. On the other hand,

〈
zHF

?

•,k , ḠHF
?s
c
0

•,k − Ḡ
HF?

ηc
k•

•,k

〉
=

 ηck•∑
t=lmc0

+

sc0∑
t=ηck•+1

+

umc0∑
t=sc0+1

 zHF?t,k

(
ḠHF

?s
c
0

t,k − ḠHF
?η
c
k•

t,k

)
=: Π1 + Π2 + Π3. (D.71)

Recall that bl,u = supl6t6u
∥∥GHF?t − 1

u−l+1

∑u
t=lG

HF?

t

∥∥
2
. As in (D.43),

bl+c5ϕcn,u−c5ϕcn 6 ‖Lq0 (H⊗H)Dq0‖F ·
√
q0(q0 + 1)/2 · (ωcn)1/2 = OP

(
(ωcn)

1/2) ,

which, together with Cauchy-Schwarz inequality and (D.70), indicates that

q0(q0+1)/2∑
k=1

|Π1| 6
q0(q0+1)/2∑

k=1

∣∣∣∣∣∣
ηck•∑
t=lmc0

zHF
?

t,k

∣∣∣∣∣∣ ·
∣∣∣∣∣∣ 1
sc0 − lmc

0
+ 1

sc0∑
t=lmc0

GHF
?

t,k −
1

ηck• − lmc
0
+ 1

ηck•∑
t=lmc0

GHF
?

t,k

∣∣∣∣∣∣
6

∥∥∥∥∥∥
ηck•∑
t=lmc0

zHF
?

t

∥∥∥∥∥∥
2

·

∥∥∥∥∥∥ 1
sc0 − lmc

0
+ 1

sc0∑
t=lmc0

GHF
?

t −
1

ηck• − lmc
0
+ 1

ηck•∑
t=lmc0

GHF
?

t

∥∥∥∥∥∥
2

6 OP

((
ηck• − lmc

0
+ 1
)1/2 log2 n

)
·
∣∣sc0 − ηck•

∣∣bl+c5ϕcn,u−c5ϕcn

sc0 − lmc
0
+ 1

6 OP

(
log2 n

∣∣sc0 − ηck•
∣∣ · (ωcn/κcn)1/2

)
. (D.72)

This is also the asymptotic order for
∑q0(q0+1)/2
k=1 Π3. Similarly, we may show that

q0(q0+1)/2∑
k=1

Π2 = OP

(
log2 n

∣∣sc0 − ηck•
∣∣1/2

(ωcn)
1/2
)

. (D.73)
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With (D.68) and (D.70)–(D.73), we can complete the proof of (D.66).

We next turn to the proof of (D.67). By (D.41), we have

q0(q0+1)/2∑
k=1

[
QHF

?

k (ηck• ; 4) −QHF
?

k (sc0 ; 4)
]

=
∥∥∥CG,HF?

lmc0
,umc0

(ηck•)
∥∥∥2

2
−
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥2

2

=

[∥∥∥CG,HF?
lmc0

,umc0
(ηck•)

∥∥∥
2
−
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2

]
·
[∥∥∥CG,HF?

lmc0
,umc0

(ηck•)
∥∥∥

2
+
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2

]
>

[∥∥∥CG,HF?
lmc0

,umc0
(ηck•)

∥∥∥
2
−
∥∥∥CG,HF?

lmc0
,umc0

(sc0)
∥∥∥

2

]
·
∥∥∥CG,HF?

lmc0
,umc0

(ηck•)
∥∥∥

2

> c19
∣∣sc0 − ηck•

∣∣ (ωcn/κcn)1/2 · (κcnωcn)1/2

= c19
∣∣sc0 − ηck•

∣∣ωcn (D.74)

with probability approaching one. This completes the proof of (D.67).

Suppose that (D.58) fails, i.e.,
∣∣sc0 − ηck•

∣∣ > c16ϕ
c
n. By (D.65)–(D.67), Lemma D.7 and letting

c16 > 0 be sufficiently large, we have

q0(q0+1)/2∑
k=1

[
QHF

?

k (sc0 ; 3) −QHF
?

k (ηck• ; 2)
]

6 c18 log2 nmax

{ ∣∣sc0 − ηck•
∣∣ · (ωcn)1/2

(κcn)
1/2 ,

∣∣sc0 − ηck•
∣∣1/2

(ωcn)
1/2, log2 n

}
− c19

∣∣sc0 − ηck•
∣∣ωcn

6 −c17 log4 n < −c17, (D.75)

which contradicts with (D.64). We have finally proved (D.58), which completes the proof of Lemma
D.8. �

PROOF OF THEOREM 3.1. According to the WBS-Cov algorithm, we have l = 1 and u = n at the
start of the algorithm and (D.21)–(D.23) are automatically satisfied. Then, by (3.5), Lemmas D.4
and D.8, we can estimate a change point sc0 which satisfies (D.58) with probability approaching one.
Furthermore, (D.40) in Lemma D.6 shows that sc0 is not close to l or u, thus it is a newly detected
change point. By (D.58), we may show that (D.21)–(D.23) still hold within each segment until all
of the change points in the common component are detected, and consequently, the estimated
change points satisfy the convergence result (D.58) with probability approaching one. Once all
of the change points are detected, the bounds of each segment l and u must fall into one of the
following three scenarios: (i) there exists 1 6 k 6 K1 such that ηck < l < u 6 η

c
k+1; (ii) there exists

1 6 k 6 K1 such that l 6 ηck 6 u and (ηck − l+ 1)∧ (u− ηck) 6 c16ϕ
c
n; (iii) there exists 1 6 k 6 K1
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such that l 6 ηck < η
c
k+1 6 u and (ηck − l+ 1)∨ (u− ηck+1) 6 c16ϕ

c
n, where c16 is defined in Lemma

D.8. For l and u satisfy either of scenarios (i)–(iii), we may show that there exists a constant c20 > 0
such that

P

(
max

lmc0
6s<umc0

∥∥∥CF̂lmc0 ,umc0
(s)
∥∥∥

2
6 c20 · log2 n

)
→ 1 (D.76)

as n → ∞. By (3.5), Lemmas D.4 and D.6, no further change point would be detected. Letting
ιc = c16, the proof of Theorem 3.1 is completed. �

Appendix E: Proofs of the WSBS-Cov theory for the idiosyncratic
components

We next give the detailed proofs of the asymptotic theory in Section 3.2.

PROOF OF PROPOSITION 3.3. By (A.4) in Assumption 3(ii) and Proposition 3.1, the Bonferroni and
Markov inequalities, we may show that

max
16t6n

‖F?t‖2 = OP

(√
logn

)
. (E.1)

Then, by the definition (2.7), (D.1), (D.2), (E.1), Proposition 3.1 and Assumption 4(i), we readily
have

max
16t6n

max
16j6d

|ε̂tj − εtj| = max
16t6n

max
16j6d

∣∣∣̂λᵀ

j F̂t − ((H−1)
ᵀ
λ?j )

ᵀ
HF?t

∣∣∣ = OP
([

(logd)(logn)
n

]1/2
)

. (E.2)

Following the proof of Proposition 3.2 and using Assumption 5, we may complete the proof of
Proposition 3.3. �

We next turn to proof of Theorem 3.2. As in Appendix D, we let the two positive integers l and
u denote the “lower” and “upper” bounds of a segment, and assume that

ηek0
6 l < ηek0+1 < · · · < ηek0+k1

< u 6 ηek0+k1+1, (E.3)

where k0 ∈ {0, · · · ,K2 − k1} and k1 ∈ {1, · · · ,K2 − k0}. Like in the proofs of the lemmas in Appendix
D, the following two conditions are key to the WSBS-Cov asymptotic analysis: for some 1 6 k 6 k1,

l < ηek0+k
− c21κ

e
n < η

e
k0+k

+ c21κ
e
n < u (E.4)
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and {
(l− ηek0

)∧ (ηek0+1 − l)
}
∨
{
(u− ηek0+k1

)∧ (ηek0+k1+1 − u)
}
6 c22ϕ

e
n,d, (E.5)

where c21 and c22 are two positive constants, κen and ϕen,d are defined in Theorem 3.2. Define the
intervals

Iek =
[
ηek−1 + (ηek − η

e
k−1)/3, ηek−1 + 2(ηek − η

e
k−1)/3

]
, k = 1, · · · ,K2 + 1,

and the event

Den =
{
∀ k = 1, · · · ,K2, ∃m = 1, · · · ,Me

n such that lm ∈ Iek and um ∈ Iek+1

}
,

where Me
n is defined in Section 2.4. The following lemma is an extension of Lemma D.2 to

WSBS-Cov.

