

Strict local martingale deflators and valuing American call-type options

Erhan Bayraktar · Constantinos Kardaras ·
Hao Xing

Received: 10 August 2009 / Accepted: 2 July 2010 / Published online: 17 March 2011
© Springer-Verlag 2011

Abstract We solve the problem of valuing and optimal exercise of American call-type options in markets which do not necessarily admit an equivalent local martingale measure. This resolves an open question proposed by Karatzas and Fernholz (Handbook of Numerical Analysis, vol. 15, pp. 89–167, Elsevier, Amsterdam, 2009).

Keywords Strict local martingales · Deflators · American call options

Mathematics Subject Classification (2000) 60G40 · 60G44

JEL Classification G13 · C60

1 Introduction

Let β be a strictly positive and nonincreasing process with $\beta_0 = 1$ and S a strictly positive semimartingale. In financial settings, S is the price of an underlying asset

E. Bayraktar is supported in part by the National Science Foundation under an applied mathematics research grant and a Career grant, DMS-0906257 and DMS-0955463, respectively, and in part by the Susan M. Smith Professorship. C. Kardaras is supported in part by the National Science Foundation under Grant No. DMS-0908461.

E. Bayraktar
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48104, USA
e-mail: erhan@umich.edu

C. Kardaras (✉)
Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA 02215, USA
e-mail: kardaras@bu.edu

H. Xing
Department of Statistics, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
e-mail: H.Xing@lse.ac.uk

and β the discount factor, i.e., the reciprocal of the value of the savings account. We shall assume throughout that there exists a strictly positive local martingale Z with $Z_0 = 1$ such that $L := Z\beta S$ is a local martingale. For simplicity in notation, we also denote $Y := Z\beta$, which is a supermartingale. Let $g : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a nonnegative convex function with $g(0) = 0$, $g(x) < x$ for some (and then for all) $x \in \mathbb{R}_{++} := \mathbb{R}_+ \setminus \{0\}$, and $\lim_{x \uparrow \infty} g(x)/x = 1$. The canonical example of such a function is $g(x) = (x - K)_+$ for $x \in \mathbb{R}_+$, where $K \in \mathbb{R}_{++}$ —this will correspond to the payoff function of an American call option in the discussion that follows. With $X := Yg(S)$, we consider the optimization problem

$$\text{compute } v := \sup_{\tau \in \mathfrak{T}} \mathbb{E}[X_\tau], \text{ and find } \hat{\tau} \in \mathfrak{T} \text{ such that } \mathbb{E}[X_{\hat{\tau}}] = v, \quad (\text{OS})$$

where \mathfrak{T} is used to denote the set of all stopping times (we consider also infinite-valued ones; we shall see later that $X_\infty := \lim_{t \rightarrow \infty} X_t$ is well defined and \mathbb{P} -a.s. finite). A stopping time $\hat{\tau} \in \mathfrak{T}$ such that $\mathbb{E}[X_{\hat{\tau}}] = v$ will be called *optimal* for the problem (OS). Since $g(x) \leq x$ for all $x \in \mathbb{R}_+$, $X \leq YS = L$. As a result, $v \leq L_0 = S_0 < \infty$.

Although the problem is defined for an infinite horizon, it includes as a special case any finite-horizon formulation. If the horizon is $T \in \mathfrak{T}$, then just consider the processes Z , S and β as being constant after T on the event $\{T < \infty\}$.

Only for the purposes of this introductory discussion, and in order to motivate the study of the problem (OS), we assume that Z is the unique local martingale that makes $Z\beta S$ a local martingale, as well as that the horizon of the problem is $T \in \mathfrak{T}$, where $\mathbb{P}[T < \infty] = 1$. Here, T denotes the *maturity* of an American claim with immediate payoff $g(S_\tau)$ when it is exercised at time $\tau \in \mathfrak{T}$ with $\tau \leq T$. It follows from Corollary 2.1 in [20] that any European contingent claim with maturity T can be perfectly hedged by dynamically trading in S and in the savings account. As a result, the market is still *complete*, even though the local martingale Z may be a strict local martingale. (See also Sect. 10 in [15].) There exists a càdlàg process $A = (A_t)_{t \in [0, T]}$ such that $A_t = Y_t^{-1} \text{esssup}_{\tau \in \mathfrak{T}[t, T]} \mathbb{E}[X_\tau | \mathcal{F}_t]$ for $t < T$ and $A_T = g(S_T)$ (see Lemma 2.4 in [20]). Here, for any $s \in \mathfrak{T}$ and $\tau \in \mathfrak{T}$, we let $\mathfrak{T}[s, \tau]$ denote the class of all $\tau' \in \mathfrak{T}$ with $s \leq \tau' \leq \tau$. Remark 2 in [20] shows that A is the smallest process with the properties that (a) A dominates $g(S)$ over $[0, T]$, and (b) $Z\beta A$ is a supermartingale. Additionally, owing to the *optional decomposition theorem* (see Theorem 2.1 in [20] and the references therein for the details), there exist a predictable process ϕ and an adapted nonnegative and nondecreasing process C with $C_0 = 0$ such that $\beta A = A_0 + \int_0^{\cdot} \phi_t d(\beta_t S_t) - C$. As a result, $v = A_0$ is the superhedging value of the American option with the payoff function g .

When there is a stock price *bubble*, i.e., $Z\beta S$ is a strict local martingale, or when the market allows for *arbitrage* opportunities relative to the bank account, i.e., Z is a strict local martingale, the values of derivative securities present several anomalies because of the lack of martingale property—see, for example, [3, 9, 11–13, 18, 19] and [15]. One instance of such an anomaly is the failure of the *put–call parity*. Our goal in this paper is to examine in detail the optimization problem (OS), and therefore gain a better understanding of valuing call-type American options in markets as discussed above. This resolves an open question put forth in [15, Remark 10.4]. We

give a condition that, when satisfied, guarantees the existence of optimal stopping times for (OS). If this condition is satisfied, we give an explicit expression for the smallest optimal stopping time. On the other hand, when this condition is violated, there are no optimal stopping times. Although there is generally no optimal exercise time, there are examples in which one prefers to exercise early. This should be contrasted to Merton's *no early exercise theorem* which applies when both Z and $Z\beta S$ are martingales. (This theorem states that it is optimal to exercise an American call option only at maturity.) The expression for v given in Theorem 2.4, our main result, generalizes [3, Theorem A.1] and [11, Proposition 4.1] to a setting where the underlying process is a general semimartingale with possibly discontinuous paths and the market does not necessarily admit a local martingale measure.

The structure of the paper is as follows. In Sect. 2, we give our main result, whose proof is deferred to Sect. 4. In Sect. 3, we give examples to illustrate our findings.

2 The main result

2.1 The setup

We work on a filtered probability space $(\Omega, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$. Here, \mathbb{P} is a probability on $(\Omega, \mathcal{F}_\infty)$, where $\mathcal{F}_\infty := \bigvee_{t \in \mathbb{R}_+} \mathcal{F}_t$. The filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ is assumed to satisfy the usual hypotheses of right-continuity and augmentation by \mathbb{P} -null sets. All relationships between random variables are understood in the \mathbb{P} -a.s. sense. All processes that appear in the sequel are assumed càdlàg unless noted otherwise; (in)equalities involving processes are supposed to hold everywhere with the possible exception of an evanescent set.

We keep all the notation from the introduction. In particular, \mathcal{T} denotes the set of *all* (possibly infinite-valued) stopping times with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$. In order to make sense of the problem described in (OS), we must ensure that $X_\infty := \lim_{t \rightarrow \infty} X_t$ exists, which we do now. As both Z and L are nonnegative local martingales, and in particular supermartingales, the random variables $Z_\infty := \lim_{t \rightarrow \infty} Z_t$ and $L_\infty := \lim_{t \rightarrow \infty} L_t$ are well defined and finite. By monotonicity, we can also define $\beta_\infty := \lim_{t \rightarrow \infty} \beta_t$. Define now a new function $h : \mathbb{R}_+ \cup \{\infty\} \rightarrow \mathbb{R}_+$ via $h(x) := g(x)/x$ for $x \in \mathbb{R}_{++}$, and $h(0) := \lim_{x \downarrow 0} h(x)$ as well as $h(\infty) := \lim_{x \uparrow \infty} h(x)$. Given the properties of g , it is plain to see that h is nonnegative, nondecreasing, $0 \leq h \leq 1$, and $h(\infty) = 1$. Furthermore, $X = L h(S)$. Now, on $\{L_\infty > 0\}$ we have $S_\infty := \lim_{t \rightarrow \infty} S_t = L_\infty / Y_\infty$ which takes values in $\mathbb{R}_{++} \cup \{\infty\}$; therefore, on $\{L_\infty > 0\}$ we have $X_\infty = L_\infty h(S_\infty)$. On the other hand, it is clear that on $\{L_\infty = 0\}$ we have $X_\infty = 0$, since h is a bounded function.

