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Abstract A financial market comprising of a certain number of distinct companies
is considered, and the following statement is proved: either a specific agent will surely
beat the whole market unconditionally in the long run, or (and this “or” is not exclu-
sive) all the capital of the market will accumulate in one company. Thus, absence of
any “free unbounded lunches relative to the total capital” opportunities lead to the most
dramatic failure of diversity in the market: one company takes over all other until the
end of time. In order to prove this, we introduce the notion of perfectly balanced mar-
kets, which is an equilibrium state in which the relative capitalization of each company
is a martingale under the physical probability. Then, the weaker notion of balanced
markets is discussed where the martingale property of the relative capitalizations holds
only approximately, we show how these concepts relate to growth-optimality and effi-
ciency of the market, as well as how we can infer a shadow interest rate that is implied
in the economy in the absence of a bank.

Keywords Diversity · Equivalent Martingale measure · Arbitrage · Efficiency

JEL Classifications G14

0 Introduction

0.1 Discussion and results

We consider a model of a financial market that consists of d stocks of certain “distinct”
companies. The distinction between companies clings on their having different risk
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and/or growth characteristics, and will find its mathematically precise definition later
on in the text.

In absence of clairvoyance, the total capital of each company is modeled as a sto-
chastic process Si , i = 1, . . . , d. Randomness comes through a set � of possible
outcomes—for each ω ∈ � we have different realizations of Si (ω). Financial agents
decide to invest certain amounts of their wealth to different stocks, and via their actions
the value of Si

t for each time t ∈ R+ is determined.
Of major importance in our discussion will be the distribution of market capi-

tal, given by the relative capitalization κ i := Si/(S1 + · · · + Sd) of each company
(S1 + · · · + Sd is the total market capital). In particular, the limiting, i.e., long-run,
capital distribution will be investigated. For addressing this question, a probability P is
introduced that weights the different outcomes of � (for all events in some σ -algebra
F); P reflects the average subjective feeling of the financial agents, but in this average
sense it is not subjective anymore: each agent’s investment decisions are fed back
into the relative capitalization of the companies, and thus affects the random choice
of the outcome. Via this mechanism, P becomes a real-world probability, and can
also be regarded as the subjective view of a representative agent in the market, whose
decisions alone reflect the cumulative decisions of all “small” agents.

The time-flow of information is modeled via a filtration F = (Ft )t∈R+ . Each
σ -algebra Ft is supposed to include all (economical, political, etc.) information gath-
ered up to time t and is increasing in time: Fs ⊆ Ft for 0 ≤ s < t < ∞. A
“representative agent” information structure cannot be justified, since different agents
might have very different ability or capability to access information. This difficulty can
be circumvented by choosing F in a minimal way, i.e., by assuming that it is exactly the
information contained in the company capitalizations—it is reasonable to assume that
every agent has at least access to this information. This minimal information structure
will turn out to be the most useful in our discussion (exactly because of its minimality
property).

An important question from a modeling point of view is: how does one go about
choosing P in a reasonable way in order to reflect the way financial agents act? From
the economical side, the concept of efficiency has been quite extensively discussed in
the literature. In his famous work Fama (1970), Fama states that a market in which
prices “fully reflect” available information is called “efficient”. Thus, efficiency is
a property that the capitalization processes S must have under the pair (P, F), but it
is questionable whether it opens the door to mathematically pin down what are the
possible “reasonable” probabilities P.

In the field of Mathematical Finance it has been argued that a minimal condition for
efficiency is absence of “free lunch” possibilities for agents; for if a free lunch existed,
a sudden change in the capital distribution would occur to correct for it, which would
contradict the requirement that prices fully reflect information. The notion of “no free
lunch” found its mathematical incarnation in the existence of a probability Q that is
equivalent to P (meaning that P and Q have the same impossibility events) under which
capitalization processes suitably deflated have some kind of martingale property under
(Q, F). However, as already mentioned this is only a minimal condition for efficiency.
Indeed, consider a two-stock market in which deflated capitalization processes are
modeled by S1

t = exp(W 1
t ) and S2

t = exp(100t + W 2
t ) where t ∈ [0, T ] for some
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finite T , and (W 1, W 2) is a 2-dimensional standard Brownian motion. An equivalent
martingale measure Q as described above exists for this model. Nevertheless, these
being the only two investment opportunities in the market, reasonable agents would
opt for the second choice over the first. Even if diversification was sought-after, signif-
icantly more capital would be held in the second rather than the first stock. This huge
movement of capital would change the capitalization dynamics—this market does not
appear to be in equilibrium, it is not balanced.

As mentioned previously, coupled with the choice of an equivalent martingale mea-
sure comes the choice of a deflator in the market. It is a usual practice to use the interest
rate offered for risk-free investments for discounting. Nevertheless, it is questionable
whether the interest-rate structure reflects the true market growth; a better index has to
be perceived—and what would be more reasonable to use than the total market capi-
tal? Directly considering the percentage of the total capitalization that each individual
company occupies, its performance in terms of the “competing” ones is assessed.

In the spirit of the above discussion, the idea of a perfectly balanced market is for-
mulated by requiring that the relative capitalizations κ i are martingales under (P, F):
E[κ i

t | Fs] = κ i
s , for all i = 1, . . . , d and 0 ≤ s < t . The last equality means that

the best prediction about the future value of the relative capitalization of a company
given today’s information is exactly the present value of the relative capitalization.
One might ask why is this martingale property plausible. Consider, for example, what
would happen if E[κ i

t | Fs] < κ i
s for some company i . Since at all times the sum of

all the relative capitalizations should be unit, we have E[κ j
t | Fs] > κ

j
s for another

company j . These inequalities suggest that the overall feeling of the market is that in
the future (time t) the i th company will hold on average a smaller piece of the pie than
it does today (time s), with the converse holding for company j—in other words, that
company i is presently overrated, while company j underrated. The reasonable thing
to happen is a movement of capital from company i to company j , which would move
κ i

s downwards and κ
j

s upwards, until finally E[κ i
t | Fs] = κ i

s holds for all i = 1, . . . , d.
Perfect balance, as an equilibrium state, can undergo much criticism: there will cer-

tainly be times at which the market “slides away” from being perfectly balanced, but it
would be reasonable to assume that the market is quickly trying to readjust itself to that
state (as was explained in some sense in the previous paragraph). A mathematically
rigorous description of this concept would require a formulation of an “approximate
martingale” property for the relative capitalization vector κ . The widely-accepted idea
of assuming the existence of another probability Q that is equivalent to P, and such that
κ is a martingale under Q seems to be appropriate (actually, this exact idea has been
utilized in Yan (1998), who has shown its equivalence to a “no-free-lunch” property
relative to the total capitalization

∑d
i=1 Si ), as long as Q and P are “close” in some

sense . This is not the road that will be taken here, and there are at least two good
reasons: firstly, some (necessarily) ad-hoc, as well as difficult to justify in economic
terms, definition of distance between P and Q would have to be given; secondly,
existence of such a Q is not an ω-by-ω notion (as it looks at all possible outcomes
instead), and after all what shall be ultimately revealed is only one outcome. How-
ever, an ω-by-ω definition of plainly balanced markets (based on a characterization of
perfectly balanced markets given by observable quantities of the model) comes to the
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rescue—in some sense to be made precise later, the market is balanced if the process κ

is close to being a martingale, but not quite there. The notion of balanced markets will
turn out to be strictly weaker than the requirement of existence of such probability Q

as described above in this paragraph.
Having decomposed the state space � as �b ∪�u , where �b is the set of outcomes

where the market is balanced and its complement �u is the set of outcomes that it is
unbalanced, an analysis of the behavior of the market on each of the above two events
is in order. It turns out that on �u a single agent can beat the whole market for arbi-
trary levels of wealth, an unacceptable situation since the total capital of the market
should consist of the sum of the wealths of its respective agents; on the unbalanced
set this breaks down, since one particular agent will eventually have more capital
than the whole market. It then makes sense to focus on the balanced-market outcomes
�b. There, it turns out that there always exists a limiting distribution of capital κ∞
in the almost sure sense. If one further assumes that the market is segregated, in the
sense that companies are distinct in a very weak sense, it turns out that all capital
will concentrate in a single company. This is probably the most dramatic failure of
market diversity pioneered by Fernholz (2002). In this last monograph, as well as in
Fernholz et al. (2005), it is shown that certain diverse markets offer opportunities for
free lunches relative to the market. Taking up on this, the present work shows that fail-
ure of diversity inevitably leads to free lunches relative to the market—at the opposite
direction, non-existence of free lunches (relative to the market) a-fortiori results in the
accrual of capital to one company only.

0.2 Organization of the paper

We now give a brief overview of the material.
Section 1 introduces an Itô-process model for the capitalization of companies.
Perfectly balanced markets and their characterization in terms of the drifts and vol-

atilities of the capitalization processes are discussed in Sect. 2. To ensure a non-void
discussion, abundance of perfectly balanced markets is proved.

In Sect. 3 another economically interesting equivalent formulation of perfectly bal-
anced markets is established: they achieve maximal growth. With this characterization,
we introduce implied shadow interest rates in the market.

Next, the concept of balanced markets (a weakening of perfectly balanced mar-
kets) is formulated in exact mathematical terms in Sect. 4. As previously noted, � is
decomposed into �b and �u := � \ �b, and we characterize the balanced outcomes
event �b as the maximal set on which an agent who decides to invest according to any
chosen portfolio does not have a chance to beat the market for any unbounded level.
In other words, on �b agents have a chance to beat the market by specific levels, but
this chance is approaching zero uniformly over all portfolios that can be used when
the level becomes arbitrarily large.

The limiting market capital distribution for balanced outcomes is taken on in Sect. 5.
Existence of a limiting capital distribution κ∞ in an almost sure sense is proved, and
under a natural assumption of company segregation it is shown that all capital will
concentrate in a single company and stay there forever.
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Balance, growth and diversity of financial markets 373

Easy examples of a simple two-company market are presented in Sect. 6 that
clarify some of the points discussed previously in the paper.

