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Abstract We solve the problem of valuing and optimal exercise of American call-
type options in markets which do not necessarily admit an equivalent local martingale
measure. This resolves an open question proposed by Karatzas and Fernholz (Hand-
book of Numerical Analysis, vol. 15, pp. 89–167, Elsevier, Amsterdam, 2009).
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1 Introduction

Let β be a strictly positive and nonincreasing process with β0 = 1 and S a strictly
positive semimartingale. In financial settings, S is the price of an underlying asset
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and β the discount factor, i.e., the reciprocal of the value of the savings account.
We shall assume throughout that there exists a strictly positive local martingale
Z with Z0 = 1 such that L := ZβS is a local martingale. For simplicity in nota-
tion, we also denote Y := Zβ , which is a supermartingale. Let g : R+ → R+ be a
nonnegative convex function with g(0) = 0, g(x) < x for some (and then for all)
x ∈ R++ := R+ \ {0}, and limx↑∞ g(x)/x = 1. The canonical example of such a
function is g(x) = (x − K)+ for x ∈ R+, where K ∈ R++—this will correspond to
the payoff function of an American call option in the discussion that follows. With
X := Yg(S), we consider the optimization problem

compute v := sup
τ∈T

E[Xτ ], and find τ̂ ∈ T such that E[Xτ̂ ] = v, (OS)

where T is used to denote the set of all stopping times (we consider also infinite-
valued ones; we shall see later that X∞ := limt→∞ Xt is well defined and P-a.s.
finite). A stopping time τ̂ ∈ T such that E[Xτ̂ ] = v will be called optimal for
the problem (OS). Since g(x) ≤ x for all x ∈ R+, X ≤ YS = L. As a result,
v ≤ L0 = S0 < ∞.

Although the problem is defined for an infinite horizon, it includes as a special
case any finite-horizon formulation. If the horizon is T ∈ T, then just consider the
processes Z, S and β as being constant after T on the event {T < ∞}.

Only for the purposes of this introductory discussion, and in order to motivate
the study of the problem (OS), we assume that Z is the unique local martingale that
makes ZβS a local martingale, as well as that the horizon of the problem is T ∈ T,
where P[T < ∞] = 1. Here, T denotes the maturity of an American claim with im-
mediate payoff g(Sτ ) when it is exercised at time τ ∈ T with τ ≤ T . It follows from
Corollary 2.1 in [20] that any European contingent claim with maturity T can be per-
fectly hedged by dynamically trading in S and in the savings account. As a result, the
market is still complete, even though the local martingale Z may be a strict local mar-
tingale. (See also Sect. 10 in [15].) There exists a càdlàg process A = (At )t∈[0,T ] such
that At = Y−1

t esssupτ∈T[t,T ]E[Xτ | Ft ] for t < T and AT = g(ST ) (see Lemma 2.4
in [20]). Here, for any s ∈ T and τ ∈ T, we let T[s, τ ] denote the class of all τ ′ ∈ T

with s ≤ τ ′ ≤ τ . Remark 2 in [20] shows that A is the smallest process with the
properties that (a) A dominates g(S) over [0, T ], and (b) ZβA is a supermartin-
gale. Additionally, owing to the optional decomposition theorem (see Theorem 2.1
in [20] and the references therein for the details), there exist a predictable process
φ and an adapted nonnegative and nondecreasing process C with C0 = 0 such that
βA = A0 + ∫ ·

0 φt d(βtSt ) − C. As a result, v = A0 is the superhedging value of the
American option with the payoff function g.

When there is a stock price bubble, i.e., ZβS is a strict local martingale, or when
the market allows for arbitrage opportunities relative to the bank account, i.e., Z is
a strict local martingale, the values of derivative securities present several anomalies
because of the lack of martingale property—see, for example, [3, 9, 11–13, 18, 19]
and [15]. One instance of such an anomaly is the failure of the put–call parity. Our
goal in this paper is to examine in detail the optimization problem (OS), and there-
fore gain a better understanding of valuing call-type American options in markets as
discussed above. This resolves an open question put forth in [15, Remark 10.4]. We
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give a condition that, when satisfied, guarantees the existence of optimal stopping
times for (OS). If this condition is satisfied, we give an explicit expression for the
smallest optimal stopping time. On the other hand, when this condition is violated,
there are no optimal stopping times. Although there is generally no optimal exercise
time, there are examples in which one prefers to exercise early. This should be con-
trasted to Merton’s no early exercise theorem which applies when both Z and ZβS

are martingales. (This theorem states that it is optimal to exercise an American call
option only at maturity.) The expression for v given in Theorem 2.4, our main result,
generalizes [3, Theorem A.1] and [11, Proposition 4.1] to a setting where the under-
lying process is a general semimartingale with possibly discontinuous paths and the
market does not necessarily admit a local martingale measure.

The structure of the paper is as follows. In Sect. 2, we give our main result, whose
proof is deferred to Sect. 4. In Sect. 3, we give examples to illustrate our findings.

2 The main result

2.1 The setup

We work on a filtered probability space (Ω, (Ft )t∈R+ , P). Here, P is a probability
on (Ω, F∞), where F∞ := ∨

t∈R+ Ft . The filtration (Ft )t∈R+ is assumed to satisfy
the usual hypotheses of right-continuity and augmentation by P-null sets. All rela-
tionships between random variables are understood in the P-a.s. sense. All processes
that appear in the sequel are assumed càdlàg unless noted otherwise; (in)equalities
involving processes are supposed to hold everywhere with the possible exception of
an evanescent set.