LEMMA E.1. Letting D
e

n be the complement of Den, we have

P
(
D
e

n

)
6 K2

[
1 − (κen/(3n))

2
]Me

n

, (E.6)

where κen is defined in Theorem 3.2.

PROOF. The proof is the same as Lemma D.2. Details are omitted here. �

Note that
εtiεtj = E [εtiεtj] + (εtiεtj − E [εtiεtj]) =: Gεt,ij + z

ε
t,ij

and from (3.7)

cε,σ̂
l,u (s; i, j) =

1
σ̂l,u(i, j)

√
(s− l+ 1)(u− s)

(u− l+ 1)

(
1

s− l+ 1

s∑
t=l

εtiεtj −
1

u− s

u∑
t=s+1

εtiεtj

)

=
1

σ̂l,u(i, j)

√
(s− l+ 1)(u− s)

(u− l+ 1)

(
1

s− l+ 1

s∑
t=l

Gεt,ij −
1

u− s

u∑
t=s+1

Gεt,ij

)

+
1

σ̂l,u(i, j)

√
(s− l+ 1)(u− s)

(u− l+ 1)

(
1

s− l+ 1

s∑
t=l

zεt,ij −
1

u− s

u∑
t=s+1

zεt,ij

)

=:
1

σ̂l,u(i, j)
cG,ε
l,u (s; i, j) +

1
σ̂l,u(i, j)

cz,ε
l,u(s; i, j)

=: cG,ε,σ̂
l,u (s; i, j) + cz,ε,σ̂

l,u (s; i, j). (E.7)

Let Cεl,u(s) denote half-vectorisation of a symmetric d × d matrix with the (i, j)-entry being
cε,σ̂
l,u (s; i, j). The definitions ofCG,ε

l,u (s) andCz,ε
l,u(s) are similar toCεl,u(s) but with cε,σ̂

l,u (s; i, j) replaced
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by cG,ε,σ̂
l,u (s; i, j) and cz,ε,σ̂

l,u (s; i, j), respectively. Note that

Cεl,u(s) = C
G,ε
l,u (s) +Cz,ε

l,u(s), l 6 s < u. (E.8)

The following lemma derives an asymptotic order for ‖Cz,ε
l,u(s)‖∞ uniformly over l,u and s, where

‖ · ‖∞ denotes the l∞-norm.

LEMMA E.2. Suppose that Assumptions 1, 3(ii) and 5 in Appendix A are satisfied. There exists a positive
constant c23 such that

P
(

max
(l,u): 16l<u6n

max
s: l6s<u

∥∥Cz,ε
l,u(s)

∥∥∞ > c23 · log2(nd)

)
→ 0 (E.9)

as n,d→∞.

PROOF. From the definition of the l∞-norm, we only need to show that

P
(

max
(l,u): 16l<u6n

max
(i,j): 16i,j6d

max
s: l6s<u

∣∣∣cz,ε,σ̂
l,u (s; i, j)

∣∣∣ > c23 log2(nd)

)
→ 0, (E.10)

where cz,ε,σ̂
l,u (s; i, j) is defined in (E.7).

By Assumption 5, we readily have

max
(l,u): 16l<u6n

max
(i,j): 16i,j6d

1
σ̂l,u(i, j)

6
1
σ

.

Letting

cz,ε
l,u(s; i, j, 1) =

√
u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

zεt,ij

and

cz,ε
l,u(s; i, j, 2) =

√
s− l+ 1
u− l+ 1

· 1√
u− s

·
u∑

t=s+1

zεt,ij,

it suffices to prove that

P
(

max
(l,u): 16l<u6n

max
(i,j): 16i,j6d

max
s: l6s<u

∣∣cz,ε
l,u(s; i, j,k)

∣∣ > c23σ

2
log2(nd)

)
→ 0, (E.11)

for k = 1 and 2.

The proof of (E.11) is similar to the proof of (D.28) in Lemma D.3. Define

zεt,ij = z
ε
t,ij · I

(∣∣zεt,ij∣∣ 6 c24 log(nd)
)

, z̃εt,ij = z
ε
t,ij · I

(∣∣zεt,ij∣∣ > c24 log(nd)
)

,
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where c24 > 0 is a sufficiently large constant to be determined later. Let cz,ε
l,u(s; i, j, 1) and

c̃z,ε
l,u(s; i, j, 1) be defined similarly to cz,ε

l,u(s; i, j, 1) but with zεt,ij replaced by zεt,ij − E
[
zεt,ij

]
and

z̃εt,ij − E
[
z̃εt,ij

]
, respectively.

From (A.4) in Assumption 3(ii), there exists a positive constant ι1 > 0 such that

max
(i,j): 16i,j6d

max
16t6n

E
[
exp
{
ι1
∣∣zεt,ij∣∣}] <∞.

Consequently, we can show that

E
[∣∣z̃εt,ij∣∣] 6 {

E
[∣∣zεt,ij∣∣2]}1/2 {

P
(∣∣zεt,k∣∣ > c24 log(nd)

)}1/2

=
{

E
[∣∣zεt,ij∣∣2]}1/2 {

P
(
exp
{
ι1
∣∣zεt,ij∣∣} > exp{ι1c24 log(nd)}

)}1/2

6 O
(
(nd)−ι1c24/2) = o (n−1/2)

uniformly over i, j and t, where the constant c24 is chosen so that c24ι1 > 2. Therefore, we can prove
that

P
(

max
(i,j): 16i,j6d

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣c̃z,ε
l,u(s; i, j, 1)

∣∣ > c23σ

4
· log2(nd)

)
6 P

(
max

(i,j): 16i,j6d
max

(l,u): 16l<u6n
max

s: l6s<u

∣∣∣∣∣
√

u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

z̃εt,ij

∣∣∣∣∣ > c23σ

5
· log2(nd)

)

6 P
(

max
(i,j): 16i,j6d

max
16t6n

∣∣zεt,ij∣∣ > c24 log(nd)
)

6
d∑
i=1

d∑
j=i

n∑
t=1

E[exp{ι1
∣∣zεt,ij∣∣}]

exp{ι1c24 log(nd)}

= O
(
d2−ι1c24n1−ι1c24

)
= o(1). (E.12)

We next prove

P
(

max
(i,j): 16i,j6d

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣cz,ε
l,u(s; i, j, 1)

∣∣ > c23σ

4
· log2(nd)

)
→ 0. (E.13)

As in the proof of (D.30), we consider the following two scenarios: (i) s− l+ 1 6 c25 log2(nd), and
(ii) s− l+ 1 > c25 log2(nd), where c25 is a sufficiently large positive constant. For scenario (i), it is
easy to see that

∣∣cz,ε
l,u(s; i, j, 1)

∣∣ 6 √
u− s

u− l+ 1
· 1√
s− l+ 1

·
s∑
t=l

(∣∣zεt,ij∣∣+ E
[∣∣zεt,ij∣∣])
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6
√
s− l+ 1 · (2c24 log(nd)) 6 (2c24

√
c25) · log2(nd).