Finally, in Sect. 7 we discuss how all previous results are still valid in a more
general quasi-left-continuous semimartingale environment (as opposed to a plain Itô-
process one). Note that, to the best of the author’s knowledge, this is the first time that
results on market diversity in such a general mathematical framework are discussed;
in this sense, this last section is not present just for the sake of abstract generality,
but to ensure that results obtained are not sensitive to the continuous-semimartingale
modeling choice.

1 The Itô-process model

A continuous semimartingale market model consisting of d different companies will
be consider up to and before Sect. 7. Actually, attention will be restricted to continuous
semimartingales whose drifts and covariations are absolutely continuous with respect
to Lebesgue measure, Itô processes being a major example. It shall be come clear later
that this is done only for presentation reasons.

The total capitalization of each company i = 1, . . . , d is denoted by Si . These capi-
talizations are modeled as strictly positive stochastic processes on an underlying proba-
bility space (�,F , P), adapted to a filtration F = (Ft )t∈R+ , assumed right-continuous
and augmented by P-null sets. The dynamics of each Si are:

dSi
t = Si

t ai
t dt + Si

t dMi
t , for i = 1, . . . , d. (1)

Here, a := (a1, . . . , ad) is F-predictable and each ai represents the rate of return of
each company, while M := (M1, . . . , Md) is a (P, F)-local martingale for which we
assume that the quadratic covariations satisfy d[Mi , M j ]t = ci j

t dt for a local covari-
ation symmetric matrix c := (ci j )1≤i, j≤d , which can be chosen F-predictable—we
succinctly write d[M, M]t = ct dt in obvious notation. In order for the model (1) to
make sense, a and c must satisfy

t∫

0

(|ai
u | + cii

u )du < ∞, P-a.s., for all i = 1, . . . , d and t ∈ R+.

Remark 1.1 Let “Leb” denote Lebesgue measure on R+ and “det” the square-matrix
determinant operation. If P[Leb[{t ∈ R+| det(ct ) �= 0}] = 0] = 1, then there exists
a standard d-dimensional (F, P)-Brownian motion W ≡ (W 1, . . . , W d) such that
dMt = 〈σt , dWt 〉, where σ is a square root of c: σσ
 = c (check for example
Karatzas and Shreve 1998a). Then, (1) is just an Itô process, and this model is classic—
see Karatzas and Shreve (1998b). If c is degenerate on a positive (P ⊗ Leb)-measure
set, the above representation is still valid if one extends the probability space. Working
directly with (1) helps to avoid such complications.
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Remark 1.2 The choice of “dt” above is merely for exposition purposes. At any rate,
in Sect. 7 the model is generalized to the broader class of quasi-left-continuous semi-
martingales.

Remark 1.3 It will turn out that it is best to work under the (augmentation of the)
natural filtration generated by S, which we denote by FS . Nevertheless, this restriction
will not be imposed. Sometimes, we compare obtained results under two filtrations
F and G, and it will be assumed that F is contained in G, in the sense that F ⊆ G,
i.e., Ft ⊆ Gt for all t ∈ R+. If S is a semimartingale of the form (1) under G, and
if F ⊇ FS , S is also an F-semimartingale and a representation of the form (1) is still
valid, with the rates-of-return vector a possibly changed. (The local covariation matrix
c will be the same.)

2 Perfectly balanced markets

The significance of perfectly balanced markets has already been discussed in the
Introduction, so here we start directly with their definition.

Definition 2.1 The relative capitalization κ i of company i is defined as

κ i := Si

S1 + · · · + Sd
, for i = 1, . . . , d. (2)

The market described by (1) will be called perfectly balanced with respect to the
probability P and the information flow F if each κ i is a (P, F)-martingale.

The relative capitalizations process κ := (κ i )1≤i≤d lives in the open simplex

�d−1 :=
{

x ∈ R
d | 0 < xi < 1 and

d∑

i=1

xi = 1

}

. (3)

Remark 2.2 Keep the probability P fixed. If the model (1) is perfectly balanced with
respect some filtration G that contains F, which in turn contains FS , then clearly it is
also perfectly balanced with respect to the information flow F, since the martingale
property remains. The converse does not necessarily hold: F-perfect balance of the
market does not imply G-perfect balance: the martingale property might fail when
enlarging filtrations. For agents with more information (political, insider, etc.), the
market might fail to perfectly balance itself.

The weakest form of a perfectly balanced market is obtained when the filtration is
FS—the one generated by S. In fact, an even smaller filtration can be used, namely,
the one generated by κ (since the filtration generated by S has one extra ingredient,
which is the total capitalization

∑d
j=1 S j that disappears when we only consider κ).

It is true that one can do all subsequent work under this even smaller filtration—after
all, all that we shall care about is incorporated in κ and if one starts by assuming κ is
the actual capital process, everything follows.
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2.1 Characterizing perfectly balanced markets

Using Itô’s formula and (1), it is easily computed that for all i = 1, . . . , d we have

dκ i
t = κ i

t 〈ei − κt , at − ctκt 〉 dt + κ i
t 〈ei − κt , dMt 〉 , (4)

where ei the unit vector with all zero entries but the i th, which is unit.
The above Eq. (4) for κ i , i = 1, . . . , d gives us a way to judge whether the market

is perfectly balanced just by looking at drifts and local covariations.

Proposition 2.3 The market is perfectly balanced if and only if there exists a predict-
able, one-dimensional process r with

∫ t
0 |ru | du < +∞ for all t ∈ R+, such that, with

1 being the vector in R
d will all unit entries: 1 := (1, . . . , 1), we have:

cκ = a − r1. (5)

Proof Each of the processes κ i is bounded; therefore it is a martingale if and only if it
is a local martingale, which by view of (4) will hold if and only if 〈ei − κ, a − cκ〉 = 0.
The vector processes (ei − κ)1≤i≤d span the linear subspace that is orthogonal to 1.
Thus, in order for κ to be a martingale there should exist a one-dimensional process r
such that a −cκ = r1. The fact that r can be chosen predictable and locally integrable
follows from the fact that both cκ and a have the corresponding properties.

Remark 2.4 It should be noted here that the process r plays the rôle of a shadow
interest rate in the market, in the absence of a banking device that will produce one.
To support this claim, suppose for a minute that one of the companies, say the first,
behaves like a savings account, so that (if only approximately) S1 has only a “dt”
component, i.e., c1i = 0 for i = 1, . . . , d. Multiplying from the left both sides of the
relationship (5) with the unit vector e1 we get a1 = r , i.e., that r is the interest rate.
In the absence of a risk-free company one cannot carry the previous analysis, but an
equilibrium-type argument gives the same conclusion; we come back to this point in
Subsect. 3.3 with a more thorough discussion.

Remark 2.4 makes it plausible to define an interest rate process as being a predict-
able, one-dimensional process r with

∫ t
0 |ru | du < +∞ for all t ∈ R+.

The result of Proposition 2.3 should be interpreted as a linear relationship between
the local covariation and the drifts of the company capitalization processes, modulo
an interest rate process. It is obvious that this is a very restrictive condition; we shall
see in Sect. 4 how to weaken it, and we shall discuss how this softer notion of (not
necessarily perfectly) balanced markets ties with efficiency.

2.2 Construction of perfectly balanced markets

Equations (4) and (5) combined imply that in a perfectly balanced market the process
κ must satisfy the following system of stochastic differential equations:

dκ i
t = κ i

t 〈ei − κt , dMt 〉 , for all i = 1, . . . , d. (6)
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The natural question to ask at this point is: do mathematical models of perfectly
balanced markets exist? If they do exist, (5) as well as the stochastic differential
equations (6) must hold. The following proposition shows that a plethora of perfectly
balanced models exist.

Theorem 2.5 Consider a d-dimensional continuous (F, P)-local martingale M whose
quadratic covariation process satisfies d[M, M]t = ct dt . Then, for anyF0-measurable
initial condition κ0 ≡ (κ i

0)1≤i≤d with P[κ0 ∈ �d−1] = 1 the system of stochastic dif-
ferential equations (6) has a unique strong solution for all t ∈ R+ that lives on �d−1.

Further, for any interest rate process r and F0-measurable initial condition S0 ≡
(Si

0)1≤i≤d with Si
0/
∑d

j=1 S j
0 = κ i

0, if we define a := cκ+r1 and the process S via (1),
we get a model of a perfectly balanced market.

Proof The second paragraph of the Proposition’s statement is obvious from our previ-
ous discussion; we only need prove that the system of stochastic differential equations
(6) has a unique strong solution for t ∈ R+ that lives on �d−1.

To begin, consider the unit cube [0, 1]d in R
d . The volatility coefficients appearing

in (6) are quadratic in κ , thus are obviously Lipschitz as a functions of κ on [0, 1]d ;
then, the standard theorem on strong solutions of stochastic differential equations gives
that (6) has a unique strong solution for t in a stochastic interval [[0, τ ]], where τ is
a stopping time such that for all t < τ we have κt ∈ (0, 1)d , while on {τ < +∞}
we have κτ ∈ ∂[0, 1]d (the boundary of [0, 1]d ). First, it will be shown that κ is
�d−1-valued on [[0, τ ]], and then that P[τ = +∞] = 1.

Using (6) one can compute that on [[0, τ ]] the process z := 1 − 〈1, κ〉 satisfies the
stochastic differential equation dzt = −zt 〈κt , dMt 〉 (observe that now κ is known).
Since z0 = 0, the unique strong solution of this last equation is z ≡ 0, so 〈1, κ〉 = 1
and κ is �d−1-valued on [[0, τ ]].

Now, on [[0, τ ]] we have 0 < κ i < 1 for each i = 1, . . . d. Using Itô’s formula for
the logarithmic function and (6) once again we get for t ∈ [[0, τ [[ that

log κ i
t = log κ i

0 − 1

2

t∫

0

〈ei − κu, cu(ei − κu)〉 du +
t∫

0

〈ei − κu, dMu〉 .

