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Abstract

The numéraire portfolio in a financial market is the unique positive wealth process that makes all other
nonnegative wealth processes, when deflated by it, supermartingales. The numéraire portfolio depends
on market characteristics, which include: (a) the information flow available to acting agents, given by a
filtration; (b) the statistical evolution of the asset prices and, more generally, the states of nature, given by a
probability measure; and (c) possible restrictions that acting agents might be facing on available investment
strategies, modeled by a constraint set. In a financial market with continuous-path asset prices, we establish
the stable behavior of the numéraire portfolio when each of the aforementioned market parameters is
changed in an infinitesimal way.
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0. Introduction

Within the class of expected utility maximization problems in the theory of Financial
Economics, the one involving expected logarithmic utility plays a central role. Its importance can
be understood by going as back as [14], where the optimal exponential growth for a gambler’s
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wealth was discovered from an information-theoretic point of view. In general semimartingale
models, it is the only case of utility where an explicit solution can be given in terms of the triplet
of predictable characteristics, as was carried out in [9].

The log-optimal portfolio, when it exists, is the numéraire portfolio (an appellation that was
introduced in [17]) according to the definition in [4]: all other wealth processes, when discounted
by the log-optimal one, become supermartingales under the historical (statistical, real world)
probability. In fact, the numéraire portfolio can exist even in cases where the log-optimal problem
does not have a unique solution, which happens when the value of the log-optimal problem is
infinite.

The numéraire portfolio depends on the stochastic nature of the financial market. As the output
of an optimization problem, it is of importance to ensure that it is stable under small changes in
the market parameters. Here, focus is given on the following characteristics:

• Available information that economic agents have access to.
• Statistical (or even subjective) views on the possible future outcomes.
• Investment constraints (usually, institutionally enforced) that agents face.

Institutionally enforced constraints can involve, for example, prevention of short sales.
Another important restriction that agents face is that of a finite credit limit; their wealth has
to remain positive in order to avoid bankruptcy.

The purpose of this work is to guarantee that small deviations from the above market
characteristics do not lead to radical changes in the structure of the numéraire portfolio. Naturally,
part of the problem is to rigorously define what is meant by “deviations” of the market
characteristics. In turn, this means that in order to achieve the desired continuous behavior of the
numéraire portfolio, certain economically reasonable topological structures have to be placed on
filtrations, probabilities and constraint sets.

Stability of the numéraire portfolio is a qualitative study; there are, however, good quantitative
reasons to undertake such study. Lately, there has been significant interest in quantifying the
value of insider information, as measured via the increase in the log-utility of an insider
with respect to a non-informed trader. One can check, for example, [2] and the wealth of
references therein. It then becomes plausible to examine marginal values of insider information,
or of investment freedom. The last question is intimately related to differentiability of the
numéraire portfolio (or at least of the value of the log-utility maximization problem) with
respect to market parameters. Such differentiability would give a first-order approximation of the
behavior of the numéraire portfolio. Before seeking conditions ensuring differentiability, which is
a possible topic for further research, a zeroth-order study concerning continuity has to be carried
out. In the present work, we only scratch the very surface of the problem of differentiability of
the numéraire portfolio and the calculation of its derivative.

The structure of the paper is as follows. Section 1 sets up the model with continuous asset-
price processes, where markets are parameterized via a triplet of data, including information
flows, statistical structure and investment constraints that agents face. A “proximity” concept for
the market parameters is introduced by defining modes of convergence for the three data inputs.
Theorem 1.3 is the result which establishes continuity of the numéraire portfolio in a rather strong
sense under convergence of market’s data. Then, Section 2 is dedicated to proving Theorem 1.3.

The workable expression that is obtained for the numéraire portfolios allows for a bare-hands
approach to proving Theorem 1.3. This should be contrasted with the treatment in [16] and [13],
where passage to the dual problem, as described in [15], is necessary. There, unnatural (from
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an economical point of view) uniform integrability conditions have to be assumed involving the
class of equivalent martingale measures of the market.

The assumption of continuity of the asset-price processes is made for simplifying the
presentation. (It should be noted however that an elementary example in Section 1.4 shows that
the result of Theorem 1.3 is not valid without additional control on the agent’s constraints.) Even
by assuming continuity of the asset-price processes, one cannot completely avoid dealing with
jumps in the proof of Theorem 1.3. Changing from the probability measure of one market to
the one of another, as has to be done, results in the appearance of martingale density processes
with possible jump components. These technical complications make the proof of Theorem 1.3
somewhat lengthy.

1. The result on the continuous behavior of the numéraire portfolio

1.1. The set-up

Every stochastic process in what follows is defined on a stochastic basis (Ω ,F ,F,P). Here,
P is a probability on (Ω ,F), where F is a σ -algebra that will make all involved random variables
measurable. Further, F =

(
F t
)

t∈R+ is a “large” filtration that will dominate all other filtrations

that will appear. Of course, F t ⊆ F for all t ∈ R+ and F is assumed to satisfy the usual
hypotheses of right-continuity and saturation by P-null sets.

1.1.1. Assets and investing
The price processes of d traded financial assets, where d ∈ N = {1, 2, . . .}, are denoted by

S1, . . . , Sd . All processes Si , i = 1, . . . , d, are F-adapted and are assumed to have been dis-
counted by a “baseline” asset that will act as a deflator for the denomination of all wealth pro-
cesses.

The minimal filtration that makes S adapted and satisfies the usual hypotheses will be denoted
by F. Since S is F-adapted, F ⊆ F. In what follows, the information flow of economic agents
acting in the market will be modeled via elements F such that

F is a filtration satisfying the usual hypotheses, and F ⊆ F ⊆ F. (INFO)

We shall also model statistical, or subjective, views of economic agents via P, where

P is a probability, with P ∼ P on F T holding for all T ∈ R+. (P-LOC-EQUIV)

The following innocuous assumption on the structure of the S will be in force throughout:

S is a (F,P)-semimartingale with P-a.s. continuous paths. (CON-SEMI-MART)

For a pair (F,P) satisfying (INFO) and (P-LOC-EQUIV), (CON-SEMI-MART) implies that S is
an (F,P)-semimartingale. Therefore, one can define the class of all possible nonnegative wealth
processes starting from (normalized) unit initial capital for a market in which the information-
probability structure is given by (F,P):

X F
:=

{
Xϑ ≡ 1+

∫
·

0
ϑt dSt | ϑ is F-predictable and

S-integrable, and Xϑ ≥ 0, P-a.s.
}
. (1.1)
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The dependence on P from X F in (1.1) above is suppressed, simply because there is no depen-
dence in view of (P-LOC-EQUIV). The following structural assumption on the class of wealth
processes will be in force throughout.

↓ lim
m→∞

sup
X∈X F

P[XT > m] = 0, for all T ∈ R+. (NUPBR)

(Note that “↓ lim” denotes a nonincreasing limit.) In other words, the set {XT | X ∈ X F
}

is bounded in P-probability for all T ∈ R+. For a pair (F,P) satisfying (INFO) and
(P-LOC-EQUIV), (NUPBR) implies that {XT | X ∈ X F

} is bounded in P-probability for all
T ∈ R+.