For scenario (ii), by Theorem 1.3(2) in Bosq (1998), we have

P
(

max
(i,j): 16i,j6d

max
(l,u): 16l<u6n

max
s: l6s<u

∣∣cz,ε
l,u(s; i, j, 1)

∣∣ > c23σ

4
· log2(nd)

)
6 P

(
max

(i,j): 16i,j6d
max

(l,u): 16l<u6n
max

s: l+c25 log2(nd)−16s<u

∣∣cz,ε
l,u(s; i, j, 1)

∣∣ > [c23σ

4
− 2c24

√
c25

]
· log2(nd)

)
6 O

(
d2n3 exp {−M log(nd)}+ d2n3+3/4ρ

√
c25 log(nd)) = o(1),

where the constant c23 is chosen to be sufficiently large such that c23σ
4 − 2c24

√
c25 is strictly larger

than zero andM > 3, and the constant c25 is chosen to be larger than (−15/(4 log ρ))2. This proves
(E.13).

With (E.12) and (E.13), we can show (E.11), completing the proof of the lemma. �

For notational simplicity, we let

cε̂,σ̂,Î
lm,um(s; i, j) = c

ε̂,σ̂
lm,um(s; i, j) · I

(
max
t:l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
and

cG,ε,σ̂,I
lm,um (s; i, j) = cG,ε,σ̂

lm,um(s; i, j) · I
(

max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
for m ∈ Me

l,u such that [lm,um] is a random sub-interval of [l,u], where cε̂,σ̂
l,u (s; i, j) is defined in

(2.12) and cG,ε,σ̂
l,u (s; i, j) is defined in (E.7). Define Cε̂,Î

lm,um(s) and CG,ε,I
lm,um(s) as half-vectorisation

of the two symmetric d × d matrices with the (i, j)-entry being cε̂,σ̂,Î
lm,um(s; i, j) and cG,ε,σ̂,I

lm,um (s; i, j),
respectively. By (2.13) in Section 2.4, we readily have that

Cε̂lm,um(s) =
∥∥∥Cε̂,Î

lm,um(s)
∥∥∥2

2
.

Let
Tel,u =

⋃
k:l+c22ϕ

e
n,d6η

e
k6u−c22ϕ

e
n,d

Ik (E.14)

be a set of index pairs which have breaks between l+ c22ϕ
e
n,d and u− c22ϕ

e
n,d, where Ik is defined

in Assumption 4(iii). Define

T̃el,u = I

{
(i, j) : max

t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen, 1 6 i, j 6 d
}

(E.15)
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and

T̂el,u = I

{
(i, j) : max

t:l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen, 1 6 i, j 6 d
}

, (E.16)

which can be regarded as the infeasible and feasible estimates of Tel,u, respectively. Let

ωel,u = max
k:l+c22ϕ

e
n,d6η

e
k6u−c22ϕ

e
n,d

ωek with ωek =
∑

(i,j)∈Ik

∣∣∣σek+1|i,j − σ
e
k|i,j

∣∣∣2 , (E.17)

where σek|i,j is defined in Assumption 4(iii).

The following lemma derives the asymptotic property of T̃el,u and T̂el,u as well as a lower bound
of the CUSUM statistic when there exists a change point which is an extension of Lemma D.4 to
the WSBS-Cov method.

LEMMA E.3. Suppose that the assumptions in Lemma D.3, Assumptions 4(iii) and 5 are satisfied, and let l
and u satisfy the conditions (E.4) and (E.5). If the condition (3.10) in Theorem 3.2 is satisfied, we have

P
(
Tel,u = T̃el,u

)
→ 1, P

(
T̃el,u = T̂el,u

)
→ 1 (E.18)

as n,d→∞. There exists a positive integer k satisfying l+ c22ϕ
e
n,d 6 η

e
k 6 u− c22ϕ

e
n,d, and

(|Tel,u|/K2) ·ωen 6 |Ik| ·ωen 6 ωek 6 ωel,u 6 |Tel,u| ·ωen. (E.19)

Furthermore,

P
(∥∥∥Cε̂,Î

lme0
,ume0

(se0 )
∥∥∥

2
> c26

(
|Tel,u|κ

e
nω

e
n

)1/2
)
→ 1 (E.20)

as n,d→∞, where | · | denotes the cardinality of a set and c26 is a positive constant.

PROOF. We start with the proof of (E.18). The conditions (E.4) and (E.5) imply that l and u are
sufficiently bounded away from the previously undetected break points. Note that from (E.7),

∣∣cG,ε
l,u (s; i, j)

∣∣ =

√
(s− l+ 1)(u− s)

u− l+ 1

∣∣∣∣∣ 1
s− l+ 1

s∑
t=l

Gεt,ij −
1

u− s

u∑
t=s+1

Gεt,ij

∣∣∣∣∣
=

√
u− l+ 1

(s− l+ 1)(u− s)

∣∣∣∣∣ u− s

u− l+ 1

s∑
t=l

Gεt,ij −
s− l+ 1
u− l+ 1

u∑
t=s+1

Gεt,ij

∣∣∣∣∣
=

√
u− l+ 1

(s− l+ 1)(u− s)

∣∣∣∣∣ s− l+ 1
u− l+ 1

u∑
t=l

Gεt,ij −

s∑
t=l

Gεt,ij

∣∣∣∣∣ . (E.21)

Without loss of generality, we assume that
∑u
t=lG

ε
t,ij = 0. For a given index pair (i, j), we consider

the following three cases: (i) there is no change point within [l,u); (ii) there are change points
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within [l,u) but (i, j) /∈ Tel,u; (iii) (i, j) ∈ Tel,u. For case (i), it is obvious that
∣∣cG,ε
l,u (s; i, j)

∣∣ = 0
∀s ∈ [l,u). Case (ii) indicates that the change points may have been detected but are close to
either l or u and there are at most two such change points. By Lemma 2.2 in Venkatraman (1992),∣∣cG,ε
l,u (s; i, j)

∣∣ takes the maximum at one of the change points, which, together with the first equality
in (E.21), leads to

max
s:l6s<u

∣∣cG,ε
l,u (s; i, j)

∣∣ 6 (c22ϕ
e
n,d)

1/2 · 2(ωen)1/2 6 2
√
c22 log2(nd). (E.22)

Consider case (iii) and let k0 and k be defined in (E.3) and (E.4). As∣∣∣Gεηek0+k
+1,ij −G

ε
ηek0+k

,ij

∣∣∣ > (ωen)
1/2,

we readily have
∣∣∣Gεηek0+k

,ij

∣∣∣∨ ∣∣∣Gεηek0+k
+1,ij

∣∣∣ > (ωen)
1/2/2, implying that

∣∣∣∣∣∣
ηek0+k∑

t=ηek0+k
−c21κen

Gεt,ij

∣∣∣∣∣∣∨
∣∣∣∣∣∣
ηek0+k

+c21κ
e
n∑

t=ηek0+k
+1

Gεt,ij

∣∣∣∣∣∣ > c21κ
e
n(ω

e
n)

1/2/2,

where c21 is defined in (E.4). Without loss of generality, we only consider that∣∣∣∣∣∣
ηek0+k∑

t=ηek0+k
−c21κen

Gεt,ij

∣∣∣∣∣∣ > c21κ
e
n(ω

e
n)

1/2/2. (E.23)

By the triangle inequality, we have that

max
s:l6s<u

∣∣∣∣∣
s∑
t=l

Gεt,ij

∣∣∣∣∣ >
∣∣∣∣∣∣
ηek0+k∑
t=l

Gεt,ij

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ηek0+k

−c21κ
e
n−1∑

t=l

Gεt,ij +

ηek0+k∑
t=ηek0+k

−c21κen

Gεt,ij

∣∣∣∣∣∣
>

∣∣∣∣∣∣
ηek0+k∑

t=ηek0+k
−c21κen

Gεt,ij

∣∣∣∣∣∣−
∣∣∣∣∣∣
ηek0+k

−c21κ
e
n−1∑

t=l

Gεt,ij

∣∣∣∣∣∣
>

∣∣∣∣∣∣
ηek0+k∑

t=ηek0+k
−c21κen

Gεt,ij

∣∣∣∣∣∣− max
s:l6s<u

∣∣∣∣∣
s∑
t=l

Gεt,ij

∣∣∣∣∣ ,
which, together with (E.23), leads to

max
s:l6s<u

∣∣∣∣∣
s∑
t=l

Gεt,ij

∣∣∣∣∣ > c21κ
e
n(ω

e
n)

1/2/4. (E.24)
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Combining (E.21) and (E.24) and noting that

(s− l+ 1)(u− s)/(u− l+ 1) 6 (u− l+ 1)/4 6 n/4

as (s− l+ 1)(u− s) achieves the maximum when s− l+ 1 = u− s, we readily have that

max
s:l6s<u

∣∣cG,ε
l,u (s; i, j)

∣∣ > c21κ
e
n(ω

e
n/n)

1/2/2. (E.25)

Combining the above three cases and using (3.10), we can prove P
(
Tel,u = T̃el,u

)
→ 1.

