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Let L0 be the vector space of all (equivalence classes of)
real-valued random variables built over a probability space
(Ω,F ,P), equipped with a metric topology compatible with
convergence in probability. In this work, we provide a nec-
essary and sufficient structural condition that a set X ⊆ L0

should satisfy in order to infer the existence of a probabil-
ity Q that is equivalent to P and such that X is uniformly
Q-integrable. Furthermore, we connect the previous essen-
tially measure-free version of uniform integrability with local
convexity of the L0-topology when restricted on convex, solid
and bounded subsets of L0.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

In the study of probability measure spaces, the notion of uniform integrability for
sets of integrable measurable functions (random variables) has proved essential in both
fields of Functional Analysis and Probability. On one hand, the Dunford–Pettis theorem
[5, Chapter IV.9] states that uniform integrability of a set of random variables is equiv-
alent to its relative weak sequential compactness in the corresponding L1 space; this
fact allows the utilization of powerful functional-analytic techniques. On the other hand,
uniform integrability is exactly the extra condition needed in order for convergence in
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(probability) measure to imply convergence in the L1-norm—see, for example, [6, Propo-
sition 4.12].

The latter fact mentioned above has a simple, yet important, corollary in the topo-
logical study of L0 spaces, where L0 is defined as the set of all (equivalence classes of)
real-valued random variables built over a probability space (Ω,F ,P), equipped with
a metric topology compatible with convergence in probability. To wit, when a uni-
formly P-integrable set X ⊆ L1(P) is regarded as a subset in L0, the L0-topology and
L1(P)-topology on X coincide; in particular, the L0-topology on X is locally convex
whenever X is uniformly P-integrable. Local convexity of the considered topology is an
important property from a functional-analytic viewpoint, as it enables the use of al-
most indispensable machinery, such as the Hahn–Banach theorem and its consequences.
Unfortunately, even though L0 constitutes a very natural modelling environment (for
example, it is the only of the Lp spaces for p ∈ [0,∞) that remains invariant with re-
spect to equivalent changes of probability measure), the convex-analytic structure of L0

is quite barren. Indeed, when the underlying probability space is non-atomic, the topo-
logical dual of L0 contains only the zero functional; furthermore, unless the underlying
probability space is purely atomic, the L0-topology fails to be locally convex—for the
previous facts, see [1, Theorem 13.41].

Despite the “hostility” of its topological environment, considerable research has been
carried out in order to understand the convex-analytic properties of L0—for a small
representative list, see [9,2,3,11,7,10]. In the spirit of the discussion in the previous para-
graphs, a novel use of uniform integrability bridging Functional Analysis and Probability
was recently provided in [8]. Consider an L0-convergent sequence (Xn)n∈N of random
variables in L0

+ (the latter denoting the non-negative orthant of L0), and define X as the
L0-closure of conv({Xn | n ∈ N}), where “conv” is used to denote the convex hull of a
subset in L0. One of the main messages of [8] is that the restriction of the L0-topology on
X is locally convex if and only if there exists some probability Q ∼ P (where “∼” is used
to denote equivalence of probability measures) such that X is uniformly Q-integrable.
Loosely speaking, the fact that the restriction of the L0-topology on X is locally convex
can be regarded as an essentially measure-free version of uniform integrability.

In the present work, the previous topic is explored in greater depth. The first main
result of the paper provides a structural necessary and sufficient condition for an arbitrary
subset X of L0 to be uniformly Q-integrable under some Q ∼ P. To be more precise, for
all n ∈ N define OX

n as the subset of L0
+ consisting of all random variables dominated

in the lattice structure of L0 by some random variable of conv({(|X| − n)+ | X ∈ X}),
where Z+ = max{Z, 0} for Z ∈ L0; then, there is equivalence between the condition⋂

n∈N OX
n = {0} and existence of Q ∼ P such that X is uniformly Q-integrable. When

X ⊆ L0
+, the structural condition

⋂
n∈N OX

n = {0} has a useful interpretation in the field
of Financial Mathematics: its failure implies that there exists Y ∈ L0

+ \ {0} with the
property that, for all n ∈ N, there is the possibility of super-hedging Y using convex
combinations of call options to exchange positions in X for n units of cash. The second
main result of the paper explores further the connection between local convexity of the
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L0-topology and the previous essentially measure-free version of uniform integrability.
For X ⊆ L0

+ that is convex, L0-bounded and solid (in the sense that X ∈ X and Y ∈ L0
+

with Y � X implies Y ∈ X ), it is established that the restriction of the L0-topology on X
is locally convex if and only if there exists Q ∼ P such that X is uniformly Q-integrable.
The previous result sheds an important light on the topological structure of convex
subsets of L0, since it identifies the cases where the restriction of the L0-topology is
locally convex.

The structure of the paper is as follows. In Section 1, all the probabilistic and topologi-
cal set-up is introduced. Section 2 contains the first main result of the paper, Theorem 2.2,
establishing a necessary and sufficient structural condition for a subset of L0 to be
uniformly integrable in an essentially measure-free way, as well as ramifications and
discussion of Theorem 2.2. Section 3 contains the second main result of the paper, The-
orem 3.2, connecting local convexity of subsets of L0

+ with their uniform Q-integrability
under some Q ∼ P; furthermore, discussion on the assumptions and conclusions of The-
orem 3.2 is offered. Finally, Appendix A contains the technical part of the proof of
Theorem 2.2.