Both the finite-variation part and the quadratic variation of the local martingale part
of the semimartingale log κ i are finite on any bounded interval as long as κ ∈ �d−1;
it follows that on the event {τ < +∞} we have limt↑τ log κ i

t ∈ R, which implies that
limt↑τ κ i

t > 0. Since κ is �d−1-valued on [[0, τ ]], it also follows that limt↑τ κ i
t < 1

for all i = 1, . . . , d. This contradicts the fact that we are assumed to work on the event
{τ < +∞}, therefore P[τ = +∞] = 1.

Remark 2.6 One of the reasons not to require F to be the one generated by S is the
constructive Theorem 2.5, where we start a-priori with some filtration F that makes M
a P-martingale and r adapted. If wanted, after the construction of κ has been carried
out we can pass from F to the generally smaller FS .

Remark 2.7 Apart from its mathematical significance, Theorem 2.5 also has interest-
ing economic implications. When writing the dynamics (1) of a model we assume that
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both the drift vector a and the local covariation matrix c are observable. Nevertheless,
both in a statistical and in a philosophical sense, covariances are easier to assess than
drifts. From a statistical point of view, high-frequency data can lead to reasonably
good estimation of c—and the ideal case of continuously collected data leads to per-
fect estimation. Nevertheless, there is no easy way to estimate a, even if we assume
it is a constant: one has to wait for too long a time to get any sensible estimate. In a
more philosophical sense, economic agents might not have a complete sense of how
the prices will move, but they might very well have an idea of how risky the companies
are, and how a change in the capitalization of one company would affect another one,
i.e., exactly the local covariation matrix c. To this effect, Theorem 2.5 implies that
simple knowledge of the local covariations c, the interest rate r (see Remark 2.4 and
Subsect. 3.3 in this respect) and the relative capitalizations at time t = 0 is enough to
provide the whole process of relative capitalizations; and by this, we also get the drifts
a. Thus, in perfectly balanced markets, a good estimate of c is enough to provide good
estimates for the drift a as well.

3 Growth-optimality of perfectly balanced markets

We discuss here an “economically optimal” property of perfectly balanced markets
that actually turns out to be an equivalent formulation in a sense. We also elaborate
on how the process r of Proposition 2.3 should be thought as a shadow interest rate
prevailing in the market.

3.1 Agents and investment

In a market with d companies whose capitalizations are described by the dynam-
ics (1), we also consider a savings account offered by a bank, described by some
interest rate process r . One unit of currency invested in (i.e., loaned to) the bank
at time s will grow to

∫ t
s rudu by time t > s. We remark that existence of a bank

does not add wealth to the market directly, although can do so indirectly by adding
more flexibility to the financial agents—in other words, the net amount invested in
the bank must be zero: some lend and some borrow, but the total position should be
neutral.

We now discuss the behavior of an individual agent in the market; this agent decides
to invest a portion of the total capital-in-hand in each of the d companies, and the
remaining wealth in the savings account. We shall be denoting by π i

t the proportion
of the capital invested in the i th company; then, 1 − 〈π, 1〉 proportion of the capital-
in-hand is put into savings. To ensure than no clairvoyance into the future is allowed,
the vector process π := (π i )1≤i≤d should be predictable with respect to the filtration
of the individual agent, which is at least as large as FS .

We model portfolio constraints that an agent might be faced with via a set-valued
process C; henceforth we shall be assuming that for each (ω, t) ∈ � × R+:

1. �
d−1 ⊆ C(ω, t), where �

d−1
is the closure of the open simplex of (3);

2. the set C(ω, t) is closed and convex; and
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3. C is predictable, in the sense that {(ω, t) ∈ � × R+ | C(ω, t) ∩ F �= ∅} is a
predictable set for all closed F ⊆ R

d .

Then, a C-constrained portfolio is a predictable, d-dimensional process π that satisfies
π(ω, t) ∈ C(ω, t) for all (ω, t) ∈ � × R+, and

t∫

0

(| 〈πu, au〉 | + 〈πu, cuπu〉)du < ∞, for all t ∈ R+. (7)

The class of all C-constrained portfolios is denoted by 	C.
The most important case in the discussion to follow is the most restrictive case of

constraints C = �
d−1

: the agent has only access to invest in the “actual” companies
of the market—in this case, the bank is not even needed.

The portfolio integrability requirement (7) is a technical one, but it is the weakest
assumption in order for the stochastic integrals appearing below in (8) to make sense.
The requirement is certainly satisfied if π is P-a.s. bounded on every interval [0, t] for

t ∈ R+—for example if π is �
d−1

-valued.
The initial investment of an agent at time zero is always normalized to be a unit

of currency. Assuming this and investing according to π ∈ 	C, the corresponding
wealth process V π of the particular agent is described by V π

0 = 1 and

dV π
t

V π
t

=
d∑

i=1

π i
t

dSi
t

Si
t

+
(

1 −
d∑

i=1

π i
t

)

rt dt = (rt + 〈πt , at − rt 1〉) dt + 〈πt , dMt 〉 .

(8)
The collective investment of all agents is captured by the percentage of the total

market capitalization invested in each company, i.e., the relative capitalizations κ =
(κ i )1 ≤ i ≤ d , which is an F-predictable vector process (as it is FS-adapted and contin-
uous) and satisfies κ ∈ �d−1; thus κ can be viewed as a portfolio, and as such it is
called the market portfolio. Here is the reason for such a name: using (8) one checks
that V κ = 〈S, 1〉 / 〈S0, 1〉, where 〈S, 1〉 = ∑d

i=1 Si is the total capital of the market:
investing according to κ is tantamount to owning the whole market, relative to the
initial investment, which is normalized to unit.

3.2 Growth and growth-optimality

The process aπ := 〈π, a〉 appearing in (8) is known as the rate of return of V π ; it is the
instantaneous return that the strategy gives on the invested capital. Nevertheless, for
long-time-horizon investments, rates of return fail to give a good idea of the behavior
of the wealth process. A more appropriate tool for analyzing asymptotic behavior is
the growth rate (see for example Fernholz 2002), which we now define.

123
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For a portfolio π ∈ 	C, its log-wealth process is the semimartingale log V π . Itô’s
formula gives d log V π

t = gπ
t dt + 〈πt , dMt 〉, where

gπ := r + 〈π, a − r1〉 − 1

2
〈π, cπ〉 (9)

is the growth rate of the portfolio π . The portfolio ρ ∈ 	C will be called growth-opti-
mal in the C-constrained class if

gρ(ω, t) = g∗(ω, t) := sup
π∈C

gπ (ω, t), for all (ω, t) ∈ � × R+. (10)

The whole market is called a growth market if the market portfolio κ is growth optimal
over all possible portfolios.

Proposition 3.1 A market described by an interest rate process r and (1) for the
company capitalizations is a growth market if and only if cκ = a − r1.

Proof In order to have a growth market, κ must solve the quadratic problem

max
p

{

r + 〈p, a − r1〉 − 1

2
〈p, cp〉

}

(11)

over all p ∈ R
d where we have hidden the dependence on (ω, t). The growth rate

function of (9) is concave, and first-order conditions imply that in order for κ to be a
solution to the optimization problem we must have a − cκ = r1. ��
Remark 3.2 Generalizing a bit the method-of-proof of Proposition 3.1, we can give
the following characterization: ρ is C-constrained growth optimal portfolio if and only
if V π/V ρ is a supermartingale for all π ∈ 	C. Indeed, for any two portfolios π and ρ,
one can use (8) and Itô’s formula to get that V π/V ρ is a supermartingale is and only if
〈π − ρ, a − r1 − cρ〉 ≤ 0; this is exactly the first-order condition for maximization
of (11) over C.

Remark 3.3 Statistical tests of the “perfectly balanced market” hypothesis have
appeared in the literature in the seventies, where it was actually tested whether the
market portfolio is equal to the growth-optimal one (the connection is obvious in view
of Proposition 3.1—see also the discussion in the next Subsect. 3.3). We mention in
particular the works of Roll (1973), as well as Fama and MacBeth (1974) that treat the
New York Stock Exchange as the “market”. In both papers, there does not seem to be
conclusive evidence on whether the perfect-balance hypothesis holds or not; although
it cannot be rejected at any reasonably high statistical significance level, there are
noteworthy deviations mentioned therein.

3.3 Interest rate

Proposition 3.1 clearly shows the connection between growth and perfectly balanced
markets. The difference between Propositions 2.3 and 3.1 is that in the former we infer
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the existence of an interest rate r that satisfies cκ = a − r1, while in the latter the
interest rate process is given as a market parameter.

In fact, if existence of an interest rate process is not assumed, and a growth market is
defined as one where κ maximizes the growth rate over all portfolios in the constrained
set C = {x ∈ R

d | 〈x, 1〉 = 1}, then going through the proof of Proposition 3.1 using
Lagrange-multiplier theory for constrained optimization, the relationship cκ = a −r1
for some interest rate process r will be inferred again, exactly as in the case of perfectly
balanced markets. Thus, the two concepts of growth and perfectly balanced markets
are identical in this sense.

Now, an equilibrium argument will be used to show that even in the absence of a
bank, the arbitrary process r obtained in the case where the market is perfectly bal-
anced really plays a rôle of an interest rate. Suppose that all of a sudden, the market
decides to build a bank and has to decide on what interest rate r̃ to offer. In the next
paragraph we answer the following question: What should this process r̃ be in order
for the market to stay in perfectly balanced state? Then, r̃ is an an equilibrium interest
rate.

Before the introduction of a bank the market was perfectly balanced, i.e., cκ =
a − r1 was true for some one-dimensional process r . The introduction of a savings
account gives more freedom to individual agents: now they can borrow or lend at
the risk-free interest rate r̃ . The “representative agent” in the augmented (with the
bank) market will still try to maximize growth, as before, and for this representative
agent the wealth proportion held in the bank should be zero. Indeed, if in trying to
maximize the growth rate the representative agent found that the optimal holdings in
the risk-free security is positive, the overall feeling of the agents is that the interest
rate level r̃ is attractive for saving, and more agents would be inclined to save money
that to borrow for investment in the riskier company of the market; this would create
instability because supply for funds to be invested in riskier companies would exceed
demand. The exact opposite of what was just described would happen if the represen-
tative agent’s optimal holdings in the risk-free security were negative. Proposition 3.1
implies that after the introduction of a bank we should have cκ = a− r̃1; nevertheless,
just before the bank appeared we had cκ = a − r1. The only way that both can hold is
r = r̃ , which shows that r really plays the rôle of an equilibrium interest rate process,
even in the absence of a bank.

