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Let L° be the vector space of all (equivalence classes of)
real-valued random variables built over a probability space
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ity Q that is equivalent to P and such that X is uniformly
Q-integrable. Furthermore, we connect the previous essen-
tially measure-free version of uniform integrability with local
convexity of the L9-topology when restricted on convex, solid
and bounded subsets of L°.
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0. Introduction

In the study of probability measure spaces, the notion of uniform integrability for

sets of integrable measurable functions (random variables) has proved essential in both
fields of Functional Analysis and Probability. On one hand, the Dunford—Pettis theorem
[5, Chapter TV.9] states that uniform integrability of a set of random variables is equiv-

alent to its relative weak sequential compactness in the corresponding IL! space; this

fact allows the utilization of powerful functional-analytic techniques. On the other hand,

uniform integrability is exactly the
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(probability) measure to imply convergence in the L'-norm—see, for example, [6, Propo-
sition 4.12].

The latter fact mentioned above has a simple, yet important, corollary in the topo-
logical study of IO spaces, where LU is defined as the set of all (equivalence classes of)
real-valued random variables built over a probability space ({2, F,P), equipped with
a metric topology compatible with convergence in probability. To wit, when a uni-
formly P-integrable set X C L!(P) is regarded as a subset in L°, the L°-topology and
L' (P)-topology on X coincide; in particular, the L°-topology on X is locally convex
whenever X is uniformly P-integrable. Local convexity of the considered topology is an
important property from a functional-analytic viewpoint, as it enables the use of al-
most indispensable machinery, such as the Hahn-Banach theorem and its consequences.
Unfortunately, even though LY constitutes a very natural modelling environment (for
example, it is the only of the LP spaces for p € [0,00) that remains invariant with re-
spect to equivalent changes of probability measure), the convex-analytic structure of I.°
is quite barren. Indeed, when the underlying probability space is non-atomic, the topo-
logical dual of LY contains only the zero functional; furthermore, unless the underlying
probability space is purely atomic, the L°-topology fails to be locally convex—for the
previous facts, see [1, Theorem 13.41].

Despite the “hostility” of its topological environment, considerable research has been
carried out in order to understand the convex-analytic properties of LY—for a small
representative list, see [9,2,3,11,7,10]. In the spirit of the discussion in the previous para-
graphs, a novel use of uniform integrability bridging Functional Analysis and Probability
was recently provided in [8]. Consider an L%-convergent sequence (X,)nen of random
variables in LY. (the latter denoting the non-negative orthant of L?), and define X as the
LO-closure of conv({X,, | n € N}), where “conv” is used to denote the convex hull of a
subset in LY. One of the main messages of [8] is that the restriction of the L°-topology on
X is locally convex if and only if there exists some probability Q ~ P (where “~” is used
to denote equivalence of probability measures) such that X is uniformly Q-integrable.
Loosely speaking, the fact that the restriction of the LO-topology on X is locally convex
can be regarded as an essentially measure-free version of uniform integrability.

In the present work, the previous topic is explored in greater depth. The first main
result of the paper provides a structural necessary and sufficient condition for an arbitrary
subset X of LY to be uniformly Q-integrable under some Q ~ P. To be more precise, for
all n € N define O; as the subset of LY consisting of all random variables dominated
in the lattice structure of L° by some random variable of conv({(|X| —n); | X € &}),
where Z, = max{Z,0} for Z € LL°; then, there is equivalence between the condition
Nnen O = {0} and existence of Q ~ P such that X is uniformly Q-integrable. When
X C LY, the structural condition (), .y Of = {0} has a useful interpretation in the field
of Financial Mathematics: its failure implies that there exists ¥ € LY \ {0} with the
property that, for all n € N, there is the possibility of super-hedging Y using convex
combinations of call options to exchange positions in X for n units of cash. The second
main result of the paper explores further the connection between local convexity of the
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L% topology and the previous essentially measure-free version of uniform integrability.
For X C LY that is convex, L%-bounded and solid (in the sense that X € X and Y € LY.
with Y < X implies Y € &), it is established that the restriction of the L°-topology on X
is locally convex if and only if there exists Q ~ P such that X is uniformly Q-integrable.
The previous result sheds an important light on the topological structure of convex
subsets of LY, since it identifies the cases where the restriction of the L’-topology is
locally convex.