1. Probabilistic set-up and terminology

Let (Ω,F ,P) be a probability space. For a probability Q on (Ω,F), we write Q � P

whenever Q is absolutely continuous with respect to P on F ; similarly, we write Q ∼ P

whenever Q and P are equivalent on F . All probabilities equivalent to P have the same
sets of zero measure, which shall be called null. Relationships between random variables
are understood in the P-a.s. sense.

By L0 we shall denote the set of all (equivalence classes modulo null sets of) real-valued
random variables on (Ω,F); furthermore, L0

+ will consist of all X ∈ L0 such that X � 0.
We follow the usual practice of not differentiating between a random variable and the
equivalence class it generates in L0. The expectation of X ∈ L0

+ under a probability
Q � P is denoted by EQ[X]. We define a metric on L0 via L0 × L0 � (X,Y ) �→
EP[1 ∧ |X − Y |]. The topology on L0 that is induced by the previous metric depends
on P only through the null sets; convergence of sequences in this topology is simply
convergence in measure under any probability Q with Q ∼ P. Unless otherwise explicitly
stated, all topological concepts (convergence, closure, etc.) will be understood under the
aforementioned metric topology on L0.

A set X ⊆ L0 is called convex if (αX + (1 − α)Z) ∈ X whenever X ∈ X , Z ∈ X and
α ∈ [0, 1]. The set convX ⊆ L0 will denote the convex hull of X ∈ L0; namely, convX
is the collection of all elements of the form

∑k
i=1 αiXi, where k ranges in N, Xi ∈ X

and αi � 0 for all i ∈ {1, . . . , k}, and
∑k

i=1 αi = 1. Furthermore, X denotes the closure
of X ∈ L0. The set X ⊆ L0 is called bounded if limn→∞ supX∈X P[|X| > n] = 0 holds; in
this case, limn→∞ supX∈X Q[|X| > n] = 0 also holds for all probabilities Q � P. Note
that boundedness in this sense coincides with boundedness in the sense of topological
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vector spaces—see [1, Definition 5.36, page 186]. For a probability Q � P, a set X ⊆ L0

is called uniformly Q-integrable if limn→∞(supX∈X EQ[|X|I{|X|>n}]) = 0.
We now specialize to subsets of L0

+. The set X ⊆ L0
+ is called solid if for all Y ∈ L0

+
and X ∈ X with Y � X, it follows that Y ∈ X . The solid hull of X ⊆ L0

+ is defined
to be {Y ∈ L0

+ | Y � X for some X ∈ X}; clearly, it is the smallest solid subset of L0
+

that contains X . The set scX will denote the solid hull of the convex hull of X ⊆ L0
+; in

other words,

scX :=
{
Y ∈ L0

+
∣∣ Y � Z for some Z ∈ convX

}
.

It is straightforward to check that the solid hull of a convex set is convex; therefore, scX is
the smallest solid and convex set that includes X ⊆ L0

+. In fact, the operations of taking
the convex and solid hull of a subset of L0

+ commute. Indeed, the next result (which
appears to be folklore, although a quick proof is included for completeness) implies in
particular that scX = conv{Y ∈ L0

+ | Y � X for some X ∈ X}; therefore, whenever
X ⊆ L0

+ is a solid set, scX = convX holds.

Proposition 1.1. Let X ⊆ L0
+ be a solid set. Then, convX is also solid.

Proof. Define a non-decreasing sequence (Ck)k∈N of subsets of L0
+ as follows: C0 = X

and, inductively, for k ∈ N, Ck := {αX +(1−α)Y | X ∈ X , Y ∈ Ck−1, α ∈ [0, 1]}. Since
convX =

⋃
k∈N Ck, solidity of convX will follow as soon as we establish the solidity of

Ck for each k ∈ N, which will be fulfilled via an induction argument. Note that C0 = X
is solid by assumption. Fix k ∈ N and suppose that Ck−1 is solid; we shall show that
Ck is also solid. Let Z ∈ L0

+ be such that Z � αX + (1 − α)Y for some X ∈ X ,
Y ∈ Ck−1 and α ∈ [0, 1]. We claim that there exist X ′ ∈ X and Y ′ ∈ Ck−1 such that
Z = αX ′ + (1 − α)Y ′. If α = 0 let X ′ = 0 and Y ′ = Z, while if α = 1 set X ′ = Z and
Y ′ = 0. Assume that α ∈ (0, 1). Noting that {X < Z} ∩ {Y < Z} = ∅, define

X ′ = ZI{Z�X∧Y } + Z − (1 − α)Y
α

I{Y <Z�X} + XI{X<Z�Y },

Y ′ = ZI{Z�X∧Y } + Z − αX

1 − α
I{X<Z�Y } + Y I{Y <Z�X}.