2.2 The default function

Recall that a nondecreasing sequence of stopping times $(\sigma^n)_{n \in \mathbb{N}}$ is a *localizing sequence* for L if $(L_{\sigma^n \wedge t})_{t \in \mathbb{R}_+}$ is a *uniformly integrable* martingale for all $n \in \mathbb{N}$ and $\uparrow \lim_{n \rightarrow \infty} \sigma^n = \infty$. The following result will allow us to define a very important function.

Lemma 2.1 Let $\tau \in \mathfrak{T}$ and consider any localizing sequence $(\sigma^n)_{n \in \mathbb{N}}$ for L . Then the sequence $(\mathbb{E}[X_{\tau \wedge \sigma^n}])_{n \in \mathbb{N}}$ is nondecreasing. Furthermore, the quantity

$$\delta(\tau) := \uparrow \lim_{n \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \sigma^n}] - \mathbb{E}[X_\tau] = \lim_{n \rightarrow \infty} \mathbb{E}[X_{\sigma^n} \mathbb{I}_{\{\tau > \sigma^n\}}] \quad (2.1)$$

is nonnegative and independent of the choice of the localizing sequence $(\sigma^n)_{n \in \mathbb{N}}$ for L .

Proof Let $\bar{g} : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be defined via $\bar{g}(x) := x - g(x)$ for $x \in \mathbb{R}_+$; so \bar{g} is nonnegative, nondecreasing, and concave. Define also $W := Y\bar{g}(S)$, so that $X = L - W$. First, let us show that W is a nonnegative supermartingale. Let $(s^n)_{n \in \mathbb{N}}$ be a localizing sequence for Z . For each $n \in \mathbb{N}$, we define a probability $\mathbb{Q}^n \sim \mathbb{P}$ on $(\Omega, \mathcal{F}_\infty)$ via $d\mathbb{Q}^n = Z_{s^n} d\mathbb{P}$. Let $u \in \mathbb{R}_+$ and $t \in \mathbb{R}_+$ with $u \leq t$. Then, using throughout that $u \wedge s^n = u$ and $u \leq t \wedge s^n$ holds on $\{s^n > u\}$,

$$\begin{aligned} \mathbb{E}\left[Z_t \frac{\beta_t}{\beta_u} \bar{g}(S_t) \middle| \mathcal{F}_u\right] &\leq \liminf_{n \rightarrow \infty} \mathbb{E}\left[Z_{t \wedge s^n} \frac{\beta_{t \wedge s^n}}{\beta_{u \wedge s^n}} \bar{g}(S_{t \wedge s^n}) \middle| \mathcal{F}_u\right] \\ &= \liminf_{n \rightarrow \infty} \mathbb{E}\left[Z_{t \wedge s^n} \frac{\beta_{t \wedge s^n}}{\beta_u} \bar{g}(S_{t \wedge s^n}) \middle| \mathcal{F}_u\right] \mathbb{I}_{\{s^n > u\}} \\ &= \liminf_{n \rightarrow \infty} Z_u \mathbb{E}_{\mathbb{Q}^n}\left[\frac{\beta_{t \wedge s^n}}{\beta_u} \bar{g}(S_{t \wedge s^n}) \middle| \mathcal{F}_u\right] \mathbb{I}_{\{s^n > u\}} \\ &\leq Z_u \liminf_{n \rightarrow \infty} \mathbb{E}_{\mathbb{Q}^n}\left[\bar{g}\left(\frac{\beta_{t \wedge s^n} S_{t \wedge s^n}}{\beta_u}\right) \middle| \mathcal{F}_u\right] \mathbb{I}_{\{s^n > u\}} \\ &\leq Z_u \liminf_{n \rightarrow \infty} \bar{g}\left(\mathbb{E}_{\mathbb{Q}^n}\left[\frac{\beta_{t \wedge s^n} S_{t \wedge s^n}}{\beta_u} \middle| \mathcal{F}_u\right]\right) \mathbb{I}_{\{s^n > u\}} \\ &\leq Z_u \liminf_{n \rightarrow \infty} \bar{g}(S_u) \mathbb{I}_{\{s^n > u\}} = Z_u \bar{g}(S_u). \end{aligned}$$

Here, the first inequality follows from Fatou's lemma. The first identity holds due to $\lim_{n \rightarrow \infty} s^n = \infty$. The second inequality follows from the concavity of \bar{g} , noting that $\bar{g}(0) = 0$. The third inequality is due to Jensen's inequality, and the last one to the fact that \bar{g} is nondecreasing and $\mathbb{E}_{\mathbb{Q}^n}[\beta_{t \wedge s^n} S_{t \wedge s^n} \mid \mathcal{F}_{u \wedge s^n}] \leq \beta_u S_u$ on $\{s^n > u\}$ for each $n \in \mathbb{N}$.

Let $(\sigma^n)_{n \in \mathbb{N}}$ be any localizing sequence for L . To see that $(\mathbb{E}[X_{\tau \wedge \sigma^n}])_{n \in \mathbb{N}}$ is nondecreasing, simply write $\mathbb{E}[X_{\tau \wedge \sigma^n}] = \mathbb{E}[L_{\tau \wedge \sigma^n} - W_{\tau \wedge \sigma^n}] = L_0 - \mathbb{E}[W_{\tau \wedge \sigma^n}]$ and use the supermartingale property of W .

Now, pick another localizing sequence $(\tilde{\sigma}^m)_{m \in \mathbb{N}}$ for L . For fixed $n \in \mathbb{N}$, the family $\{Y_{\tilde{\sigma} \wedge \sigma^n} S_{\tilde{\sigma} \wedge \sigma^n} \mid \tilde{\sigma} \in \mathfrak{T}\}$ is uniformly integrable. Since $0 \leq X_{\tilde{\sigma} \wedge \sigma^n} \leq Y_{\tilde{\sigma} \wedge \sigma^n} S_{\tilde{\sigma} \wedge \sigma^n}$ holds for all $n \in \mathbb{N}$ and $\tilde{\sigma} \in \mathfrak{T}$, $\{X_{\tilde{\sigma} \wedge \sigma^n} \mid \tilde{\sigma} \in \mathfrak{T}\}$ is also a uniformly integrable family for each $n \in \mathbb{N}$. Similarly, we can also derive that $\{X_{\sigma \wedge \tilde{\sigma}^m} \mid \sigma \in \mathfrak{T}\}$ is a uniformly integrable family for each $m \in \mathbb{N}$. It follows that both processes $(X_{\sigma^n \wedge t})_{t \in \mathbb{R}_+}$ and $(X_{\tilde{\sigma}^m \wedge t})_{t \in \mathbb{R}_+}$ are submartingales of class D for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$. (Note that we already know

that $X = L - W$ is a local submartingale.) As a result,

$$\begin{aligned}\lim_{n \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \sigma^n}] &= \lim_{n \rightarrow \infty} \mathbb{E}\left[\lim_{m \rightarrow \infty} X_{\tau \wedge \sigma^n \wedge \tilde{\sigma}^m}\right] \\ &= \lim_{n \rightarrow \infty} \lim_{m \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \sigma^n \wedge \tilde{\sigma}^m}] \\ &= \lim_{m \rightarrow \infty} \lim_{n \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \sigma^n \wedge \tilde{\sigma}^m}] \\ &= \lim_{m \rightarrow \infty} \mathbb{E}\left[\lim_{n \rightarrow \infty} X_{\tau \wedge \sigma^n \wedge \tilde{\sigma}^m}\right] \\ &= \lim_{m \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \tilde{\sigma}^m}].\end{aligned}$$

Above, the limits in the third identity can be exchanged due to the fact that the double sequence $(\mathbb{E}[X_{\tau \wedge \sigma^n \wedge \tilde{\sigma}^m}])_{n \in \mathbb{N}, m \in \mathbb{N}}$ is nondecreasing in both n and m .