Remark 1.1. According to [11], condition (NUPBR), an acronym for No Unbounded Profit with
Bounded Risk, is equivalent to existence of the numéraire portfolio (see Section 1.1.4) for any
pair (F,P) that satisfies (INFO), (P-LOC-EQUIV). Since this work is aimed at studying stability
of the numéraire portfolio, (NUPBR) is a minimal structural assumption.

1.1.2. Constraints on investment
Fix some pair (F,P) corresponding to the information-probability structure of the finan-

cial market. Agents in this market might be facing constraints on possible investment strate-
gies, which we now formally describe. Consider a set-valued process K : Ω × R+ 7→ B(Rd),
where B(Rd) denotes the class of Borel subsets of Rd . A process in Xϑ ∈ X F will be called K-
constrained if ϑt (ω) ∈ Xϑt (ω)K(ω, t) for all (ω, t) ∈ Ω × R+; in short, ϑ ∈ XϑK. (Investment
constraints of this kind, but where no dependence of the constraint sets on (ω, t) ∈ Ω × R+
is involved, appear in an Itô-process modeling context in the literature in [6].) We define
X (F,K)

:= {Xϑ ∈ X F
| ϑ ∈ XϑK} to be the class of all K-constrained wealth processes in

X F. For Xϑ ∈ X (F,K), both ϑ and Xϑ are F-predictable. It makes sense, both from a mathe-
matical and a financial point of view, to give the constraint set a predictable structure as well. A
set-valued process K will be called F-predictable if {(ω, t) | K(ω, t)∩K 6= ∅} is an F-predictable
set for all compact K ⊆ Rd . For more information on this kind of measurability, see Appendix
1 of [11], or Chapter 17 of [1] for a more general treatment. Further, it is financially reasonable
to put some closedness and convexity structure on K. We call K closed and convex if K(ω, t) has
these properties for all (ω, t) ∈ Ω × R+.

1.1.3. Financial market data
Before the formal definition of the financial market’s data is given, we tackle degeneracies that

might appear in the asset-price process. Call G := trace[S, S], where “trace” denotes the trace
operator on matrices and [S, S] denotes the continuous, (d × d)-matrix-valued quadratic covari-
ation process of S. It is straightforward that G is F-predictable and nondecreasing. There exists a
(d×d)-nonnegative-definite-matrix-valued, F-predictable process c such that [S, S] =

∫
·

0 ct dG t

(in obvious matrix notation). Define N :=
{

x ∈ Rd
| cx = 0

}
, where the dependence of N on

(ω, t) is suppressed; N is F-predictable and takes values in linear subspaces of Rd . We denote
by N⊥ the orthogonal complement of N; this is also a F-predictable, Rd -subset-valued process.
(The facts that N and N⊥ are F-predictable follow by the results of Appendix 1 of [11].) Now,
pick any F-predictable, S-integrable and N-valued process ϑ . The gains process

∫
·

0 ϑt dSt has
null quadratic variation. Under (NUPBR),

∫
·

0 ϑt dSt is identically equal to zero. Therefore, any
agent should be free to invest in these N-valued strategies, since they result in zero wealth. In
other words, we should have, in compact notation, N ⊆ K.
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We are ready to give the modeling structure of the financial market environment.

Definition 1.2. A triplet (F,P,K) will be called financial market data, if F satisfies (INFO), P
satisfies (P-LOC-EQUIV), and K is an F-predictable, convex and closed Rd -set-valued process
such that N ⊆ K.

1.1.4. Numéraire portfolios
Under (CON-SEMI-MART), and for a pair (F,P) that satisfies (INFO) and (P-LOC-EQUIV),

decompose S = A(F,P) + M (F,P), where A(F,P) is an F-adapted, continuous process of locally
finite variation, and M (F,P) is an F-local P-martingale. Assumption (NUPBR) implies that there
exists an F-predictable process a(F,P) such that

A(F,P) =
∫
·

0

(
ct a

(F,P)
t

)
dG t , where

∫ T

0

〈
a(F,P)t , ct a

(F,P)
t

〉
dG t <∞

for all T ∈ R+. (1.2)

(This last fact was already present in [7], although not stated this way. The previous structural
conditions (1.2) have also appeared in [3] and [19].)

In the financial market with data (F,P,K), the numéraire portfolio is the unique wealth
process X̂ (F,P,K) ∈ X (F,K) with the property that X/X̂ (F,P,K) is (F,P)-supermartingale for all
X ∈ X (F,K). (For a complete list of the properties of the numéraire portfolio in connection to
what is described here, one could check [11].) It can be shown that the numéraire portfolio is
the one that maximizes the growth of the wealth process, where the (F,P)-growth of a wealth
process X ∈ X (F,K) with P[X t > 0, for all t ∈ R+] = 1 is defined to be the finite variation part
of log(X) in its (F,P)-semimartingale decomposition.

We shall now give a more concrete description of the numéraire portfolio. Start with some
X ∈ X (F,K) such that P[X t > 0, for all t ∈ R+] = 1, and consider the F-predictable, d-
dimensional process π defined implicitly via dX t = X t 〈πt , dSt 〉. Using Itô’s formula and (1.2),
the (F,P)-growth of X is easily seen to be equal to

∫
·

0

(
〈πt , ct a

(F,P)
t 〉 − 〈πt , ctπt 〉 /2

)
dG t . As

discussed previously, if X (F,P,K) is to be the numéraire portfolio, it must have maximal growth.
Therefore, let ϕ(F,P,K) be the unique F-predictable, d-dimensional, (K∩N⊥)-valued process that
satisfies

ϕ(F,P,K)(ω, t) := arg max
f ∈K∩N⊥(ω,t)

(〈
f, c(ω, t)a(F,P)(ω, t)

〉
−

1
2
〈 f, c(ω, t) f 〉

)
, (1.3)

for all (ω, t) ∈ Ω×R+. (If K = Rd , ϕ(F,P,R
d )
= a(F,P).) The process ϕ(F,P,K) is well defined; this

follows from the fact that the maximization problem (1.3) defining ϕ(F,P,R
d ) is strictly concave

and coercive on the closed convex set K∩N⊥. Its F-predictability follows from the corresponding
property of the inputs K ∩ N⊥, c, a(F,P); again, we refer the interested reader to Appendix 1
of [11]. It then follows that the (F,P,K)-numéraire portfolio X̂ (F,P,K) satisfies X̂ (F,P,K)0 = 1 and

the dynamics dX̂ (F,P,K)t = X̂ (F,P,K)t
〈
ϕ
(F,P,K)
t , dSt

〉
for t ∈ R+. In other words, in logarithmic

terms,

log X̂ (F,P,K) := −
1
2

∫
·

0

〈
ϕ
(F,P,K)
t , ctϕ

(F,P,K)
t

〉
dG t +

∫
·

0
ϕ
(F,P,K)
t dSt . (1.4)

Indeed, it is straightforward to check that X̂ (F,P,K) as defined above is such that X/X̂ (F,P,K) is a
(F,P)-supermartingale for all X ∈ X (F,K).
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1.2. Convergence assumptions

In order to formulate the question of continuous behavior of the numéraire portfolio, several
markets will be considered. For each n ∈ N ∪ {∞}, the market structure will be modeled via the
data (Fn,Pn,Kn). The limiting behavior of the data triplets will be given in the paragraphs that
follow. What is sought after is convergence, as n →∞, of the nth market’s numéraire portfolio
to the numéraire portfolio of the market corresponding to n = ∞.