4 Balanced markets

The definition of a perfectly balanced market is restrictive, since the martingale prop-
erty for the relative capitalizations is not expected to exactly hold. Sometimes it might
fail and it also might take some time to return to equilibrium, as explained in the
Introduction. We therefore want to say that the market will be balanced (though
not necessarily perfectly) if the martingale property holds only “approximately”.
No such reasonable notion exists, and one needs to work around it. In this sec-
tion we elaborate on balanced markets and their close relation to a concept of
“efficiency”.
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4.1 Formal definitions

According to Proposition 3.1 and the content of Subsect. 3.3, a market equipped with
a bank is perfectly balanced if and only if gκ = g∗, where g∗ ≡ g∗(F,C) is the maximal
growth that can be obtained by using F-predictable and C-constrained portfolios. In
general, we have gκ ≤ g∗, and the market will be balanced if this difference is not
very large.

Definition 4.1 For some filtration F and constraints set C, define the continuous and
increasing loss-of-perfect-balance process L via

Lt ≡ LF,C
t :=

t∫

0

(g∗(F,C)
u − gκ

u)du,

and write � = �b ∪ �u , where �b ≡ �
F,C
b := {LF,C∞ < +∞} are the balanced

outcomes and �u ≡ �
F,C
u := {LF,C∞ = +∞} = � \ �b the unbalanced outcomes.

If P[�F,C
b ] = 1, the market described by (1) will be called balanced with respect

to the probability P, the information flow F and the constraints C.

Remark 4.2 If a predictable process ρ that solves the maximization problem (10)
exists for all (P⊗Leb)-almost every (ω, t) ∈ �×R+ and ρ satisfies the integrability
conditions (7) we then have g∗ = gρ . This always happens if C is contained in a fixed
compact subset K of R

d for all (ω, t) ∈ � × R+.
In general, a predictable process ρ solving (10) might not exist; even if it does exist,

the integrability conditions (7) might not be fulfilled. It can be shown that ρ exists and
satisfies (7) if and only if Lt < ∞ for all t ∈ R+, P-a.s. A thorough discussion of
these points is made in Karatzas and Kardaras (2007).

Consider two filtrations F and G such that FS ⊆ F ⊆ G; G-perfect balance implies
F-perfect balance. The same holds for simply balanced markets.

Proposition 4.3 Consider two pairs of filtrations and constraints (F,C) and (G,K)

with FS ⊆ F ⊆ G and C ⊆ K. We then have g∗(F,C) ≤ g∗(G,K); as a consequence,
LF,C ≤ LG,K and �

G,K
b ⊆ �

F,C
b .

Proof For all n ∈ N set Cn := C ∩ [−n, n]d and Kn := K ∩ [−n, n]d . We then have
that limn→∞ ↑ g∗(F,Cn) = g∗(F,C) and limn→∞ ↑ g∗(G,Kn) = g∗(G,K) and thus it suf-
fices to prove g∗(F,C) ≤ g∗(G,K) under the assumption C ⊆ K ⊆ K for some compact
set K . According to Remark 4.2, under this assumption the growth-optimal portfolios
ρ(F,C) and ρ(G,K) exist and g∗(F,C) = gρ(F,C) as well as g∗(G,K) = gρ(G,K). From
Remark 3.2 we know that V ρ(F,C)/V ρ(G,K) is a positive supermartingale, which gives
that log(V ρ(F,C)/V ρ(G,K)) is a local supermartingale; the drift of the last local super-
martingale—which should be decreasing—is

∫ ·
0(g

ρ(F,C)
t −g

ρ(G,K)
t )dt , which gives us

g∗(F,C) ≤ g∗(G,K) and completes the proof.
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4.2 Some discussion

We contemplate slightly on balanced markets.

4.2.1 Trivial example

Perfectly balanced markets satisfy L ≡ 0, and are therefore balanced.

4.2.2 No bank

Let us assume now that C = {x ∈ R
d | 〈x, 1〉 = 1}—we are allowed to invest in the

risky companies, but there is no bank (for us, at least).
We assume that c is non-degenerate for (P ⊗ Leb)-almost every (ω, t) ∈ � × R+;

then, the maximization problem (10) has a solution ρ that satisfies cρ = a − r1 for
some unique one-dimensional process r . On the (P ⊗ Leb)-full measure subset of
� × R+ where c is non-singular it is clear that ρ = c−1(a − r1); using 〈ρ, 1〉 = 1 it
is easy to see that

r =
〈
a, c−11

〉− 1
〈
1, c−11

〉 (12)

Now, straightforward computations give

g∗ − gκ ≡ gρ − gκ = 1

2
〈κ − ρ, c(κ − ρ)〉 = 1

2

∣
∣
∣c−1/2(cκ − a + r1)

∣
∣
∣
2
.

(One can also show the last relationship observing that V κ/V ρ is a local martingale
and taking the logarithm.) Perfectly balanced markets satisfy cκ − a + r1 = 0 iden-
tically with r given by (12); simply balanced markets do not satisfy the last equation
identically, but approximately:

∫∞
0 |c−1/2

t (ctκt − at + rt 1)|2dt < ∞.
We remark that on �b, r earns the name of an interest rate process, i.e., it is locally

integrable. More specifically, it will be shown below that for any random time τ we
have

∫ τ

0 |ru |du < ∞ on {τ < ∞, Lτ < ∞}. Define Ft := ∫ t
0 〈κu, cuκu〉 du; on

{τ < ∞} we have Fτ < ∞. The Cauchy–Schwartz inequality gives

τ∫

0

| 〈κu, cuκu〉 − 〈κu, au〉 − ru |du =
τ∫

0

| 〈κu, cu(κu − ρu)〉 |du ≤ √Lτ Fτ < ∞,

on {τ < ∞, Lτ < ∞}. Since on {τ < ∞} we have
∫ τ

0 | 〈κu, cuκu〉−〈κu, au〉 |du < ∞;
we conclude that

∫ τ

0 |ru |du < ∞ on {τ < ∞, Lτ < ∞}, as proclaimed.

4.2.3 Interest rate revisited

Continuing the above discussion, where no bank is present, suppose that we wish to
introduce an interest rate process r̃ in such a way as to keep the market balanced—
at least on the event that it was balanced before. In the case of perfectly balanced
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market, r̃ ≡ r must hold—here, we shall see that we have this last equality holding
approximately.

We still assume that c is non-singular on a set of full (P ⊗ Leb)-measure (which
is very reasonable to justify the introduction of a bank). A solution ρ̃ of the optimi-
zation problem (10) in the market augmented with the bank exists, and cρ̃ = a − r̃1.
Straightforward, but somewhat lengthy, computations show that

∞∫

0

(g
ρ̃
t − gκ

t )dt =
∞∫

0

(g
ρ
t − gκ

t )dt + 1

2

∞∫

0

〈
1, c−1

t 1
〉
|r̃t − rt |2dt,

where ρ := c−1(a − r1) and r is given by (12). Introducing a bank that offers interest

rate r̃ keeps the market balanced if and only if
∫∞

0

〈
1, c−1

t 1
〉
|r̃t − rt |2dt < ∞, which

can be seen as an approximate equality between r and r̃ .

4.2.4 Equivalent Martingale measures

We now delve into the relationship between balanced markets and the existence of a
probability Q ∼ P that makes the relative capitalizations κ i

Q-martingales. We call
such a probability Q an equivalent martingale measure (EMM), although it does not
apply directly to the actual, rather to the relative capitalizations. The concept of a
balanced market is closely related, but weaker than the existence of an EMM. It is not
hard to see why it is weaker: assume the existence of an EMM Q and denote by Z
the density process, i.e., Zt := (dQ/dP)|Ft . Since Q ∼ P, we have P[Z∞] > 0. The
Kunita–Watanabe decomposition implies

Zt = Et Nt , with Et := exp

⎛

⎝

t∫

0

〈hu, dMu〉 − 1

2

t∫

0

〈hu, cuhu〉 du

⎞

⎠

where h is an d-dimensional predictable process and the strictly positive local mar-
tingale N is strongly orthogonal to M . The integrand h need not be unique, but the
local martingale

∫ ·
0 〈hu, dMu〉 is. Since κ has to be a Q-martingale, one can show that

we can choose h = ρ − κ , where ρ is the growth-optimal portfolio, that must exist.
Since Z∞ > 0 and N∞ < +∞, P-a.s. we also have that E∞ > 0, P-a.s.; in view
of Lemma A.2 this is equivalent to saying that the quadratic variation of the local
martingale

∫ ·
0 〈hu, dMu〉 is finite at infinity—but this is exactly L∞; thus the existence

of an EMM implies that the market is balanced.
In Sect. 6 we shall see by example that the notion of a balanced market is actually

strictly weaker than existence of an EMM Q.
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4.3 Balanced markets and efficiency

The chances for an agent to do well relatively to the overall wealth are very different
depending on which of the events �b and �u is being considered. The next result
gives a characterization of �u in terms of beating the whole market.

Theorem 4.4 We consider the model (1) valid under some filtration F ⊇ FS and the

constraints set C = �
d−1

.

• On �b, and for any portfolio π ∈ 	C the limit limt→∞(V π
t /V κ

t ) of the relative
wealth process exists and is R+-valued. The probability of beating the whole mar-
ket for ever-increasing levels converges to zero uniformly among all portfolios:

lim
m→∞ ↓ sup

π∈	C

P

[

sup
t∈R+

(
V π

t

V κ
t

)

> m | �b

]

= 0. (13)

• Further, �b is the maximal set that (13) holds: there exists ρ ∈ 	C such that
limt→∞(V ρ

t /V κ
t ) is (0,∞]-valued, and �u = {limt→∞(V ρ

t /V κ
t ) = ∞}.