By Proposition 3.3 and Lemma E.2, we readily have that, uniformly over 1 6 i 6 j 6 d,

I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen + c27

√
(logd)(logn) + c23 log2(nd)

)
6 I

(
max
t:l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
6 I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen − c27

√
(logd)(logn) − c23 log2(nd)

)
(E.26)

with probability approaching one, where c27 > 0 is a constant. Furthermore, following the proof of
P
(
Tel,u = T̃el,u

)
→ 1 and using (3.10) again, we may show that

I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen + c27

√
(logd)(logn) + c23 log2(nd)

)
= I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen − c27

√
(logd)(logn) − c23 log2(nd)

)
,

which, together with (E.26), indicates that, uniformly over 1 6 i 6 j 6 d,

I

(
max
t:l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen) = I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen) , (E.27)

with probability approaching one, i.e., P
(
T̃el,u = T̂el,u

)
→ 1. We have completed the proof of the

two equalities in (E.18).

The proof of
|Ik| ·ωen 6 ωek 6 ωel,u 6 |Tel,u| ·ωen

is straightforward. Then we can prove the inequalities in (E.19) by noting that |Tel,u| 6 K2 · |Ik| for
at least one k satisfying l+ c22ϕ

e
n,d 6 η

e
k 6 u− c22ϕ

e
n,d.

Finally, we turn to the proof of (E.20). As in the proof of Lemma D.4, on the set Den, there exists
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1 6 mk 6Me
n such that lmk

∈ Iek and umk
∈ Iek+1, indicating that both ηek − lmk

and umk
− ηek are

larger than κen/3. For 1 6 i 6 j 6 d and k such that l+ c22ϕ
e
n,d < η

e
k < u− c22ϕ

e
n,d, we have

∣∣∣cG,ε
lmk ,umk

(ηek; i, j)
∣∣∣ =√(ηek − lmk

+ 1)(umk
− ηek)

umk
− lmk

+ 1

∣∣$ek,ij

∣∣ > c28 (κ
e
n)

1/2 ∣∣$ek,ij

∣∣ , (E.28)

where$ek,ij = σ
e
k+1|i,j − σ

e
k|i,j and c28 is a positive constant. By (E.28) and Assumption 5, we have∣∣∣cG,ε,σ̂

lmk ,umk
(ηek; i, j))

∣∣∣ > c28 (κ
e
n)

1/2 ∣∣$ek,ij

∣∣ /σ. (E.29)

Following the proof of Proposition 3.3, and using Lemma E.2 and P
(
T̃el,u = T̂el,u

)
→ 1 from (E.18),

we have, for k such that l+ c22ϕ
e
n,d < η

e
k < u− c22ϕ

e
n,d,

∣∣∣cε̂,σ̂
lmk ,umk

(ηek; i, j)
∣∣∣ I( max

t:l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
>

(∣∣∣cG,ε,σ̂
lmk ,umk

(ηek; i, j)
∣∣∣− c27

√
(logd)(logn) − c23 log2(nd)

)
· I
(

max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
with probability approaching one uniformly over 1 6 i 6 j 6 d. This, together with (E.29), implies
that ∥∥∥Cε̂,Î

lmk ,umk
(ηek)

∥∥∥
2
>

∥∥∥CG,ε,I
lmk ,umk

(ηek)
∥∥∥

2
−

[
c27

√
(logd)(logn) + c23 log2(nd)

]
|Tel,u|

1/2

> (c28/σ) · (κenωek)
1/2

−

[
c27

√
(logd)(logn) + c23 log2(nd)

]
|Tel,u|

1/2(E.30)

with probability approaching one. Then, by the definitions of me0 and se0 , (E.19) and (E.30), and
noting that κenωen/ log4(nd)→∞ in Assumption 4(iii), we have∥∥∥Cε̂,Î

lme0
,ume0

(se0 )
∥∥∥

2
> max

k:l+c22ϕ
e
n,d<η

e
k<u−c22ϕ

e
n,d

∥∥∥Cε̂,Î
lmk ,umk

(ηek)
∥∥∥

2

> [c28/(2σ)] ·
(
|Tel,u|κ

e
nω

e
n/K2

)1/2 (E.31)

with probability approaching one. Choosing c26 = c28/(2K
1/2
2 σ), we can complete the proof of

(E.20). The proof of Lemma E.3 has been completed. �

LEMMA E.4. The function
∥∥∥CG,ε,I

lme0
,ume0

(s)
∥∥∥

2
(as a function of s) is either monotonic or first decreasing and
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then increasing on the interval
[
ηe
k̃

,ηe
k̃+1

]
if se0 ∈

[
ηe
k̃

,ηe
k̃+1

]
⊆
[
lme

0
,ume

0

)
. Furthermore,

{∥∥∥CG,ε,I
lme0

,ume0
(ηe
k̃
)
∥∥∥

2
∨
∥∥∥CG,ε,I

lme0
,ume0

(ηe
k̃+1)

∥∥∥
2

}
>
∥∥∥CG,ε,I

lme0
,ume0

(se0 )
∥∥∥

2
. (E.32)

PROOF. As the involvement of the indicator function (which does not depend on s) does not change
the quasi-convexity of the function, the result directly follows from Lemma D.5. �

We next provide an extension of Lemma 2.6 in Venkatraman (1992) and Lemma D.6 in Appendix
D to the WSBS-Cov method. Note that some notation used in Lemma E.5 below and its proof is
similar to that in Lemma D.6.

LEMMA E.5. Suppose that the assumptions of Lemma E.3 and (E.3)–(E.5) are satisfied. Let se? ∈ [lme
0
,ume

0
]

be the point of maximising
∥∥∥CG,ε,I

lm0 ,um0
(s)
∥∥∥

2
with respect to s, i.e.,

se? = arg max
lme0

6s<ume0

∥∥∥CG,ε,I
lme0

,ume0
(s)
∥∥∥

2
(E.33)

and define ηek� as a change point that satisfies∥∥∥CG,ε,I
lme0

,ume0
(ηek�)

∥∥∥
2
>
∥∥∥CG,ε,I

lme0
,ume0

(se?)
∥∥∥

2
− 3c23|T

e
l,u|

1/2 log2(nd), (E.34)

where c23 is defined in Lemma E.2. Then, there exists a positive constant c29 such that

(ηek� − lme
0
+ 1)∧ (ume

0
− ηek�) > c29κ

e
n (E.35)

when n is sufficiently large, and furthermore,∥∥∥CG,ε,I
lme0

,ume0
(ηek�)

∥∥∥
2
>
∥∥∥CG,ε,I

lme0
,ume0

(ηek� + vl)
∥∥∥

2
+ c30vl

∥∥∥CG,ε,I
lme0

,ume0
(ηek�)

∥∥∥
2
κen/(ume

0
− lme

0
+ 1)2, (E.36)

where 0 < vl < c31γ
e
n and γen = (κen/ω

e
n)

1/2 log2(nd), c30 and c31 are two positive constants.