First, convergence of filtrations is settled. Let us give some intuition. Assume, for simplicity,
that all markets work under that same probabilistic structure, given by P. For any A ∈ G, an agent
with information Fn can only project at each time t ∈ R+ the conditional probability P[A | F n

t ]

that A will happen or not. A natural way to define convergence of (Fn)n∈N then would be to
require that P[A | F n

t ] converges in P-probability to P[A | Ft ], at least pointwise for all t ∈ R+.
We ask something somewhat weaker.

P- lim
n→∞

∫ T

0

∣∣∣P[A | F n
t ] − P[A | F∞t ]

∣∣∣ dG t = 0,

for all A ∈ F and T ∈ R+. (F-CONV)

Note that (F-CONV) certainly holds in the case where (Fn)n∈N converges monotonically to F∞,
in the sense that ↑ limn→∞ F n

T = F∞T or ↓ limn→∞ F n
T = F∞T for all T ∈ R+, in view of the

martingale convergence theorems.
The assumption on convergence of (Pn)n∈N to P∞ is:

P- lim
n→∞

(
dPn

dP

∣∣∣∣
F T

)
=

dP∞

dP

∣∣∣∣
F T

, for all T ∈ R+. (P-CONV)

Note that, as a consequence of Scheffe’s lemma, (P-CONV) is equivalent to saying that (Pn)n∈N
converges in total variation to P∞ on F T for all T ∈ R+.

We turn to the constraint sets. For two subsets K ⊆ Rd and K ′ ⊆ Rd define their Hausdorff
distance

dist(K , K ′) := max
{

sup
x∈K

inf
x ′∈K ′
|x − x ′|, sup

x ′∈K ′
inf

x∈K
|x − x ′|

}
. (1.5)

For m ∈ R+, let B(m) := {x ∈ Rd
| |x | ≤ m}. For a collection (K n)n∈N∪{∞} of subsets of Rd ,

define

C- lim
n→∞

K n
= K∞ if and only if lim

n→∞
dist

(
K n
∩ B(m), K∞ ∩ B(m)

)
= 0,

for all m ∈ R+.

Note that this convergence is weaker than requiring limn→∞ dist(K n, K∞) = 0 and that it is
equivalent to saying that K∞ is the closed limit of the sequence (K n)n∈N (see Definition 3.66,
page 109 of [1]). We then ask that

C- lim
n→∞

Kn(ω, t) = K∞(ω, t), for all (ω, t) ∈ Ω × R+. (C-CONV)

1.3. Stability of the numéraire portfolio

Continuity of the log wealth of the numéraire portfolios will be obtained with respect to
a strong convergence notion, which is now defined. Consider a collection (ξn)n∈N∪{∞}, each



C. Kardaras / Stochastic Processes and their Applications 120 (2010) 331–347 337

element being a continuous (F,P)-semimartingale. For n ∈ N ∪ {∞}, write ξn
= B

n
+ L

n
,

where B
n

is F-adapted, continuous and of finite variation and L
n

is a F-local P-martingale. We
say that (ξn)n∈N S -converges to ξ∞ and write S - limn→∞ ξ

n
= ξ∞ if and only if P- limn→∞∫ T

0 |d(B
n
t − B

∞

t )| = 0 as well as P- limn→∞[L
n
− L

∞
, L

n
− L

∞
]T = 0 hold for all T ∈ R+.

By the treatment in [18], it can be shown that S -convergence is equivalent to (local, in time)
convergence in the semimartingale topology on (Ω ,F ,F,P) that was introduced in [8]. In
particular, S -convergence is stronger than the uniform convergence on compacts in prob-
ability: S - limn→∞ ξ

n
= ξ∞ implies ucP- limn→∞ ξ

n
= ξ∞, the last equality meaning

P- limn→∞ supt∈[0,T ] |ξ
n
t − ξ

∞
t | = 0, for all T ∈ R+.

Theorem 1.3. Consider a collection of markets, each with data (Fn,Pn,Kn), indexed by n ∈ N∪
{∞}. Assume that all (CON-SEMI-MART), (NUPBR), (F-CONV), (P-CONV) and (C-CONV)
are valid. For n ∈ N ∪ {∞}, let X̂n

:= X̂ (F
n ,Pn ,Kn), be the nth numéraire portfolio. Then,

S - lim
n→∞

log X̂n
= log X̂∞.

The proof of Theorem 1.3 is given in Section 2. It is easy to argue why Theorem 1.3 is true,
and this somewhat sets the plan for the proof. For notational simplicity, let an

:= a(F
n ,Pn ,Kn) and

ϕn
:= ϕ(F

n ,Pn ,Kn) for all n ∈ N ∪ {∞}. Under (P-CONV) and (F-CONV) one would expect
that (an)n∈N converges in some sense to a∞. Then, (C-CONV) and (1.3) should imply that
(ϕn)n∈N converges (again, in some sense) to ϕ∞. After that, (1.4) makes it very plausible that
(log X̂n)n∈N should converge to log X̂∞. Of course, one has to give precise meaning to these
“senses” of convergence of the predictable processes. The details of the proof are technical, but
more or less follow the above intuitive steps.

Remark 1.4. The result of Theorem 1.3, given all its notation and assumptions, implies

lim
n→∞

P∞
[

sup
t∈[0,T ]

∣∣∣∣∣ X̂n
t − X̂∞t

X̂∞t

∣∣∣∣∣ > ε

]
= 0, for all T ∈ R+ and ε > 0, (1.6)

as well as

lim
n→∞

Pn

[
sup

t∈[0,T ]

∣∣∣∣∣ X̂∞t − X̂n
t

X̂n
t

∣∣∣∣∣ > ε

]
= 0, for all T ∈ R+ and ε > 0. (1.7)

Both of the above limiting relationships are incarnations of the fact that small deviations from
information, probability and investment constraint structures will lead to a small relative change
in the numéraire portfolio. While (1.6) is from the point of view of the limiting market, (1.7)
takes the viewpoint of the approximating markets.

1.4. The case of asset prices with jumps

Theorem 1.3 need not hold in the case where jumps are present in the asset-price process. A
simple discrete one-time-period counterexample is given below; after that, a discussion follows
on what the issue is, along with a possible resolution.

Example 1.5. Consider a one-time-period discrete stochastic basis (Ω ,F ,F,P), where F =
(F 0,F 1). Suppose that (Ω ,F ,P) is rich enough to accommodate a sequence (εn)n∈N of
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independent standard normal random variables, as well as some random variable η, independent
of the previous Gaussian sequence with P[η = 1] = p = 1 − P[η = −1], where 0 < p < 1.
Define a collection (Fn)n∈N∪{∞} of filtrations via F n

1 = F 1 := σ
(
(ε j ) j∈N, η

)
, for all n ∈

N ∪ {∞} (the information at the terminal date is the same in all markets), as well as

F n
0 := σ(ε1, . . . , εn) for all n ∈ N, and F∞0 = F 0 =:= σ

(
(ε j ) j∈N

)
=

∨
n∈N

F n
0 .