The structure of the paper is as follows. In Section 1, all the probabilistic and topologi-
cal set-up is introduced. Section 2 contains the first main result of the paper, Theorem 2.2,
establishing a necessary and sufficient structural condition for a subset of L° to be
uniformly integrable in an essentially measure-free way, as well as ramifications and
discussion of Theorem 2.2. Section 3 contains the second main result of the paper, The-
orem 3.2, connecting local convexity of subsets of L(j_ with their uniform Q-integrability
under some QQ ~ IP; furthermore, discussion on the assumptions and conclusions of The-
orem 3.2 is offered. Finally, Appendix A contains the technical part of the proof of
Theorem 2.2.

1. Probabilistic set-up and terminology

Let (12, F,P) be a probability space. For a probability Q on ({2, F), we write Q < P
whenever Q is absolutely continuous with respect to P on F; similarly, we write Q ~ P
whenever Q and P are equivalent on F. All probabilities equivalent to P have the same
sets of zero measure, which shall be called null. Relationships between random variables
are understood in the P-a.s. sense.

By LL? we shall denote the set of all (equivalence classes modulo null sets of) real-valued
random variables on ({2, F); furthermore, ]Lg_ will consist of all X € L° such that X > 0.
We follow the usual practice of not differentiating between a random variable and the
equivalence class it generates in L°. The expectation of X € ]LSJr under a probability
Q < P is denoted by Eg[X]. We define a metric on L° via LY x L 3 (X,Y) ~
Ep[l A |X — Y|]. The topology on L that is induced by the previous metric depends
on P only through the null sets; convergence of sequences in this topology is simply
convergence in measure under any probability Q with Q ~ P. Unless otherwise explicitly
stated, all topological concepts (convergence, closure, etc.) will be understood under the
aforementioned metric topology on L°.

A set X C LY is called convez if (X + (1 —a)Z) € X whenever X € X, Z € X and
a € [0,1]. The set convX’ C LY will denote the conver hull of X € L% namely, conv X
is the collection of all elements of the form Zle a;X;, where k ranges in N, X; € X
and o; > 0 for all i € {1,...,k}, and Zle a; = 1. Furthermore, X denotes the closure
of X € LY. The set X C L is called bounded if lim,, o Sup x¢x P[|X| > n] = 0 holds; in
this case, lim, o Supxcy Q[|X| > n] = 0 also holds for all probabilities Q <« P. Note
that boundedness in this sense coincides with boundedness in the sense of topological
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vector spaces—see |1, Definition 5.36, page 186]. For a probability Q < P, a set X C IL°
is called uniformly Q-integrable if limy, oo (Sup xcx Eq[| X |I{|x|>n}]) = 0.

We now specialize to subsets of ILS_. The set X C ]LS_ is called solid if for all Y € Lg_
and X € X with Y < X, it follows that Y € X. The solid hull of X C Lg_ is defined
to be {Y € L | Y < X for some X € X}; clearly, it is the smallest solid subset of LY.
that contains X'. The set sc X will denote the solid hull of the convex hull of X C ]Lg_; in
other words,

scX :={Y €L} | Y < Z for some Z € conv X'}.

It is straightforward to check that the solid hull of a convex set is convex; therefore, sc X is
the smallest solid and convex set that includes X C Lg_. In fact, the operations of taking
the convex and solid hull of a subset of LY commute. Indeed, the next result (which
appears to be folklore, although a quick proof is included for completeness) implies in
particular that scX = conv{Y € L} | Y < X for some X € X}; therefore, whenever
X C ]LSJr is a solid set, sc X = conv X" holds.

Proposition 1.1. Let X C ]Lg be a solid set. Then, conv X is also solid.

Proof. Define a non-decreasing sequence (C*)ren of subsets of LY as follows: C° = X
and, inductively, for k € N, C* .= {aX+(1-a)Y | X € X, Y € C*~!, a €0,1]}. Since
convX = [Jpen CFk, solidity of conv X will follow as soon as we establish the solidity of
CF for each k € N, which will be fulfilled via an induction argument. Note that C°* = X
is solid by assumption. Fix & € N and suppose that C*~! is solid; we shall show that
C* is also solid. Let Z € LY be such that Z < aX + (1 — @)Y for some X € X,
Y € C* 1 and a € [0,1]. We claim that there exist X’ € X and Y’ € C*~! such that
Z=aX'+(1-a)Y' . Ifa=0let X’=0and Y’ = Z, while if « =1 set X' = Z and
Y’ = 0. Assume that a € (0,1). Noting that {X < Z} N {Y < Z} = (), define