We keep all the notation from the introduction. In particular, T denotes the set
of all (possibly infinite-valued) stopping times with respect to (Ft )t∈R+ . In order to
make sense of the problem described in (OS), we must ensure that X∞ := limt→∞ Xt

exists, which we do now. As both Z and L are nonnegative local martingales,
and in particular supermartingales, the random variables Z∞ := limt→∞ Zt and
L∞ := limt→∞ Lt are well defined and finite. By monotonicity, we can also
define β∞ := limt→∞ βt . Define now a new function h : R+ ∪ {∞} → R+ via
h(x) := g(x)/x for x ∈ R++, and h(0) := limx↓0 h(x) as well as
h(∞) := limx↑∞ h(x). Given the properties of g, it is plain to see that h is nonneg-
ative, nondecreasing, 0 ≤ h ≤ 1, and h(∞) = 1. Furthermore, X = Lh(S). Now, on
{L∞ > 0} we have S∞ := limt→∞ St = L∞/Y∞ which takes values in R++ ∪ {∞};
therefore, on {L∞ > 0} we have X∞ = L∞h(S∞). On the other hand, it is clear that
on {L∞ = 0} we have X∞ = 0, since h is a bounded function.

2.2 The default function

Recall that a nondecreasing sequence of stopping times (σ n)n∈N is a localizing se-
quence for L if (Lσn∧t )t∈R+ is a uniformly integrable martingale for all n ∈ N and
↑ limn→∞ σn = ∞. The following result will allow us to define a very important
function.
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Lemma 2.1 Let τ ∈ T and consider any localizing sequence (σ n)n∈N for L. Then
the sequence (E[Xτ∧σn ])n∈N is nondecreasing. Furthermore, the quantity

δ(τ ) :=↑ lim
n→∞ E[Xτ∧σn] − E[Xτ ] = lim

n→∞ E
[

XσnI{τ>σn}
]

(2.1)

is nonnegative and independent of the choice of the localizing sequence (σ n)n∈N

for L.

Proof Let g : R+ → R+ be defined via g(x) := x − g(x) for x ∈ R+; so g is non-
negative, nondecreasing, and concave. Define also W := Yg(S), so that X = L − W .
First, let us show that W is a nonnegative supermartingale. Let (sn)n∈N be a local-
izing sequence for Z. For each n ∈ N, we define a probability Q

n ∼ P on (Ω, F∞)

via dQ
n = Zsn dP. Let u ∈ R+ and t ∈ R+ with u ≤ t . Then, using throughout that

u ∧ sn = u and u ≤ t ∧ sn holds on {sn > u},
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∣
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I{sn>u}

≤ Zu lim inf
n→∞ g(Su)I{sn>u} = Zug(Su).

Here, the first inequality follows from Fatou’s lemma. The first identity holds due
to limn→∞ sn = ∞. The second inequality follows from the concavity of g, noting
that g(0) = 0. The third inequality is due to Jensen’s inequality, and the last one to
the fact that g is nondecreasing and EQn[βt∧snSt∧sn | Fu∧sn ] ≤ βuSu on {sn > u} for
each n ∈ N.

Let (σ n)n∈N be any localizing sequence for L. To see that (E[Xτ∧σn ])n∈N is non-
decreasing, simply write E[Xτ∧σn ] = E[Lτ∧σn − Wτ∧σn] = L0 − E[Wτ∧σn ] and use
the supermartingale property of W .

Now, pick another localizing sequence (σ̃m)m∈N for L. For fixed n ∈ N, the family
{Yσ̃∧σnSσ̃∧σn | σ̃ ∈ T} is uniformly integrable. Since 0 ≤ Xσ̃∧σn ≤ Yσ̃∧σnSσ̃∧σn holds
for all n ∈ N and σ̃ ∈ T, {Xσ̃∧σn | σ̃ ∈ T} is also a uniformly integrable family for each
n ∈ N. Similarly, we can also derive that {Xσ∧σ̃m |σ ∈ T} is a uniformly integrable
family for each m ∈ N. It follows that both processes (Xσn∧t )t∈R+ and (Xσ̃m∧t )t∈R+
are submartingales of class D for all n ∈ N and m ∈ N. (Note that we already know
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that X = L − W is a local submartingale.) As a result,

lim
n→∞ E[Xτ∧σn] = lim

n→∞ E

[

lim
m→∞Xτ∧σn∧σ̃m

]

= lim
n→∞ lim

m→∞ E[Xτ∧σn∧σ̃m]
= lim

m→∞ lim
n→∞ E[Xτ∧σn∧σ̃m]

= lim
m→∞ E

[

lim
n→∞Xτ∧σn∧σ̃m

]

= lim
m→∞ E[Xτ∧σ̃m ].

Above, the limits in the third identity can be exchanged due to the fact that the double
sequence (E[Xτ∧σn∧σ̃m])n∈N,m∈N is nondecreasing in both n and m.

The fact that δ(τ ) ≥ 0 follows from the second identity in (2.1). �

Remark 2.2 Suppose that τ ∈ T is such that E[Zτ ] = Z0 = 1. In this case, (Zτ∧t )t∈R+
is a uniformly integrable martingale and one can define a probability Q 
 P on
(Ω, F∞) via dQ = Zτ dP. Then E[Xτ ] = EQ[βτg(Sτ )] (with conventions about the
value of βτg(Sτ ) on {τ = ∞} similarly to the ones discussed for X previously).
Let g : R+ → R be defined as in the beginning of the proof of Lemma 2.1. Since
limx→∞ g(x)/x = 0, there exists a nondecreasing function φ : R+ → R+ ∪{∞} such
that φ(g(x)) ≤ x for all x ∈ R+ and limx→∞ φ(x)/x = ∞. Then

sup
τ ′∈T[0,τ ]

EQ

[

φ
(

βτ ′g(Sτ ′)
)] ≤ sup

τ ′∈T[0,τ ]
EQ

[

φ
(

g(βτ ′Sτ ′)
)]

≤ sup
τ ′∈T[0,τ ]

EQ[βτ ′Sτ ′ ] = S0 < ∞.