Of course, (Fn)n∈N converges monotonically upwards to F∞.
The financial market has one risky asset: d = 1. With ε :=

∑
∞

j=1 2− jε j , set S0 = 0 and

S1 = εη. The classical No Arbitrage condition holds for the market with information F = F∞,
which is the equivalent of (NUPBR) for discrete-time models. The probabilistic structure is the
same in all the markets, given by P. Further, no institutionally enforced constraints are present
for agents acting in the market indexed by any n ∈ N ∪ {∞}.

For the limiting market with F∞-information, the model is just a (conditional) binomial one,
since ε is F∞0 -measurable. We have X1,ϑ

1 := 1 + ϑ0(S1 − S0) = 1 + ϑ0εη. Since ϑ0 ∈

F∞0 ⊇ σ(ε), it is easy to see (optimizing the expected log-utility) that the limiting market’s
numéraire portfolio is such that X̂∞1 := 1+ (2p − 1)η. If p 6= 1/2, P[X̂∞1 = 1] = 0.

Consider now the market with information Fn for some n ∈ N. Conditional on F n
0 , ε is in-

dependent of η and its law is Gaussian with mean
∑n

j=1 2− jε j and variance 1/2n+1. Since the

conditional law of S1 − S0 is supported on the whole real line, we get X Fn
(1) = {1}. There-

fore, for each n ∈ N, every approximating market’s numéraire portfolio satisfies X̂n
1 := 1. This

obviously does not converge to X̂∞1 , if p 6= 1/2.

In the previous example, all the nonnegative wealth process sets X Fn
(1) are trivial, but the

limiting X F∞(1) is non-trivial. Even though there are no institutionally enforced constraints in
the markets, agents still have to face the natural constraints Kn

+, n ∈ N, that ensure the positivity
of the wealth process. As it turns out, Kn

+ = {0} for all n ∈ N, while K∞+ = [−1/|ε|, 1/|ε|]. Such
behavior is of course absent in the case of continuous-path price processes.

A possible resolution to the previous problem could be the following. In a general discrete-
time model, if K+ denotes the natural positivity constraints of the market with information F,
then K+(ω, t) ⊆ Kn

+(ω, t) holds for all (ω, t) ∈ Ω × R+ and in n ∈ N ∪ {∞} in view of
(INFO). If one forces from the beginning the additional assumption Kn(ω, t) ⊆ K+(ω, t) for all
n ∈ N∪ {∞}, the problem encountered at Example 1.5 ceases to exist, and one should be able to
proceed.

1.5. First-order analysis

Once continuity of the numéraire portfolio is established, the next natural step is to study
the direction of change given specific changes of the inputs. We provide here a first insight
on how the numéraire portfolio changes when we alter only the probabilistic structure of the
problem, keeping the information fixed and working on the non-constrained case. In more general
situations the problem is expected to be rather involved.

For the purposes of this subsection, we shall change the notation slightly. We simply use
F = (Ft )t∈R+ , instead of F, to denote the common filtration of all agents. Let P0 be the
“limiting” probability (the one that we previously denoted by P∞). Furthermore, let P1 be some
probability that is equivalent to P0, and let Pε := (1 − ε)P0

+ εP1. Write S = Aε + Mε for
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the Doob–Meyer decomposition of S under (F,Pε); here, Aε =
∫
·

0 ct aεt dG t and [Mε,Mε
] =

[M0,M0
] =

∫
·

0 ct dG t for all ε ∈ [0, 1].
Define Z1

:= (dP1/ dP0)|F· ; since Z1 is a strictly positive (F,P0)-martingale, one can write

Z1
= exp

(∫
·

0
λ1

t dM0
t −

1
2

∫
·

0

〈
λ1

t , ctλ
1
t

〉
dG t

)
N 1

t ,

where N 1 is a local (F,P0)-martingale that is strongly orthogonal to M0. (This multiplicative
decomposition of Z1 follows in a straightforward way from its corresponding additive
decomposition — see Theorem III.4.11 of [10].) It follows that Z ε := ( dPε/ dP0)|F· =
(1− ε)+ εZ1 satisfies

Z ε = exp
(
ε

∫
·

0
λεt dM0

t −
|ε|2

2

∫
·

0

〈
λεt , ctλ

ε
t

〉
dG t

)
N ε

t ,

where λε := (Z1/Z ε)λ1, and N ε is a local (F,P0)-martingale that is strongly orthogonal to M0.
With the above notation, and according to Girsanov’s theorem, we have aε = a0

+ ελε .
Let X̂ ε denote the numéraire portfolio under market data (F,Pε,Rd). Since there are no

constraints on investment, X̂ ε satisfies X̂ ε0 = 1 and dX̂ εt = X̂ εt
〈
aεt , dSt

〉
for t ∈ R+; in other

words, and using the Doob–Meyer decomposition of S under P0, we have

log X̂ ε =
∫
·

0

(〈
aεt , ct a

0
t

〉
−

1
2

〈
aεt , ct a

ε
t

〉)
dG t +

∫
·

0
aεt dM0

t .

From aε = a0
+ ελε we get

〈
aε, ca0

〉
− (1/2) 〈aε, caε〉 =

〈
a0, ca0

〉
− (1/2)

〈
a0, ca0

〉
−

(|ε|2/2) 〈λε, cλε〉; therefore,

1
ε

log

(
X̂ ε

X̂0

)
= −

ε

2

∫
·

0

〈
λεt , ctλ

ε
t

〉
dG t +

∫
·

0
λεt dM0

t . (1.8)

Given the above equality, and using the fact that ucP- limε↓0 λ
ε
= Z1λ1

= λ0, it is
straightforward that

S - lim
ε↓0

(
1
ε

log

(
X̂ ε

X̂0

))
=

∫
·

0
λ0

t dM0
t .

In a similar manner, one can proceed to higher-order ε-derivatives of log(X̂ ε) at ε = 0. For
example, (1.8) and simple algebra (remembering that λε = λ1 Z1/Z ε = λ0/Z ε) gives

1
ε

(
1
ε

log

(
X̂ ε

X̂0

)
−

∫
·

0
λ0

t dM0
t

)
= −

1
2

∫
·

0

〈
λεt , ctλ

ε
t

〉
dG t +

1
ε

∫
·

0

(
λεt − λ

0
t

)
dM0

t .

= −
1
2

∫
·

0

〈
λεt , ctλ

ε
t

〉
dG t −

∫
·

0
λεt

(
Z1

t − 1
)

dM0
t ,

after which it is straightforward that

S - lim
ε↓0

(
1
ε

(
1
ε

log

(
X̂ ε

X̂0

)
−

∫
·

0
λ0

t dM0
t

))

= −
1
2

∫
·

0

〈
λ0

t , ctλ
0
t

〉
dG t −

∫
·

0
λ0

t (Z
1
t − 1) dM0

t .



340 C. Kardaras / Stochastic Processes and their Applications 120 (2010) 331–347

2. Proof of Theorem 1.3

Throughout the proof, all the assumptions of Theorem 1.3 are in force. Without loss of gener-
ality, and for notational convenience, it is assumed that P = P∞. Then, with Zn

:= (dPn/ dP)|F
for all n ∈ N ∪ {∞}, P- limn→∞ Zn

T = 1 = Z∞T holds for all T ∈ R+.