Z-(1-a)Y

X' = Zliz<xnyy + Ly cz<xy + Xix<z<yys

Z —aX
Y' = Zliz<xnyy + ﬁﬂ{)kzgy} +Yiy<z<xy

Since Z < aX + (1 — @)Y, it follows that X’ € LY, Y’ € LY and X’ < X, Y’ < Y.
Therefore, by the induction hypothesis and the solidity of X, X’ € X and Y’ € CF~1.
Furthermore, the equality Z = aX’ + (1 — )Y’ follows by definition of X’ and Y,
completing the proof. O

Whenever & C ]L(j_ is convex and solid, X is again convex and solid. (For the latter
solidity property, let Z € X and Y € LY with Y < Z. Assume that the X-valued sequence
(Zn)nen is such that lim, . Z, = Z. Then, (Z, A Y)pen is still X-valued since X is
solid, and lim,, oo (Z, AY) = Z AY =Y, which implies that Y € X. Therefore, X is



C. Kardaras / Journal of Functional Analysis 266 (2014) 1913—-1927 1917

solid as well.) It follows that X is the smallest convex, solid and closed subset of LY that
contains the convex and solid X C ILS_.

2. A structural condition for the essentially measure-free version of uniform
integrability of sets in IL°

2.1. The first main result

We begin with a simple result providing an equivalent formulation of uniform inte-
grability that will tie better with Theorem 2.2 (which immediately follows). Recall that
R > x — x4 € Ry denotes the operation returning the positive part of a real number.

Proposition 2.1. Let Q < P and X C LY. Then, X is uniformly Q-integrable if and only
if limy, 00 (SUp x e x Eg[(|X| — n)+]) = 0 holds.

Proof. Define x := lim,, oo (supxex Eg[(|X| — n)1]). Since (|X| —n)y < [ X[l x|>n}
holds for all X € IU}F and n € N, uniform Q-integrability of A implies that * = 0.
Conversely, assume that & fails to be uniform Q-integrable. If supycy Eg[|X|] = oo,
then sup yc y Eg[(|X|—n)4] = oo holds for all n € N, which implies = oco. Suppose now
that y := supxcx Eg[|X|] < co. Since X fails to be uniform Q-integrable, for each n € N
there exists X,, € A’ such that Eq[|X,|I{x,|>n2}] = € for some € € (0, 00). By Markov’s
inequality, nP[|X,| > n?] < E[|X,|]/n < y/n holds for all n € N; therefore, since
(|Xn| 7TL)+ = ‘Xn|H{|X,L|>n2} 7TL]I{‘X"‘>n2}, the estimate EQ[(|Xn‘ 771)_,.} > €e— (ere)/n
for all n € N implies that = > ¢, which concludes the proof. O

Theorem 2.2. Let X C L° and define the non-increasing sequence (O:X),en of subsets
of ]Lg_ via

ox ::sc{(\X|fn)+|X€X}, for alln € N. (2.1)

Then, the following statements are equivalent:

(1) Nuen O = {0}
(2) Nnen 05 = {0}
(3) There exists a probability Q ~ P such that X is uniformly Q-integrable.

Proof. Implication (1) = (3) is quite technical, and is discussed in Appendix A. Impli-
cation (2) = (1) is immediate. It remains to establish implication (3) = (2); therefore,
assume that there exists a probability Q ~ P such that X is uniformly Q-integrable.
As (O_ff JneN is a non-increasing sequence of convex, solid and closed subsets of Lg_ (see
discussion after the proof of Proposition 1.1), it follows in a straightforward way that

Npen O5F coincides with the set of all the limits of sequences (Z,,)nen with the property
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that Z,, € OX holds for all n € N. Any such sequence (Z,)nen With Z,, € O for all
n € N satisfies

lim sup Eg[Z,] < limsup( sup Eq[(|X| - ”)+]> =0,

n—00 n— o0 XeXx

as follows from Proposition 2.1 and the convexity of R 3 x — . Since Z,, € LS’F for all
n € N, it follows that (Z,),en converges to zero for the L' (Q)-topology, which implies

that lim, o Z, = 0. Therefore, (1, .y O;f = {0}, which is exactly condition (2). O

Remark 2.3. Suppose that X C LY. The sequence (O )nen that appears in Theorem 2.2,
which in view of X C LY satisfies O;f = sc{(X —n); | X € X} for all n € N,
is non-increasing. Note that the sequence ({(X — n)y | X € X})nen of subsets of
]LS)r is not necessarily non-increasing, except in the case when X is solid; in this case,
{(X —=n); | X € X} C LY is also solid, and O;f = conv{(X —n); | X € X} holds in

view of Proposition 1.1.
2.2. Connections of Theorem 2.2 with financial mathematics