PROOF. The proof is similar to the proof of Lemma D.6 in Appendix D. From the definition of se? in
(E.33) and using Lemma E.4, there exists a positive integer k? (whose value is often different from
k? used in the proof of Lemma D.6) such that se? = ηek? . First we prove that

(ηek? − l+ 1)∧ (u− ηek?) > κ
e
n − c22ϕ

e
n,d, (E.37)

where c22 is the same as that in (E.5). By (E.4) and (E.5), we have (ηek? − l+ 1)∧ (u− ηek?) is either
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smaller than c22ϕ
e
n,d or larger than κen − c22ϕ

e
n,d. Let

Gε,I
s =

[
Gεs,11 · I

(
max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; 1, 1)

∣∣∣ > ξen) , · · · ,Gεs,dd · I
(

max
t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t;d,d)

∣∣∣ > ξen)]ᵀ

,

a d(d+ 1)/2 column vector which denotes half-vectorisation of a d× d symmetric matrix with the
(i, j)-entry being Gεs,ij · I

(
maxt:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen). Note that

∥∥CG,ε,I
l,u (s)

∥∥
2
6

1
σ
·
√

(s− l+ 1)(u− s)

u− l+ 1

∥∥∥∥∥ 1
s− l+ 1

s∑
t=l

Gε,I
t −

1
u− s

u∑
t=s+1

Gε,I
t

∥∥∥∥∥
2

6 2bε,I
l,u

√
(s− l+ 1)∧ (u− s)/σ, (E.38)

where

bε,I
l,u = sup

l6s6u

∥∥∥∥∥Gε,I
s −

1
u− l+ 1

u∑
t=l

Gε,I
t

∥∥∥∥∥
2

.

If (ηek? − l + 1) ∧ (u − ηek?) 6 c22ϕ
e
n,d, we must have (ηek? − lme

0
+ 1) ∧ (ume

0
− ηek?) 6 c22ϕ

e
n,d,

implying that

c28
(
|Tel,u|κ

e
nω

e
n

)1/2
/σ 6

∥∥∥CG,ε,I
lme0

,ume0
(ηek?)

∥∥∥
2
6 2bε,I

lme0
,ume0

(
c22ϕ

e
n,d

)1/2
/σ, (E.39)

where the first inequality is proved by (E.19) and (E.29), and the second inequality is obtained
using (E.38). Noting that

bε,I
lme0

,ume0
6 K2(|T

e
l,u|ω

e
n)

1/2, (E.40)

the inequalities in (E.39) would lead to a contradiction with the condition κenωen/ log4(nd)→∞ in
Assumption 4(iii). Hence (E.37) has been proved, which indicates that there existsme? ∈Me

l,u such
that lme

?
∈ Iek? and ume

?
∈ Iek?+1.

We next prove that for n large enough,

(ηek? − lme
0
+ 1)∧ (ume

0
− ηek?) > c29κ

e
n. (E.41)

Suppose that (E.41) fails, i.e., for any c? and N, we have some n > N such that

(ηek? − lme
0
+ 1)∧ (ume

0
− ηek?) < c?κ

e
n. (E.42)

As in the proof of (D.48), without loss of generality, we let ηek? − lme
0
+ 1 < c?κen, and consider the

following two cases of ume
0
:

(i) ηek? 6 ume
0
< ηek0+k1

, or ηek0+k1+1 − c22ϕ
e
n,d 6 u 6 η

e
k0+k1+1 and ηek? < η

e
k0+k1

< ume
0
6 u;
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(ii) ηek0+k1
6 u 6 ηek0+k1

+ c22ϕ
e
n,d and ηek? < η

e
k0+k1

< ume
0
6 u.

The difference between cases (i) and (ii) is that in case (ii) we cannot find m ∈ Me
l,u such that

lm ∈ Iek0+k1
and um ∈ Iek0+k1+1. Consider case (i) first. By (E.39) and (E.40), we readily have that
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/σ, (E.43)

which would result in a contradiction if we choose a sufficiently small c? > 0. We next consider
case (ii). Since ηek0+k1

6 ume
0
6 u 6 ηek0+k1

+ c22ϕ
e
n,d in this case, we may show that
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·
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·
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e
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As κenω
e
n

log4(nd)
→∞ in Assumption 4(iii), we have

ϕen,db
ε,I
ume0

−c22ϕ
e
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=
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O
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)1/2 · log4(nd)/ωen

)
= o

((
|Tel,u| ·ωen
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,

which, together with the fact that 2bε,I
lme0

,ume0
−c22ϕ

e
n,d
> ωl,u >

(
|Tel,u|ω

e
n/K2
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ε,I
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−c22ϕ
e
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/κen = o
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,ume0
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e
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)
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Hence, we have
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(
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e
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e
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which would lead a contradiction as ωen � ωen in Assumption 4(iii) when c? > 0 is chosen to be
sufficiently small. Combining the above arguments, neither case (i) nor case (ii) holds, completing
the proof of (E.41). Following the similar argument and using (E.34), we may prove (E.35).
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We finally give the proof of (E.36). Consider two cases: (i) ume
0
6 ηek�+1 and (ii) ηek�+1 < ume

0
.

For case (i), we define vi = ηek� − lme
0
+ 1 and vh = ume

0
− ηek� . Let β = (β1, · · · ,βd(d+1)/2)

ᵀ with
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t:l6t<u

∣∣∣cG,ε,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
and k := k(i, j) = (i− 1)d+ j− (i− 1)j/2. Then we readily have that
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and similarly
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(
vh − vl
vh

)
·
[
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(vi + vl)(vh − vl)
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,

where the subscript k = (i− 1)d+ j− (i− 1)j/2. Following the same arguments as in the proof of
(D.52), we can show that
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lme0

,ume0
(ηek�)

∥∥∥
2
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. (E.44)

For case (ii), we let vi = ηek� − lme
0
+ 1, vh = (c29 ∧ 1)κen/3, vj = ume

0
− ηek� − vh, and

VeG = Gε,I
ηek�+1 −

1
u− l+ 1

u∑
t=l

Gε,I
t .

Then, for 0 6 vl 6 vh, we readily have that
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where β is defined as in case (i). Define
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and

E1 =

[∥∥∥CG,ε,I
lme0

,ume0
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.

Following the same argument in the proof of (D.53), we have

E(vl) − E1 > E2 × (1 + E3), (E.45)

where
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‖β‖2vl(vh − vl)

√
vi + vj + vh√
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.

Noting that vl is smaller than vh/2 and vi for large n, we have
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+ 1)2. (E.46)

Meanwhile, as (vj−vi)(vj−vi−vl) reaches its minimum at vj−vi = vl/2, vi, vj, vh > (c29 ∧1)κen/3
by (E.35) and vl = o(κen), following the proof of (D.55), we have

E3 >
−v2

l

4(1 +
√

2)(
√

2 +
√

2)[(c29 ∧ 1)κen/3]2
→ 0. (E.47)

Following the same arguments as in the proof of Lemma D.6, E1 is dominated by E2 when n is
sufficiently large, which, together with (E.45)–(E.47), indicates that the lower bound of E(vl) is
dominated by E2 when n is large enough. Combining the arguments for cases (i) and (ii), we may
complete the proof of (E.36). �

The following lemma can be seen as an extension of Lemma D.7 from WBS-Cov to WSBS-Cov.

LEMMA E.6. Suppose that (3.10), Assumptions 1–3, 4(i)(iii) and 5 in Appendix A, and (E.3)–(E.5) are
satisfied. There exists k0 + 1 6 k◦ 6 k0 + k1 such that∣∣se0 − ηek◦

∣∣ 6 c31γ
e
n,d (E.48)
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with probability approaching one, as n → ∞, where γen,d = (κen/ω
e
n)

1/2 log2(nd) and c31 is a positive
constant defined as in Lemma E.5.