2.1. Setting out the plan

The first step towards proving Theorem 1.3 will involve the fixed-probability case, where
Pn
= P for all n ∈ N ∪ {∞}. Then, the general case where (P-CONV) is assumed will be dealt

with.
In order to lighten notation, we set

an
:= a(F

n ,Pn), ϕn
:= ϕ(F

n ,Pn ,Kn) and X̂n
:= X̂ (F

n ,Pn ,Kn),

for all n ∈ N ∪ {∞}. (2.1)

For the fixed-probability case, we also consider

ãn
:= a(F

n ,P), ϕ̃n
:= ϕ(F

n ,P,Kn) and X̃n
:= X̂ (F

n ,P,Kn), for all n ∈ N ∪ {∞}. (2.2)

Since P = P∞, we have X̃∞ = X̂∞. For each n ∈ N ∪ {∞}, X̃n is the numéraire portfolio for
an agent with data (Fn,P,Kn). In order to prove Theorem 1.3, first we shall show that

S - lim
n→∞

log X̃n
= log X̃∞, (2.3)

and then that

S - lim
n→∞

log(X̂n/X̃n) = 0. (2.4)

2.2. A deterministic concave maximization problem

For fixed n ∈ N∪{∞} and (ω, t) ∈ Ω×R+, all ϕn(ω, t) defined in (2.1) and ϕ̃n(ω, t) defined
in (2.2) appear as solutions to a deterministic concave maximization problem of the form

φ(c, α,K) := arg max
f ∈K∩N⊥

(
〈 f, α〉c −

1
2
| f |2c

)
, (2.5)

for some α ∈ Rd , where the pseudo-inner-product 〈·, ·〉c on Rd is defined via 〈x, y〉c := 〈x, cy〉
(remember that 〈·, ·〉 is the usual Euclidean inner product) for all vectors x and y of Rd , where
c is a (d × d)-nonnegative-definite matrix. Of course, | · |c denotes the pseudo-norm generated
by the last pseudo-inner-product 〈·, ·〉c. In (2.5), N := {x ∈ Rd

| |x |c = 0} and we suppose that
N ⊆ K, so there is a unique solution to (2.5), and φ(c, α,K) is well defined.

It makes sense then to study the deterministic problem (2.5). Only for this subsection, all
elements involved, including c and K will be assumed deterministic. For the (d×d)-nonnegative-
definite matrix we shall be assuming that trace(c) = 1, which implies in particular that |x |c ≤ |x |
for all x ∈ Rd , where | · | is the Euclidean norm. Observe that the F-predictable process
(ct )t∈R+ satisfies trace(c) = 1 since, formally, dG t = d (trace[S, S]t ) = trace ( d[S, S]t ) =
trace (ct dG t ) = trace (ct ) dG t .

The dependence of φ(c, α,K) of (2.5) on α and K will be now examined. Remember that
B(m) := {x ∈ Rd

| |x | ≤ m} for m ∈ R+, as well as the definition of “dist” from (1.5).
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Proposition 2.1. Let α, α′ be vectors in Rd and K, K′ be closed and convex subsets of Rd with
N ⊆ K and N ⊆ K′. With the notation of problem (2.5), we have

(1) |φ(c, α′,K)− φ(c, α,K)|c ≤ |α′ − α|c.
(2) |φ(c, α,K)|c ≤ |α|c.
(3) |φ(c, α,K′)− φ(c, α,K)|2c ≤ 4|α|c dist

(
K′ ∩ B(|α|c),K ∩ B(|α|c)

)
.

Proof. (1) Let φ′ := φ(c, α′,K) and φ := φ(c, α,K). First-order conditions for optimality imply
that

〈
α′ − φ′, φ − φ′

〉
c ≤ 0 and

〈
α − φ, φ′ − φ

〉
c ≤ 0. Adding the previous two inequalities

gives
〈
φ′ − φ − (α′ − α), φ′ − φ

〉
c ≤ 0, or, equivalently, |φ′ − φ|2c ≤

〈
α′ − α, φ′ − φ

〉
c ≤

|α′ − α|c|φ
′
− φ|c, which proves the result.

(2) Let φ := φ(c, α,K). Since 0 ∈ K, first-order conditions give 〈−φ, α − φ〉c ≤ 0. In other
words, |φ|2c = 〈φ, φ〉c ≤ 〈α, φ〉c ≤ |α|c|φ|c, which gives |φ|c ≤ |α|c.

(3) Let φ′ := φ(c, α,K′) and φ := φ(c, α,K). Let projK(φ
′) denote the projection of

φ′ on K ∩ N⊥ under the inner product 〈·, ·〉c, and define projK′(φ) similarly. The pro-
jections are unique because we are restricting attention to N⊥. By first-order conditions,〈
α − φ′,projK′(φ)− φ

′
〉
c ≤ 0 and

〈
α − φ,projK(φ

′)− φ
〉
c ≤ 0, which we rewrite as〈

α − φ′, φ − φ′
〉
c ≤

〈
α − φ′, φ − projK′(φ)

〉
c and

〈
α − φ, φ′ − φ

〉
c ≤

〈
α − φ, φ′ − projK(φ

′)
〉
c.

Adding them up and using the Cauchy–Schwarz inequality, we get |φ′ − φ|2c ≤ |α − φ
′
|c|φ −

projK′(φ)|c + |α − φ|c|φ
′
− projK(φ

′)|c. Using now statement (2), the definition of “dist” from
(1.5), as well as the fact that |x |c ≤ |x | for all x ∈ Rd , statement (3) is straightforward. �

Corollary 2.2. Let (αn)n∈N∪{∞} be a collection of vectors of Rd and (Kn)n∈N∪{∞} be a
collection of closed, convex subsets of Rd with N ⊆ Kn for all n ∈ N ∪ {∞}. If limn→∞ |α

n
−

α∞|c = 0 and C- limn→∞ Kn
= K∞, then limn→∞ |φ(c, αn,Kn) − φ(c, α∞,K∞)| = 0, in the

notation of (2.5).

Proof. This follows directly from statements (1) and (3) of Proposition 2.1, as long as one notices
that | · |c and | · | are equivalent norms on N⊥. �

2.3. The consequence of (F-CONV)

The purpose here is to show that the sequence (̃an)n∈N of (2.2) converges to ã∞ in some
sense to be made precise below. We start with Lemma 2.3, which is a result on convergence of
predictable projections. Before doing so, some remarks on the extended definition of predictable
projections will be given; the interested reader is referred to [10] for more details. Start with some
process χ that is measurable with respect to the product σ -algebra F ⊗ B(R+), where B(R+)
denotes the Borel-σ -algebra on R+. Consider also some filtration F = (Ft )t∈R+ satisfying
(INFO). If χ is a nonnegative process, there exists a [0,+∞]-valued, F-predictable process,
uniquely defined up to P-indistinguishability, which is called the predictable projection of χ

with respect to (F,P) and is denoted by χP(F,P), such that χP(F,P)
τ = E[χτ | Fτ−] for all

finite F-predictable stopping times τ , where E denotes expectation with respect to P. If χ is any
R-valued measurable process, split as usual χ = χ+−χ−, where χ+ is the positive part, and χ−
the negative part, of χ . Of course, |χ | = χ+ + χ−. On the F-predictable set {|χ |P(F,P) < +∞}

= {χ
P(F,P)
+ < +∞, χ

P(F,P)
− < +∞}, define χP(F,P)

:= χ
P(F,P)
+ − χ

P(F,P)
− ; on the set

{|χ |P(F,P)
= +∞}, define χP(F,P)

:= +∞. The extended predictable projection χP(F,P) thus
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defined still satisfies χP(F,P)
τ = E[χτ | Fτ−] for all finite F-predictable stopping times τ , if one

agrees that E[χτ | Fτ−] = +∞ on {E[|χτ | | Fτ−] = +∞}.