Since Z � αX + (1 − α)Y , it follows that X ′ ∈ L0
+, Y ′ ∈ L0

+ and X ′ � X, Y ′ � Y .
Therefore, by the induction hypothesis and the solidity of X , X ′ ∈ X and Y ′ ∈ Ck−1.
Furthermore, the equality Z = αX ′ + (1 − α)Y ′ follows by definition of X ′ and Y ′,
completing the proof. �

Whenever X ⊆ L0
+ is convex and solid, X is again convex and solid. (For the latter

solidity property, let Z ∈ X and Y ∈ L0
+ with Y � Z. Assume that the X -valued sequence

(Zn)n∈N is such that limn→∞ Zn = Z. Then, (Zn ∧ Y )n∈N is still X -valued since X is
solid, and limn→∞(Zn ∧ Y ) = Z ∧ Y = Y , which implies that Y ∈ X . Therefore, X is
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solid as well.) It follows that X is the smallest convex, solid and closed subset of L0
+ that

contains the convex and solid X ⊆ L0
+.

2. A structural condition for the essentially measure-free version of uniform
integrability of sets in LLL0

2.1. The first main result

We begin with a simple result providing an equivalent formulation of uniform inte-
grability that will tie better with Theorem 2.2 (which immediately follows). Recall that
R � x �→ x+ ∈ R+ denotes the operation returning the positive part of a real number.

Proposition 2.1. Let Q � P and X ⊆ L0. Then, X is uniformly Q-integrable if and only
if limn→∞(supX∈X EQ[(|X| − n)+]) = 0 holds.

Proof. Define x := limn→∞(supX∈X EQ[(|X| − n)+]). Since (|X| − n)+ � |X|I{|X|>n}
holds for all X ∈ L0

+ and n ∈ N, uniform Q-integrability of X implies that x = 0.
Conversely, assume that X fails to be uniform Q-integrable. If supX∈X EQ[|X|] = ∞,
then supX∈X EQ[(|X|−n)+] = ∞ holds for all n ∈ N, which implies x = ∞. Suppose now
that y := supX∈X EQ[|X|] < ∞. Since X fails to be uniform Q-integrable, for each n ∈ N

there exists Xn ∈ X such that EQ[|Xn|I{|Xn|>n2}] � ε for some ε ∈ (0,∞). By Markov’s
inequality, nP[|Xn| > n2] � E[|Xn|]/n � y/n holds for all n ∈ N; therefore, since
(|Xn|−n)+ � |Xn|I{|Xn|>n2}−nI{|Xn|>n2}, the estimate EQ[(|Xn|−n)+] � ε− (y+ ε)/n
for all n ∈ N implies that x � ε, which concludes the proof. �
Theorem 2.2. Let X ⊆ L0 and define the non-increasing sequence (OX

n )n∈N of subsets
of L0

+ via

OX
n := sc

{(
|X| − n

)
+

∣∣ X ∈ X
}
, for all n ∈ N. (2.1)

Then, the following statements are equivalent:

(1)
⋂

n∈N OX
n = {0}.

(2)
⋂

n∈N OX
n = {0}.

(3) There exists a probability Q ∼ P such that X is uniformly Q-integrable.

Proof. Implication (1) ⇒ (3) is quite technical, and is discussed in Appendix A. Impli-
cation (2) ⇒ (1) is immediate. It remains to establish implication (3) ⇒ (2); therefore,
assume that there exists a probability Q ∼ P such that X is uniformly Q-integrable.
As (OX

n )n∈N is a non-increasing sequence of convex, solid and closed subsets of L0
+ (see

discussion after the proof of Proposition 1.1), it follows in a straightforward way that⋂
n∈N OX

n coincides with the set of all the limits of sequences (Zn)n∈N with the property
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that Zn ∈ OX
n holds for all n ∈ N. Any such sequence (Zn)n∈N with Zn ∈ OX

n for all
n ∈ N satisfies

lim sup
n→∞

EQ[Zn] � lim sup
n→∞

(
sup
X∈X

EQ

[(
|X| − n

)
+

])
= 0,

as follows from Proposition 2.1 and the convexity of R � x �→ x+. Since Zn ∈ L0
+ for all

n ∈ N, it follows that (Zn)n∈N converges to zero for the L1(Q)-topology, which implies
that limn→∞ Zn = 0. Therefore,

⋂
n∈N OX

n = {0}, which is exactly condition (2). �
Remark 2.3. Suppose that X ⊆ L0

+. The sequence (OX
n )n∈N that appears in Theorem 2.2,

which in view of X ⊆ L0
+ satisfies OX

n = sc{(X − n)+ | X ∈ X} for all n ∈ N,
is non-increasing. Note that the sequence ({(X − n)+ | X ∈ X})n∈N of subsets of
L0

+ is not necessarily non-increasing, except in the case when X is solid; in this case,
{(X − n)+ | X ∈ X} ⊆ L0

+ is also solid, and OX
n = conv{(X − n)+ | X ∈ X} holds in

view of Proposition 1.1.

2.2. Connections of Theorem 2.2 with financial mathematics

Suppose that X ⊆ L0
+ represents financial positions available at some future time T .