Suppose that X C ]LE’r represents financial positions available at some future time 7.
For X € X and k € R, the random variable (X —k) . is the payoff of an option to receive
the position X upon paying k units of cash at time T'. Given this interpretation, the set
{(X —n);+ | X € X} coincides with all options to buy X € X for the fixed strike price
n € N. A probability Q ~ P can be used for valuation of financial contracts, assigning the
value Eg[Z] to a contract that will pay the amount Z € Lg_ at time T'. Given the previous
understanding, the statement of Theorem 2.2 has the following financial interpretation:
there either exists a valuation probability Q ~ P such that the value of options of the
form (X —n)y for X € X under Q converges to zero as n tends to infinity uniformly
over all X € X, or the structure of X is rich enough to allow for the possibility of
super-hedging a fixed positive (non-zero) position using convex combinations of options
with arbitrary large strike prices, in the sense that there exists Y € LY. with P[Y > 0] > 0
and a sequence (Z,)nen such that ¥V < Z, € conv{(X —n); | X € X} holds for
all n € N.

The discussion of the previous paragraph applies also to options allowing exchange
of positions in X for units of some random payoff other than cash. This becomes eas-
ier understood via use of the method of numéraire-change. (For an illustration of this
technique in a dynamic semimartingale environment, see [4].) In accordance to (2.1), for
Y € LY define Of :=sc{(X —Y); | X € X}. For Y € LY with P[Y > 0] = 1, the
set (1/Y)X ={X/Y | X € X'} consists of positions in X denominated in units of ¥; in
other words, Y is used as a numéraire. Since (X/Y —n)y = (1/Y)(X —nY ), holds for
all X € X and n € N, it is straightforward to check that o/ — (1/Y)O:X, holds
for all n € N. Note that statement (3) of Theorem 2.2 is invariant under such changes
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of numéraire: if it holds for X, it also holds for (1/Y)X whenever Y € LY is such that
P[Y > 0] = 1; it then follows that

(Nox={0} <= [oV*={0} = [\/V)0Oy ={0}
neN neN neN

= [ 0% ={0}.

neN

2.8. A decomposition result

The next corollary of Theorem 2.2 is an interesting “decomposition” result.

Proposition 2.4. A set X C 1O either fails to be uniformly Q-integrable for all probabilities
Q < P, or there exists some probability Qx < P with the following properties:

o X is uniformly Qx-integrable, and
e whenever a probability Q << P is such that QLQy, X fails to be uniformly
Q-integrable.

Proof. In the notation of (2.1), define K := (), oy OX C LY. Note that K is convex, solid
and closed, as it is the intersection of sets with the corresponding properties. It then
follows in a straightforward way that there exists 2,, € F such that:

e P[22, N{Y > 0}] = 0 holds for all Y € K.
o For any A C 2\ 2, with P[A] > 0, there exists Z = Z4 € K such that P[AN
{Z > 0}] > 0 holds.

(Clearly, such 2, € F is unique modulo null sets.) If P[{2,,] = 0, Theorem 2.2 implies
that & fails to be uniformly Q-integrable for all probabilities Q < P. On the other hand,
if P[£2,,] > 0, then using the notation A? := {dQ/dP > 0} for probabilities Q < P,
Theorem 2.2 implies that there exists Qy < P with A%¥ = 2, (modulo null sets)
such that X is uniformly Qx-integrable. In this case, when Q < PP is such that Q_LQy
then A% C 2\ 2, which implies again by Theorem 2.2 that X fails to be uniformly
Q-integrable. O

Remark 2.5. Let X C LY, and suppose that X is uniformly Q-integrable for some proba-
bility Q <« P. In this case, if both Qv < P and Q’, < P have the properties mentioned
in Proposition 2.4, it necessarily holds that Qx ~ Q.

Remark 2.6. In [2], given a convex set X C Lg_, the authors show that there exists a
set (2, € F such that I, X is bounded while X is hereditarily unbounded on §2\ §2; in
the sense that I4X fails to be bounded for all A € F with A C 2\ (2, and P[4] > 0.
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The set (2, satisfying the previous property is necessarily unique (modulo null-sets).
Proposition 2.4 can be seen as a result in this direction; indeed, with the notation in
its proof, given X C L9, it is shown that there exists a set £2,, € F such that I X
is “weakly compactizable” (in the sense that there exists Q ~ P such that Ip, A is
uniformly Q-integrable) while I\, & “hereditarily fails to be weakly-compactizable”
(in the sense that I4X fails to be weakly-compactizable for all A € F with A C 2\ £2,,
and P[4] > 0).