Lemma 2.3. Consider a F ⊗B(R+)-measurable process χ such that
∫ T

0

∣∣∣∣χP(F,P)
t

∣∣∣∣ dG t < +∞

for all T ∈ R+. If the collection (Fn)n∈N∪{∞} satisfies (F-CONV), we have:

(1)
∫ T

0

∣∣∣χP(Fn ,P)
∣∣∣ dG t <∞ for all n ∈ N ∪ {∞} and T ∈ R+, and

(2) P- limn→∞
∫ T

0

∣∣∣χP(Fn ,P)
t − χ

P(F∞,P)
t

∣∣∣ dG t = 0, for all T ∈ R+.

Proof. Observe initially that, since G is an increasing F-predictable process, it suffices to show
the validity of (1) and (2) for all finite F-stopping-times T such that E[GT ] < +∞, instead of all
deterministic times T ∈ R+. Fix then a F-stopping-time T with E[GT ] < +∞ and consider
the positive finite measure µT on

(
Ω × R+,F ⊗ B(R+)

)
defined via µT (A×]t1, t2]) :=

E
[
IA
(
G t2∧T − G t1∧T

)]
for A ∈ F and t1 < t2 times in R+. By a slight abuse of notation,

for a measurable process ξ with E
[∫ T

0 |ξt | dG t
]
< ∞, let µT (ξ) :=

∫
ξ dµT = E

[∫ T
0 ξt dG t

]
.

Note that, for any F satisfying (INFO),

µT
(
|ξP(F,P)

|
)
≤ µT

(
|ξ |P(F,P))

= µT
(
|ξ |
)
, for all measurable processes ξ. (2.6)

Also, it is obvious that limn→∞ µT (|ξ
n
|) = 0 implies P- limn→∞

∫ T
0 |ξ

n
t | dG t = 0.

(1) Consider the F-predictable process Λ :=
∫
·

0 |χt |
P(F,P) dG t . For each m ∈ R+, the inequalities∫

·

0 |χt I{Λt≤m}|
P(F,P) dG t =

∫
·

0 |χt |
P(F,P)I{Λt≤m} dG t ≤ m hold. Then, for n ∈ N ∪ {∞} and

m ∈ R+, µT
(
|χI{Λ≤m}|

P(Fn ,P))
= µT

(
|χI{Λ≤m}|

P(F,P))
≤ m. This means that, P-a.s,∫ T

0 |χt |
P(Fn ,P) dG t < ∞ on {ΛT ≤ m} for all n ∈ N ∪ {∞} and m ∈ R+. Since ↑ limm→∞

{ΛT ≤ m} = Ω , P-a.s., we obtain the result of statement (1).

(2) A process ξ that is a finite linear combination of processes of the form IAI]t1,t2] for A ∈ F
and t1 < t2 will be called simple measurable. Since

(
IAI]t1,t2]

)P(Fn ,P)
t = P[A | Ft−]I]t1,t2] holds

for all t ∈ R+, the continuity of G and (F-CONV) will give

lim
n→∞

µT

(∣∣∣ξP(Fn ,P)
− ξP(F∞,P)

∣∣∣) = 0 (2.7)

for any simple measurable process ξ . A simple density argument shows that for all measurable
ξ with µT (|ξ |) < ∞ and for any ε > 0, there exists a simple measurable process ξ ′ with
µT (|ξ

′
−ξ |) < ε. Then, (2.6) implies that (2.7) is valid whenever ξ is measurable with µT (|ξ |) <

∞. Now, pick any measurable χ that satisfies
∫ T

0 |χ
P(F,P)
t | dG t < +∞. For any m ∈ R+, we

have µT (|χI{Λ≤m}|) ≤ m < ∞ (remember that Λ :=
∫
·

0 |χt |
P(F,P) dG t ). Then, limn→∞ µT(∣∣∣χP(Fn ,P)I{Λ≤m} − χ

P(F∞,P)I{Λ≤m}

∣∣∣) = 0 holds by (2.7). In other words, P- limn→∞∫ T
0 |χ

P(Fn ,P)
t − χ

P(F∞,P)
t | dG t = 0 on {ΛT ≤ m} for all m ∈ N, and since ↑

limm→∞ {ΛT ≤ m} = Ω , P-a.s., statement (2) is proved. �

Corollary 2.4. We have P- limn→∞
∫ T

0

∣∣ct (̃an
t − ã∞t )

∣∣ dG t = 0 for all T ∈ R+.
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Proof. Call a := a(F,P,R
d ). The statement of the corollary follows from Lemma 2.3 as soon as

one notices the following: the form of the semimartingale decomposition of S under (Fn,Pn),
n ∈ N, implies that (ca)P(Fn ,P)

= c̃an for all n ∈ N ∪ {∞}. (Observe here that, since c is
predictable with respect to each Fn , n ∈ N, we have cP(Fn ,P)

= c.) �

2.4. The proof of (2.3)

We proceed now to show the validity of (2.3). In accordance with the deterministic notation
of Section 2.2, for any d-dimensional processes ξ and χ we set 〈ξ, χ〉c = (〈ξt , χt 〉ct

)t∈R+ =
(〈ξt , ctχt 〉)t∈R+ as well as |ξ |c = (|ξt |ct )t∈R+ =

(√
〈ξt , ctξt 〉

)
t∈R+ .

For each n ∈ N ∪ {∞}, write log X̃n of (2.2) in its (F,P)-decomposition:

log X̃n
:=

∫
·

0

(〈
ϕ̃n

t , at
〉
ct
−

1
2
|ϕ̃n

t |
2
ct

)
dG t +

∫
·

0
ϕ̃n

t dM (F,P)
t . (2.8)

Define g̃n
:= 〈ϕ̃n, a〉c − |ϕ̃

n
|
2
c/2 for all n ∈ N ∪ {∞}; then,

∫
·

0 g̃n
t dG t is the (F,P)-growth of

X̃n . In order to prove (2.3), we need to show that P- limn→∞
∫ T

0 |̃g
n
t − g̃∞t | dG t = 0, as well as

P- limn→∞
∫ T

0 |ϕ̃
n
t − ϕ̃

∞
t |

2
ct

dG t = 0.

First we show that P- limn→∞
∫ T

0 |̃g
n
t − g̃∞t | dG t = 0. With some abuse of notation, let G also

denote the random measure induced by G on R+, i.e., for all I ∈ B(R+) let G(I ) :=
∫

I dG t .
Jointly, Corollaries 2.4 and 2.2 imply that, for all T ∈ R+,

P
[

lim
n→∞
|ϕ̃n

t − ϕ̃
∞
t |ct = 0, for G-a.e. t ∈ [0, T ]

]
= 1. (2.9)

This certainly implies that, for all T ∈ R+, P
[
limn→∞ g̃n

t = g̃∞t , for G-a.e. t ∈ [0, T ]
]
= 1.