Proof Consider the growth optimal portfolio ρ in the class 	C—since C is a con-
stant compact subset of R

d this certainly exists. Take now any portfolio π ∈ 	C;
Remark 3.2 gives that the relative wealth process V π/V ρ is a positive supermartin-
gale. Then, for any l > 0 we have P[supt∈R+(V π

t /V ρ
t ) > l] ≤ l−1, i.e., the collection

{supt∈R(V π
t /V ρ

t )}π∈	C is bounded in probability. Further, Itô’s formula for the semi-
martingale log(V κ/V ρ) reads

log
V κ

t

V ρ
t

= −Lt +
t∫

0

〈κu − ρu, dMu〉 . (14)

Observe then that on �b both the finite-variation part and the quadratic variation of
the local martingale part of the semimartingale log(V κ/V ρ) are finite all the way to
infinity, thus inf t∈R+(V κ

t /V ρ
t ) ∈ (0,+∞). Writing V π/V κ = (V π/V ρ)(V ρ/V κ)

for all π ∈ 	C, we see that the collection {supt∈R+(V π
t /V κ

t )}π∈	C is bounded in
probability on �b, which is exactly the first claim (13).

The fact that L dominates twice the quadratic variation process of the local martin-
gale

∫ ·
0 〈κu − ρu, dMu〉 enables one to use the strong law of large numbers (Lemma

A.1 of the Appendix) in (14) and show that we have

lim
t→∞

log(V ρ
t /V κ

t )

Lt
= 1,

on �u = {L∞ = ∞}, which proves the second claim.

Remark 4.5 The assumption C = �
d−1

in Theorem 4.4 is being made to ease the
proof, and also because it will be the only case we need in the sequel. This assumption
can be dropped; Theorem 4.4 still holds, with some possible slight changes which we
now describe.
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The essence of the assumption C = �
d−1

was to make sure that the growth-optimal
portfolio ρ exists in the class 	C; thus, the proof remains valid whenever C is con-
tained in a compact subset of R

d . In the general case, one might not be able to use ρ

directly (since it might not even exist), but rather a subsequence of (ρn)n∈N where ρn

defined to be the Cn-constrained growth-optimal portfolio where Cn := C ∩ [−n, n]d

and replace the second bullet in Theorem 4.4 by

• Further, �b is the maximal set that (13) holds: if P[�u] > 0 one can find a sequence
of portfolios (ρn)n∈N such that limt→∞

(
V ρn

t /V κ
t

)
exists and

lim
n→∞ P

[

lim
t→∞

V ρn
t

V κ
t

> n | �u

]

= 1.

5 Segregation and limiting capital distribution of balanced markets

Here, we describe the limiting behavior of the market on the set of balanced outcomes
�b. We take the latter event to be as large as possible, which by Proposition 4.3 means

that for this section we consider the case where the filtration is FS and C = �
d−1

.
By Theorem 4.4, on the event �u an investor with minimal information can construct
an all-long portfolio that can beat the market unconditionally; to keep our sanity, it is
best to assume that the market is balanced.

5.1 Limiting capital distribution

The following result is a simple corollary of Theorem 4.4. (All set-inclusions appearing
from now on are valid modulo P.)

Proposition 5.1 �b ⊆ {κ∞ := limt→∞ κt exists}.
Proof Write κ i = κ i

0(V ei /V κ) and use the first claim of Theorem 4.4 with π = ei . ��
Thus, we know that on �b there exists a limiting capital distribution in a very strong

sense: there is almost sure convergence of the relative capitalizations vector. The next
task is to identify this distribution.

5.2 Sector equivalence and segregation

We give below a definition of some sort of distance between two companies. To intro-
duce the definition and get an idea of what it means, remember that if π1 and π2 are
two portfolios, the drift of the log-wealth process log(V π1/V π2) is

∫ ·
0 g

π1|π2
t dt , where

gπ1|π2 := gπ1 − gπ2 , and that its quadratic variation is
∫ ·

0 cπ1|π2
t dt where cπ1|π2 :=

〈π2 − π1, c(π2 − π1)〉. In the case where the portfolios are unit vectors ei , e j for some
1 ≤ i, j ≤ d we write gi | j and ci | j for gei |e j and cei |e j , respectively.
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Definition 5.2 Say that two companies i and j in the market are equivalent (on the
outcome ω) and denote i ∼ j (more precisely i ∼ω j) if their total distance

di | j :=
∞∫

0

(

|gi | j
t | + 1

2
ci | j

t

)

dt, (15)

satisfies di | j (ω) < ∞, and write i � j (i �ω j is more precise) if di | j (ω) = ∞.
The segregation event is � :={i � j, for all pairs of companies (i, j)}; if P[�]=1,

the market will be called segregated.

Market segregation is conceptually very natural. Indeed, if two companies satisfy
i ∼ω j for some outcome ω ∈ �, then the total quadratic variation of the difference
of their returns all the way to infinity is finite; in this sense, the total cumulative uncer-
tainty (up to infinity) that they bear is very comparable. The same happens for their
growth rates, as (15) implies. In this case they should really be viewed and modeled
as the same entity of the market. To really speak of “different” companies, they must
have some different uncertainty or growth characteristics; this makes Definition 5.2
perfectly reasonable.

Remark 5.3 An equivalence relation between portfolios π1 and π2 can similarly be
defined, by postulating that π1 ∼ω π2 if

∫∞
0 (|gπ1|π2

t |+cπ1|π2
t /2)dt < ∞. Then, we can

write �b = {ρ ∼ κ}. To wit, remember that �b = {∫∞
0 g

ρ|κ
t dt < ∞}, so we certainly

have {ρ ∼ κ} ⊆ �b. On the other hand, since V κ/V ρ is a supermartingale, it is easy to
see that we have 2gρ|κ ≥ cρ|κ , which gives {∫∞

0 g
ρ|κ
t dt < ∞} ⊆ {∫∞

0 cρ|κ
t dt < ∞},

and thus �b = {ρ ∼ κ}.
It should be clear that

{i ∼ j} ⊆
{

lim
t→∞

(

log
κ i

t

κ
j

t

)

exists

}

=
{

lim
t→∞

κ i
t

κ
j

t

exists and is strictly positive

}

.

(16)

Remark 5.4 The relationship ∼ of Definition 5.2 is an equivalence relationship.
Indeed, suppose that i , j and k are three companies. That i ∼ i is evident, since
gi |i = ci |i = 0; also, i ∼ j ⇔ j ∼ i follows because |gi | j | and ci | j are symmetric in
(i, j). Finally, if i ∼ j and j ∼ k, the triangle inequality |gi |k | ≤ |gi | j | + |g j |k | gives
∫∞

0 |gi |k
t |dt < ∞. By Itô’s formula,

log

(
κ i

t

κk
t

)

= log

(
κ i

0

κk
0

)

+
t∫

0

gi |k
u du + 〈ei − ek, Mt 〉 .

Then, 〈ei − ek, M〉 = log(κ i/κk)− log(κ i
0/κ

k
0 )− ∫ ·

0 |gi |k
t |dt is a local martingale. We

have {i ∼ j} ∩ { j ∼ k} ⊆ {limt→∞ log(κ i
t /κ

k
t ) exists} from (16), hence 〈ei − ek, M〉
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has a finite limit at infinity on {i ∼ j} ∩ { j ∼ k}, which means that its quadratic
variation up to infinity has to be finite on the latter event, i.e.,

∫∞
0 |ci |k

t |dt < ∞ on
{i ∼ j} ∩ { j ∼ k}, and the claim is proved. The same holds for the relationship ∼
described in Remark 5.3 above for portfolios.

On the event {κ∞ := limt→∞ κt exists}∩{i ∼ j} we have κ i∞ = 0 ⇔ κ
j∞ = 0, and

thus also κ i∞ > 0 ⇔ κ
j∞ > 0; this is trivial in view of (16). A somewhat surprising

partial converse to this last observation is given now.

Lemma 5.5 For any pair (i, j), we have �b ∩ {κ i∞ > 0, κ
j∞ > 0} ⊆ {i ∼ j}.

Proof Since V κ/V ρ has a strictly positive limit at infinity on �b, we get that the
local martingale V ei

/V ρ has a strictly positive limit at infinity on �b ∩ {κ i∞ > 0}.
According to Lemma A.2, this means that

∫∞
0 |gi |ρ

t |dt = ∫∞
0 g

ρ|i
t dt < ∞. Then, on

�b ∩{κ i∞ > 0, κ
j∞ > 0} we have both

∫∞
0 |gi |ρ

t |dt < ∞ and
∫∞

0 |g j |ρ
t |dt < ∞; since

|gi | j | ≤ |gi |ρ |+|g j |ρ |, we get
∫∞

0 |gi | j
t |dt < ∞. Now, the fact that limt→∞ log(κ i

t /κ
j

t )

exists on {κ i∞ > 0, κ
j∞ > 0} allows us to proceed as in Remark 5.4 and show that

∫∞
0 ci | j

t dt < ∞. We conclude that i ∼ j on �b ∩ {κ i∞ > 0, κ
j∞ > 0}. ��

5.3 One company takes all

Now comes the main result of this section.

Theorem 5.6 �b ∩ � ⊆ {κ∞ ∈ {e1, . . . , ed}}. In particular, in a balanced and seg-
regated market, κ∞ exists P-a.s. and is equal to a unit vector.

Proof This is a simple corollary of Lemma 5.5: On �b, if we had κ i∞ > 0 and κ
j∞ > 0

for any two companies i and j , we should have i ∼ j ; but the segregation event � is
exactly the one where i � j for all pairs of companies (i, j). ��
Remark 5.7 This is a follow-up to the discussion in paragraph 4.2.4 on Equivalent
Martingale Measures. Existence of an EMM Q, coupled with Theorem 5.6, imply that
for each i ∈ {1, . . . , d} we have Q[κ i∞ = 1 | F0] = κ i

0 > 0, thus P[κ i∞ = 1 | F0] > 0
as well. This ceases to be true anymore if we consider balanced markets. Indeed, in
the next section one finds an example of a balanced and segregated market, such that
a specific company takes over the whole market with probability one.