PROOF. The proof is similar to the proof of Lemma D.7 in Appendix D. Without loss of generality,
assume that se0 ∈

[
ηe
k̃

,ηe
k̃+1

)
for k0 6 k̃ 6 k0 + k1. We next show the consequence if (E.48) fails and

consider two cases.

Case (i): only one of ηe
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and ηe
k̃+1 locates in the interval [lme

0
,ume

0
). Without loss of generality,

consider that ηe
k̃

belongs to the interval [lme
0
,ume

0
) and choose ηek◦ = η

e
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. By the definitions ofme0

and se0 , (E.18) and following the proof of Proposition 3.3, we readily have that∥∥∥CG,ε,I
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]
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1/2

6
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2
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]
|Tel,u|

1/2

(E.49)

with probability approaching one, where c23 is defined in Lemma E.2 and c27 is defined as in (E.26).
On the other hand, by Lemma E.4, without loss of generality, we only consider that

∥∥∥CG,ε,I
lme0

,ume0
(s)
∥∥∥

2
(treated as a function of s) locally decreases at [ηek◦ ,ume

0
) which includes the point of s = se0 . When

(E.48) fails, we have ∥∥∥CG,ε,I
lme0

,ume0
(se0 )
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2
<
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. (E.50)

for any s ∈ (ηek◦ ,η
e
k◦

+ c31γ
e
n]. By (E.34) and (E.36) in Lemma E.5 and (E.39), following the same

arguments as in case (i) in the proof of Lemma D.7, we have∥∥∥CG,ε,I
lme0

,ume0
(ηek◦)

∥∥∥
2
>
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]
|Tel,u|

1/2 (E.51)

by choosing c31 in Lemma E.5 to be sufficiently large. This leads to a contradiction with (E.49).

Case (ii): both ηe
k̃
, and ηe

k̃+1 are in the interval [lme
0
,ume

0
]. As in the proof of Lemma D.7,

we consider two scenarios: (ii.1)
∥∥∥CG,ε,I

lme0
,ume0

(s)
∥∥∥

2
locally decreases at the point s = se0 ; and (ii.2)∥∥∥CG,ε,I

lme0
,ume0

(s)
∥∥∥

2
locally increases at the point s = se0 . For scenario (ii.1), we choose ηek◦ = η

e
k̃

, and for

scenario (ii.2), we choose ηek◦ = η
e
k̃+1. In either of the two scenarios, we can similarly prove (E.51)

when (E.48) fails. This would lead to a contradiction with (E.49). The proof of the lemma has been
completed. �
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We next introduce some additional notation to be used in the subsequent proof. Let Zεt,ij =
εtiεtj and recall that

Zεt,ij = E [εtiεtj] + (εtiεtj − E [εtiεtj]) =: Gεt,ij + z
ε
t,ij.

For (i, j) satisfying 1 6 i 6 j 6 d, consider a one-to-one map: k(i, j) = d(i− 1) + j− j(i− 1)/2 and
let k := k(i, j) for notational simplicity. Define

Zε,I
•,k =

(
Zεlme0 ,ij · I

(
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.

The following lemma further improves the break point estimation rate obtained in Lemma E.6.

LEMMA E.7. Suppose that the conditions of Lemma E.6 are satisfied. With probability approaching one, we
have ∣∣se0 − ηek◦

∣∣ 6 c32ϕ
e
n,d (E.52)

as n→∞, where c32 is a positive constant and ϕen,d is defined in Theorem 3.2.

PROOF. For 1 6 i 6 j 6 d, we let k := k(i, j) = d(i− 1) + j− j(i− 1)/2 throughout the proof. Let
Cε,I
l,u(s;k) be the k-th element of Cε,I

l,u(s) and write Cε,I
lme0

,ume0
(s;k) = 〈Zε,I

•,k,ψslme0 ,ume0
〉/σ̂l,u(i, j) using

the notion of inner product, whereψsl,u is defined as in the proof of Lemma D.8. For lme
0
6 s < ume

0
,

defineQε,I
k (s; 1) =

∣∣∣〈Zε,I
•,k,ψslme0 ,ume0

〉
∣∣∣2, and let Z̄ε,Is

•,k and Ḡε,Is

•,k be defined similarly to ν̄s in the proof

of Lemma D.8 with ν replaced by Zε,I
•,k andGε,I

•,k, respectively.

By (D.60), we readily have
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2
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2
,

where Z̄ε,I
•,k is defined as ν̄ but with ν replaced by Zε,I

•,k. For lme
0
6 s < ume

0
, define

Qε,I
k (s; 2) = −
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2
.

By (D.61), we may show that

Qε,I
k (s; 1) > Qε,I

k (s; 2), k = 1, · · · ,d(d+ 1)/2. (E.53)
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Since Zε,I
•,k = Gε,I

•,k + z
ε,I
•,k, we have
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and
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Letting
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by (D.61), we have
Qε,I
k (s; 3) > Qε,I

k (s; 1) > 0. (E.54)

By (E.18), (E.53), (E.54), Proposition 3.3 and the definition of se0 , we have
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where σ̂l,u(k) := σ̂l,u(k(i, j)) = σ̂l,u(i, j), and Qε̂,Î
k (s; 1) is defined similarly to Qε,I

k (s; 1) but with
Zε,I
t replaced by Zε̂,Î

t . Hence, there exists a sufficiently large constant c33 > 0 such that
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holds with probability approaching one.

Letting c32 > 0 be sufficiently large, we next show that the assertion of
∣∣se0 − ηek◦

∣∣ > c32 log4(nd)/ωen
would lead to a contradiction with (E.55), which consequently proves (E.52). Defining
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We next show that with probability approaching one,
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and
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where c34 and c35 are two positive constants.

Without loss of generality, we assume that se0 > η
e
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. Note that
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Following standard calculations, we have
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for any s, where Zε,Is
t,k and Ḡε,Is

t,k are the (t− lme
0
+ 1)-th element in Z̄ε,Is

•,k and Ḡε,Is

•,k , respectively. By
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uniformly over s and k. This indicates that
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with probability approaching one. On the other hand,
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ε,Iη

e
k◦

•,k

〉
=

 ηek◦∑
t=lme0

+

se0∑
t=ηek◦+1

+

ume0∑
t=se0+1

 zε,I
t,k

(
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For Ξ1, we note that
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whereGε,I
t is defined in the proof of Lemma E.5. The asymptotic order for
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with probability approaching one. Using (E.59) and (E.62)–(E.65), we compete the proof of (E.57).

By Lemmas E.3 and E.5, we have
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completing the proof of (E.58).