The fact that $\delta(\tau) \geq 0$ follows from the second identity in (2.1). \square

Remark 2.2 Suppose that $\tau \in \mathfrak{T}$ is such that $\mathbb{E}[Z_\tau] = Z_0 = 1$. In this case, $(Z_{\tau \wedge t})_{t \in \mathbb{R}_+}$ is a uniformly integrable martingale and one can define a probability $\mathbb{Q} \ll \mathbb{P}$ on $(\Omega, \mathcal{F}_\infty)$ via $d\mathbb{Q} = Z_\tau d\mathbb{P}$. Then $\mathbb{E}[X_\tau] = \mathbb{E}_{\mathbb{Q}}[\beta_\tau g(S_\tau)]$ (with conventions about the value of $\beta_\tau g(S_\tau)$ on $\{\tau = \infty\}$ similarly to the ones discussed for X previously). Let $\bar{g} : \mathbb{R}_+ \rightarrow \mathbb{R}$ be defined as in the beginning of the proof of Lemma 2.1. Since $\lim_{x \rightarrow \infty} \bar{g}(x)/x = 0$, there exists a nondecreasing function $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \cup \{\infty\}$ such that $\phi(\bar{g}(x)) \leq x$ for all $x \in \mathbb{R}_+$ and $\lim_{x \rightarrow \infty} \phi(x)/x = \infty$. Then

$$\begin{aligned}\sup_{\tau' \in \mathfrak{T}[0, \tau]} \mathbb{E}_{\mathbb{Q}}[\phi(\beta_{\tau'} \bar{g}(S_{\tau'}))] &\leq \sup_{\tau' \in \mathfrak{T}[0, \tau]} \mathbb{E}_{\mathbb{Q}}[\phi(\bar{g}(\beta_{\tau'} S_{\tau'}))] \\ &\leq \sup_{\tau' \in \mathfrak{T}[0, \tau]} \mathbb{E}_{\mathbb{Q}}[\beta_{\tau'} S_{\tau'}] = S_0 < \infty.\end{aligned}$$

From de la Vallée–Poussin's criterion, $\{\beta_{\tau'} \bar{g}(S_{\tau'}) | \tau' \in \mathfrak{T}[0, \tau]\}$ is uniformly integrable with respect to \mathbb{Q} . Then

$$\begin{aligned}\delta(\tau) &= \lim_{n \rightarrow \infty} (\mathbb{E}[L_{\tau \wedge \sigma^n}] - \mathbb{E}_{\mathbb{Q}}[\beta_{\tau \wedge \sigma^n} \bar{g}(S_{\tau \wedge \sigma^n})]) - (\mathbb{E}[L_\tau] - \mathbb{E}_{\mathbb{Q}}[\beta_\tau \bar{g}(S_\tau)]) \\ &= L_0 - \mathbb{E}[L_\tau]\end{aligned}\tag{2.2}$$

holds for any localizing sequence $(\sigma^n)_{n \in \mathbb{N}}$ of L . It follows that $\delta(\tau)$ is equal to the default of the local martingale L at τ .

As a consequence of the above observation, if Z is a uniformly integrable martingale (and, in particular, if $Z \equiv 1$), the function δ is the same for all payoff functions g (as long as g satisfies the requirements specified in the introduction, of course). This is no longer the case when Z is not a uniformly integrable martingale, as we shall see later on in Example 3.2.

2.3 A candidate for the smallest optimal stopping time

We now aim at defining a stopping time τ^* that will be crucial in the solution of problem (OS). We need a preliminary result concerning a nice version of two processes, m

and M , that have the following property: for all stopping times τ , the random interval $[m_\tau, M_\tau]$ is the conditional support of $(S_t)_{t \in [\tau, \infty[}$ given \mathcal{F}_τ .

Lemma 2.3 *Let $\underline{S} := \inf_{t \in [\cdot, \infty[} S_t$ and $\bar{S} := \sup_{t \in [\cdot, \infty[} S_t$. (The processes \underline{S} and \bar{S} are nonnegative, nondecreasing and nonincreasing respectively, càdlàg, and not adapted in general.) Then there exist a nondecreasing nonnegative càdlàg process m and a nonincreasing nonnegative $[0, \infty]$ -valued càdlàg adapted process M such that (a) $m \leq \underline{S} \leq \bar{S} \leq M$, and (b) for all other processes m' and M' that have the same properties as m and M described previously, we have $m' \leq m \leq M \leq M'$.*

Proof For all $t \in \mathbb{R}_+$, let $\underline{\mathcal{C}}_t = \{\xi \mid \xi \text{ is } \mathcal{F}_t\text{-measurable and } \xi \leq \underline{S}_t\}$. Then let m_t^0 denote the essential supremum of $\underline{\mathcal{C}}_t$, uniquely defined up to \mathbb{P} -a.s. equality. Since $\underline{\mathcal{C}}_t$ is a directed set, $m_t^0 \in \underline{\mathcal{C}}_t$. Furthermore, for all $t' \geq t$ we have $m_t^0 \in \underline{\mathcal{C}}_{t'}$; therefore $\mathbb{P}[m_t^0 \leq m_{t'}^0] = 1$. Next, we construct a càdlàg modification of m_t^0 . Define

$$m_t = \inf_{\mathbb{D} \ni t' > t} \sup_{\mathbb{D} \ni u \leq t'} m_u^0,$$

where \mathbb{D} is a countable and dense subset of \mathbb{R}_+ . As the filtration is right-continuous, we still have $m_t \in \mathcal{F}_t$ for $t \in \mathbb{R}_+$. Also, $\mathbb{P}[m_t \geq m_t^0] = 1$ holds for $t \in \mathbb{R}_+$. The right-continuity of S gives that $m_t \in \underline{\mathcal{C}}_t$ for $t \in \mathbb{R}_+$; it follows that $\mathbb{P}[m_t^0 = m_t] = 1$ holds for all $t \in \mathbb{R}_+$. By construction, m is right-continuous and nondecreasing. We define M in a similar way, starting by setting M_t^0 to be the essential infimum of $\bar{\mathcal{C}}_t = \{\xi \mid \xi \text{ is } \mathcal{F}_t\text{-measurable and } \bar{S}_t \leq \xi\}$ for $t \in \mathbb{R}_+$, which might take the value ∞ with positive probability. It is straightforward to check that the two processes, m and M , have the properties in the statement of the lemma. \square

Define $g' : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ via $g'(x) := \downarrow \lim_{n \rightarrow \infty} n(g(x + 1/n) - g(x))$ for $x \in \mathbb{R}_+$, i.e., g' is the right derivative of g . The function g' is right-continuous, nonnegative and nondecreasing. Let $K := \sup\{x \in \mathbb{R}_+ \mid g(x) = g'(0)x\}$; in the case of a call option, $g'(0) = 0$ and K corresponds to the strike price. We also define two functions, $\ell : \mathbb{R}_{++} \rightarrow \mathbb{R}_+$ and $r : \mathbb{R}_{++} \rightarrow \mathbb{R}_{++} \cup \{\infty\}$, by setting

$$\begin{aligned} \ell(x) &:= \inf\{y \in \mathbb{R}_+ \mid g'(y) = g'(x)\}, \\ r(x) &:= \sup\{y \in \mathbb{R}_+ \mid g'(y) = g'(x)\} \end{aligned}$$

for all $x \in \mathbb{R}_{++}$. It is clear that ℓ and r are nondecreasing, that $\ell(x) \leq x \leq r(x)$ for all $x \in \mathbb{R}_{++}$, and that g is affine on each interval $[\ell(x), r(x)]$ for $x \in \mathbb{R}_{++}$. It is also straightforward that there exists an at most countable collection of intervals $I_i = [\lambda_i, \rho_i] \subseteq \mathbb{R}_+$, $i \in \mathbb{N}$, with $\lambda_i < \rho_i$, $]\lambda_i, \rho_i] \cap]\lambda_j, \rho_j] = \emptyset$ for $\mathbb{N} \ni i \neq j \in \mathbb{N}$, and such that each I_i is equal to $[\ell(x), r(x)]$ for some $x \in \mathbb{R}_{++}$.

We are now ready to define the candidate τ^* for the minimal optimal stopping time for the problem (OS). To get an intuition for this, consider the case where $Z \equiv 1$. Sitting at some point in time, suppose that we know that S will actually stay forever in $[0, K]$; in that case, and since $g(x) = g'(0)x$ holds for $x \in [0, K]$, X will be a local martingale from that point onwards; therefore, we should stop. Further, suppose that we know that S will never escape from an interval where g is affine, other than $[0, K]$.

(which of course includes the case that S remains a constant), as well as that β will certainly not decrease further. We again have that the process X will behave like a nonnegative local martingale from that point onwards, which implies that it is optimal to stop immediately. Therefore, we should certainly stop in either of the above cases.

We proceed now more rigorously in the construction of τ^* . Define the stopping time $\tau_K := \inf\{t \in \mathbb{R}_+ \mid M_t \leq K\}$. With ζ denoting the càdlàg modification of the nonnegative supermartingale $(\beta_t - \mathbb{E}[\beta_\infty \mid \mathcal{F}_t])_{t \in \mathbb{R}_+}$, define $\tilde{\tau} := \inf\{t \in \mathbb{R}_+ \mid \zeta_t = 0\}$. On $\{\tilde{\tau} < \infty\}$, we have $\zeta_{\tilde{\tau}} = 0$, which is equivalent to $\beta_{\tilde{\tau}} = \beta_\infty$ since β is nonincreasing. For each $I_i = [\lambda_i, \rho_i]$, $i \in \mathbb{N}$, as described above, define

$$\tau^i := \tilde{\tau} \vee \inf\{t \in \mathbb{R}_+ \mid \lambda_i \leq m_t \leq M_t \leq \rho_i\}.$$

Finally, define the stopping time $\tau^0 := \inf\{t \in \mathbb{R}_+ \mid m_t = M_t\}$; observe that $\tilde{\tau} \leq \tau^0$, since both $Z\beta S$ and Z are local martingales. Finally, we define

$$\tau^* := \tau_K \wedge \left(\inf_{i \in \mathbb{N} \cup \{0\}} \tau^i \right). \quad (2.3)$$

From the construction of τ^* , it is clear that on $\{\tau^* < \tau_K\}$, we have $\beta_{\tau^*} = \beta_\infty$ and $\ell(S_{\tau^*}) \leq \inf_{t \in [\tau^*, \infty[} S_t \leq \sup_{t \in [\tau^*, \infty[} S_t \leq r(S_{\tau^*})$.