For X ∈ X and k ∈ R+, the random variable (X−k)+ is the payoff of an option to receive
the position X upon paying k units of cash at time T . Given this interpretation, the set
{(X − n)+ | X ∈ X} coincides with all options to buy X ∈ X for the fixed strike price
n ∈ N. A probability Q ∼ P can be used for valuation of financial contracts, assigning the
value EQ[Z] to a contract that will pay the amount Z ∈ L0

+ at time T . Given the previous
understanding, the statement of Theorem 2.2 has the following financial interpretation:
there either exists a valuation probability Q ∼ P such that the value of options of the
form (X − n)+ for X ∈ X under Q converges to zero as n tends to infinity uniformly
over all X ∈ X , or the structure of X is rich enough to allow for the possibility of
super-hedging a fixed positive (non-zero) position using convex combinations of options
with arbitrary large strike prices, in the sense that there exists Y ∈ L0

+ with P[Y > 0] > 0
and a sequence (Zn)n∈N such that Y � Zn ∈ conv{(X − n)+ | X ∈ X} holds for
all n ∈ N.

The discussion of the previous paragraph applies also to options allowing exchange
of positions in X for units of some random payoff other than cash. This becomes eas-
ier understood via use of the method of numéraire-change. (For an illustration of this
technique in a dynamic semimartingale environment, see [4].) In accordance to (2.1), for
Y ∈ L0

+ define OX
Y := sc{(X − Y )+ | X ∈ X}. For Y ∈ L0

+ with P[Y > 0] = 1, the
set (1/Y )X = {X/Y | X ∈ X} consists of positions in X denominated in units of Y ; in
other words, Y is used as a numéraire. Since (X/Y − n)+ = (1/Y )(X − nY )+ holds for
all X ∈ X and n ∈ N, it is straightforward to check that O(1/Y )X

n = (1/Y )OX
nY holds

for all n ∈ N. Note that statement (3) of Theorem 2.2 is invariant under such changes
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of numéraire: if it holds for X , it also holds for (1/Y )X whenever Y ∈ L0
+ is such that

P[Y > 0] = 1; it then follows that

⋂
n∈N

OX
n = {0} ⇐⇒

⋂
n∈N

O(1/Y )X
n = {0} ⇐⇒

⋂
n∈N

(1/Y )OX
nY = {0}

⇐⇒
⋂
n∈N

OX
nY = {0}.

2.3. A decomposition result

The next corollary of Theorem 2.2 is an interesting “decomposition” result.

Proposition 2.4. A set X ⊆ L0 either fails to be uniformly Q-integrable for all probabilities
Q � P, or there exists some probability QX � P with the following properties:

• X is uniformly QX -integrable, and
• whenever a probability Q � P is such that Q⊥QX , X fails to be uniformly

Q-integrable.

Proof. In the notation of (2.1), define K :=
⋂

n∈N OX
n ⊆ L0

+. Note that K is convex, solid
and closed, as it is the intersection of sets with the corresponding properties. It then
follows in a straightforward way that there exists Ωw ∈ F such that:

• P[Ωw ∩ {Y > 0}] = 0 holds for all Y ∈ K.
• For any A ⊆ Ω \ Ωw with P[A] > 0, there exists Z ≡ ZA ∈ K such that P[A ∩

{Z > 0}] > 0 holds.

(Clearly, such Ωw ∈ F is unique modulo null sets.) If P[Ωw] = 0, Theorem 2.2 implies
that X fails to be uniformly Q-integrable for all probabilities Q � P. On the other hand,
if P[Ωw] > 0, then using the notation AQ := {dQ/dP > 0} for probabilities Q � P,
Theorem 2.2 implies that there exists QX � P with AQX = Ωw (modulo null sets)
such that X is uniformly QX -integrable. In this case, when Q � P is such that Q⊥QX
then AQ ⊆ Ω \ Ωw, which implies again by Theorem 2.2 that X fails to be uniformly
Q-integrable. �
Remark 2.5. Let X ⊆ L0, and suppose that X is uniformly Q-integrable for some proba-
bility Q � P. In this case, if both QX � P and Q′

X � P have the properties mentioned
in Proposition 2.4, it necessarily holds that QX ∼ Q′

X .

Remark 2.6. In [2], given a convex set X ⊆ L0
+, the authors show that there exists a

set Ωb ∈ F such that IΩb
X is bounded while X is hereditarily unbounded on Ω \ Ωb in

the sense that IAX fails to be bounded for all A ∈ F with A ⊆ Ω \ Ωb and P[A] > 0.
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The set Ωb satisfying the previous property is necessarily unique (modulo null-sets).
Proposition 2.4 can be seen as a result in this direction; indeed, with the notation in
its proof, given X ⊆ L0, it is shown that there exists a set Ωw ∈ F such that IΩw

X
is “weakly compactizable” (in the sense that there exists Q ∼ P such that IΩw

X is
uniformly Q-integrable) while IΩ\Ωw

X “hereditarily fails to be weakly-compactizable”
(in the sense that IAX fails to be weakly-compactizable for all A ∈ F with A ⊆ Ω \Ωw

and P[A] > 0).