Finally, by (E.57), (E.58) and Lemma E.6, we have
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which would lead to a contradiction with (E.55) if we choose c32 to be sufficiently large. The proof
of Lemma E.7 has been completed. �

PROOF OF THEOREM 3.2. When starting with the WSBS-Cov algorithm, we have l = 1 and u = n

and we may show that (E.3)–(E.5) are satisfied. Then, by (3.10), Lemmas E.3 and E.6, the estimated
change point se0 satisfies (E.52) with probability approaching one. In addition, Lemma E.5 shows
that se0 is not close to l and u, so it is a newly detected change point. By (E.52), we may show
that (E.3)–(E.5) still hold within each segment until all of the change points in the idiosyncratic
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error component are detected. By Lemma E.7, the estimated change points satisfy the convergence
result (E.52) with probability approaching one. Once all of the change points are detected, the
bounds of each segment l and u must fall into one of the following three scenarios: (i) there exists
1 6 k 6 K2 such that ηek < l < u 6 η

e
k+1; (ii) there exists 1 6 k 6 K2 such that l 6 ηek < u and

(ηek − l + 1) ∧ (u − ηek) 6 c32ϕ
e
n,d; (iii) there exists 1 6 k 6 K2 such that l 6 ηek < η

e
k+1 < u and

(ηek − l+ 1)∨ (u− ηek+1) 6 c32ϕ
e
n,d, where c32 is defined in Lemma E.7. For l and u satisfy either

of scenarios (i)–(iii), we may show that
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6s<ume0

∣∣∣cε̂lme0 ,ume0
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∣∣∣ = OP (log2(nd)
)

, (E.68)

which together with (3.10), Lemmas E.3 and E.5, indicates that no further change point could be
detected. Letting ιe = c32, the proof of Theorem 3.2 is completed. �

Appendix F: Additional simulation results

We next provide simulation studies to further compare the finite-sample performance between the
proposed methods and various other competing methods. As in Section 5 of the main document,
we consider the following factor model to generate data:

Xti =

r∑
j=1

λij,tFtj +
√
θεti, i = 1, · · · ,d, t = 1, · · · ,n. (F.1)

The replication number in each simulation cases is set to R = 100. For the 100 simulated samples,
we report the estimated number of break(s) as well as the accuracy measure ACUk for each break
defined in (5.2). In Example F.1 below, we compare the numerical performance among the WBS-
Cov and WSBS-Cov, BS-Cov and SBS-Cov algorithms, and examine the finite-sample influence
of different norms used in aggregation of the CUSUM quantities and various transformation
techniques used in construction of the CUSUM statistics.

EXAMPLE F.1. Consider the factor model in (F.1) with θ = 1. The sample size is n = 200, and
the dimension is d = 200. In this example, we consider the scenario of a single break in both the
common and idiosyncratic components: ηc1 = bn/3c+ 1 = 67 and ηe1 = b2n/3c = 133. The number
of factors is set to be r = 5, and each factor process is generated via an AR(1) model:

Ftj = ρjFt−1,j + utj, t = 1, · · · ,n, (F.2)

where utj follows a standard normal distribution independently over t and j, and ρj = 0.4 −
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0.05(j − 1) for j = 1, · · · , 5. The factor loadings λij,t are first generated from a standard normal
distribution independently over i and jwhen t is from 1 to ηc1 ; whereas after the break point ηc1 , the
factor loadings λij,t are shifted by a random amount N(0, 4) as in Barigozzi, Cho and Fryzlewicz
(2018). The sudden change on the factor loadings leads to break in the second-order moment
structure of the common components. The idiosyncratic errors εt follow a multivariate normal
distribution Nd (0,Σε) independently over t, where φj, the square root of the j-th diagonal element
of Σε, is generated from an independent uniform distribution U(0.5, 1.5), and the (i, j)-entry of
Σε is φiφj(−0.5)|i−j| for 1 6 i 6= j 6 d. After the break point ηe1 , we swap the orders of bρe1d/2c
randomly selected pairs of elements of εt (c.f., Cho and Fryzlewicz, 2015) with ρe1 chosen as
0.1, 0.5 or 1. Note that ρe1 = 0.1 indicates that the structural breaks are relatively sparse in the
high-dimensional error components, whereas ρe1 = 1 indicates that the breaks are dense.

Table 1: Comparison of detection results using different BS-based methods

Common components Idiosyncratic error components
Methods # break(%) ACU1(%) Methods # break(%) ACU1(%)

< 1 1 > 1 ηc1 = 67 < 1 1 > 1 ηe1 = 133
ρe1 = 1 BS-Cov 0 99 1 100 BS-Cov 0 97 3 100

SBS-Cov 0 97 3 100
WBS-Cov 0 99 1 100 WBS-Cov 0 98 2 98

WSBS-Cov 0 99 1 100
ρe1 = 0.5 BS-Cov 0 100 0 100 BS-Cov 0 96 4 99

SBS-Cov 0 99 1 98
WBS-Cov 0 100 0 100 WBS-Cov 0 94 6 95

WSBS-Cov 0 100 0 98
ρe1 = 0.1 BS-Cov 0 99 1 100 BS-Cov 24 72 4 53

SBS-Cov 20 80 0 61
WBS-Cov 0 99 1 100 WBS-Cov 28 70 2 31

WSBS-Cov 20 80 0 61

In Table 1, we compare the proposed WBS-Cov with the classical BS-Cov in detecting breaks
in the common components, and compare the proposed WSBS-Cov with the BS-Cov, WBS-Cov
and SBS-Cov in detecting breaks in the idiosyncratic components. For the break detection in the
common component, the finite-sample performance of WBS-Cov and BS-Cov are the same. For
the break detection in the idiosyncratic components, the four methods behave differently in finite
samples. When the breaks are sparse in the high-dimensional error covariance matrix (ρe1 = 0.1),
the sparsified detection techniques (WSBS-Cov and SBS-Cov) outperform the non-sparsified ones
(BS-Cov and WBS-Cov) in both the break number and location estimation; when the breaks are
dense (ρe1 = 0.5 and 1), the proposed WSBS-Cov has the best performance in estimating the break
number whereas the BS-Cov performs better than the other three methods in estimating the break
location.

In Table 2, we examine the finite-sample influence of different norms used in the aggregation
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Table 2: Comparison of detection results using different norms in the CUSUM statistics

Common components Idiosyncratic error components
# break(%) ACU1(%) # break(%) ACU1(%)

< 1 1 > 1 ηc1 = 67 < 1 1 > 1 ηe1 = 133
Breaks in common components
ρe1 = 1 l1 0 99 1 99 0 99 1 98

l2 0 99 1 100 0 99 1 100
l∞ 0 79 21 64 0 90 10 77
op 0 100 0 99 0 89 11 89

ρe1 = 0.5 l1 0 100 0 100 0 97 3 94
l2 0 100 0 100 0 100 0 98
l∞ 0 79 21 69 0 94 6 69
op 0 99 1 99 0 94 6 74

ρe1 = 0.1 l1 0 99 1 100 23 72 5 50
l2 0 99 1 100 20 80 0 61
l∞ 0 78 22 65 23 75 2 42
op 0 100 0 98 32 66 2 39

of the CUSUM quantities. For the idiosyncratic components, as in (2.12), the CUSUM statistic
aggregated with the l1-norm is defined by

d∑
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and the CUSUM statistic aggregated with the l∞-norm is defined by
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and the construction is similar for the common components. In addition, we also consider aggre-
gating via the operator norm, as suggested in Wang, Yu and Rinaldo (2021). For the idiosyncratic
components, let CM,ε̂

lm,um(s) be a d× dmatrix with the (i, j)-th entry being

cε̂,σ̂
lm,um(s; i, j)I

(
max
l6t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξen)
and then obtain the CUSUM statistic by taking the operator norm of CM,ε̂

lm,um(s). For the common
components, the CUSUM statistic is defined by taking the operator norm of the matrix:√

(s− l+ 1)(u− s)

u− l+ 1

[
1

s− l+ 1

s∑
t=l

F̂tF̂
ᵀ

t −
1

u− s

u∑
t=s+1

F̂tF̂
ᵀ

t

]
.

It is obvious from Table 2 that the l2-based detection method has the best finite-sample performance
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with more accurate estimated break number and higher ACU. The operator norm based detection
method performs well in break detection for the common components, but it performs poorly
when breaks are sparse in the idiosyncratic components.