Now, if ϕ := ϕ(F,P,R
d )
= a and g := 〈ϕ, a〉c − |ϕ|

2
c/2 = |a|

2
c/2, we have 0 ≤ g̃n

≤ g for
all n ∈ N ∪ {∞}, since

∫
·

0 gt dG t is the growth of the numéraire portfolio with market data

(F,P,Rd). The (NUPBR) condition reads
∫ T

0 gt dG t <∞ for all T ∈ R+; therefore, in view of

the dominated convergence theorem, we have P- limn→∞
∫ T

0 |̃g
n
t − g̃∞t | dG t = 0.

The proof of P- limn→∞
∫ T

0 |ϕ̃
n
t − ϕ̃

∞
t |

2
ct

dG t = 0 follows along the same lines. Statement

(2) of Proposition 2.1 gives |ϕ̃n
|c ≤ 2|a|c for all n ∈ N ∪ {∞}. Since

∫ T
0 |at |

2
ct

dG t <∞ for all

T ∈ R+ from (NUPBR), (2.9) gives P- limn→∞
∫ T

0 |ϕ̃
n
t − ϕ̃

∞
t |

2
ct

dG t = 0, where the dominated
convergence theorem was used again.

2.5. A positive-martingale convergence result

The next line of business is to show (2.4), and for this we have to establish that the sequence
(an
− ãn)n∈N converges to zero in some sense. For each n ∈ N, define the density process

Zn
:= ( dPn/ dP)|Fn , and consider the following multiplicative decomposition of Zn , following

from its corresponding additive decomposition, as is presented for example in Theorem III.4.11
(page 182) of [10]:

Zn
= exp

(∫
·

0
ζ n

t dM (Fn ,P)
t −

1
2

∫
·

0
|ζ n

t |
2
ct

dG t

)
N n . (2.10)
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Here, for each n ∈ N, N n is a strictly positive Fn-local P-martingale with [M (Fn ,P), N n
] = 0,

i.e., N n is strongly orthogonal to M (Fn ,P). A simple application of Girsanov’s theorem shows
that ζ n

= an
− ãn . Therefore, we first have to establish some result that connects convergence

of (Zn)n∈N to Z∞ = 1 to convergence to zero of the quadratic variation of their stochastic
logarithms. This is done in Theorem 2.5. Then, Corollary 2.7 gives us convergence to zero of
(ζ n)n∈N, in an appropriate sense.

In the course of the proof of Theorem 2.5 we make use of (one side of) the Davis
inequality. Namely, if L is a one-dimensional F-local P-martingale with quadratic variation
[L , L], then E

[√
[L , L]T

]
≤ 6E

[
supt∈[0,T ] |L t |

]
for all T ∈ R+; see Theorem 4.2.12, page

213 of [5]. (Remember that E denotes expectation under the probability P.) In particular, if
a sequence of (Ln)n∈N, where each Ln is an Fn-local P-martingale for each n ∈ N, satisfies
L1(P)- limn→∞ supt∈[0,T ] |L

n
t | = 0, then also L1(P)- limn→∞

√
[Ln, Ln]T = 0.

Theorem 2.5. Consider a sequence (Zn)n∈N of càdlàg processes, such that:

• Zn
0 = 1 and Zn

t > 0 for all t ∈ R+, P-a.s., for all n ∈ N.

• Each Zn is an Fn-local P-martingale.
• P- limn→∞ Zn

T = 1 for all T ∈ R+.

Then, we have the following:

(1) L1(P)- limn→∞ Zn
T = 1 for all T ∈ R+.

(2) ucP- limn→∞ Zn
= 1.

(3) P- limn→∞[Zn, Zn
]T = 0 for all T ∈ R+.

(4) P- limn→∞[Rn, Rn
]T = 0 for all T ∈ R+, where Rn

:=
∫
·

0(1/Zn
t−) dZn

t , i.e., Rn is the
stochastic logarithm of Zn , for n ∈ N.

Proof. (1) Since E[Zn
T ] ≤ 1 for all n ∈ N, it is a consequence of Fatou’s lemma that

limn→∞ E[Zn
T ] = 1 for all T ∈ R+. Theorem 16.14(ii), page 217 in [20] implies the P-uniform

integrability of (Zn
T )n∈N. We thus obtain L1(P)- limn→∞ Zn

T = 1 for all T ∈ R+.

(2) Fix T ∈ R+. We first show that P- limn→∞ supt∈[0,T ] Zn
t = 1; in the next paragraph we

will establish that P- limn→∞ inft∈[0,T ] Zn
t = 1, which completes the proof of the statement. Fix

ε > 0 and T ∈ R+ and define the Fn-stopping-time τ n
:= inf{t ∈ [0, T ] | Zn

t > 1+ ε} ∧ T for
all n ∈ N. Since E[Zn

T ] ≤ E[Zn
τ n ] ≤ 1 by the optional sampling theorem (see for example Sec-

tion 1.3.C of [12]), it follows that limn→∞ E[Zn
τ n ] = 1. Showing that limn→∞ P[τ n < T ] = 0

will imply that P- limn→∞ supt∈[0,T ] Zn
t = 1, since ε > 0 is arbitrary. Suppose on the con-

trary (passing to a subsequence if necessary) that limn→∞ P[τ n < T ] = δ > 0. Then, since
|E
[
Zn

T I{τ n=T }
]
− P[τ n

= T ]| = |E
[
(Zn

T − 1)I{τ n=T }
]
| ≤ E[|Zn

T − 1|], and the last quantity
converges to zero as n→∞, we get limn→∞ E

[
Zn

T I{τ n=T }
]
= 1− δ. In turn, this implies

1 = lim
n→∞

E[Zn
τ n ] ≥ lim inf

n→∞
E
[
Zn
τ n I{τ n<T }

]
+ lim

n→∞
E
[
Zn

T I{τ n=T }
]

≥ (1+ ε)δ + (1− δ) = 1+ εδ,

which contradicts the fact that δ > 0. Thus, P- limn→∞ supt∈[0,T ] Zn
t = 1 has been shown.

Now, to prove P- limn→∞ inft∈[0,T ] Zn
t = 1 for fixed T ∈ R+. Fix some ε > 0, and for

each n ∈ N, redefine τ n
:= inf{t ∈ [0, T ] | Zn

t < 1 − ε} ∧ T — we only need to show that
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limn→∞ P[τ n < T ] = 0. Observe that on the event {τ n < T } we have P[Zn
T > 1− ε2

| Fτ n ] ≤

(1− ε)/(1− ε2) = 1/(1+ ε). Then,

P[Zn
T > 1− ε2

] = E
[
P[Zn

T > 1− ε2
| Fτ n ]

]
≤ P[τ n

= T ] + P[τ n < T ]
1

1+ ε
.

Using P[τ n
= T ] = 1− P[τ n < T ], rearranging the previous inequality and taking the superior

limit as n→∞, we get

lim sup
n→∞

P[τ n < T ] ≤
1+ ε
ε

lim sup
n→∞

P[Zn
T ≤ 1− ε2

] = 0,

which completes the proof of statement (2).