2.4 The main result

Here is our main result, whose proof is given in Sect. 4.

Theorem 2.4 *For the problem described in (OS), we have the following:*

1. *The value of the problem is $v = \mathbb{E}[X_{\tau^*}] + \delta(\tau^*) = \mathbb{E}[X_\infty] + \delta(\infty)$.*
2. *A stopping time $\hat{\tau} \in \mathfrak{T}$ is optimal if and only if $\tau^* \leq \hat{\tau}$ as well as $\delta(\hat{\tau}) = 0$.*
3. *Optimal stopping times exist if and only if $\delta(\tau^*) = 0$. In that case, τ^* is the smallest optimal stopping time, and the set of all optimal stopping times is given by $\{\hat{\tau} \in \mathfrak{T} \mid \tau^* \leq \hat{\tau} \text{ and } \delta(\hat{\tau}) = 0\}$.*

Remark 2.5 When the problem has a finite horizon $T \in \mathfrak{T}$, the value of (OS) is

$$v = \mathbb{E}[X_T] + \delta(T). \quad (2.4)$$

When $\beta = 1$, $\mathbb{E}[Z_T] = 1$ and ZS is a continuous strict local martingale, (2.4) has been proved in Theorem A.1 in [3] and Proposition 2 in [18]. Theorem 2.4(1) generalizes these results to a setting in which β need not be 1, S may have jumps, and Z need not necessarily be a martingale.

Remark 2.6 In proving Theorem 2.4, we take a bare-hands approach to the problem described in (OS), instead of using the well-developed theory of optimal stopping using Snell envelopes. The reason is the following. The most celebrated result from optimal stopping theory (see [8] and Appendix D in [17]) only gives a *sufficient* condition that guarantees the existence of optimal stopping times. To use this result, we should have to assume that the process $X = (Y_t g(S_t))_{t \in \mathbb{R}_+}$ is of class D. However,

in general, this fails in problem (OS). For example, when $Z \equiv 1$ and $g(x) = (x - K)_+$ for $x \in \mathbb{R}_+$ (where $K \in \mathbb{R}_{++}$), the process $(\beta_t g(S_t))_{t \in \mathbb{R}_+}$ is of class D if and only if βS is a martingale. This is insufficient for our purposes, since we are interested in cases where βS is a strict local martingale.

3 Examples

Throughout this section, we assume that the horizon of (OS) is $T \in \mathbb{R}_{++}$. In Sect. 3.1, we give two examples and show that the smallest optimal exercise time may be equal to T or strictly less than T . In Sect. 3.2, we discuss the implication of Theorem 2.4 on the put–call parity. In Sect. 3.3, we show that in a Markovian setting, the value of an American call option is one of infinitely many solutions of a Cauchy problem; we also indicate how one can uniquely identify the American call value using the put–call parity. In Sect. 3.4, we give an example to show that optimal exercise times need not exist and that the American call option value may always be strictly greater than the payoff even at infinity, which further complicates the numerical valuation of American options using finite difference methods.

3.1 Optimal exercise times

Here, we assume that the payoff g is the call option payoff, i.e., $g(x) = (x - K)_+$ for $x \in \mathbb{R}_+$, where $K \in \mathbb{R}_{++}$ is the strike price. In this case, $\bar{g}(x) = x - g(x) = x \wedge K$. Also, the interval $[\ell(S_t), r(S_t)]$ is either $[0, K]$ or $[K, \infty]$ for any $t \leq T$. In both examples below, we assume that the stochastic basis is rich enough to accommodate a process Z which is the reciprocal of a 3-dimensional Bessel process starting from one; this is a classical example, due to [14], of a strict local martingale.

Example 3.1 With Z as above, define $\beta \equiv 1$ and $S = 1/Z$; then $L = Z\beta S \equiv 1$ is a martingale. It was shown in [4] that arbitrage opportunities exist in a market with this asset S . Such an arbitrage opportunity was explicitly given in Example 4.6 in [16].

For $t < T$ and given \mathcal{F}_t (and therefore S_t), S crosses K in $[t, T]$ with strictly positive probability, which can be shown using the explicit expression for its density given by (1.06) on p. 429 in [2]. Therefore $\tau^* = T$ is the only candidate for an optimal stopping time. We claim that $\delta(T) = 0$, hence T is the only optimal stopping time by Theorem 2.4(3). This claim is not hard to prove; indeed, since $L \equiv 1$, we can choose $\sigma^n = n$ for all $n \in \mathbb{N}$ as a localizing sequence for L . Then we obtain $\delta(T) = \lim_{n \rightarrow \infty} \mathbb{E}[X_{T \wedge n}] - \mathbb{E}[X_T] = 0$, because $\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_T]$ for all $n \in \mathbb{N}$ with $n \geq T$.

The terminal time T may be not the only candidate to exercise optimally. In the following example, it is optimal to exercise before T .

Example 3.2 With Z as above, define

$$K = 2, \quad S_t = \begin{cases} 1, & t < t_0, \\ 4, & t \geq t_0 \end{cases} \quad \text{and} \quad \beta_t = \begin{cases} 1, & t < t_0, \\ 1/4, & t \geq t_0 \end{cases}$$

for all $t \in [0, T]$, where t_0 is a constant with $0 < t_0 < T$. Hence both Z and L are strict local martingales. It is clear that $\tau^* = t_0$. Let $(\tilde{\sigma}^n)_{n \in \mathbb{N}}$ be a sequence localizing Z (and, since $L = Z$, localizing L as well). We have from Lemma 2.1 that

$$\delta(t_0) = \lim_{n \rightarrow \infty} \mathbb{E}[Y_{\tilde{\sigma}^n} (S_{\tilde{\sigma}^n} - K)_+ \mathbb{I}_{\{t_0 > \tilde{\sigma}^n\}}] = 0,$$

because $S_{\tilde{\sigma}^n} < K$ on $\{\tilde{\sigma}^n < t_0\}$. Therefore, t_0 is the smallest optimal exercise time by Theorem 2.4(3). The value of this problem is $v = \mathbb{E}[Y_{t_0} (S_{t_0} - K)_+] = \mathbb{E}[Z_{t_0}] / 2$. Moreover, with $\xi^n := \inf\{t \geq t_0 \mid Z_t / Z_{t_0} \geq n\}$ for $n \in \mathbb{N}$, we have $\mathbb{E}[Z_{\xi^n}] = \mathbb{E}[Z_{t_0}]$. It follows that any element of the sequence $(\xi^n)_{n \in \mathbb{N}}$ is an optimal stopping time.

It is also worth noticing that even though t_0 is an optimal exercise time, we have $\delta(t_0) < L_0 - \mathbb{E}[L_{t_0}]$. (Compare this fact to (2.2) in Remark 2.2.) This observation follows from $L_0 - \mathbb{E}[L_{t_0}] = 1 - \mathbb{E}[Z_{t_0}] > 0$ and $\delta(t_0) = 0$, which we have shown above.

Let us also use this example to show that the mapping δ depends on the form of the payoff function g . For this purpose, pick another call option with strike price $\hat{K} = 1/2$. For this option, $\delta(t_0) = (1/2) \lim_{n \rightarrow \infty} \mathbb{E}[Z_{\tilde{\sigma}^n} \mathbb{I}_{\{t_0 > \tilde{\sigma}^n\}}]$, which is strictly positive. This is because

$$\lim_{n \rightarrow \infty} [Z_{\tilde{\sigma}^n} \mathbb{I}_{\{t_0 > \tilde{\sigma}^n\}}] = \lim_{n \rightarrow \infty} \mathbb{E}[Z_{t_0 \wedge \tilde{\sigma}^n}] - \lim_{n \rightarrow \infty} [Z_{t_0} \mathbb{I}_{\{t_0 \leq \tilde{\sigma}^n\}}] = 1 - \mathbb{E}[Z_{t_0}] > 0,$$

in which the second equality follows from the dominated convergence theorem. The dependence of δ on g should be contrasted to (2.2) in Remark 2.2, which shows that δ does not depend on the form of g when Z is a uniformly integrable martingale.