6 Examples

We consider here a parametric “toy” market model in order to illustrate the results
of the previous subsections and to clarify some points discussed. The market will
consist of two companies, and their capitalizations are S0 and S1. Under P, S0 ≡ 1,
while S1

0 = 1 and dS1
t = S1

t (at dt + σt dWt ), where a and σ are predictable pro-
cesses, σ is strictly positive, and W is a one-dimensional Brownian motion. In the
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three cases we consider below we always have 0 ≤ a/σ 2 ≤ 1/2; it then turns out that
ρ = (1 − a/σ 2, a/σ 2) and easy computations show that

L∞ = 1

2

∞∫

0

∣
∣
∣
∣
at

σt
− σtκ

1
t

∣
∣
∣
∣

2

dt, as well as {0 � 1} =
⎧
⎨

⎩

1

2

∞∫

0

|σt |2dt = ∞
⎫
⎬

⎭
. (17)

6.1 Case a = 0

This market is balanced. Indeed, L∞ = (1/2)
∫∞

0 |σtκ
1
t |2dt ≤ (1/2)

∫∞
0 |σt S1

t |2dt ;
observe that

∫∞
0 |σt S1

t |2dt is the quadratic variation of the local martingale S1 up
to infinity, which should be finite, since S1 has a limit at infinity. It follows that
�b = {L∞ < ∞} = �.

Observe also that {0 � 1} = {limt→∞ S1
t = 0} = {κ∞ = e0}. Here, the limit in the

event �b ∩ {0 � 1} = {0 � 1} is identified as being e0, and one sees that on {0 ∼ 1}
we have 0 < κ0∞ < 1 as well as 0 < κ1∞ < 1. In a balanced market with equivalent
companies the limiting capital distribution might not be trivial.

Assume now that P[∫∞
0 |σt |2dt = ∞] = 1; easy examples of this is when σ is

a positive constant, or when S1 is the inverse of a three-dimensional Bessel process.
From the discussion above, the market is balanced and segregated. We note that there
cannot exist any probability measure Q ∼ P such that κ is a Q-martingale; for if
there existed one, the bounded martingale κ1 would be uniformly integrable, so that
0 = E

Q[κ1∞] = κ1
0 = 1/2 should hold, which is impossible.

This example clearly shows that balanced markets form a strictly larger class than
the ones satisfying the EMM hypothesis discussed in 4.2.4.

6.2 Case ε ≤ a/σ 2 ≤ 1/2 − ε

Here we assume the previous inequality holds for all (ω, t) ∈ � × R+ for some
0 < ε < 1/4; for example, one can just pick some predictable, strictly positive
process σ and then set a = σ 2/4.

As in the previous case a = 0, we have {0 � 1} = {limt→∞ S1
t = 0} = {κ1∞ =

0}—this follows from (17); just divide the equality

log S1
t =

t∫

0

(

au − 1

2
σ 2

u

)

du +
t∫

0

σudWu

by
∫ t

0 |σu |2dt and then use a −σ 2/2 ≤ −εσ 2 as t tends to infinity. Because of this last
fact, using ε ≤ a/σ 2 and (17) again, we easily get {0 � 1} ⊆ {L∞ = ∞} = �u =
� \ �b. This example shows that the limiting capital distribution can be concentrated
in one company even in the set where then market is not balanced.
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6.3 Case a = σ 2/2

In this case, log S1 is a local martingale with quadratic variation
∫ ·

0 |σt |2dt , and thus
on {0 � 1} = {∫∞

0 |σt |2dt = ∞} we have lim inf t→∞ κ1
t = 0 and lim supt→∞ κ1

t =
1; obviously, the same relationships hold for κ0 as well. On the other hand, on
{∫∞

0 |σt |2dt < ∞} we have that limt→∞ κt exists, and since 2L∞ = ∫∞
0 |σt (κ

1
t −

1/2)|2dt by (17), we have L∞ < ∞. We conclude that

�u =
⎧
⎨

⎩

∞∫

0

|σt |2dt = ∞
⎫
⎬

⎭
=
{

lim inf
t→∞ κ i

t = 0, lim sup
t→∞

κ i
t = 1, for both i = 0, 1

}

,

which shows that the result of Proposition 5.1 cannot be strengthened. It also shows
that it is exactly the unbalanced markets that bring diversity into the picture and the
hope that not all capital will concentrate in one company only.

7 The quasi-left-continuous case

We now discuss all the previous results in a more general setting, where we allow
for the processes of company capitalizations to have jumps. For notions regarding
semimartingale theory used in the sequel, one can consult Jacod and Shiryaev (2003).
Numbered subsections correspond to previous numbered sections, i.e., Subsect. 7.1
to Sect. 1, Subsect. 7.2 to Sect. 2, and so on.

7.1 The set-up

We denote by Si the capitalization of company i . Each Si , i = 1, . . . , d is modeled as
a semimartingale living on an underlying probability space (�,F , P), adapted to the
filtration F = (Ft )t∈R+ that satisfies the usual conditions. One extra ingredient that
has to be added (in view of Example 7.2 later) is to allow for the capitalizations to
become zero, which can be considered as death, or annihilation of the company. We
define the lifetime of company i as ζ i := inf{t ∈ R+ | Si

t− = 0 or Si
t = 0}; each ζ i is

an F-stopping time. After dying, companies cannot revive; thus we insist that Si
t ≡ 0,

for all t ≥ ζ i . Note that—even though individual companies might die—we suppose
the whole market lives forever; max1≤i≤d ζ i = +∞, P-a.s.

We want to write an expression like:

dSi
t = Si

t−dXi
t , for t ∈ [[0, ζ i ]], i = 1, . . . , d. (18)

where dXi
t plays the equivalent rôle of ai

t dt + dMi
t of (1). Let us assume for the

moment that ζ i = ∞ for all i = 1, . . . , d, so that Xi can be defined as the stochastic
logarithm of Si : Xi := ∫ ·

0(dSi
t /Si

t−). Then, we know that if we fix the canonical trun-
cation function x �→ xI{|x |≤1} (IA will denote the indicator of a set A), the canonical
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decomposition of the semimartingale X = (X1, . . . , Xd) is

X = B + M + [xI{|x |≤1}] ∗ (µ − η) + [xI{|x |>1}] ∗ µ. (19)

In the decomposition (19), B is predictable and of finite variation; M is a contin-
uous local martingale; µ is the jump measure of X , i.e., the random measure on
R+ × R

d defined by µ([0, t]× A) :=∑0≤s≤t IA\{0}(�Xs), for t ∈ R+ and A ⊆ R
d ;

the asterisk “∗” denotes integration with respect to random measures; η is the pre-
dictable compensator of µ—it satisfies [|x |2 ∧ 1] ∗ ηt < ∞ for all t ∈ R+, and
η[R+ × (−∞,−1)d ] = 0, since each Si (i = 1, . . . , d) is constrained to be positive.

Since we do not know a-priori that ζ i = ∞ for all i = 1, . . . , d, we take the oppo-
site direction of assuming the representation (19), and pick as inputs a continuous
local martingale M , a quasi-left-continuous semimartingale jump measure µ, and a
continuous process B that is locally of finite variation before a possible explosion to
−∞. The continuous local martingale M being obvious, we remark on the last two
objects.

A semimartingale jump measure µ is a random counting measure on R+ ×R
d with

µ(R+ ×{0}) = 0 and µ({t}×R
d) being {0, 1}-valued for all t ∈ R+, such that its pre-

dictable compensator η exists and satisfies [|x |2 ∧1] ∗ηt < ∞ for all t ∈ R+. µ being
quasi-left-continuous means µ({τ }×R

d) = 0 for all predictable stopping times τ ; this
is equivalent to η({t} × R

d) = 0 for all t ∈ R+. In other words, jumps are permitted
as long as they only come in a totally unpredictable (inaccessible) way. It will also be
assumed that µ[R+ × (−∞,−1)d ] = 0 (equivalently, η[R+ × (−∞,−1)d ] = 0) to
keep the company-capitalization processes positive.

The twist comes for the predictable finite-variation process B, for which we shall
assume that its coefficient-processes can explode to −∞ in finite time. In other words,
for each i = 1, . . . , d there exists a strictly increasing sequence of stopping times

(ζ i
n)n∈N such that the stopped process

(
Bi

ζ i
n∧t

)

t∈R+
is continuous (thus predictable)

and of finite variation, and that limn→∞ Bi
ζ i

n
= −∞. It is clear that we can choose

ζ i
n := inf{t ∈ R+|Bi

t = −n}. We further define

ζ i :=
(

lim
n→∞ ↑ ζ i

n

)
∧ inf{t ∈ R+|µ(t,−1) = 1}. (20)

where we write µ(t,−1) as short for µ({(t,−1)}). The last definition should be intui-
tively obvious: annihilation of company i happens either (a) when Bi explodes to −∞
in which case we have a continuous transition of Si to zero in that Si

ζ i − = 0, or (b)
the first time when µ(t,−1) = 1, where we have a jump down to zero; in this case
we have Si

ζ i − > 0 and Si
ζ i = 0.