From de la Vallée–Poussin’s criterion, {βτ ′g(Sτ ′)|τ ′ ∈ T[0, τ ]} is uniformly inte-
grable with respect to Q. Then

δ(τ ) = lim
n→∞

(

E[Lτ∧σn ] − EQ

[

βτ∧σng(Sτ∧σn)
]) − (

E[Lτ ] − EQ

[

βτg(Sτ )
])

= L0 − E[Lτ ] (2.2)

holds for any localizing sequence (σ n)n∈N of L. It follows that δ(τ ) is equal to the
default of the local martingale L at τ .

As a consequence of the above observation, if Z is a uniformly integrable martin-
gale (and, in particular, if Z ≡ 1), the function δ is the same for all payoff functions g

(as long as g satisfies the requirements specified in the introduction, of course). This
is no longer the case when Z is not a uniformly integrable martingale, as we shall see
later on in Example 3.2.

2.3 A candidate for the smallest optimal stopping time

We now aim at defining a stopping time τ ∗ that will be crucial in the solution of prob-
lem (OS). We need a preliminary result concerning a nice version of two processes, m
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and M , that have the following property: for all stopping times τ , the random interval
[mτ ,Mτ ] is the conditional support of (St )t∈[τ,∞[ given Fτ .

Lemma 2.3 Let S· := inft∈[·,∞[ St and S· := supt∈[·,∞[ St . (The processes S and
S are nonnegative, nondecreasing and nonincreasing respectively, càdlàg, and not
adapted in general.) Then there exist a nondecreasing nonnegative càdlàg process m

and a nonincreasing nonnegative [0,∞]-valued càdlàg adapted process M such that
(a) m ≤ S ≤ S ≤ M , and (b) for all other processes m′ and M ′ that have the same
properties as m and M described previously, we have m′ ≤ m ≤ M ≤ M ′.

Proof For all t ∈ R+, let Ct = {ξ | ξ is Ft -measurable and ξ ≤ St }. Then let m0
t de-

note the essential supremum of Ct , uniquely defined up to P-a.s. equality. Since Ct

is a directed set, m0
t ∈ Ct . Furthermore, for all t ′ ≥ t we have m0

t ∈ Ct ′ ; therefore
P[m0

t ≤ m0
t ′ ] = 1. Next, we construct a càdlàg modification of m0

t . Define

mt = inf
D�t ′>t

sup
D�u≤t ′

m0
u,

where D is a countable and dense subset of R+. As the filtration is right-continuous,
we still have mt ∈ Ft for t ∈ R+. Also, P[mt ≥ m0

t ] = 1 holds for t ∈ R+. The
right-continuity of S gives that mt ∈ Ct for t ∈ R+; it follows that P[m0

t = mt ] = 1
holds for all t ∈ R+. By construction, m is right-continuous and nondecreasing.
We define M in a similar way, starting by setting M0

t to be the essential infi-
mum of Ct = {ξ | ξ is Ft -measurable and St ≤ ξ} for t ∈ R+, which might take the
value ∞ with positive probability. It is straightforward to check that the two pro-
cesses, m and M , have the properties in the statement of the lemma. �

Define g′ : R+ → R+ via g′(x) := ↓ limn→∞ n(g(x + 1/n) − g(x)) for x ∈ R+,
i.e., g′ is the right derivative of g. The function g′ is right-continuous, nonnegative
and nondecreasing. Let K := sup{x ∈ R+ | g(x) = g′(0)x}; in the case of a call op-
tion, g′(0) = 0 and K corresponds to the strike price. We also define two functions,
	 : R++ → R+ and r : R++ → R++ ∪ {∞}, by setting

	(x) := inf
{

y ∈ R+
∣

∣ g′(y) = g′(x)
}

,

r(x) := sup
{

y ∈ R+
∣

∣ g′(y) = g′(x)
}

for all x ∈ R++. It is clear that 	 and r are nondecreasing, that 	(x) ≤ x ≤ r(x)

for all x ∈ R++, and that g is affine on each interval [	(x), r(x)] for x ∈ R++. It
is also straightforward that there exists an at most countable collection of intervals
Ii = [λi, ρi] ⊆ R+, i ∈ N, with λi < ρi , ]λi, ρi[∩ ]λj ,ρj [= ∅ for N � i �= j ∈ N, and
such that each Ii is equal to [	(x), r(x)] for some x ∈ R++.

We are now ready to define the candidate τ ∗ for the minimal optimal stopping
time for the problem (OS). To get an intuition for this, consider the case where Z ≡ 1.
Sitting at some point in time, suppose that we know that S will actually stay forever
in [0,K]; in that case, and since g(x) = g′(0)x holds for x ∈ [0,K], X will be a local
martingale from that point onwards; therefore, we should stop. Further, suppose that
we know that S will never escape from an interval where g is affine, other than [0,K]
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(which of course includes the case that S remains a constant), as well as that β will
certainly not decrease further. We again have that the process X will behave like a
nonnegative local martingale from that point onwards, which implies that it is optimal
to stop immediately. Therefore, we should certainly stop in either of the above cases.

We proceed now more rigorously in the construction of τ ∗. Define the stopping
time τK := inf{t ∈ R+ |Mt ≤ K}. With ζ denoting the càdlàg modification of the
nonnegative supermartingale (βt − E[β∞ | Ft ])t∈R+ , define τ̃ := inf{t ∈ R+ | ζt = 0}.
On {̃τ < ∞}, we have ζτ̃ = 0, which is equivalent to βτ̃ = β∞ since β is nonincreas-
ing. For each Ii = [λi, ρi], i ∈ N, as described above, define

τ i := τ̃ ∨ inf{t ∈ R+ |λi ≤ mt ≤ Mt ≤ ρi}.
Finally, define the stopping time τ 0 := inf{t ∈ R+ |mt = Mt }; observe that τ̃ ≤ τ 0,
since both ZβS and Z are local martingales. Finally, we define

τ ∗ := τK ∧
(

inf
i∈N∪{0} τ

i
)

. (2.3)

From the construction of τ ∗, it is clear that on {τ ∗ < τK }, we have βτ∗ = β∞ and
	(Sτ∗) ≤ inft∈[τ∗,∞[ St ≤ supt∈[τ∗,∞[ St ≤ r(Sτ∗).