3.2 Put–call parity

The parity between prices of put and call options has been widely discussed in the literature. We briefly revisit this relationship in our framework. We stress that the discussion below pertains to the values of options according to the definitions given here, and not to market prices. Our development thus far does not involve any transaction mechanism; for this reason, we refrain from talking about *pricing* and rather talk about *valuation*. Recall that $T \in \mathbb{R}_{++}$ is fixed.

If either the discounted stock price or the local martingale Z is a strict local martingale, the put–call parity fails; see Theorem 3.4(iii) in [3], Sect. 3.2 in [11], [13], and [12] when Z is uniformly integrable and $Z\beta S$ is a strict local martingale. (In [13], it is shown that the put–call parity holds under Merton’s concept of no dominance, although it fails when only no free lunch with vanishing risk is assumed.) For the case where Z is a strict local martingale, see Remarks 9.1 and 9.3 in [10] and Remark 10.1 in [15].

We assume here that there exists a unique local martingale Z that makes $Z\beta S$ a local martingale. We also assume that Z is actually a martingale. One can then define a probability measure $\mathbb{Q} \sim \mathbb{P}$ on $(\mathcal{Q}, \mathcal{F}_T)$ via $d\mathbb{Q} = Z_T d\mathbb{P}$. As a result, βS is a local martingale under \mathbb{Q} . In this setting, we show below that the put–call parity still holds when the European call option is replaced by its American counterpart.

With an obvious extension of Theorem 2.4(1), and in par with Remark 2.2, we obtain that the American option value process A can be represented by

$$A_t = \mathbb{E}_{\mathbb{Q}}[(\beta_T/\beta_t) g(S_T) | \mathcal{F}_t] + \mathbb{E}_{\mathbb{Q}}[S_t - (\beta_T/\beta_t) S_T | \mathcal{F}_t] \quad \text{for all } t \in [0, T].$$

Recalling from the proof of Lemma 2.1 that $\bar{g}(x) = x - g(x)$ for $x \in \mathbb{R}_+$, one has

$$A_t = S_t - \beta_t^{-1} \mathbb{E}_{\mathbb{Q}}[\beta_T \bar{g}(S_T) | \mathcal{F}_t].$$

Now if we denote $\bar{E}_t := \beta_t^{-1} \mathbb{E}_{\mathbb{Q}}[\beta_T \bar{g}(S_T) | \mathcal{F}_t]$ for each $t \in [0, T]$, which is the value at time t of a European option with the payoff $\bar{g}(S_T)$ at maturity, we obtain

$$A + \bar{E} = S. \quad (3.1)$$

Therefore, we retrieve the put–call parity, but with an American option on the “call” side instead of a European. Moreover, (3.1) helps us uniquely identify the American option value in the Markovian case in the next subsection.

3.3 Characterizing the American option value in terms of PDEs

Here, in addition to all the assumptions of Sect. 3.2, we further assume that the discounting process is $\beta = \exp(-\int_0^t r(u) du)$, where the interest rate r is nonnegative and deterministic, as well as that the dynamics of S under the probability \mathbb{Q} is given by

$$dS_t = r(t) S_t dt + \alpha(S_t) dB_t, \quad (3.2)$$

where B is a Brownian motion under \mathbb{Q} . We assume that $\alpha(x) > 0$ for $x > 0$, $\alpha(0) = 0$, and that α is continuous and locally Hölder-continuous with exponent $1/2$, so that the stochastic differential equation (3.2) has a unique strong nonnegative solution S . Additionally, the nonnegative volatility α satisfies $\int_1^\infty (x/\alpha^2(x)) dx < \infty$, which is a necessary and sufficient condition for βS to be strict local martingale under \mathbb{Q} ; see [5].

The value process A of an American option satisfies $A_t = a(S_t, t)$ for $t \in [0, T]$, where the value function $a : \mathbb{R}_+ \times [0, T] \rightarrow \mathbb{R}_+$ is given by

$$a(x, t) := x - \bar{e}(x, t). \quad (3.3)$$

Here, $\bar{e}(x, t) := \mathbb{E}_{\mathbb{Q}}[\exp(-\int_t^T r(u) du) \bar{g}(S_T) | S_t = x]$ for $(x, t) \in \mathbb{R}_+ \times [0, T]$ is the value function of a European option with payoff \bar{g} . Recall that $\lim_{x \rightarrow \infty} \bar{g}(x)/x = 0$, i.e., \bar{g} is a function of *strictly sublinear growth*, according to Definition 4.2 in [7].

When the discounted stock price is a strict local martingale, the differential equation satisfied by the European option value usually has multiple solutions; see [11]. However, when the terminal condition has strictly sublinear growth, the same PDEs have a unique solution in the class of functions with sublinear growth; see Theorem 4.3 in [7]. We use this result to uniquely identify the value of the American option in what follows. A simple modification of Theorem 4.3 in [7] to the nonzero interest rate case gives the following result. (Even though Theorem 4.3

in [7] assumes zero interest rate, when $r \neq 0$, (17) in [7] can be replaced by $v_t^\epsilon - \frac{1}{2}\alpha^2(x)v_{xx}^\epsilon - rxv_x^\epsilon + rv^\epsilon = \epsilon e^t(1 + r + x) > 0$. The rest of the proof can be adapted in a straightforward manner to the nonzero interest rate case.)

Proposition 3.3 *The value function \bar{e} is the unique classical solution, in the class of functions of strictly sublinear growth, to the boundary value problem*

$$\begin{aligned} \bar{e}_t + \frac{1}{2}\alpha^2(x)\bar{e}_{xx} + r(t)x\bar{e}_x - r(t)\bar{e} &= 0, \quad (x, t) \in \mathbb{R}_+ \times [0, T], \\ \bar{e}(x, T) &= \bar{g}(x), \\ \bar{e}(0, t) &= 0, \quad 0 \leq t < T. \end{aligned} \tag{3.4}$$

Remark 3.4 Proposition 3.3 fully characterizes the American option value. First, one needs to find the solution of (3.4) with strictly sublinear growth in its first variable (which is unique). Subtracting this value from the stock price gives the American option value. The approximation method described by Theorem 2.2 in [6] can also be used to compute \bar{e} . (The idea is to approximate \bar{e} by a sequence of functions that are unique solutions of Cauchy problems on bounded domains.)

Remark 3.5 Owing to the fact that \bar{e} is of strictly sublinear growth, (3.3) gives $\lim_{x \rightarrow \infty} a(x, t)/x = 1$ for $t \in [0, T]$, i.e., $a(x, t)$ is of linear growth in x . Moreover, Proposition 3.3 also implies that $a(x, t)$ is a classical solution of the boundary value problem

$$\begin{aligned} a_t + \frac{1}{2}\alpha^2(x)a_{xx} + r(t)xa_x - r(t)a &= 0, \quad (x, t) \in \mathbb{R}_+ \times [0, T], \\ a(x, T) &= g(x), \\ a(0, t) &= 0, \quad 0 \leq t < T. \end{aligned} \tag{3.5}$$

However, $a(x, t)$ is not the unique solution of (3.5). Indeed, the value function e of a European option, given by

$$e(x, t) := \mathbb{E}_{\mathbb{Q}} \left[\exp \left(- \int_t^T r(u) \, du \right) g(S_T) \mid S_t = x \right], \quad \text{for } (x, t) \in \mathbb{R}_+ \times [0, T],$$

is another classical solution of (3.5) (see Theorem 3.2 in [7]). Moreover, since βS is a strict local martingale under \mathbb{Q} , we have for all $(x, t) \in \mathbb{R}_+ \times [0, T]$ that

$$a(x, t) - e(x, t) = x - \mathbb{E}_{\mathbb{Q}} \left[\exp \left(- \int_t^T r(u) \, du \right) S_T \mid S_t = x \right] > 0,$$

i.e., the American option value dominates its European counterpart, which is the smallest nonnegative supersolution of (3.5). (See the comment after Theorem 4.3 in [7].)

It is also worth noting that $a - e$ satisfies (3.5) with zero as terminal condition. Owing to this observation, we can construct infinitely many solutions to (3.5) greater

than the value of the American option. That is to say, the American option value is neither the smallest nor the largest solution of (3.5). Similarly, we can also fill the gap between the European and American options with infinitely many solutions of (3.5). In fact, this Cauchy problem has a unique solution among functions of linear growth if and only if βS is a martingale under \mathbb{Q} ; see [1].

3.4 A further remark

In addition to all assumptions of Sect. 3.3, suppose that $\beta \equiv 1$, $g(x) = (x - K)_+$ for $x \in \mathbb{R}_+$ where $K \in \mathbb{R}_{++}$, and S is the reciprocal of a 3-dimensional Bessel process. In this case, an argument similar to the one in Example 3.1 gives $\tau^* = T$. Moreover, it follows from (2.2) that $\delta(T) > 0$. Therefore, owing to Theorem 2.4(3), there is no optimal stopping time solving (OS) in this setting.