Having these ingredients we now define the process X via (19), where we tacitly
assume that Xi = −∞ on ]]ζ i ,∞[[. We also define the company capitalizations Si

for i = 1, . . . , d via (18), where we set Si = 0 on ]]ζ i ,∞[[.
Setting C := [M, M] to be the quadratic covariation process of M , the triple

(B, C, η) is called the triplet of predictable characteristics of X . One can find a con-
tinuous, one-dimensional, strictly increasing process G such that the processes C and
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η are absolutely continuous with respect to it, in the sense of the Eqs. (21) below—for
instance, one can choose G =∑d

i=1[Mi , Mi ] + [|x |2 ∧ 1] ∗ η. We shall also assume
that each Bi , i = 1, . . . , d is absolutely continuous with respect to G on the stochastic
interval [[0, ζ i [[—otherwise it can be shown that there are trivial opportunities for free
lunches of the most egregious kind—one can check Karatzas and Kardaras (2007),
Section 5, for more information. It then follows that we can write

B =
·∫

0

bt dGt , C =
·∫

0

ct dGt , and η([0, t] × E) =
t∫

0

⎛

⎜
⎝

∫

Rd

IE (x)νu(dx)

⎞

⎟
⎠ dGu

(21)
for any Borel subset E of R

d . Here, all b, c and ν are predictable, b is a vector process,
c is a positive-definite matrix-valued process and ν is a process with values in the
space of measures on R

d that satisfy ν({0}) = 0 and integrate x �→ 1∧|x |2 (so-called
Lévy measures). Each process bi for i = 1, . . . , d is G-integrable on each stochastic
interval [[0, ζ i

n]], but on the event {ζ i < ∞, Sζ i − = 0}, bi it is not integrable on
[[0, ζ i ]].

The differential “dGt ” will be playing the rôle that “dt” was playing before—for
example, an interest rate process now is a one-dimensional predictable process r such
that

∫ t
0 |ru |dGu < ∞ for all t ∈ R+.

7.2 Perfectly balanced markets

The notion of a perfectly balanced market is exactly the same as before: we ask that
κ is a vector (P, F)-martingale.

The first order of business is to find necessary and sufficient conditions in terms of
the triplet (b, c, ν) for the market to be perfectly balanced. Itô’s formula gives that the
drift part of the stochastic logarithm process

∫ ·
0(dκ i

t /κ
i
t−) on [[0, ζ i [[ is

·∫

0

⎛

⎜
⎝〈ei − κt−, bt − ctκt−〉+

∫

Rd

[ 〈ei − κt−, x〉
1 + 〈κt−, x〉 − 〈ei − κt−, x〉 I{|x |≤1}

]

νt (dx)

⎞

⎟
⎠ dGt .

In a perfectly balanced market, this last quantity has to to vanish—using same argu-
ments as in the proof of Proposition 2.3 we get the following result.

Proposition 7.1 The market is perfectly balanced if and only if there exists an inter-
est rate process r such that the following relationship holds for each coordinate i =
1, . . . , d on [[0, ζ i [[:

b − cκ− +
∫ [

x

1 + 〈κ−, x〉 − xI{|x |≤1}
]

ν(dx) = r1. (22)
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Using (22) above one computes that in a perfectly balanced market the relative
company capitalization κ i for each i = 1, . . . , d satisfies

κ i = κ i
0E
⎛

⎝

·∫

0

〈ei − κt−, dMt 〉 +
[ 〈ei − κ−, x〉

1 + 〈κ−, x〉
]

∗ (µ − η)

⎞

⎠ , on [[0, ζ i ]] (23)

where E is the stochastic exponential operator.
In order to get a result about existence of perfectly balanced markets similar to

Theorem 2.5 one has to start with the continuous local martingale M and a quasi-left-
continuous semimartingale jump measure µ and show that Eqs. (23) have a strong
solution. Below, we show by example that even if we start with an initial distribution
of capital κ0 in the open simplex �d−1 (so that κ i

0 > 0 for all i = 1, . . . , d) and
jumps of size −1 are not allowed by the jump measure, annihilation of a company
might come at finite time—stock-killing times were not included just for the sake of
generality, but they come up naturally if possibly unbounded jumps above are allowed
for the company-capitalization processes.

Example 7.2 Consider a simple market with two companies (we call them 0 and 1)
for which κ0

0 = κ1
0 = 1/2, M ≡ 0, and µ is a jump measure with at most one jump

at time τ that is an exponential random variable, and size l(τ ) for a deterministic

function l given by l(t) = (1 − et/2/2
)−1

I[0,2 log 2)(t). Observe that there is no jump
on {τ > 2 log 2}, an event of positive probability, and that νt (dx) = I(0,τ ]δ(0,lt )(dx),
where δ is the Dirac measure.

Now, according to (23) the process κ1 should satisfy

dκ1
t

dt
= −κ1

t (1 − κ1
t )lt

1 + κ1
t lt

, for all t < τ.

It can be readily checked that the solution of the previous (ordinary) differential equa-
tion for t < min{τ, 2 log 2} is κ1 = 1/ l. Thus, on {τ ≥ 2 log 2} (which has positive
probability), we have κ1

t = 0 for all t ≥ 2 log 2, i.e., P[ζ 1 < ∞] > 0.

Theorem 7.3 Consider a continuous (P, F)-local martingale M and a quasi-left-con-
tinuous semimartingale jump measure µ. Then, for any F0-measurable initial condi-

tion κ0 ≡ (κ i
0)1≤i≤d with P[κ0 ∈ �

d−1] = 1 the stochastic differential equations (23)

have a unique strong solution on [0,∞) that lives on �
d−1

.
Select any interest-rate process r and any F0-measurable initial random vector

S0 = (Si
0)1≤i≤d such that Si

0/ 〈S0, 1〉 = κ i
0. For all i = 1, . . . , d, define ζ i by (20)

and also define bi by (22) on the interval [[0, ζ i [[. With B = ∫ ·
0 bt dGt , if we define X

via (19), then S as defined by (18) is a model of a perfectly balanced market.

Proof More or less, one follows the steps of the proof of Theorem 2.5, with some
twists. We assume that the initial condition κ0 lives on �d−1—any company i =
1, . . . , d for which κ i

0 = 0 can be safely disregarded, since then κ i ≡ 0.
Set Kn := [n−1, 1 − n−1]d for all n ∈ N; the coëfficients of (23) are Lipschitz

on Kn . A theorem on strong solutions of stochastic differential equations involving
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random measures has to be invoked—one can check for example Bichteler (2002)
(Proposition 5.2.25, page 297) for existence of solutions of equations of the form (23)
in the case of Lipschitz coëfficients. We infer the existence of an increasing sequence
of stopping times (τn)n∈N such that κt ∈ Kn for all t < τn and κτn ∈ R

d \ Kn . Using
(23) one can show that 〈κ, 1〉 is constant on [[0, τn]] — since κ0 ∈ �d−1 we have
κt ∈ �d−1 for all t < τn . Now, we claim that κτn ∈ �

d−1
. Since

〈
κτn , 1

〉 = 1 we
only need show that κ i

τn
≥ 0 for all i = 1, . . . , d. If µ({τn} × R

d) = 0 this is trivial.
Otherwise, let ξn ∈ [−1,∞)d the (random) point such that µ(τn, ξn) = 1; (23) gives

κ i
τn

= κ i
τn−

(
1 + ξ i

n

1 + 〈κτn−, ξn
〉

)

≥ 0,

since ξ i
n ≥ −1 and

〈
κτn−, ξn

〉
> −1 in view of the fact that κτn− ∈ �d−1.

Pasting solutions together we get that there exists a stopping time τ such that
κt ∈ �d−1 for all t < τ and κτ ∈ ∂�d−1 on {τ < ∞}. Unlike the proof of
Theorem 2.5 we cannot hope now that P[τ < ∞] = 0, as Example 7.2 above shows.
Rather, we set ζ i = τ if κ i

τ = 0 for i = 1, . . . , d.
We have constructed a solution to (23) on the stochastic interval [[0, τ ]]. On the event

{τ < ∞} we continue the construction of the solution to (23) inductively, removing
all companies that have died. In at most d − 1 steps we either have constructed the
solution for all t ∈ R

d , or only one company (say, i) has remained in which case we
shall have κ = ei from then onwards.

7.3 Perfect balance and growth

Growth-optimality of a portfolio and the market are now defined, and their relation to
perfect balance is established.

A portfolio is a d-dimensional predictable and X -integrable processes, and from

now onwards we restrict attention to the C-constrained class 	C where C ≡ �
d−1

. If
V π denotes the wealth process generated by π we have

dV π
t

V π
t−

=
d∑

i=1

π i
t

dSi
t

Si
t−

+
(

1 −
d∑

i=1

π i
t

)

rt dGt ,

where r is some interest rate process coming from a bank in the market.
The market portfolio is not κ now, but rather its left-continuous version κ− (the

vector process κ as appears in (2) is not in general predictable, but only adapted and
right-continuous). It is trivial to check that V κ− = 〈S, 1〉 / 〈S0, 1〉.

The concept of growth of a portfolio is sometimes not well-defined, as the log-
wealth process log V π might not be a special semimartingale, which means that its
finite-variation part fails to exist. In order to define a growth optimal portfolio ρ, we
use the idea contained in Remark 3.2: we ask that V π/V ρ is a supermartingale for all
π ∈ 	C. It turns out (one can check Karatzas and Kardaras 2007, for example) that
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this requirement is equivalent to rel(π |ρ) ≤ 0 for all π ∈ 	C, where the relative rate
of return process is

rel(π |ρ) := 〈π − ρ, b − r1〉 − 〈π − ρ, cρ〉
+
∫ [ 〈π − ρ, x〉

1 + 〈ρ, x〉 − 〈π − ρ, x〉 I{|x |≤1}
]

ν(dx). (24)

The market will be called a growth market if κ− is growth-optimal according to this
last definition. It is easily shown that in order to have a growth market we must have
(22) holding, where r is now the banking interest rate.

Exactly the same remarks on interest rates hold as the ones in Subsect. 3.3—the
concepts of perfect balance and growth in markets are thus equivalent.

7.4 Balanced markets

To define the loss-of-balance process, let ρ be the growth-optimal portfolio in the class
	C and set

L :=
·∫

0

(

−rel(κt−|ρt ) + 1

2
cκ−|ρ

t

)

dGt +
[

1 ∧
∣
∣
∣
∣log

1 + 〈κ−, x〉
1 + 〈ρ, x〉

∣
∣
∣
∣

2
]

∗ η,

where cπ1|π2 := 〈π2 − π1, c(π2 − π1)〉 for two portfolios π1 and π2. As before, set
�b := {L∞ < ∞} and �u := � \ �b = {L∞ = ∞}. The above definition of L is
slightly different than the one of Definition 4.1 for the case of Itô processes, but for
this special case it is easy to see that the sets �b and �u that are obtained using the
two definitions are the same—and this is the only thing of importance.