2.4 The main result

Here is our main result, whose proof is given in Sect. 4.

Theorem 2.4 For the problem described in (OS), we have the following:

1. The value of the problem is v = E[Xτ∗ ] + δ(τ ∗) = E[X∞] + δ(∞).
2. A stopping time τ̂ ∈ T is optimal if and only if τ ∗ ≤ τ̂ as well as δ(̂τ ) = 0.
3. Optimal stopping times exist if and only if δ(τ ∗) = 0. In that case, τ ∗ is the small-

est optimal stopping time, and the set of all optimal stopping times is given by
{̂τ ∈ T | τ ∗ ≤ τ̂ and δ(̂τ ) = 0}.

Remark 2.5 When the problem has a finite horizon T ∈ T, the value of (OS) is

v = E[XT ] + δ(T ). (2.4)

When β = 1, E[ZT ] = 1 and ZS is a continuous strict local martingale, (2.4) has been
proved in Theorem A.1 in [3] and Proposition 2 in [18]. Theorem 2.4(1) generalizes
these results to a setting in which β need not be 1, S may have jumps, and Z need
not necessarily be a martingale.

Remark 2.6 In proving Theorem 2.4, we take a bare-hands approach to the problem
described in (OS), instead of using the well-developed theory of optimal stopping
using Snell envelopes. The reason is the following. The most celebrated result from
optimal stopping theory (see [8] and Appendix D in [17]) only gives a sufficient
condition that guarantees the existence of optimal stopping times. To use this result,
we should have to assume that the process X = (Ytg(St ))t∈R+ is of class D. However,
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in general, this fails in problem (OS). For example, when Z ≡ 1 and g(x) = (x −K)+
for x ∈ R+ (where K ∈ R++), the process (βtg(St ))t∈R+ is of class D if and only if
βS is a martingale. This is insufficient for our purposes, since we are interested in
cases where βS is a strict local martingale.

3 Examples

Throughout this section, we assume that the horizon of (OS) is T ∈ R++. In Sect. 3.1,
we give two examples and show that the smallest optimal exercise time may be equal
to T or strictly less than T . In Sect. 3.2, we discuss the implication of Theorem 2.4
on the put–call parity. In Sect. 3.3, we show that in a Markovian setting, the value
of an American call option is one of infinitely many solutions of a Cauchy problem;
we also indicate how one can uniquely identify the American call value using the
put–call parity. In Sect. 3.4, we give an example to show that optimal exercise times
need not exist and that the American call option value may always be strictly greater
than the payoff even at infinity, which further complicates the numerical valuation of
American options using finite difference methods.

3.1 Optimal exercise times

Here, we assume that the payoff g is the call option payoff, i.e., g(x) = (x −K)+ for
x ∈ R+, where K ∈ R++ is the strike price. In this case, g(x) = x − g(x) = x ∧ K .
Also, the interval [	(St ), r(St )] is either [0,K] or [K,∞] for any t ≤ T . In both
examples below, we assume that the stochastic basis is rich enough to accommodate
a process Z which is the reciprocal of a 3-dimensional Bessel process starting from
one; this is a classical example, due to [14], of a strict local martingale.

Example 3.1 With Z as above, define β ≡ 1 and S = 1/Z; then L = ZβS ≡ 1 is a
martingale. It was shown in [4] that arbitrage opportunities exist in a market with this
asset S. Such an arbitrage opportunity was explicitly given in Example 4.6 in [16].

For t < T and given Ft (and therefore St ), S crosses K in [t, T ] with strictly
positive probability, which can be shown using the explicit expression for its density
given by (1.06) on p. 429 in [2]. Therefore τ ∗ = T is the only candidate for an op-
timal stopping time. We claim that δ(T ) = 0, hence T is the only optimal stopping
time by Theorem 2.4(3). This claim is not hard to prove; indeed, since L ≡ 1, we
can choose σn = n for all n ∈ N as a localizing sequence for L. Then we obtain
δ(T ) = limn→∞ E[XT ∧n] − E[XT ] = 0, because E[XT ∧n] = E[XT ] for all n ∈ N

with n ≥ T .

The terminal time T may be not the only candidate to exercise optimally. In the
following example, it is optimal to exercise before T .

Example 3.2 With Z as above, define

K = 2, St =
{

1, t < t0,

4, t ≥ t0
and βt =

{

1, t < t0,

1/4, t ≥ t0
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for all t ∈ [0, T ], where t0 is a constant with 0 < t0 < T . Hence both Z and L are strict
local martingales. It is clear that τ ∗ = t0. Let (̃σ n)n∈N be a sequence localizing Z

(and, since L = Z, localizing L as well). We have from Lemma 2.1 that

δ(t0) = lim
n→∞E

[

Yσ̃n(Sσ̃ n − K)+ I{t0>σ̃n}
] = 0,

because Sσ̃n < K on {̃σn < t0}. Therefore, t0 is the smallest optimal exercise time
by Theorem 2.4(3). The value of this problem is v = E[Yt0(St0 − K)+] = E[Zt0 ]/2.
Moreover, with ξn := inf{t ≥ t0 | Zt/Zt0 ≥ n} for n ∈ N, we have E[Zξn ] = E[Zt0 ].
It follows that any element of the sequence (ξn)n∈N is an optimal stopping time.

It is also worth noticing that even though t0 is an optimal exercise time, we have
δ(t0) < L0 − E[Lt0 ]. (Compare this fact to (2.2) in Remark 2.2.) This observation
follows from L0 − E[Lt0] = 1 − E[Zt0 ] > 0 and δ(t0) = 0, which we have shown
above.