3. Local convexity
3.1. The second main result

We start with a definition of a concept has played a major role in the theory of
Financial Mathematics, usually utilized in an indirect manner—see, for example, [3,
Lemma Al.1].

Definition 3.1. Let (X,,)nen be a sequence in L. Any L%-valued sequence (Y},),en with
the property that Y,, € conv{X}, | n < k € N} for all n € N will be called a sequence of
forward convex combinations of (X,)nen-

Let us agree to call a convex set X C IO locally convex for the L.°-topology if any
element of X' has a neighbourhood base (for the relative L°-topology on X') consisting
of convex sets. (Such definition is classical in the case where X is a topological vector
space; however, we only require X C IL to be convex.) Suppose that a convex set X C IL°
is locally convex for the L°-topology; then, whenever (X, )nen is an X-valued sequence
that converges to X € X, all sequences of forward convex combinations of (X, )nen also
converge to X.

The second main result of the paper that follows connects, amongst other things,
local convexity of the L%-topology of X C ILS_ with uniform Q-integrability of A for
some Q ~ P, in the case where X is convex, solid and bounded.

Theorem 3.2. Let X' C ILS_ be a convex, solid and bounded set. Then, the following
statements are equivalent:

(1) Whenever (X,)nen s an X-valued sequence that converges to zero, all sequences of
forward convex combinations of (X, )nen also converge to zero.

(2) 0 € X has a neighbourhood base (for the relative LO-topology) consisting of convex
sets.

(3) Any X € X has a neighbourhood base (for the relative LO-topology) consisting of
conver sets.

(4) The LO-topology on X coincides with the L'(Q)-topology on X for some Q ~ P.

(5) X is uniformly Q-integrable with respect to some Q ~ P.
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Proof. The chain of implications (5) = (4) = (3) = (2) = (1) in Theorem 3.2 is
straightforward.

Assume that condition (5) fails. Define X! := {(X —n)y | X € X} for all n € N.
Then, X! is a solid subset of X, in view of the solidity of X’; furthermore, O = conv X/,
holds for all n € N according to (2.1) and Proposition 1.1 (see also Remark 2.3). In
view of Theorem 2.2, it holds that [, . O 2 {0}; therefore, there exists ¥ e L}
with P[Y > 0] > 0 such that ¥ € conv X}, holds for each n € N. Since Y is a convex
combination of elements in &), for all n € N, one can construct an X-valued sequence
(Xn)nen with the properties that X,, € X/ for all n € N and the constant sequence
(Yo )nen with V;, = Y for all n € N is a sequence of forward convex combinations of
(Xn)nen. Since X is assumed to be bounded,

limsup P[X,, > 0] < | lim ( sup P[X > n]) =0

n—00 n—o0\ Xex

holds, which implies that lim,, ., X,, = 0. Therefore, we have constructed an X-valued
sequence (X, )nen that converges to 0 € X, of which the (constant, and equal to Y)
sequence (Y, )nen of its forward convex combinations fails to be convergent to zero (since
Y € LY is such that with P[Y > 0] > 0). This implies that condition (1) also fails.
Therefore, implication (1) = (5) has been established as well. O

3.2. Remarks on Theorem 3.2
We proceed with several remarks on the hypotheses and statement of Theorem 3.2.

3.2.1. The structural condition

As mentioned in the proof of Theorem 3.2 (and comes as a consequence of Proposi-
tion 1.1), when X C LY is solid, the set O;¥ defined in (2.1) is equal to conv{(X —n)4 |
X € X} for all n € N. Therefore, in view of Theorem 2.2, the conditions of Theorem 3.2
are further equivalent to

ﬂ conv{(X —n)4 | X € X} ={0}. (3.1)
neN

3.2.2. The case of subsets of L0

Theorem 3.2 can be extended to cover the case of X C L that is convex, bounded and
solid, where the last property means that whenever X € X and Y € L? are such that
Y] < |X|, then Y € X. The details are rather straightforward and, therefore, omitted.
Note that if X C L° is solid, X € X implies |X| € X; from this, it is straightforward
to see that {(|X| —n)y+ | X € X} = {(X —n); | X € X}; therefore, the structural
condition (3.1) remains exactly the same in this case.
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3.2.3. Local convexity at zero

Let X C ]]_43_ be a convex, solid and bounded set. As a consequence of Theorem 3.2,
local convexity of X for the L°-topology is equivalent to local convexity of X for the
L%-topology only at 0 € X. Clearly, solidity of & is crucial for this to be true.