3. Local convexity

3.1. The second main result

We start with a definition of a concept has played a major role in the theory of
Financial Mathematics, usually utilized in an indirect manner—see, for example, [3,
Lemma A1.1].

Definition 3.1. Let (Xn)n∈N be a sequence in L0. Any L0-valued sequence (Yn)n∈N with
the property that Yn ∈ conv{Xk | n � k ∈ N} for all n ∈ N will be called a sequence of
forward convex combinations of (Xn)n∈N.

Let us agree to call a convex set X ⊆ L0 locally convex for the L0-topology if any
element of X has a neighbourhood base (for the relative L0-topology on X ) consisting
of convex sets. (Such definition is classical in the case where X is a topological vector
space; however, we only require X ⊆ L0 to be convex.) Suppose that a convex set X ⊆ L0

is locally convex for the L0-topology; then, whenever (Xn)n∈N is an X -valued sequence
that converges to X ∈ X , all sequences of forward convex combinations of (Xn)n∈N also
converge to X.

The second main result of the paper that follows connects, amongst other things,
local convexity of the L0-topology of X ⊆ L0

+ with uniform Q-integrability of X for
some Q ∼ P, in the case where X is convex, solid and bounded.

Theorem 3.2. Let X ⊆ L0
+ be a convex, solid and bounded set. Then, the following

statements are equivalent:

(1) Whenever (Xn)n∈N is an X -valued sequence that converges to zero, all sequences of
forward convex combinations of (Xn)n∈N also converge to zero.

(2) 0 ∈ X has a neighbourhood base (for the relative L0-topology) consisting of convex
sets.

(3) Any X ∈ X has a neighbourhood base (for the relative L0-topology) consisting of
convex sets.

(4) The L0-topology on X coincides with the L1(Q)-topology on X for some Q ∼ P.
(5) X is uniformly Q-integrable with respect to some Q ∼ P.
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Proof. The chain of implications (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) in Theorem 3.2 is
straightforward.

Assume that condition (5) fails. Define X ′
n := {(X − n)+ | X ∈ X} for all n ∈ N.

Then, X ′
n is a solid subset of X , in view of the solidity of X ; furthermore, OX

n = convX ′
n

holds for all n ∈ N according to (2.1) and Proposition 1.1 (see also Remark 2.3). In
view of Theorem 2.2, it holds that

⋂
n∈N OX

n � {0}; therefore, there exists Y ∈ L0
+

with P[Y > 0] > 0 such that Y ∈ convX ′
n holds for each n ∈ N. Since Y is a convex

combination of elements in X ′
n for all n ∈ N, one can construct an X -valued sequence

(Xn)n∈N with the properties that Xn ∈ X ′
n for all n ∈ N and the constant sequence

(Yn)n∈N with Yn = Y for all n ∈ N is a sequence of forward convex combinations of
(Xn)n∈N. Since X is assumed to be bounded,

lim sup
n→∞

P[Xn > 0] � ↓ lim
n→∞

(
sup
X∈X

P[X > n]
)

= 0

holds, which implies that limn→∞ Xn = 0. Therefore, we have constructed an X -valued
sequence (Xn)n∈N that converges to 0 ∈ X , of which the (constant, and equal to Y )
sequence (Yn)n∈N of its forward convex combinations fails to be convergent to zero (since
Y ∈ L0

+ is such that with P[Y > 0] > 0). This implies that condition (1) also fails.
Therefore, implication (1) ⇒ (5) has been established as well. �
3.2. Remarks on Theorem 3.2

We proceed with several remarks on the hypotheses and statement of Theorem 3.2.

3.2.1. The structural condition
As mentioned in the proof of Theorem 3.2 (and comes as a consequence of Proposi-

tion 1.1), when X ⊆ L0
+ is solid, the set OX

n defined in (2.1) is equal to conv{(X − n)+ |
X ∈ X} for all n ∈ N. Therefore, in view of Theorem 2.2, the conditions of Theorem 3.2
are further equivalent to

⋂
n∈N

conv
{
(X − n)+

∣∣ X ∈ X
}

= {0}. (3.1)

3.2.2. The case of subsets of L0

Theorem 3.2 can be extended to cover the case of X ⊆ L0 that is convex, bounded and
solid, where the last property means that whenever X ∈ X and Y ∈ L0 are such that
|Y | � |X|, then Y ∈ X . The details are rather straightforward and, therefore, omitted.
Note that if X ⊆ L0 is solid, X ∈ X implies |X| ∈ X ; from this, it is straightforward
to see that {(|X| − n)+ | X ∈ X} = {(X − n)+ | X ∈ X}; therefore, the structural
condition (3.1) remains exactly the same in this case.
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3.2.3. Local convexity at zero
Let X ⊆ L0

+ be a convex, solid and bounded set. As a consequence of Theorem 3.2,
local convexity of X for the L0-topology is equivalent to local convexity of X for the
L0-topology only at 0 ∈ X . Clearly, solidity of X is crucial for this to be true.

3.2.4. Local convexity and closure
Let X ⊆ L0

+ be a convex, solid and bounded set. As Theorem 3.2 suggests, local
convexity of X for the L0-topology implies also local convexity of X for the L0-topology.
Again, solidity of X is crucial for this to hold—see Section 3.2.6 later on.