Let us also use this example to show that the mapping δ depends on the form
of the payoff function g. For this purpose, pick another call option with strike price
̂K = 1/2. For this option, δ(t0) = (1/2) limn→∞ E[Zσ̃nI{t0>σ̃n}], which is strictly
positive. This is because

lim
n→∞

[

Zσ̃nI{t0>σ̃n}
] = lim

n→∞ E[Zt0∧σ̃ n] − lim
n→∞

[

Zt0I{t0≤σ̃ n}
] = 1 − E[Zt0 ] > 0,

in which the second equality follows from the dominated convergence theorem. The
dependence of δ on g should be contrasted to (2.2) in Remark 2.2, which shows that
δ does not depend on the form of g when Z is a uniformly integrable martingale.

3.2 Put–call parity

The parity between prices of put and call options has been widely discussed in the
literature. We briefly revisit this relationship in our framework. We stress that the
discussion below pertains to the values of options according to the definitions given
here, and not to market prices. Our development thus far does not involve any trans-
action mechanism; for this reason, we refrain from talking about pricing and rather
talk about valuation. Recall that T ∈ R++ is fixed.

If either the discounted stock price or the local martingale Z is a strict local mar-
tingale, the put–call parity fails; see Theorem 3.4(iii) in [3], Sect. 3.2 in [11], [13],
and [12] when Z is uniformly integrable and ZβS is a strict local martingale. (In [13],
it is shown that the put–call parity holds under Merton’s concept of no dominance,
although it fails when only no free lunch with vanishing risk is assumed.) For the case
where Z is a strict local martingale, see Remarks 9.1 and 9.3 in [10] and Remark 10.1
in [15].

We assume here that there exists a unique local martingale Z that makes ZβS a
local martingale. We also assume that Z is actually a martingale. One can then define
a probability measure Q ∼ P on (Ω, FT ) via dQ = ZT dP. As a result, βS is a local
martingale under Q. In this setting, we show below that the put–call parity still holds
when the European call option is replaced by its American counterpart.
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With an obvious extension of Theorem 2.4(1), and in par with Remark 2.2, we
obtain that the American option value process A can be represented by

At = EQ

[

(βT /βt ) g(ST )
∣

∣ Ft

] + EQ

[

St − (βT /βt ) ST

∣

∣ Ft

]

for all t ∈ [0, T ].
Recalling from the proof of Lemma 2.1 that g(x) = x − g(x) for x ∈ R+ , one has

At = St − β−1
t EQ

[

βT g(ST )
∣

∣ Ft

]

.

Now if we denote Et := β−1
t EQ[βT g(ST ) | Ft ] for each t ∈ [0, T ], which is the value

at time t of a European option with the payoff g(ST ) at maturity, we obtain

A + E = S. (3.1)

Therefore, we retrieve the put–call parity, but with an American option on the
“call” side instead of a European. Moreover, (3.1) helps us uniquely identify the
American option value in the Markovian case in the next subsection.

3.3 Characterizing the American option value in terms of PDEs

Here, in addition to all the assumptions of Sect. 3.2, we further assume that the dis-
counting process is β = exp(− ∫ ·

0 r(t)dt), where the interest rate r is nonnegative
and deterministic, as well as that the dynamics of S under the probability Q is given
by

dSt = r(t)St dt + α(St )dBt , (3.2)

where B is a Brownian motion under Q. We assume that α(x) > 0 for x > 0,
α(0) = 0, and that α is continuous and locally Hölder-continuous with exponent 1/2,
so that the stochastic differential equation (3.2) has a unique strong nonnegative so-
lution S. Additionally, the nonnegative volatility α satisfies

∫ ∞
1 (x/α2(x))dx < ∞,

which is a necessary and sufficient condition for βS to be strict local martingale un-
der Q; see [5].

The value process A of an American option satisfies At = a(St , t) for t ∈ [0, T ],
where the value function a : R+ × [0, T ] → R+ is given by

a(x, t) := x − e(x, t). (3.3)

Here, e(x, t) := EQ[exp(− ∫ T

t
r(u)du)g(ST ) | St = x] for (x, t) ∈ R+ × [0, T ] is the

value function of a European option with payoff g. Recall that limx→∞ g(x)/x = 0,
i.e., g is a function of strictly sublinear growth, according to Definition 4.2 in [7].

When the discounted stock price is a strict local martingale, the differential equa-
tion satisfied by the European option value usually has multiple solutions; see [11].
However, when the terminal condition has strictly sublinear growth, the same PDEs
have a unique solution in the class of functions with sublinear growth; see The-
orem 4.3 in [7]. We use this result to uniquely identify the value of the Ameri-
can option in what follows. A simple modification of Theorem 4.3 in [7] to the
nonzero interest rate case gives the following result. (Even though Theorem 4.3
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in [7] assumes zero interest rate, when r �= 0, (17) in [7] can be replaced by
vε
t − 1

2α2(x)vε
xx − rxvε

x + rvε = εet (1 + r + x) > 0. The rest of the proof can be
adapted in a straightforward manner to the nonzero interest rate case.)

Proposition 3.3 The value function e is the unique classical solution, in the class of
functions of strictly sublinear growth, to the boundary value problem

et + 1

2
α2(x) exx + r(t) xex − r(t) e = 0, (x, t) ∈ R+ × [0, T ),

e(x,T ) = g(x),

e(0, t) = 0, 0 ≤ t < T .

(3.4)

Remark 3.4 Proposition 3.3 fully characterizes the American option value. First, one
needs to find the solution of (3.4) with strictly sublinear growth in its first variable
(which is unique). Subtracting this value from the stock price gives the American
option value. The approximation method described by Theorem 2.2 in [6] can also be
used to compute e. (The idea is to approximate e by a sequence of functions that are
unique solutions of Cauchy problems on bounded domains.)

Remark 3.5 Owing to the fact that e is of strictly sublinear growth, (3.3) gives
limx→∞ a(x, t)/x = 1 for t ∈ [0, T ], i.e., a(x, t) is of linear growth in x. Moreover,
Proposition 3.3 also implies that a(x, t) is a classical solution of the boundary value
problem

at + 1

2
α2(x) axx + r(t) xax − r(t) a = 0, (x, t) ∈ R+ × [0, T ),

a(x,T ) = g(x),

a(0, t) = 0, 0 ≤ t < T .