8.2.4. Local convexity and closure

Let X C ]Lg be a convex, solid and bounded set. As Theorem 3.2 suggests, local
convexity of X for the LO-topology implies also local convexity of X for the L°-topology.
Again, solidity of X is crucial for this to hold—see Section 3.2.6 later on.

3.2.5. On boundedness

Boundedness of a convex and solid set X C Li in the statement of Theorem 3.2 is
clearly necessary in order to have uniform Q-integrability for some probability Q ~ P.
When a convex and solid set X C L(}r fails to be bounded, local convexity of X’ for the
L%-topology in general may not even imply that the L°-topology on X is the same as the
L' (Q)-topology for some probability Q ~ P. Indeed, consider 2 = N, F the collection
of all subsets of {2 and the probability P satisfying P[{i}] = 27¢ for all i € N. It is
then straightforward to check that L0 is isomorphic to RY equipped with the product
topology. In particular, X = ]L(_)|r is locally convex for the L°-topology. However, Lg even
fails to be a subset of L}(Q) for any Q ~ P.

More generally, Proposition 3.3 that follows will complement Theorem 3.2. Note that,
as a consequence of the bipolar theorem in IL° [2, Theorem 1.3], whenever X C LQF is con-
vex and solid, there exists (2, € F such that I, X' is bounded while ]IQ\Qb)? = ]I_Q\_Qb]]_z(_);'_.
Since the case of bounded X C ILQ_ is covered by Theorem 3.2, we turn attention at what
is happening in the hereditarily unbounded part (the notion of hereditary unbounded-
ness has been introduced in [2] and is reviewed in Remark 2.6); it is then sufficient to
focus on the case X = LY.

Proposition 3.3. The set ]Li is locally convex for the LO-topology if and only if the un-
derlying probability space is purely atomic. In this case, the L°-topology on Lg coincides
with the LY (Q)-topology on X for some Q ~ P (equivalently, for all Q ~ P) if and only
if the underlying probability space (is purely atomic and) has only a finite number of
atoms.

Proof. When (£2, F,P) is purely atomic, LY. is topologically isomorphic to either R? for
some n € N or to R§ (the latter spaces equipped with the usual product topology); in
any case, the L-topology is locally convex. When ({2, F,P) fails to be purely atomic,
one can find A € F with P[A] > 0 such that A contains no atoms. Then, for each
m € N one can find a partition (Am x)req1,..,my of A such that P[A,, ] = P[A]/m
holds for all £ € {1,...,m}. Define the sequence (X, )nen via X,, = mly4,, , whenever
n=2"14(k—-1)form € Nand k € {1,...,m}; then, lim,_,, X,, = 0. However,
the non-zero sequence (Z,)nen defined via Z, = I4 for all n € N is a sequence of
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forward convex combinations of (X,,)nen; therefore, Lg cannot be locally convex for the
L%-topology.

When (2, F,P) is purely atomic with a finite number of atoms, all L.}(Q) spaces, as
well as LY, are topologically isomorphic to R", where n € N is the number of distinct
atoms. On the other hand, if ({2, 7, P) is purely atomic with a countably infinite number
of atoms, it is straightforward to check that L} (Q) := LY(Q) N LY is a strict subset
of IL,S)r forany Q ~P. O

3.2.6. On solidity

Define X := {X € LY | Ep[X] = 1}; clearly, X is convex and bounded. The solid
hull of X is § = {X € LY | Ep[X] < 1}, which is also convex and bounded. It is a
consequence of [6, Proposition 4.12] that the L° and L'(P) topologies on X coincide;
in particular, X is locally convex for the L°-topology. However, when the underlying
probability space is non-atomic:

o X fails to be uniformly Q-integrable for all probabilities Q@ ~ P. (Indeed, for each
Q ~ P it is straightforward to construct an X-valued sequence (X, )nen such that
lim,, 00 X, = 0 holds, but liminf, _,. Eg[X,] > 0.) Therefore, the equivalence of
statements (4) and (5) in Theorem 3.2 may fail when X is not solid.

o It holds that X = S. (Indeed, X C S holds in view of Fatou’s lemma. Conversely,
since the underlying probability space is non-atomic, there exists an X-valued se-
quence (Y, )nen such that lim, o Y, = 0 holds; then, for any X € S, the X-valued
sequence (X, )nen defined via X,, = X + (1 — Ep[X])Y,, for all n € N is such that
lim,, ;00 X, = X.) Since S fails to be locally convex (which can be seen by a similar
argument as in the proof of Proposition 3.3), the closure of a locally convex set for
the L°-topology may fail to be locally convex for the L°-topology. This is in direct
contrast with the discussion in Section 3.2.4 in the case where X is solid.