3.2.5. On boundedness
Boundedness of a convex and solid set X ⊆ L0

+ in the statement of Theorem 3.2 is
clearly necessary in order to have uniform Q-integrability for some probability Q ∼ P.
When a convex and solid set X ⊆ L0

+ fails to be bounded, local convexity of X for the
L0-topology in general may not even imply that the L0-topology on X is the same as the
L1(Q)-topology for some probability Q ∼ P. Indeed, consider Ω = N, F the collection
of all subsets of Ω and the probability P satisfying P[{i}] = 2−i for all i ∈ N. It is
then straightforward to check that L0 is isomorphic to RN equipped with the product
topology. In particular, X ≡ L0

+ is locally convex for the L0-topology. However, L0
+ even

fails to be a subset of L1(Q) for any Q ∼ P.
More generally, Proposition 3.3 that follows will complement Theorem 3.2. Note that,

as a consequence of the bipolar theorem in L0 [2, Theorem 1.3], whenever X ⊆ L0
+ is con-

vex and solid, there exists Ωb ∈ F such that IΩb
X is bounded while IΩ\Ωb

X = IΩ\Ωb
L0

+.
Since the case of bounded X ⊆ L0

+ is covered by Theorem 3.2, we turn attention at what
is happening in the hereditarily unbounded part (the notion of hereditary unbounded-
ness has been introduced in [2] and is reviewed in Remark 2.6); it is then sufficient to
focus on the case X = L0

+.

Proposition 3.3. The set L0
+ is locally convex for the L0-topology if and only if the un-

derlying probability space is purely atomic. In this case, the L0-topology on L0
+ coincides

with the L1(Q)-topology on X for some Q ∼ P (equivalently, for all Q ∼ P) if and only
if the underlying probability space (is purely atomic and) has only a finite number of
atoms.

Proof. When (Ω,F ,P) is purely atomic, L0
+ is topologically isomorphic to either Rn

+ for
some n ∈ N or to RN

+ (the latter spaces equipped with the usual product topology); in
any case, the L0-topology is locally convex. When (Ω,F ,P) fails to be purely atomic,
one can find A ∈ F with P[A] > 0 such that A contains no atoms. Then, for each
m ∈ N one can find a partition (Am,k)k∈{1,...,m} of A such that P[Am,k] = P[A]/m
holds for all k ∈ {1, . . . ,m}. Define the sequence (Xn)n∈N via Xn = mIAm,k

whenever
n = 2m−1 + (k − 1) for m ∈ N and k ∈ {1, . . . ,m}; then, limn→∞ Xn = 0. However,
the non-zero sequence (Zn)n∈N defined via Zn = IA for all n ∈ N is a sequence of
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forward convex combinations of (Xn)n∈N; therefore, L0
+ cannot be locally convex for the

L0-topology.
When (Ω,F ,P) is purely atomic with a finite number of atoms, all L1(Q) spaces, as

well as L0, are topologically isomorphic to Rn, where n ∈ N is the number of distinct
atoms. On the other hand, if (Ω,F ,P) is purely atomic with a countably infinite number
of atoms, it is straightforward to check that L1

+(Q) := L1(Q) ∩ L0
+ is a strict subset

of L0
+ for any Q ∼ P. �

3.2.6. On solidity
Define X := {X ∈ L0

+ | EP[X] = 1}; clearly, X is convex and bounded. The solid
hull of X is S = {X ∈ L0

+ | EP[X] � 1}, which is also convex and bounded. It is a
consequence of [6, Proposition 4.12] that the L0 and L1(P) topologies on X coincide;
in particular, X is locally convex for the L0-topology. However, when the underlying
probability space is non-atomic:

• X fails to be uniformly Q-integrable for all probabilities Q ∼ P. (Indeed, for each
Q ∼ P it is straightforward to construct an X -valued sequence (Xn)n∈N such that
limn→∞ Xn = 0 holds, but lim infn→∞ EQ[Xn] > 0.) Therefore, the equivalence of
statements (4) and (5) in Theorem 3.2 may fail when X is not solid.

• It holds that X = S. (Indeed, X ⊆ S holds in view of Fatou’s lemma. Conversely,
since the underlying probability space is non-atomic, there exists an X -valued se-
quence (Yn)n∈N such that limn→∞ Yn = 0 holds; then, for any X ∈ S, the X -valued
sequence (Xn)n∈N defined via Xn = X + (1 − EP[X])Yn for all n ∈ N is such that
limn→∞ Xn = X.) Since S fails to be locally convex (which can be seen by a similar
argument as in the proof of Proposition 3.3), the closure of a locally convex set for
the L0-topology may fail to be locally convex for the L0-topology. This is in direct
contrast with the discussion in Section 3.2.4 in the case where X is solid.

It is an open question whether the equivalence of statements (3) and (4) of Theorem 3.2
is valid under the assumption that X is convex and bounded. There does not seem to
be a straightforward adaptation of the method of proof provided in this paper to cover
this case. A related open question is whether the equivalence between statements (3),
(4) and (5) of Theorem 3.2 is valid under the assumption that X is convex, bounded and
closed; note that the set X is the example above is not L0-closed when the underlying
probability space is non-atomic, although it is always L1(P)-closed.