(3.5)

However, a(x, t) is not the unique solution of (3.5). Indeed, the value function e of a
European option, given by

e(x, t) := EQ

[

exp

(

−
∫ T

t

r(u)du

)

g(ST )

∣

∣

∣

∣

St = x

]

, for (x, t) ∈ R+ × [0, T ],

is another classical solution of (3.5) (see Theorem 3.2 in [7]). Moreover, since βS is
a strict local martingale under Q, we have for all (x, t) ∈ R+ × [0, T ] that

a(x, t) − e(x, t) = x − EQ

[

exp

(

−
∫ T

t

r(u)du

)

ST

∣

∣

∣

∣

St = x

]

> 0,

i.e., the American option value dominates its European counterpart, which is the
smallest nonnegative supersolution of (3.5). (See the comment after Theorem 4.3
in [7].)

It is also worth noting that a − e satisfies (3.5) with zero as terminal condition.
Owing to this observation, we can construct infinitely many solutions to (3.5) greater
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than the value of the American option. That is to say, the American option value is
neither the smallest nor the largest solution of (3.5). Similarly, we can also fill the gap
between the European and American options with infinitely many solutions of (3.5).
In fact, this Cauchy problem has a unique solution among functions of linear growth
if and only if βS is a martingale under Q; see [1].

3.4 A further remark

In addition to all assumptions of Sect. 3.3, suppose that β ≡ 1, g(x) = (x − K)+ for
x ∈ R+ where K ∈ R++, and S is the reciprocal of a 3-dimensional Bessel process.
In this case, an argument similar to the one in Example 3.1 gives τ ∗ = T . Moreover,
it follows from (2.2) that δ(T ) > 0. Therefore, owing to Theorem 2.4(3), there is no
optimal stopping time solving (OS) in this setting.

We now demonstrate that the American call value is strictly larger than the payoff
even when the stock price variable tends to infinity.

Recall that a(x, t) − e(x, t) = x − EQ[ST |St = x]. Here,

x − EQ[ST |St = x] = 2x Φ

(

− 1

x
√

T − t

)

, (3.6)

where Φ(·) = 1√
2π

∫ ·
−∞ e−x2/2 dx. (See Sect. 2.2.2 in [3].) Meanwhile, Example 3.5

in [3] gives

lim
x↑∞ e(x, t) = 2√

2π(T − t)
− K

[

2Φ

(

1

K
√

T − t

)

− 1

]

. (3.7)

Combining (3.6) and (3.7), we obtain

lim
x↑∞

[

a(x, t) − (x − K)+
] = lim

x↑∞ e(x, t) − lim
x↑∞ EQ[ST |St = x] + K

= 2K

[

1 − Φ

(

1

K
√

T − t

)]

> 0 for all t ∈ [0, T ).

4 Proof of Theorem 2.4

4.1 Proof of statement (1)

We first show that E[Xτ ] ≤ E[Xτ∗∧τ ] holds for all τ ∈ T. Because we have for all
t ∈ R+ that g(Sτ∗∨t ) = g′(0)Sτ∗∨t on the event {τ ∗ = τK} ∩ {τ ∗ < ∞}, we get

Xτ∗∨t = g′(0)Zτ∗∨t βτ∗∨t Sτ∗∨t = g′(0)Lτ∗∨t

for all t ∈ R+ on {τ ∗ = τK} ∩ {τ ∗ < ∞}. As L is a nonnegative local martin-
gale, therefore a supermartingale, E[Xτ | Fτ∗ ] ≤ Xτ∗ on {τ ∗ = τK < τ }. Now on
{τK > τ ∗}, by definition of τ ∗, we have g(Sτ∗∨t ) = g(Sτ∗) + g′(Sτ∗)(Sτ∗∨t − Sτ∗)
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and βτ∗∨t = βτ∗ for all t ∈ R+. As {τ ∗ < τK} ⊆ {Xτ∗ > 0}, it follows that on the
event {τ ∗ < τK} we have

Xτ∗∨·
Xτ∗

=
(

βτ∗g(Sτ∗) − βτ∗Sτ∗g′(Sτ∗)

Xτ∗

)

Zτ∗∨· +
(

g′(Sτ∗)

Xτ∗

)

Lτ∗∨·. (4.1)

Since both Z and L are local martingales and X is nonnegative, it is straightfor-
ward that the inequality E[Xτ | Fτ∗ ] ≤ Xτ∗ holds on {τ ∗ < τ } ∩ {τ ∗ < τK }. Since
E[Xτ | Fτ∗ ] ≤ Xτ∗ also holds on {τ ∗ < τ } ∩ {τ ∗ = τK}, we obtain E[Xτ | Fτ∗ ] ≤ Xτ∗
on {τ ∗ < τ }, and E[Xτ ] ≤ E[Xτ∗∧τ ] follows.

Let (σ n)n∈N be a localizing sequence for L. The proof of Lemma 2.1 has shown
that (Xσn∧t )t∈R+ is a submartingale of class D. Thus supτ∈T[0,σ n] E[Xτ ] = E[Xσn].
From the discussion of the previous paragraph,

sup
τ∈T[0,σ n]

E[Xτ ] = E[Xσn] ≤ E[Xσn∧τ∗ ] = sup
τ∈T[0,σ n∧τ∗]

E[Xτ ],

where the last equality follows from the fact that (Xσn∧τ∗∧t )t∈R+ is a submartingale
of class D. The other inequality supτ∈T[0,σ n∧τ∗] E[Xτ ] ≤ supτ∈T[0,σ n] E[Xτ ] trivially
holds. Furthermore, supτ∈T E[Xτ ] =↑ limn→∞ supτ∈T[0,σ n] E[Xτ ] is easily seen to
hold by Fatou’s lemma. Putting everything together, we have

v = sup
τ∈T

E[Xτ ] =↑ lim
n→∞ sup

τ∈T[0,σ n]
E[Xτ ] =↑ lim

n→∞ E[Xσn∧τ∗ ] = E[Xτ∗ ] + δ(τ ∗),

(4.2)
where the last equality holds by the definition of δ.