(3) Fix some T ∈ R+ and let τ n
:= inf{t ∈ R+ | Zn

t > 2} ∧ T ; each τ n is an Fn-stopping time.
Let Y n be defined via Y n

t = Zn
t∧τ n −∆Zn

τ n I{τ n≤t}; in other words, Y n is the process Zn stopped
just before time τ n . Since ∆Zn

τ n ≥ 0, Y n is a (P,Fn)-supermartingale and 0 ≤ Y n
≤ 2 holds

for all n ∈ N. Since limn→∞ P[τ n
= T ] = 1, as well as P- limn→∞∆Zn

τ n = 0 holding in view
of statement (2), for statement (3) to hold it suffices to show that P- limn→∞[Y n, Y n

]T = 0.
For each n ∈ N, write Y n

= −Bn
+ Ln for the Doob–Meyer decomposition of Y n under

(Fn,P). Since, for each n ∈ N, Y n is a uniformly bounded (Fn,P)-supermartingale, Bn

is increasing, P-integrable and Fn-predictable, while Ln is a (Fn,P)-martingale with Ln
0 =

1. Now, Ln
0 = 1, Ln

≥ Y n and P- limn→∞ Y n
T = 1 imply that P- limn→∞ Ln

T = 1;
otherwise lim supn→∞ E[Ln

T ] > 1, which is impossible. Using P- limn→∞ Y n
T = 1 and

P- limn→∞ Ln
T = 1, we get P- limn→∞ Bn

T = 0. Note that both sequences (Y n
T )n∈N and (Ln

T )n∈N
are P-uniformly integrable; the first because it is uniformly bounded; the second because it
is actually converging in L1(P) according to statement (1) of this Theorem. This means that
(Bn

T )n∈N = (Ln
T − Y n

T )n∈N is P-uniformly integrable as well. Since supt∈[0,T ] |L
n
t − 1| ≤

supt∈[0,T ] |Y
n
t −1|+Bn

T ≤ 1+Bn
T , this further means that the collection

(
supt∈[0,T ] |L

n
t − 1|

)
n∈N

is P-uniformly integrable as well. As, by statement (2) of this Theorem, ucP- limn→∞ Ln
= 1,

we actually have L1(P)- limn→∞ supt∈[0,T ] |L
n
t − 1| = 0. The Davis inequality now gives

L1(P)- limn→∞
√
[Ln, Ln]T = 0, which implies P- limn→∞[Ln, Ln

]T = 0. Finally, since

[Bn, Bn
]T − 2[Ln, Bn

]T = −[B
n
+ 2Y n, Bn

]T ≤ −2[Y n, Bn
]T

= −2
∑

t∈]0,T ]

∆Y n
t ∆Bn

t ≤ 4Bn
T ,

the last inequality holding because ∆Y n
≥ −2, we are able to estimate [Y n, Y n

]T = [Ln, Ln
]T+

[Bn, Bn
]T − 2[Ln, Bn

]T ≤ [Ln, Ln
]T + 4Bn

T . Therefore, P- limn→∞[Y n, Y n
]T = 0, which fin-

ishes the proof of statement (3).

(4) Given statements (2) and (3), statement (4) readily follows since [Zn, Zn
] =∫

·

0 |Z
n
t |

2 d[Rn, Rn
]t . �

Remark 2.6. Theorem 2.5 is valid under the weaker assumptions:

• Zn
0 = 1 and Zn

t ≥ 0 for all t ∈ R+, P-a.s., for all n ∈ N.

• Each Zn is a (Fn,P)-supermartingale.
• P- limn→∞ Zn

T = 1 for all T ∈ R+.
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However, we have to make some sense of the stochastic logarithms Rn in the case where Zn

might become zero. For each n ∈ N and ε > 0, define the Fn-stopping-time tn(ε) := inf{
t ∈ R+ | Zn

t ≤ ε
}
. There exists an Fn-local P-supermartingale Rn(ε) with Rn

0 (ε) = 0 such
that dZn

t = Zn
t dRn

t (ε) for t ∈ [0, tn(ε)]. It is straightforward to see that for ε′ < ε we have
tn(ε) ≤ tn(ε′) and that Rn

t (ε) = Rn
t (ε
′) for t ∈ [0, tn(ε)]. We can then define a process Rn on

the stochastic interval Γ n
:=
⋃
ε>0[0, t

n(ε)] such that dZn
t = Zn

t dRn
t for all t ∈ Γ n ; we call

this Rn the extended stochastic logarithm of Zn . Since P- limn→∞ Zn
T = 1 for all T ∈ R+, we

get that P- limn→∞ sup(Γ n) = +∞; therefore, there is no problem in the pathwise definition of
Rn for compact intervals of R+ as n→∞. In this sense, statement (4) of Theorem 2.5 follows.

Corollary 2.7. In the notation of (2.1) and (2.2), P- limn→∞
∫ T

0 |a
n
t − ãn

t |
2
ct

dG t = 0 holds for
all T ∈ R+.

Proof. For all n ∈ N, Zn as defined in (2.10) is a (Fn,P)-martingale. (P-CONV) implies that
P- limn→∞ Zn

T = 1 holds for all T ∈ R+. In the notation of Theorem 2.5,
∫
·

0 |ζ
n
t |

2
ct

dG t ≤

[Rn, Rn
]. The result follows because ζ n

= an
− ãn for all n ∈ N, and P- limn→∞

[Rn, Rn
]T = 0 holds for all T ∈ R+ by Theorem 2.5. �

2.6. The proof of (2.4)

We now finish the proof of Theorem 1.3 by showing (2.4). The semimartingale decomposition
of log(X̂n/X̃n) under (F,P) reads

log

(
X̂n

X̃n

)
=

∫
·

0

(〈
ϕn

t − ϕ̃
n
t , at

〉
ct
−

1
2

(
|ϕn

t |
2
ct
− |ϕ̃n

t |
2
ct

))
dG t +

∫
·

0
(ϕn

t − ϕ̃
n
t ) dM (F,P)

t

Since an
= ãn
+ζ n , statement (1) of Proposition 2.1 implies that |ϕn

−ϕ̃n
|c ≤ |ζ

n
|c = |an

−ãn
|c.

The quadratic variation of
∫
·

0(ϕ
n
t −ϕ̃

n
t ) dM (F,P)

t is equal to
∫
·

0 |ϕ
n
t −ϕ̃

n
t |

2
ct

dG t , which is dominated
by,

∫
·

0 |a
n
t − ãn

t |
2
ct

dG t . Therefore, Corollary 2.7 gives that

P- lim
n→∞

[∫
·

0
(ϕn

t − ϕ̃
n
t ) dM (F,P)

t ,

∫
·

0
(ϕn

t − ϕ̃
n
t ) dM (F,P)

t

]
T
= 0, for all T ∈ R+.

Furthermore, for fixed T ∈ R+,

P
[

lim
n→∞

(〈
ϕn

t − ϕ̃
n
t , at

〉
ct
−

1
2

(
|ϕn

t |
2
ct
− |ϕ̃n

t |
2
ct

))
= 0, for G-a.e. t ∈ [0, T ]

]
= 1.

One can then use the domination relationship
∣∣〈ϕn
− ϕ̃n, a〉c −

(
|ϕn
|
2
c − |ϕ̃

n
|
2
c

)
/2
∣∣ ≤ 2g to

actually get that P- limn→∞
∫ T

0

∣∣∣〈ϕn
t − ϕ̃

n
t , at

〉
ct
−
(
|ϕn

t |
2
ct
− |ϕ̃n

t |
2
ct

)
/2
∣∣∣ dG t = 0, for all T ∈

R+, and finish the proof of (2.4).
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