It is an open question whether the equivalence of statements (3) and (4) of Theorem 3.2
is valid under the assumption that X is convex and bounded. There does not seem to
be a straightforward adaptation of the method of proof provided in this paper to cover
this case. A related open question is whether the equivalence between statements (3),
(4) and (5) of Theorem 3.2 is valid under the assumption that X is convex, bounded and
closed; note that the set X is the example above is not L°-closed when the underlying
probability space is non-atomic, although it is always L!(IP)-closed.

Appendix A. Completing the proof of Theorem 2.2

In order to conclude the proof of Theorem 2.2, it remains to establish implication
(1) = (3). This is done in Appendix A.3, after certain prerequisites and auxiliary results
are discussed.
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A.1. A couple of results regarding solid sets

The two results that follow will be useful in the proof of implication (1) = (3) of
Theorem 2.2. In fact, the first one that follows already gives the intermediate implication
(1) = (2) of Theorem 2.2.

Lemma A.1. Let (Sn)nen be a sequence of solid subsets of LY. Then, (,cnSn = {0}
implies (),,cn Sn = {0}.

Proof. Since (,cn Sn € N,en Sns the result will follow if we show that (), Sn 2 {0}
implies (e Sn 2 {0}. Let Z € ,,cn Sn be such that P[Z > 0] > 0. For all n € N,
since Z € Sy, let Z, € S, be such that P[|Z, — Z| > Z/2 | Z > 0] < 2=t Let
A=, entlZn — Z] < Z/2}. Since P[Z > 0] > 0 and

PA|Z>01>1-Y P[|Z,—2Z|>2/2|Z>0]>1-
neN

1
=->0
2 7"

N~

it follows that P[A N {Z > 0}] > 0; therefore, upon defining Y := (Z/2)I4 € LY, note
that P[Y > 0] > 0. Furthermore, Y < Z,, follows from the fact that |Z,, — Z| < Z/2
holds on A for all n € N, which implies that Y € §,, in view of the solidity of S,, for

all n € N. It follows that Y € [ -y Sn, which completes the proof. O

neN

The second auxiliary result shows that a solid subset of LY. whose closure is the whole
orthant ]LSJr contains “rays” through elements that are almost strictly positive.

Lemma A.2. Let S C LY be solid, and suppose that S = LY. Then, for all e € (0,1)
there exists Y =Y, € LY. with P[Y = 0] < € such that aY € D holds for all a € Ry.

Proof. Fix € € (0,1). Since k € L) = S for each k € N and S is solid, it follows that
there exists A, € F with the properties that P[A;] > 1 — ¢/2% and k4, € S. Define
A= enAr € F and Y = I4. Note that P[Y = 0] = P[{2\ A] < e. Furthermore,
kY < kll4, holds for all £ € N; since k4, € S and S is solid, kY € S holds for all k£ € N.
The solidity of S gives that aY € Sforalla e Ry. O

A.2. Polar and bipolar sets
For C C LS’F, its polar C° C ]Li (under P) is defined via

Co = {Y €Lt ‘ }s{tgéEP[YX] < 1}-

It is straightforward to check that polar sets are convex and solid; furthermore, Fatou’s
lemma implies that polar sets are closed. Clearly, {0}° = ]Lg. Furthermore, it is straight-
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forward to check by the definition of polarity that (|J,,cnCn)® = (),,en Cn holds for any
sequence (Cy)nen of subsets of ]Lg.

Define also the bipolar of C C LY via C°° := (C°)°. It is straightforward to check that
C C C°°. Bipolar sets are convex, solid and closed. In fact, the version of the bipolar
theorem in LY [2, Theorem 1.3] implies that C°° is the smallest convex, solid and closed
subset of ]L?F which contains C C ]Lgr; in particular, if C C ILO+ is already convex and solid,

then since C is also convex and solid (see discussion in the end of Section 1), it follows
that C°° =C.

A.3. Proof of implication (1) = (3) of Theorem 2.2

In order to ease the reading, the sets O:;¥ of (2.1) will be denoted here by O,, for all
n € N; similarly, we shall write O,, in place of (’)X for all n € N. We shall assume in the
sequel that [, .y On = {0}. Recall that O, is a solid bubbet of LY for all n € N. It is

then a consequence of Lemma A.1 that the condition = {0} actually implies

nEN
the seemingly stronger ,, o On = {0}.