The equality v = E[X∞]+δ(∞) is proved similarly, replacing τ ∗ by ∞ in (4.2). �

4.2 Proof of statement (2)

We start with the following helpful result.

Proposition 4.1 For each τ ∈ T, the following statements are equivalent:

1. δ(τ ) = 0.
2. δ(τ ′) = 0 for all τ ′ ∈ T[0, τ ].
3. The process (Xτ∧t )t∈R+ is a submartingale of class D.

Proof As the implications (3) ⇒ (2) and (2) ⇒ (1) are straightforward, we focus in
the sequel on proving the implication (1) ⇒ (3).

Since X = L − W , in which L is a local martingale and W is a supermartin-
gale, (Xτ∧t )t∈R+ is a local submartingale. Therefore, we only need to show that
{Xτ ′ | τ ′ ∈ T[0, τ ]} is uniformly integrable. Let τ ′ ∈ T[0, τ ] and A ∈ Fτ ′ . Then, with
τ ′′ := τ ′

IA + τ IΩ\A, we have τ ′′ ∈ T[0, τ ] as well. Let (σ n)n∈N be a localizing se-
quence for L. Once again we use the fact (proved in Lemma 2.1) that (Xσn∧t )t∈R+ is
a submartingale of class D to obtain

E[Xτ ′′ ] ≤ lim inf
n→∞ E[Xτ ′′∧σn] ≤ lim inf

n→∞ E[Xτ∧σn ] = E[Xτ ],
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the last equality following from the fact that δ(τ ) = 0. The inequality above is equiv-
alent to E[Xτ ′IA] ≤ E[Xτ IA]. Since A ∈ Fτ ′ was arbitrary, we get Xτ ′ ≤ E[Xτ | Fτ ′ ].
Since X ≥ 0 and E[Xτ ] < ∞, this readily shows that {Xτ ′ | τ ′ ∈ T[0, τ ]} is uniformly
integrable. �

We now proceed with the proof of statement (2) of Theorem 2.4. A combination
of Lemmas 4.2 and 4.3 below shows that if a stopping time τ̂ ∈ T is optimal, then
δ(̂τ ) = 0, as well as τ ∗ ≤ τ̂ . In Lemma 4.4, the converse is proved.

Lemma 4.2 If τ̂ is any optimal stopping time, then δ(̂τ ) = 0.

Proof Let (σ n)n∈N be a localizing sequence for L. To begin with, Fatou’s lemma
gives E[Xτ̂ ] ≤ lim infn→∞ E[Xτ̂∧σn]. On the other hand, the optimality of τ̂ yields
lim supn→∞ E[Xτ̂∧σn] ≤ E[Xτ̂ ]. Therefore E[Xτ̂ ] = limn→∞ E[Xτ̂∧σn]. By the def-
inition of δ, the latter equality is equivalent to δ(̂τ ) = 0. �

Lemma 4.3 If τ ∈ T is such that P[τ < τ ∗] > 0, then there exists τ ′ ∈ T with
E[Xτ ] < E[Xτ ′ ].

Proof We have shown in the proof of statement (1) that E[Xτ ] ≤ E[Xτ∗∧τ ] for all
τ ∈ T. Therefore, it is enough to prove that if τ ∈ T[0, τ ∗] is such that P[τ < τ ∗] > 0,
then there exists τ ′ ∈ T with E[Xτ ] < E[Xτ ′ ]. For the rest of the proof of Lemma 4.3,
we fix τ ∈ T[0, τ ∗] with P[τ < τ ∗] > 0.

Let us first introduce some notation. Define the local martingale

L(τ)· := (Lτ∨·/Lτ )I{τ<∞} + I{τ=∞}.

Observe that L(τ) is really the local martingale L started at τ ; indeed, we have
L

(τ)
t = 1 on {t < τ } and L

(τ)
t = Lt/Lτ on {τ ≤ t}. If (ηn)n∈N is the sequence of

stopping times defined by η1 := τ and ηn := inf{t ≥ τ | L
(τ)
t ≥ n} for n > 1, then

ηn ≥ τ , ↑ limn→∞ ηn = ∞ and {L(τ)
ηn∧σ | σ ∈ T} is a uniformly integrable family,

which means that (L
(τ)
ηn∧t )t∈R+ is a uniformly integrable martingale. (To see the last

fact, observe that E[supσ∈T L
(τ)
ηn∧σ ] ≤ n + E[L(τ)

ηn ] ≤ n + 1, where the last inequality

follows from the fact that L(τ) is a nonnegative local martingale with L
(τ)
0 = 1.) In

particular, E[Lσ | Fτ ] = Lτ holds for all σ ∈ T[τ, ηn], n ∈ N.
Below, we shall find τ ′ ∈ T such that E[Xτ ] < E[Xτ ′ ] in two distinct cases:

Case 1: Assume that P[{τ < τ ∗} ∩ {Sτ ≤ K}] > 0. In view of the definition of τ ∗ (and
of τK ), for small enough ε > 0, the stopping time

τ ′′ = inf{t ≥ τ |St > K + ε}
is such that τ ≤ τ ′′ and P[{Sτ ≤ K} ∩ {τ < τ ′′ < ∞}] > 0. Defining the stop-
ping time τ ′ := I{Sτ >K}τ + I{Sτ ≤K}(τ ′′ ∧ ηn) for large enough n ∈ N, we have
τ ≤ τ ′, E[Lτ ′ | Fτ ] = Lτ as well as P[{Sτ ′ > K} ∩ {τ < τ ′ < ∞}] > 0, owing to
limn→∞ ηn = ∞. Observe that Xτ = Yτg(Sτ ) = Yτg

′(0)Sτ = g′(0)Lτ on the set



Strict local martingale deflators and American call options 289

{τ < τ ′} ⊆ {Sτ ≤ K}. On the other hand, Xτ ′ = Yτ ′g(Sτ ′) ≥ Yτ ′g′(0)Sτ ′ = g′(0)Lτ ′ ,
with the strict inequality Xτ ′ > g′(0)Lτ ′ holding on {Sτ ′ > K} ∩ {τ < τ ′ < ∞}.
Therefore,

E
[

Xτ ′I{τ<τ ′}
]

> g′(0)E
[

Lτ ′I{τ<τ ′}
] = g′(0)E

[

Lτ I{τ<τ ′}
] = E

[

Xτ I{τ<τ ′}
]

.