With a little help from Lemma A.4 (more precisely, the generalization of its result
as discussed in Remark A.5) we get that �b = {limt→∞(V κ−

t /V ρ
t ) > 0} and �u =

{limt→∞(V κ−
t /V ρ

t ) = 0}. Based on this characterization of the event of balanced
outcomes, Theorem 4.4 can be proved for our more general case now.

7.5 Limiting capital distribution of balanced markets

Of course, the event-inclusion �b ⊆ {κ∞ := limt→∞ κt exists} follows exactly from
the equivalent of Theorem 4.4 in the quasi-left-continuous case—a limiting capital
distribution exists for the balanced outcomes.

Two companies are equivalent (we write i ∼ω j) if di | j (ω) = ∞, where

di | j :=
∞∫

0

(

|rel(ei |ρt ) − rel(e j |ρt )| + 1

2
ci | j

t

)

dGt +
[

1 ∧
∣
∣
∣
∣log

1 + xi

1 + x j

∣
∣
∣
∣

2]

∗ η∞

(25)
is a measure of distance between two companies in an ω-by-ω basis. Again, this defi-
nition does not fully agree with the one given in (15), but it is easy to see that the events
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{i ∼ j} are identical under both definitions. Segregated markets and the segregation
set � are formulated exactly as in Definition 5.2.

We again have �b ∩ {κ i∞ > 0, κ
j∞ > 0} ⊆ {i ∼ j}. The proof follows the steps of

Lemma 5.5, invoking Lemma A.4 (actually, Remark A.5) from the Appendix. Then,
Theorem 5.6 follows trivially: on balanced outcomes that segregation of companies
holds, one company will take all.

A Limiting behavior of local Martingales

The proof of the following result is well-known for continuous-path semimartingales—
for the slightly more general case described below, the proof is the same.

Lemma A.1 Let X = M +x ∗(µ−η) be a local martingale, where M is a continuous
local martingale and µ is the jump measure of X with η its predictable compensator.
We assume that X has bounded jumps: |�X | ≤ c for some constant c ≥ 0. Then, with
B := [M, M] + |x |2 ∗ η we have {limt→∞ Xt exists in R} = {B∞ < +∞}, while on
the event {B∞ = +∞} we have limt→∞(Xt/Bt ) = 0.

This allows one to prove the following lemma.

Lemma A.2 For a continuous local martingale M, consider the exponential local
martingale E(M) = exp(M − [M, M]/2). Then, E(M)∞ := limt→∞ E(M)t exists
and is R+-valued. Further, {[M, M]∞ < +∞} = {E(M)∞ > 0}.
Proof Existence of E(M)∞ follows from the supermartingale convergence theorem.
Lemma A.1 gives {[M, M]∞ < +∞} = {limt→∞ E(M)t ∈ R}; thus {[M, M]∞ <

+∞} ⊆ {E(M)∞ > 0}. For the other inclusion, Lemma A.1 again gives that on
{[M, M]∞ = +∞} we have limt→∞(log E(M)t/[M, M]t ) = −1/2; this means that
limt→∞ log E(M)t = −∞, or E(M)∞ = 0 and we are done.

In order to prove the equivalent of Lemma A.2 for general semimartingales, a
“strong law of large numbers” result for increasing processes will be needed.

Lemma A.3 Let A be an increasing, right-continuous and adapted process with
|�A| ≤ c for some constant c > 0, and let Ã be its predictable compensator, so
that A − Ã is a local martingale. Then, we have {A∞ < ∞} = { Ã∞ < ∞} and on
{ Ã∞ = ∞} we have limt→∞(At/ Ãt ) = 1.

Proof It is easy to see that we can assume without loss of generality that A is pure-jump
and quasi-left-continuous (if not, decompose A into a part as described and another
part that is predictable; this second part can be subtracted from both A and Ã). Let η

be the predictable compensator of the jump measure of A; observe then that Ã = x ∗η

and if N := A − Ã, then B := [̃N , N ] = |x |2 ∗ η. Since A has jumps bounded by c,
it is clear that B ≤ c Ã.

On { Ã∞ < +∞} we have B∞ < +∞, so that N∞ exists, and thus A∞ < +∞.
Now, work on { Ã∞ = +∞}. If B∞ < +∞, M∞ exists and is real-valued, so obvi-

ously limt→∞(At − Ãt )/ Ãt = 0. If B∞ = +∞, we have limt→∞(At − Ãt )/Bt = 0,
so that also limt→∞(At − Ãt )/ Ãt = 0, and this completes the proof.
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Lemma A.4 Let X and Y be local martingales with �X > −1, �Y > −1 (then,
E(X) and E(Y ) are positive local martingales). Write X = M + x ∗ (µ − η) and
Y = N + y ∗ (µ − η) with M and N being continuous local martingales, µ the
2-dimensional jump measure of (X, Y ) and η its predictable compensator. Then,

1. {E(X)∞ > 0} = {[M, M]∞/2 + [1 ∧ |log(1 + x)|2] ∗ η∞ < +∞}.
2. {E(X)∞ > 0, E(Y )∞ > 0} ⊆ {d X |Y < +∞}, where we have set

d X |Y := 1

2
[M − N , M − N ]∞ +

[

1 ∧
∣
∣
∣
∣log

(
1 + x

1 + y

)∣
∣
∣
∣

2
]

∗ η∞

Proof For (1), the definition of the stochastic exponential gives

log E(X) = X − 1

2
[M, M] − [x − log(1 + x)] ∗ µ.

Since � log E(X) = log(1 + �X), on {E(X)∞ > 0} = {log E(X)∞ ∈ R} we
should have | log(1 + �Xt )| > 1 for a finite (path-dependent) number of t ∈ R+—
equivalently, we must have that I{| log(1+x)|>1} ∗ µ∞ < +∞ and then Lemma A.3
implies I{| log(1+x)|>1} ∗ η∞ < +∞. Now, if we subtract the semimartingale [log(1 +
x)I{| log(1+x)|>1}] ∗ µ∞ (which is actually only a finite sum) from log E(X), what
remains is a semimartingale with bounded (by one) jumps. The canonical representa-
tion of the semimartingale log E(X) − [log(1 + x)I{| log(1+x)|>1}] ∗ µ into a sum of a
predictable finite-variation part (first two terms in (26) below) and a local martingale
part (last two terms):

−1

2
[M, M]+[x−log(1+x)I{|log(1+x)|≤1}]∗η+M+[log(1+x)I{|log(1+x)|≤1}]∗(µ−η).

(26)
This last semimartingale must have a real limit at infinity. Observe that on {[M, M]∞+
[| log(1 + x)|2I{| log(1+x)|≤1}] ∗ η∞ = +∞} this cannot happen, because Lemma A.1
would give that the limit at infinity of the ratio of (26) to its predictable finite variation
part would be equal to 1, which would imply that the semimartingale (26) does not
have a limit. This completes the proof of (1).

Let us proceed to (2); we work on {E(X)∞ > 0, E(Y )∞ > 0}. Part (1) of this
lemma gives [M − N , M − N ]∞ ≤ 2[M, M]∞ + 2[N , N ]∞ < +∞. Now, define

� :=
{

(x, y) ∈ (−1,∞)2|
∣
∣
∣
∣log

(
1 + x

1 + y

)∣
∣
∣
∣ ≤ 1

}

as well as �x := {(x, y) ∈ (−1,∞)2|| log(1 + x)| ≤ 1/2} and �y := {(x, y) ∈
(−1,∞)2|| log(1 + y)| ≤ 1/2}. With the prime “′” denoting the complement of a
set, we have �′ ⊆ �′

x ∪ �′
y , so I�′ ∗ η∞ < +∞ as discussed before. We then only

have to show that [I�| log((1 + x)/(1 + y))|2] ∗ η∞ < +∞. Since we have that
[I�x | log(1 + x)|2] ∗ η∞ < +∞ and [I�y | log(1 + y)|2] ∗ η∞ < +∞ holds from part
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(1) of this lemma, we need only show that | f |2 ∗ η∞ < +∞, where

f (x, y) := I� log

(
1 + x

1 + y

)

− I�x log(1 + x) + I�y log(1 + y).

It is clear from part (1) that [I�′ | f |2] ∗ η∞ < +∞. Now, on � ∩ �x ∩ �y we
have f = 0, while on � ∩ �′

x ∩ �′
y we have | f | ≤ 1. For (x, y) ∈ � ∩ �x ∩ �′

y
we have f (x, y) = − log(1 + y), which (using the triangle inequality) cannot be
more than 3/2 in absolute value. The similar thing holds on � ∩ �′

x ∩ �y , so finally
[I�| f |2] ∗ η∞ ≤ (3/2)[I�∩(�x ∩�y)′ ] ∗ η∞ < +∞, which completes the proof.

Remark A.5 Lemma A.4 can be extended in the case where X and Y are of the form
X = −A + M + x ∗ (µ − η) and Y = −B + N + y ∗ (µ − η), where A and B are
increasing and continuous adapted processes. In that case we have

1. {E(X)∞ > 0} = {A∞ + [M, M]∞/2 + [1 ∧ |log(1 + x)|2] ∗ η∞ < +∞}.
2. {E(X)∞ > 0, E(Y )∞ > 0} ⊆ {d X |Y < +∞}, where

d X |Y :=
∞∫

0

d|A − B|t + 1

2
[M − N , M − N ]∞ +

[

1 ∧
∣
∣
∣
∣log

(
1 + x

1 + y

)∣
∣
∣
∣

2
]

∗ η∞

We can extend the discussion further when A or B might explode to ∞ in finite time,
i.e., if the lifetimes ζ X := inf{t ∈ R+|Xt = −∞} and ζ Y := inf{t ∈ R+|Yt = −∞}
are finite, exactly as described in Subsect. 7.1 of the main text.
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