Table 3: Comparison of detection results using different transformations in break detection

Common components Idiosyncratic error components
Methods # break(%) ACU1(%) Methods # break(%) ACU1(%)

< 1 1 > 1 ηc1 = 67 < 1 1 > 1 ηe1 = 133
ρe1 = 1 BCF 0 95 5 100 BCF(D) 0 100 0 100

BCF 0 100 0 100
WBS-Cov 0 99 1 100 WSBS-Cov(D) 0 100 0 99

WSBS-Cov 0 99 1 100
WAVELET 0 92 8 100 WAVELET 0 93 7 100
ADD-MNS 0 99 1 100 ADD-MNS 0 83 17 98

ρe1 = 0.5 BCF 0 94 6 100 BCF(D) 0 100 0 100
BCF 0 100 0 100

WBS-Cov 0 100 0 100 WSBS-Cov(D) 0 100 0 100
WSBS-Cov 0 100 0 98

WAVELET 0 96 4 100 WAVELET 0 100 0 98
ADD-MNS 0 100 0 100 ADD-MNS 0 90 10 95

ρe1 = 0.1 BCF 0 96 4 100 BCF(D) 24 76 0 55
BCF 50 50 0 44

WBS-Cov 0 99 1 100 WSBS-Cov(D) 21 79 0 65
WSBS-Cov 20 80 0 61

WAVELET 0 92 8 100 WAVELET 7 77 16 64
ADD-MNS 0 100 0 100 ADD-MNS 0 87 13 61

Table 3 reports the simulation result when different transformation techniques are used in
construction of the CUSUM statistics. In the table, “BCF” denotes the method proposed by
Barigozzi, Cho and Fryzlewicz (2018) which combines the wavelet-based transformation and the
double-CUSUM method, “WBS-Cov” denotes the proposed method in Section 2.3, and “WSBS-
Cov” denotes the proposed method in Section 2.4. For structural breaks in the covariance matrix of
the error components, we may detect the breaks only for its diagonal elements (variance) rather
than all the elements in the high-dimensional covariance matrix in order to save computational
time. This is considered in our simulation with “BCF(D)” and “WSBS-Cov(D)” denoting the “BCF”
and “WSBS-Cov” methods by only detecting breaks for the diagonal elements. Letting ai and aj
be either the common factors or the idiosyncratic errors, “ADD-MNS” denotes a transformation
of (ai + aj)2 and (ai − aj)

2 (e.g., Cho and Fryzlewicz, 2015) in the construction of the CUSUM
statistics (instead of aiaj in our proposed method), whereas “WAVELET” denotes the wavelet
transformation on ai and aj (e.g., Barigozzi, Cho and Fryzlewicz, 2018) in the construction of the
CUSUM statistics. The algorithms introduced in Sections 2.3 and 2.4 are used after making the
“WAVELET” and “ADD-MINS” transformations. The R package “factorcpt” is used to implement
Barigozzi, Cho and Fryzlewicz (2018)’s method in the simulation.
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From the table, the proposed WBS-Cov algorithm and the “ADD-MINS” method have the best
finite-sample performance in estimating the break in the common components. In terms of the
idiosyncratic components, the “WSBS” method has similar performance to the “BCF” method, and
the best performance is from the “WSBS-Cov(D)” method. In terms of “WAVELET” method, we
find that the thresholding parameter ξen selected in pre-estimation is too small, and thus use

√
2ξen

as the threshold. However, this method tends to over-estimate the break number. The performance
of the “ADD-MINS” method in estimating the break location is not as good as the other methods,
which might be caused by selection of the thresholding parameter ξen.

In the following example, we consider an alternative weak factor structure which is different
from that in Example 5.2 of the main document. The factor loadings are not sparse but have small
magnitude.

EXAMPLE F.2. We use model (F.1) to generate the data in simulation, where the number of factors
is r = 3, the sample size is n = 400, the dimension is d = 200, and θ = 1. The factor process
Ft is generated from a multivariate normal distribution N3 (0,Σ∗F) independently over t, where
Σ∗F is the covariance matrix specified as follows: the square root of the j-th diagonal element of
Σ∗F, is independently generated from a uniform distribution U(0.5, 1.5), and the (i, j)-entry of Σ∗F
is defined as φFiφ

F
j (0.5)|i−j| for 1 6 i 6= j 6 3. For 1 6 t 6 ηc1 = 100, the factor loadings for the

first factor, λi1 are independently generated from a uniform distribution U(−w,w), and the factor
loadings for the second and third factors, λi2 and λi3, are independently generated from a uniform
distribution U(−1, 1); for ηc1 < t 6 η

c
2 = 300, the factor loadings λi1 are regenerated from a uniform

distribution U(−w,w); whereas for ηc2 < t 6 400, the factor loadings corresponding to the first two
factors are regenerated by uniform distribution U(−w,w) and U(−1, 1), respectively. We consider
five different cases by setting w = n(ai−1)/2 with (a1, · · · ,a5) = (1, 0.85, 0.75, 2/3, 0.6).

The idiosyncratic errors εt follow a multivariate normal distribution Nd (0,Σε) independently
over t, where φj, the square root of the j-th diagonal element of Σε, is generated from an indepen-
dent uniform distribution U(0.5, 1.5), and the (i, j)-entry of Σε is φiφj(−0.5)|i−j| for 1 6 i 6= j 6 d.
We set three breaks ηe1 = bn/8c = 50, ηe2 = bn/2c = 200 and ηe3 = b7n/8c = 350. At each of the
three break points ηe1 and ηe2 , we swap the orders of b0.8d/2c randomly selected pairs of elements
of εt.

Table 4 shows that under-estimation of the factor number would negatively impact break
detection. In this example, the number of factors for the transformed factor model (2.4) is 6 (3
original factors plus 3 factors due to factor transformation accommodating breaks). However,
the mean value of q̂ is only 5.01 when w = 1 in case 1 and is even smaller in other cases when
factors are weaker. The information criterion tends to under-estimate the number of factors in
all cases. To see the impact of under-estimating the factor number, we set r to be 6 and 9, and
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Table 4: Break detection results for the weak factor model with non-sparse factor loadings

Common components Idiosyncratic error components
q̂ # break(%) ACU1(%) ACU2(%) # break(%) ACU1(%) ACU2(%) ACU3(%)

0 1 2 > 2 ηc1 = 100 ηc2 = 300 < 3 3 > 3 ηe1 = 50 ηe2 = 200 ηe3 = 350
Case 1 5.01 1 12 87 0 77 89 0 99 1 99 100 99

q̂ = 9 fixed 0 0 100 0 79 94 1 98 1 99 100 99
q̂ = 6 fixed 0 0 100 0 81 95 0 100 0 99 100 100
q̂ = 3 fixed 3 52 25 0 42 75 13 84 3 53 88 49

Case 2 4.11 3 33 64 0 54 78 0 99 1 98 100 99
q̂ = 9 fixed 0 3 97 0 77 92 0 99 1 99 100 100
q̂ = 6 fixed 0 7 93 0 75 93 0 100 0 99 100 100
q̂ = 3 fixed 3 68 29 0 26 68 2 93 5 84 98 81

Case 3 3.42 4 64 32 0 21 69 0 98 2 99 100 100
q̂ = 9 fixed 0 16 84 0 68 86 0 99 1 99 100 100
q̂ = 6 fixed 0 16 84 0 69 86 0 100 0 99 100 100
q̂ = 3 fixed 3 89 8 0 6 68 0 96 4 94 100 97

Case 4 3.01 10 74 16 0 12 65 0 98 2 98 100 100
q̂ = 9 fixed 0 34 66 0 52 83 1 99 0 99 100 99
q̂ = 6 fixed 0 36 64 0 54 83 0 100 0 99 100 100
q̂ = 3 fixed 1 98 1 0 2 73 0 98 2 98 100 100

Case 5 2.81 10 88 2 0 2 65 0 99 1 98 100 100
q̂ = 9 fixed 0 53 47 0 35 76 1 99 0 99 100 99
q̂ = 6 fixed 0 58 42 0 31 78 0 100 0 99 100 100
q̂ = 3 fixed 0 100 0 0 0 75 0 99 1 98 100 100

then detect the breaks again. We find that the performance of detection is improved significantly.
On the contrary, if we set r to be 3, the proposed break detection method performs worse for the
common components. Although under-estimation of the factor number also affects the detection
of breaks in the idiosyncratic components, the impact is not as significant as that on the common
components.
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