Since τ ≤ τ ′, we obtain E[Xτ ′ ] > E[Xτ ].
Case 2: Assume now that P[{τ < τ ∗} ∩ {Sτ ≤ K}] = 0. Since Sτ > K on {τ < τ ∗}
and using the definition of τ ∗ in (2.3), we can find ε > 0 small enough such that the
stopping time

τ ′′ = inf
{

t ≥ τ
∣

∣βt < βτ − ε, or St < 	(Sτ ) − ε, or St > r(Sτ ) + ε
}

satisfies τ ′′ ≥ τ and

P
[({βτ > βτ ′′ } ∪ {

Sτ ′′ < 	(Sτ )
} ∪ {

r(Sτ ) < Sτ ′′
}) ∩ {τ ′′ < ∞}] > 0.

Then letting τ ′ = τ ′′ ∧ ηn for large enough n ∈ N, we have τ ≤ τ ′, E[Lτ ′ | Fτ ] = Lτ ,
as well as

P
[({βτ > βτ ′ } ∪ {

Sτ ′ < 	(Sτ )
} ∪ {

r(Sτ ) < Sτ ′
}) ∩ {τ ′ < ∞}] > 0.

The convexity of g gives

Zτ ′βτ ′g(Sτ ′) ≥ Zτ ′βτ ′g(Sτ ) + Zτ ′βτ ′g′(Sτ )(Sτ ′ − Sτ )

= Zτ ′βτ ′
(

g(Sτ ) − g′(Sτ )Sτ

) + Zτ ′βτ ′g′(Sτ )Sτ ′

≥ Zτ ′βτ

(

g(Sτ ) − g′(Sτ )Sτ

) + Zτ ′βτ ′g′(Sτ )Sτ ′ . (4.3)

In (4.3) above, the first inequality is strict on

({

Sτ ′ < 	(Sτ )
} ∪ {

r(Sτ ) < Sτ ′
}) ∩ {τ ′ < ∞}.

(Note that Zτ ′βτ ′ > 0 on {τ ′ < ∞}.) On the other hand, the second inequality in (4.3)
is strict on {βτ ′ < βτ } ∩ {τ ′ < ∞}, since Zτ ′ > 0 on {τ ′ < ∞} and g(Sτ ) < g′(Sτ )Sτ

when Sτ > K . Given all the previous observations, we take expectations in (4.3) to
obtain

E[Xτ ′ ] > E
[

Zτ ′βτ

(

g(Sτ ) − g′(Sτ )Sτ

)] + E
[

Zτ ′βτ ′g′(Sτ )Sτ ′
]

≥ E
[

Zτβτ

(

g(Sτ ) − g′(Sτ )Sτ

)] + E
[

Zτ ′βτ ′g′(Sτ )Sτ ′
]

= E[Xτ ] + E
[

g′(Sτ )(Lτ ′ − Lτ )
] = E[Xτ ];

the second inequality follows since Z is a supermartingale and g(Sτ ) ≤ g′(Sτ )Sτ . �

Lemma 4.4 If τ̂ ∈ T is such that τ ∗ ≤ τ̂ and δ(̂τ ) = 0, then τ̂ is optimal.
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Proof Fix τ ∈ T and τ̂ ∈ T with τ ∗ ≤ τ̂ and δ(̂τ ) = 0. We shall show that
E[Xτ ] ≤ E[Xτ̂ ].

Since δ(̂τ ) = 0, (Xτ̂∧t )t∈R+ is a submartingale of class D in view of Proposi-
tion 4.1. Then Xτ I{τ≤τ̂ } ≤ E[Xτ̂ | Fτ ]I{τ≤τ̂ } = E[Xτ̂ I{τ≤τ̂ } | Fτ ] follows immediately.
Taking expectations in the previous inequality, we obtain

E
[

Xτ I{τ≤τ̂ }
] ≤ E

[

Xτ̂ I{τ≤τ̂ }
]

. (4.4)

On {̂τ < τ }, we can use the same idea as in (4.1) and the subsequent discussion (with
τ̂ replacing τ ∗ and using the fact that τ ∗ ≤ τ̂ ) to obtain E[Xτ | Fτ̂ ]I{̂τ<τ } ≤ Xτ̂ I{̂τ<τ };
in particular,

E
[

Xτ I{̂τ<τ }
] ≤ E

[

Xτ̂ I{̂τ<τ }
]

. (4.5)

Combining the inequalities (4.4) and (4.5), we obtain E[Xτ ] ≤ E[Xτ̂ ]. �

4.3 Proof of statement (3)

If an optimal stopping time τ̂ ∈ T exists, then τ ∗ ≤ τ̂ is true by statement (2) of
Theorem 2.4; then δ(τ ∗) = 0 follows from δ(̂τ ) = 0 in view of Proposition 4.1. Con-
versely, if δ(τ ∗) = 0, then E[Xτ∗ ] = E[Xτ∗ ]+δ(τ ∗) = v, and therefore τ ∗ is optimal.
The fact that τ ∗ is the smallest optimal stopping time, if optimal stopping times exist,
as well as the representation of the set of all possible optimal stopping times, also
follows from statement (2) of Theorem 2.4. �
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