For all n € N, associated Wlth O,, define a function u, : LY + [0, <] via

un(Y) = Sup Es[Y X] = sup Ep[YX], Y €L, (A1)
n XeO,

where the second equality follows from Fatou’s lemma. By their very definition, each
mapping u,, n € N, has the following properties:

o monotonicity: u,(Y) < un(Z) holds for all Y € LY and Z € LY. with Y < Z;
o sub-additivity: u, (Y + Z) < un(Y) + u,(Z) holds for all Y € LY. and Z € LY;
« positive homogeneity: u,(aY) = au,(Y) holds for all Y € LY and a € (0, ).

The following intermediate result will be helpful.

Lemma A.3. With the above notation, (,cy On = {0} implies that there exists Yy € LY.
with P[0 < Yp < 1] =1 such that u,(Yp) < 1 holds for alln € N.

Proof. By Lemma A1, N,y On = {0} implies (), On = {0}. Note that each O,
is convex, solid and closed. According to [2, Lemma 2.3], there exist sets B, € F for
all n € N with the property that Iz, 0, is bounded while I\ p, O, = o\ 5, LY. By
definition of the sets O,, n € N, it is straightforward to check that for any n € N
and Z,y1 € O,y there exists Z, € O, such that Z, > (Z,41 — 1);; therefore, it
follows that B, = 31 holds for all n € N (up to null sets). This fact implies that
Nnen On 2 Loy, LY ; therefore, in view of (), On = {0}, P[B1] = 1 has to hold. It
follows that O; is bounded. An application of [7, Thcor(}m 1.1(4)] implies that there
exists Wy € Oy such that sup,cp, Ep[Z/(1 + Wy)] < 1. Defining Yy = 1/(1 + W), the
result follows. 0O
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Along with the non-increasing sequence of mappings (un)nen that was introduced
above, define also the “limiting” map w : LY — [0, c0] via

— T 0
uw(Y) = ¢n11_>n;o up(Y), Y ell.
Note that the monotonicity, sub-additivity and positive homogeneity properties of the
sequence (U )nen directly transfer to w.

Remark A.4. By Proposition 2.1, it follows that «(dQ/dP) = 0 for some probability
Q <« P is equivalent to uniform Q-integrability of X

For all n € N, define P, := {Y € L} | u,(Y) < 1}; recalling the discussion of polar
sets in Section A.2, note that P, = 02 = O2. In particular, P, is a convex, solid and
closed subset of IL3_ for all n € N. Furthermore, from the bipolar theorem in L° [2,
Theorem 1.3] and the fact that O,, is convex, solid and closed (see discussion after the
proof of Proposition 1.1 at the end of Section 1), it follows that P2 = (0,,)°° = O,, for
all n € N.

Let P := |J,,en Pn- Note that P is a solid and convex subset of LY . Since (), oy On =
{0}, it follows that

pre(Ur) = ((Um)) = (nm)

neN neN neN

_ ( N 6n>0 —{0)° =L°.

neN

By Lemma A.2, for each k € N there exists Y, € LY with P[Y;, = 0] < 1/k such
that mY, € UneN P, holds for all m € N. Fixing k € N, for each m € N pick n,, =
nm(k) € N such that mYy, € Py, ; then, u(Yy) < up,, (Yi) < 1/m holds for all k£ € N,
which implies that u(Y;) = 0. Recall from Lemma A.3 that there exists Yy € LY with
P[0 < Yy < 1] = 1, such that u,(Yy) < 1 holds for all n € N. Define a new LY -valued
sequence (Zy )ken via Z = min{Yy, Yy} for all k € N; then, it follows in a straightforward
way that P[Zy, = 0] = P[Y = 0] < 1/k, u(Zx) < uw(Yy) =0 and P[Z, < Yy < 1] =1 for
all k € N, where u;(Yy) < 1.

Define Z := ), .y 27k 7y, and note that P[Z < 1] = 1. Since P[Z; = 0] < 1/k holds
for all k € N, it is straightforward that P[Z > 0] = 1. Furthermore, Z < >, 27%Z; +
27™Y}, holds for all m € N; therefore,

w2) < U<Z2’“Zk> +u(27Y0) <32 Ru(Z) + 2 M (V) <27
k=1 k=1

holds for all m € N. It follows that w(Z) = 0. Defining the probability Q via dQ =
(Z/Ep[Z]) dP, it follows that Q ~ P; furthermore, the positively homogeneity property
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of u implies that w(dQ/dP) = 0, which concludes the proof of implication (1) = (3) of
Theorem 2.2 in view of Remark A.4.
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