We now demonstrate that the American call value is strictly larger than the payoff even when the stock price variable tends to infinity.

Recall that $a(x, t) - e(x, t) = x - \mathbb{E}_{\mathbb{Q}}[S_T | S_t = x]$. Here,

$$x - \mathbb{E}_{\mathbb{Q}}[S_T | S_t = x] = 2x \Phi\left(-\frac{1}{x\sqrt{T-t}}\right), \quad (3.6)$$

where $\Phi(\cdot) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\cdot} e^{-x^2/2} dx$. (See Sect. 2.2.2 in [3].) Meanwhile, Example 3.5 in [3] gives

$$\lim_{x \uparrow \infty} e(x, t) = \frac{2}{\sqrt{2\pi(T-t)}} - K \left[2\Phi\left(\frac{1}{K\sqrt{T-t}}\right) - 1 \right]. \quad (3.7)$$

Combining (3.6) and (3.7), we obtain

$$\begin{aligned} \lim_{x \uparrow \infty} [a(x, t) - (x - K)_+] &= \lim_{x \uparrow \infty} e(x, t) - \lim_{x \uparrow \infty} \mathbb{E}_{\mathbb{Q}}[S_T | S_t = x] + K \\ &= 2K \left[1 - \Phi\left(\frac{1}{K\sqrt{T-t}}\right) \right] > 0 \quad \text{for all } t \in [0, T). \end{aligned}$$

4 Proof of Theorem 2.4

4.1 Proof of statement (1)

We first show that $\mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_{\tau^* \wedge \tau}]$ holds for all $\tau \in \mathfrak{T}$. Because we have for all $t \in \mathbb{R}_+$ that $g(S_{\tau^* \vee t}) = g'(0)S_{\tau^* \vee t}$ on the event $\{\tau^* = \tau_K\} \cap \{\tau^* < \infty\}$, we get

$$X_{\tau^* \vee t} = g'(0)Z_{\tau^* \vee t}\beta_{\tau^* \vee t}S_{\tau^* \vee t} = g'(0)L_{\tau^* \vee t}$$

for all $t \in \mathbb{R}_+$ on $\{\tau^* = \tau_K\} \cap \{\tau^* < \infty\}$. As L is a nonnegative local martingale, therefore a supermartingale, $\mathbb{E}[X_{\tau} | \mathcal{F}_{\tau^*}] \leq X_{\tau^*}$ on $\{\tau^* = \tau_K < \tau\}$. Now on $\{\tau_K > \tau^*\}$, by definition of τ^* , we have $g(S_{\tau^* \vee t}) = g(S_{\tau^*}) + g'(S_{\tau^*})(S_{\tau^* \vee t} - S_{\tau^*})$

and $\beta_{\tau^* \vee t} = \beta_{\tau^*}$ for all $t \in \mathbb{R}_+$. As $\{\tau^* < \tau_K\} \subseteq \{X_{\tau^*} > 0\}$, it follows that on the event $\{\tau^* < \tau_K\}$ we have

$$\frac{X_{\tau^* \vee \cdot}}{X_{\tau^*}} = \left(\frac{\beta_{\tau^*} g(S_{\tau^*}) - \beta_{\tau^*} S_{\tau^*} g'(S_{\tau^*})}{X_{\tau^*}} \right) Z_{\tau^* \vee \cdot} + \left(\frac{g'(S_{\tau^*})}{X_{\tau^*}} \right) L_{\tau^* \vee \cdot}. \quad (4.1)$$

Since both Z and L are local martingales and X is nonnegative, it is straightforward that the inequality $\mathbb{E}[X_{\tau} | \mathcal{F}_{\tau^*}] \leq X_{\tau^*}$ holds on $\{\tau^* < \tau\} \cap \{\tau^* < \tau_K\}$. Since $\mathbb{E}[X_{\tau} | \mathcal{F}_{\tau^*}] \leq X_{\tau^*}$ also holds on $\{\tau^* < \tau\} \cap \{\tau^* = \tau_K\}$, we obtain $\mathbb{E}[X_{\tau} | \mathcal{F}_{\tau^*}] \leq X_{\tau^*}$ on $\{\tau^* < \tau\}$, and $\mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_{\tau^* \wedge \tau}]$ follows.

Let $(\sigma^n)_{n \in \mathbb{N}}$ be a localizing sequence for L . The proof of Lemma 2.1 has shown that $(X_{\sigma^n \wedge t})_{t \in \mathbb{R}_+}$ is a submartingale of class D. Thus $\sup_{\tau \in \mathfrak{T}[0, \sigma^n]} \mathbb{E}[X_{\tau}] = \mathbb{E}[X_{\sigma^n}]$. From the discussion of the previous paragraph,

$$\sup_{\tau \in \mathfrak{T}[0, \sigma^n]} \mathbb{E}[X_{\tau}] = \mathbb{E}[X_{\sigma^n}] \leq \mathbb{E}[X_{\sigma^n \wedge \tau^*}] = \sup_{\tau \in \mathfrak{T}[0, \sigma^n \wedge \tau^*]} \mathbb{E}[X_{\tau}],$$

where the last equality follows from the fact that $(X_{\sigma^n \wedge \tau^* \wedge t})_{t \in \mathbb{R}_+}$ is a submartingale of class D. The other inequality $\sup_{\tau \in \mathfrak{T}[0, \sigma^n \wedge \tau^*]} \mathbb{E}[X_{\tau}] \leq \sup_{\tau \in \mathfrak{T}[0, \sigma^n]} \mathbb{E}[X_{\tau}]$ trivially holds. Furthermore, $\sup_{\tau \in \mathfrak{T}} \mathbb{E}[X_{\tau}] = \uparrow \lim_{n \rightarrow \infty} \sup_{\tau \in \mathfrak{T}[0, \sigma^n]} \mathbb{E}[X_{\tau}]$ is easily seen to hold by Fatou's lemma. Putting everything together, we have

$$v = \sup_{\tau \in \mathfrak{T}} \mathbb{E}[X_{\tau}] = \uparrow \lim_{n \rightarrow \infty} \sup_{\tau \in \mathfrak{T}[0, \sigma^n]} \mathbb{E}[X_{\tau}] = \uparrow \lim_{n \rightarrow \infty} \mathbb{E}[X_{\sigma^n \wedge \tau^*}] = \mathbb{E}[X_{\tau^*}] + \delta(\tau^*), \quad (4.2)$$

where the last equality holds by the definition of δ .

The equality $v = \mathbb{E}[X_{\infty}] + \delta(\infty)$ is proved similarly, replacing τ^* by ∞ in (4.2). \square

4.2 Proof of statement (2)

We start with the following helpful result.

Proposition 4.1 *For each $\tau \in \mathfrak{T}$, the following statements are equivalent:*

1. $\delta(\tau) = 0$.
2. $\delta(\tau') = 0$ for all $\tau' \in \mathfrak{T}[0, \tau]$.
3. The process $(X_{\tau \wedge t})_{t \in \mathbb{R}_+}$ is a submartingale of class D.

Proof As the implications (3) \Rightarrow (2) and (2) \Rightarrow (1) are straightforward, we focus in the sequel on proving the implication (1) \Rightarrow (3).

Since $X = L - W$, in which L is a local martingale and W is a supermartingale, $(X_{\tau \wedge t})_{t \in \mathbb{R}_+}$ is a local submartingale. Therefore, we only need to show that $\{X_{\tau'} \mid \tau' \in \mathfrak{T}[0, \tau]\}$ is uniformly integrable. Let $\tau' \in \mathfrak{T}[0, \tau]$ and $A \in \mathcal{F}_{\tau'}$. Then, with $\tau'' := \tau' \mathbb{I}_A + \tau \mathbb{I}_{\Omega \setminus A}$, we have $\tau'' \in \mathfrak{T}[0, \tau]$ as well. Let $(\sigma^n)_{n \in \mathbb{N}}$ be a localizing sequence for L . Once again we use the fact (proved in Lemma 2.1) that $(X_{\sigma^n \wedge t})_{t \in \mathbb{R}_+}$ is a submartingale of class D to obtain

$$\mathbb{E}[X_{\tau''}] \leq \liminf_{n \rightarrow \infty} \mathbb{E}[X_{\tau'' \wedge \sigma^n}] \leq \liminf_{n \rightarrow \infty} \mathbb{E}[X_{\tau \wedge \sigma^n}] = \mathbb{E}[X_{\tau}],$$

the last equality following from the fact that $\delta(\tau) = 0$. The inequality above is equivalent to $\mathbb{E}[X_{\tau'} \mathbb{I}_A] \leq \mathbb{E}[X_\tau \mathbb{I}_A]$. Since $A \in \mathcal{F}_{\tau'}$ was arbitrary, we get $X_{\tau'} \leq \mathbb{E}[X_\tau | \mathcal{F}_{\tau'}]$. Since $X \geq 0$ and $\mathbb{E}[X_\tau] < \infty$, this readily shows that $\{X_{\tau'} \mid \tau' \in \mathcal{T}[0, \tau]\}$ is uniformly integrable. \square

We now proceed with the proof of statement (2) of Theorem 2.4. A combination of Lemmas 4.2 and 4.3 below shows that if a stopping time $\hat{\tau} \in \mathcal{T}$ is optimal, then $\delta(\hat{\tau}) = 0$, as well as $\tau^* \leq \hat{\tau}$. In Lemma 4.4, the converse is proved.