Appendix A. Completing the proof of Theorem 2.2

In order to conclude the proof of Theorem 2.2, it remains to establish implication
(1) ⇒ (3). This is done in Appendix A.3, after certain prerequisites and auxiliary results
are discussed.
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A.1. A couple of results regarding solid sets

The two results that follow will be useful in the proof of implication (1) ⇒ (3) of
Theorem 2.2. In fact, the first one that follows already gives the intermediate implication
(1) ⇒ (2) of Theorem 2.2.

Lemma A.1. Let (Sn)n∈N be a sequence of solid subsets of L0
+. Then,

⋂
n∈N Sn = {0}

implies
⋂

n∈N Sn = {0}.

Proof. Since
⋂

n∈N Sn ⊆
⋂

n∈N Sn, the result will follow if we show that
⋂

n∈N Sn � {0}
implies

⋂
n∈N Sn � {0}. Let Z ∈

⋂
n∈N Sn be such that P[Z > 0] > 0. For all n ∈ N,

since Z ∈ Sn, let Zn ∈ Sn be such that P[|Zn − Z| > Z/2 | Z > 0] < 2−(n+1). Let
A :=

⋂
n∈N{|Zn − Z| � Z/2}. Since P[Z > 0] > 0 and

P[A | Z > 0] � 1 −
∑
n∈N

P
[
|Zn − Z| > Z/2

∣∣ Z > 0
]

� 1 − 1
2 = 1

2 > 0,

it follows that P[A ∩ {Z > 0}] > 0; therefore, upon defining Y := (Z/2)IA ∈ L0
+, note

that P[Y > 0] > 0. Furthermore, Y � Zn follows from the fact that |Zn − Z| � Z/2
holds on A for all n ∈ N, which implies that Y ∈ Sn in view of the solidity of Sn for
all n ∈ N. It follows that Y ∈

⋂
n∈N Sn, which completes the proof. �

The second auxiliary result shows that a solid subset of L0
+ whose closure is the whole

orthant L0
+ contains “rays” through elements that are almost strictly positive.

Lemma A.2. Let S ⊆ L0
+ be solid, and suppose that S = L0

+. Then, for all ε ∈ (0, 1)
there exists Y ≡ Yε ∈ L0

+ with P[Y = 0] < ε such that aY ∈ D holds for all a ∈ R+.

Proof. Fix ε ∈ (0, 1). Since k ∈ L0
+ = S for each k ∈ N and S is solid, it follows that

there exists Ak ∈ F with the properties that P[Ak] > 1 − ε/2k and kIAk
∈ S. Define

A :=
⋂

k∈N Ak ∈ F and Y = IA. Note that P[Y = 0] = P[Ω \ A] < ε. Furthermore,
kY � kIAk

holds for all k ∈ N; since kIAk
∈ S and S is solid, kY ∈ S holds for all k ∈ N.

The solidity of S gives that aY ∈ S for all a ∈ R+. �
A.2. Polar and bipolar sets

For C ⊆ L0
+, its polar C◦ ⊆ L0

+ (under P) is defined via

C◦ :=
{
Y ∈ L0

+

∣∣∣ sup
X∈C

EP[Y X] � 1
}
.

It is straightforward to check that polar sets are convex and solid; furthermore, Fatou’s
lemma implies that polar sets are closed. Clearly, {0}◦ = L0

+. Furthermore, it is straight-
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forward to check by the definition of polarity that (
⋃

n∈N Cn)◦ =
⋂

n∈N C◦
n holds for any

sequence (Cn)n∈N of subsets of L0
+.

Define also the bipolar of C ⊆ L0
+ via C◦◦ := (C◦)◦. It is straightforward to check that

C ⊆ C◦◦. Bipolar sets are convex, solid and closed. In fact, the version of the bipolar
theorem in L0 [2, Theorem 1.3] implies that C◦◦ is the smallest convex, solid and closed
subset of L0

+ which contains C ⊆ L0
+; in particular, if C ⊆ L0

+ is already convex and solid,
then since C is also convex and solid (see discussion in the end of Section 1), it follows
that C◦◦ = C.

A.3. Proof of implication (1) ⇒ (3) of Theorem 2.2

In order to ease the reading, the sets OX
n of (2.1) will be denoted here by On for all

n ∈ N; similarly, we shall write On in place of OX
n , for all n ∈ N. We shall assume in the

sequel that
⋂

n∈N On = {0}. Recall that On is a solid subset of L0
+ for all n ∈ N. It is

then a consequence of Lemma A.1 that the condition
⋂

n∈N On = {0} actually implies
the seemingly stronger

⋂
n∈N On = {0}.