Lemma 4.2 *If $\hat{\tau}$ is any optimal stopping time, then $\delta(\hat{\tau}) = 0$.*

Proof Let $(\sigma^n)_{n \in \mathbb{N}}$ be a localizing sequence for L . To begin with, Fatou's lemma gives $\mathbb{E}[X_{\hat{\tau}}] \leq \liminf_{n \rightarrow \infty} \mathbb{E}[X_{\hat{\tau} \wedge \sigma^n}]$. On the other hand, the optimality of $\hat{\tau}$ yields $\limsup_{n \rightarrow \infty} \mathbb{E}[X_{\hat{\tau} \wedge \sigma^n}] \leq \mathbb{E}[X_{\hat{\tau}}]$. Therefore $\mathbb{E}[X_{\hat{\tau}}] = \lim_{n \rightarrow \infty} \mathbb{E}[X_{\hat{\tau} \wedge \sigma^n}]$. By the definition of δ , the latter equality is equivalent to $\delta(\hat{\tau}) = 0$. \square

Lemma 4.3 *If $\tau \in \mathcal{T}$ is such that $\mathbb{P}[\tau < \tau^*] > 0$, then there exists $\tau' \in \mathcal{T}$ with $\mathbb{E}[X_\tau] < \mathbb{E}[X_{\tau'}]$.*

Proof We have shown in the proof of statement (1) that $\mathbb{E}[X_\tau] \leq \mathbb{E}[X_{\tau^* \wedge \tau}]$ for all $\tau \in \mathcal{T}$. Therefore, it is enough to prove that if $\tau \in \mathcal{T}[0, \tau^*]$ is such that $\mathbb{P}[\tau < \tau^*] > 0$, then there exists $\tau' \in \mathcal{T}$ with $\mathbb{E}[X_\tau] < \mathbb{E}[X_{\tau'}]$. For the rest of the proof of Lemma 4.3, we fix $\tau \in \mathcal{T}[0, \tau^*]$ with $\mathbb{P}[\tau < \tau^*] > 0$.

Let us first introduce some notation. Define the local martingale

$$L_\cdot^{(\tau)} := (L_{\tau \vee \cdot} / L_\tau) \mathbb{I}_{\{\tau < \infty\}} + \mathbb{I}_{\{\tau = \infty\}}.$$

Observe that $L_\cdot^{(\tau)}$ is really the local martingale L started at τ ; indeed, we have $L_t^{(\tau)} = 1$ on $\{t < \tau\}$ and $L_t^{(\tau)} = L_t / L_\tau$ on $\{\tau \leq t\}$. If $(\eta^n)_{n \in \mathbb{N}}$ is the sequence of stopping times defined by $\eta^1 := \tau$ and $\eta^n := \inf\{t \geq \tau \mid L_t^{(\tau)} \geq n\}$ for $n > 1$, then $\eta^n \geq \tau$, $\uparrow \lim_{n \rightarrow \infty} \eta^n = \infty$ and $\{L_{\eta^n \wedge \sigma}^{(\tau)} \mid \sigma \in \mathcal{T}\}$ is a uniformly integrable family, which means that $(L_{\eta^n \wedge t}^{(\tau)})_{t \in \mathbb{R}_+}$ is a uniformly integrable martingale. (To see the last fact, observe that $\mathbb{E}[\sup_{\sigma \in \mathcal{T}} L_{\eta^n \wedge \sigma}^{(\tau)}] \leq n + \mathbb{E}[L_{\eta^n}^{(\tau)}] \leq n + 1$, where the last inequality follows from the fact that $L^{(\tau)}$ is a nonnegative local martingale with $L_0^{(\tau)} = 1$.) In particular, $\mathbb{E}[L_\sigma | \mathcal{F}_\tau] = L_\tau$ holds for all $\sigma \in \mathcal{T}[\tau, \eta^n]$, $n \in \mathbb{N}$.

Below, we shall find $\tau' \in \mathcal{T}$ such that $\mathbb{E}[X_\tau] < \mathbb{E}[X_{\tau'}]$ in two distinct cases:

Case 1: Assume that $\mathbb{P}[\{\tau < \tau^*\} \cap \{S_\tau \leq K\}] > 0$. In view of the definition of τ^* (and of τ_K), for small enough $\epsilon > 0$, the stopping time

$$\tau'' = \inf\{t \geq \tau \mid S_t > K + \epsilon\}$$

is such that $\tau \leq \tau''$ and $\mathbb{P}[\{S_\tau \leq K\} \cap \{\tau < \tau'' < \infty\}] > 0$. Defining the stopping time $\tau' := \mathbb{I}_{\{S_\tau > K\}} \tau + \mathbb{I}_{\{S_\tau \leq K\}} (\tau'' \wedge \eta^n)$ for large enough $n \in \mathbb{N}$, we have $\tau \leq \tau'$, $\mathbb{E}[L_{\tau'} | \mathcal{F}_\tau] = L_\tau$ as well as $\mathbb{P}[\{S_{\tau'} > K\} \cap \{\tau < \tau' < \infty\}] > 0$, owing to $\lim_{n \rightarrow \infty} \eta^n = \infty$. Observe that $X_\tau = Y_\tau g(S_\tau) = Y_\tau g'(0) S_\tau = g'(0) L_\tau$ on the set

$\{\tau < \tau'\} \subseteq \{S_\tau \leq K\}$. On the other hand, $X_{\tau'} = Y_{\tau'} g(S_{\tau'}) \geq Y_{\tau'} g'(0) S_{\tau'} = g'(0) L_{\tau'}$, with the strict inequality $X_{\tau'} > g'(0) L_{\tau'}$ holding on $\{S_{\tau'} > K\} \cap \{\tau < \tau' < \infty\}$. Therefore,

$$\mathbb{E}[X_{\tau'} \mathbb{I}_{\{\tau < \tau'\}}] > g'(0) \mathbb{E}[L_{\tau'} \mathbb{I}_{\{\tau < \tau'\}}] = g'(0) \mathbb{E}[L_\tau \mathbb{I}_{\{\tau < \tau'\}}] = \mathbb{E}[X_\tau \mathbb{I}_{\{\tau < \tau'\}}].$$

Since $\tau \leq \tau'$, we obtain $\mathbb{E}[X_{\tau'}] > \mathbb{E}[X_\tau]$.

Case 2: Assume now that $\mathbb{P}[\{\tau < \tau^*\} \cap \{S_\tau \leq K\}] = 0$. Since $S_\tau > K$ on $\{\tau < \tau^*\}$ and using the definition of τ^* in (2.3), we can find $\epsilon > 0$ small enough such that the stopping time

$$\tau'' = \inf \{t \geq \tau \mid \beta_t < \beta_\tau - \epsilon, \text{ or } S_t < \ell(S_\tau) - \epsilon, \text{ or } S_t > r(S_\tau) + \epsilon\}$$

satisfies $\tau'' \geq \tau$ and

$$\mathbb{P}[(\{\beta_\tau > \beta_{\tau''}\} \cup \{S_{\tau''} < \ell(S_\tau)\} \cup \{r(S_\tau) < S_{\tau''}\}) \cap \{\tau'' < \infty\}] > 0.$$

Then letting $\tau' = \tau'' \wedge \eta^n$ for large enough $n \in \mathbb{N}$, we have $\tau \leq \tau'$, $\mathbb{E}[L_{\tau'} \mid \mathcal{F}_\tau] = L_\tau$, as well as

$$\mathbb{P}[(\{\beta_\tau > \beta_{\tau'}\} \cup \{S_{\tau'} < \ell(S_\tau)\} \cup \{r(S_\tau) < S_{\tau'}\}) \cap \{\tau' < \infty\}] > 0.$$

The convexity of g gives

$$\begin{aligned} Z_{\tau'} \beta_{\tau'} g(S_{\tau'}) &\geq Z_{\tau'} \beta_{\tau'} g(S_\tau) + Z_{\tau'} \beta_{\tau'} g'(S_\tau)(S_{\tau'} - S_\tau) \\ &= Z_{\tau'} \beta_{\tau'} (g(S_\tau) - g'(S_\tau) S_\tau) + Z_{\tau'} \beta_{\tau'} g'(S_\tau) S_{\tau'} \\ &\geq Z_{\tau'} \beta_\tau (g(S_\tau) - g'(S_\tau) S_\tau) + Z_{\tau'} \beta_{\tau'} g'(S_\tau) S_{\tau'}. \end{aligned} \quad (4.3)$$

In (4.3) above, the first inequality is strict on

$$(\{S_{\tau'} < \ell(S_\tau)\} \cup \{r(S_\tau) < S_{\tau'}\}) \cap \{\tau' < \infty\}.$$

(Note that $Z_{\tau'} \beta_{\tau'} > 0$ on $\{\tau' < \infty\}$.) On the other hand, the second inequality in (4.3) is strict on $\{\beta_{\tau'} < \beta_\tau\} \cap \{\tau' < \infty\}$, since $Z_{\tau'} > 0$ on $\{\tau' < \infty\}$ and $g(S_{\tau'}) < g'(S_\tau) S_{\tau'}$ when $S_{\tau'} > K$. Given all the previous observations, we take expectations in (4.3) to obtain

$$\begin{aligned} \mathbb{E}[X_{\tau'}] &> \mathbb{E}[Z_{\tau'} \beta_\tau (g(S_\tau) - g'(S_\tau) S_\tau)] + \mathbb{E}[Z_{\tau'} \beta_{\tau'} g'(S_\tau) S_{\tau'}] \\ &\geq \mathbb{E}[Z_\tau \beta_\tau (g(S_\tau) - g'(S_\tau) S_\tau)] + \mathbb{E}[Z_{\tau'} \beta_{\tau'} g'(S_\tau) S_{\tau'}] \\ &= \mathbb{E}[X_\tau] + \mathbb{E}[g'(S_\tau) (L_{\tau'} - L_\tau)] = \mathbb{E}[X_\tau]; \end{aligned}$$

the second inequality follows since Z is a supermartingale and $g(S_\tau) \leq g'(S_\tau) S_\tau$. \square

Lemma 4.4 *If $\hat{\tau} \in \mathfrak{T}$ is such that $\tau^* \leq \hat{\tau}$ and $\delta(\hat{\tau}) = 0$, then $\hat{\tau}$ is optimal.*

Proof Fix $\tau \in \mathfrak{T}$ and $\hat{\tau} \in \mathfrak{T}$ with $\tau^* \leq \hat{\tau}$ and $\delta(\hat{\tau}) = 0$. We shall show that $\mathbb{E}[X_\tau] \leq \mathbb{E}[X_{\hat{\tau}}]$.

Since $\delta(\hat{\tau}) = 0$, $(X_{\hat{\tau} \wedge t})_{t \in \mathbb{R}_+}$ is a submartingale of class D in view of Proposition 4.1. Then $X_\tau \mathbb{I}_{\{\tau \leq \hat{\tau}\}} \leq \mathbb{E}[X_{\hat{\tau}} | \mathcal{F}_\tau] \mathbb{I}_{\{\tau \leq \hat{\tau}\}} = \mathbb{E}[X_{\hat{\tau}} \mathbb{I}_{\{\tau \leq \hat{\tau}\}} | \mathcal{F}_\tau]$ follows immediately. Taking expectations in the previous inequality, we obtain

$$\mathbb{E}[X_\tau \mathbb{I}_{\{\tau \leq \hat{\tau}\}}] \leq \mathbb{E}[X_{\hat{\tau}} \mathbb{I}_{\{\tau \leq \hat{\tau}\}}]. \quad (4.4)$$

On $\{\hat{\tau} < \tau\}$, we can use the same idea as in (4.1) and the subsequent discussion (with $\hat{\tau}$ replacing τ^* and using the fact that $\tau^* \leq \hat{\tau}$) to obtain $\mathbb{E}[X_\tau | \mathcal{F}_{\hat{\tau}}] \mathbb{I}_{\{\hat{\tau} < \tau\}} \leq X_{\hat{\tau}} \mathbb{I}_{\{\hat{\tau} < \tau\}}$; in particular,

$$\mathbb{E}[X_\tau \mathbb{I}_{\{\hat{\tau} < \tau\}}] \leq \mathbb{E}[X_{\hat{\tau}} \mathbb{I}_{\{\hat{\tau} < \tau\}}]. \quad (4.5)$$

Combining the inequalities (4.4) and (4.5), we obtain $\mathbb{E}[X_\tau] \leq \mathbb{E}[X_{\hat{\tau}}]$. \square

4.3 Proof of statement (3)

If an optimal stopping time $\hat{\tau} \in \mathfrak{T}$ exists, then $\tau^* \leq \hat{\tau}$ is true by statement (2) of Theorem 2.4; then $\delta(\tau^*) = 0$ follows from $\delta(\hat{\tau}) = 0$ in view of Proposition 4.1. Conversely, if $\delta(\tau^*) = 0$, then $\mathbb{E}[X_{\tau^*}] = \mathbb{E}[X_{\tau^*}] + \delta(\tau^*) = \nu$, and therefore τ^* is optimal. The fact that τ^* is the smallest optimal stopping time, if optimal stopping times exist, as well as the representation of the set of all possible optimal stopping times, also follows from statement (2) of Theorem 2.4. \square

Acknowledgement We should like to thank the Editor (Martin Schweizer) and the anonymous Associate Editor and two referees for their incisive comments which helped us improve our paper.

References

1. Bayraktar, E., Xing, H.: On the uniqueness of classical solutions of Cauchy problems. Proc. Am. Math. Soc. **138**, 2061–2064 (2010)
2. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae. Probability and Its Applications. Birkhäuser, Basel (2002)
3. Cox, A., Hobson, D.: Local martingales, bubbles and option prices. Finance Stoch. **9**, 477–492 (2005)
4. Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local martingales. Probab. Theory Relat. Fields **102**, 357–366 (1995)
5. Delbaen, F., Shirakawa, H.: No arbitrage condition for positive diffusion price processes. Asia-Pac. Financ. Mark. **9**, 159–168 (2002)
6. Ekström, E., Lööstedt, P., von Sydow, L., Tysk, J.: Numerical option pricing in the presence of bubbles. Quantit. Finance (2011). Available at <http://www.informaworld.com/smpp/content~db=all~content=a930096425~frm=titlelink>
7. Ekström, E., Tysk, J.: Bubbles, convexity and the Black–Scholes equation. Ann. Appl. Probab. **19**, 1369–1384 (2009)
8. El Karoui, N.: Les aspects probabilistes du contrôle stochastique. In: Ninth Saint Flour Probability Summer School—1979, Saint Flour, 1979. Lecture Notes in Math., vol. 876, pp. 73–238. Springer, Berlin (1981)
9. Fernholz, D., Karatzas, I.: On optimal arbitrage. Ann. Appl. Probab. **20**, 1179–1204 (2010)
10. Fernholz, E., Karatzas, I., Kardaras, C.: Diversity and arbitrage in equity markets. Finance Stoch. **9**, 37–53 (2005)
11. Heston, S.L., Loewenstein, M., Willard, G.A.: Options and bubbles. Rev. Financ. Stud. **20**, 359–390 (2007)

12. Jarrow, R., Protter, P., Shimbo, K.: Asset price bubbles in incomplete markets. *Math. Finance* **20**, 145–185 (2010)
13. Jarrow, R.A., Protter, P., Shimbo, K.: Asset price bubbles in complete markets. In: Fu, M., Jarrow, R., Yen, J.Y., Elliott, R. (eds.) *Advances in Mathematical Finance*, pp. 97–121. Birkhäuser, Boston (2007)
14. Johnson, G., Helms, K.: Class D supermartingales. *Bull. Am. Math. Soc.* **69**, 59–62 (1963)
15. Karatzas, I., Fernholz, R.: Stochastic portfolio theory: An overview. In: Ciarlet, P. (ed.) *Handbook of Numerical Analysis*, vol. 15, pp. 89–167. Elsevier, Amsterdam (2009)
16. Karatzas, I., Kardaras, C.: The numéraire portfolio and arbitrage in semimartingale markets. *Finance Stoch.* **11**, 447–493 (2007)
17. Karatzas, I., Shreve, S.: *Methods of Mathematical Finance*. Springer, New York (1998)
18. Madan, D., Yor, M.: Itô’s integrated formula for strict local martingales. In: Emery, M., Yor, M. (eds.) *Séminaire de Probabilités XXXIX*. Lecture Notes in Mathematics, vol. 1874, pp. 157–170. Springer, Berlin (2006). In Memoriam Paul-André Meyer
19. Pal, S., Protter, P.: Analysis of continuous strict local martingales via h -transforms. *Stoch. Process. Appl.* **120**, 1424–1443 (2010)
20. Stricker, C., Yan, J.A.: Some remarks on the optional decomposition theorem. In: *Séminaire de Probabilités XXXII*. Lecture Notes in Math., vol. 1686, pp. 56–66. Springer, Berlin (1998)