For all n ∈ N, associated with On define a function un : L0
+ �→ [0,∞] via

un(Y ) := sup
X∈On

EP[Y X] = sup
X∈On

EP[Y X], Y ∈ L0
+, (A.1)

where the second equality follows from Fatou’s lemma. By their very definition, each
mapping un, n ∈ N, has the following properties:

• monotonicity: un(Y ) � un(Z) holds for all Y ∈ L0
+ and Z ∈ L0

+ with Y � Z;
• sub-additivity: un(Y + Z) � un(Y ) + un(Z) holds for all Y ∈ L0

+ and Z ∈ L0
+;

• positive homogeneity: un(aY ) = aun(Y ) holds for all Y ∈ L0
+ and a ∈ (0,∞).

The following intermediate result will be helpful.

Lemma A.3. With the above notation,
⋂

n∈N On = {0} implies that there exists Y0 ∈ L0
+

with P[0 < Y0 � 1] = 1 such that un(Y0) � 1 holds for all n ∈ N.

Proof. By Lemma A.1,
⋂

n∈N On = {0} implies
⋂

n∈N On = {0}. Note that each On

is convex, solid and closed. According to [2, Lemma 2.3], there exist sets Bn ∈ F for
all n ∈ N with the property that IBn

On is bounded while IΩ\Bn
On = IΩ\Bn

L0
+. By

definition of the sets On, n ∈ N, it is straightforward to check that for any n ∈ N

and Zn+1 ∈ On+1 there exists Zn ∈ On such that Zn � (Zn+1 − 1)+; therefore, it
follows that Bn = B1 holds for all n ∈ N (up to null sets). This fact implies that⋂

n∈N On ⊇ IΩ\B1L
0
+; therefore, in view of

⋂
n∈N On = {0}, P[B1] = 1 has to hold. It

follows that O1 is bounded. An application of [7, Theorem 1.1(4)] implies that there
exists W0 ∈ O1 such that supZ∈O1

EP[Z/(1 + W0)] � 1. Defining Y0 = 1/(1 + W0), the
result follows. �
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Along with the non-increasing sequence of mappings (un)n∈N that was introduced
above, define also the “limiting” map u : L0

+ �→ [0,∞] via

u(Y ) := ↓ lim
n→∞

un(Y ), Y ∈ L0
+.

Note that the monotonicity, sub-additivity and positive homogeneity properties of the
sequence (un)n∈N directly transfer to u.

Remark A.4. By Proposition 2.1, it follows that u(dQ/dP) = 0 for some probability
Q � P is equivalent to uniform Q-integrability of X .

For all n ∈ N, define Pn := {Y ∈ L0
+ | un(Y ) � 1}; recalling the discussion of polar

sets in Section A.2, note that Pn = O◦
n = O◦

n. In particular, Pn is a convex, solid and
closed subset of L0

+ for all n ∈ N. Furthermore, from the bipolar theorem in L0 [2,
Theorem 1.3] and the fact that On is convex, solid and closed (see discussion after the
proof of Proposition 1.1 at the end of Section 1), it follows that P◦

n = (On)◦◦ = On for
all n ∈ N.

Let P :=
⋃

n∈N Pn. Note that P is a solid and convex subset of L0
+. Since

⋂
n∈N On =

{0}, it follows that

P = P◦◦ =
( ⋃

n∈N

Pn

)◦◦
=

(( ⋃
n∈N

Pn

)◦)◦
=

( ⋂
n∈N

P◦
n

)◦

=
( ⋂

n∈N

On

)◦
= {0}◦ = L0

+.

By Lemma A.2, for each k ∈ N there exists Yk ∈ L0
+ with P[Yk = 0] < 1/k such

that mYk ∈
⋃

n∈N Pn holds for all m ∈ N. Fixing k ∈ N, for each m ∈ N pick nm =
nm(k) ∈ N such that mYk ∈ Pnm

; then, u(Yk) � unm
(Yk) � 1/m holds for all k ∈ N,

which implies that u(Yk) = 0. Recall from Lemma A.3 that there exists Y0 ∈ L0
+ with

P[0 < Y0 � 1] = 1, such that un(Y0) � 1 holds for all n ∈ N. Define a new L0
+-valued

sequence (Zk)k∈N via Zk = min{Yk, Y0} for all k ∈ N; then, it follows in a straightforward
way that P[Zk = 0] = P[Y = 0] < 1/k, u(Zk) � u(Yk) = 0 and P[Zk � Y0 � 1] = 1 for
all k ∈ N, where u1(Y0) � 1.

Define Z :=
∑

k∈N 2−kZk, and note that P[Z � 1] = 1. Since P[Zk = 0] < 1/k holds
for all k ∈ N, it is straightforward that P[Z > 0] = 1. Furthermore, Z �

∑m
k=1 2−kZk +

2−mY0 holds for all m ∈ N; therefore,

u(Z) � u

(
m∑

k=1

2−kZk

)
+ u

(
2−mY0

)
�

m∑
k=1

2−ku(Zk) + 2−mu1(Y0) � 2−m

holds for all m ∈ N. It follows that u(Z) = 0. Defining the probability Q via dQ =
(Z/EP[Z]) dP, it follows that Q ∼ P; furthermore, the positively homogeneity property
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of u implies that u(dQ/dP) = 0, which concludes the proof of implication (1) ⇒ (3) of
Theorem 2.2 in view of Remark A.4.
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