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Abstract

The numéraire portfolio in a financial market is the unique positive wealth process that makes all other
nonnegative wealth processes, when deflated by it, supermartingales. The numéraire portfolio depends
on market characteristics, which include: (a) the information flow available to acting agents, given by a
filtration; (b) the statistical evolution of the asset prices and, more generally, the states of nature, given by a
probability measure; and (c) possible restrictions that acting agents might be facing on available investment
strategies, modeled by a constraint set. In a financial market with continuous-path asset prices, we establish
the stable behavior of the numéraire portfolio when each of the aforementioned market parameters is
changed in an infinitesimal way.
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0. Introduction

Within the class of expected utility maximization problems in the theory of Financial
Economics, the one involving expected logarithmic utility plays a central role. Its importance can
be understood by going as back as [14], where the optimal exponential growth for a gambler’s
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wealth was discovered from an information-theoretic point of view. In general semimartingale
models, it is the only case of utility where an explicit solution can be given in terms of the triplet
of predictable characteristics, as was carried out in [9].

The log-optimal portfolio, when it exists, is the numéraire portfolio (an appellation that was
introduced in [17]) according to the definition in [4]: all other wealth processes, when discounted
by the log-optimal one, become supermartingales under the historical (statistical, real world)
probability. In fact, the numéraire portfolio can exist even in cases where the log-optimal problem
does not have a unique solution, which happens when the value of the log-optimal problem is
infinite.

The numéraire portfolio depends on the stochastic nature of the financial market. As the output
of an optimization problem, it is of importance to ensure that it is stable under small changes in
the market parameters. Here, focus is given on the following characteristics:

e Available information that economic agents have access to.
e Statistical (or even subjective) views on the possible future outcomes.
e Investment constraints (usually, institutionally enforced) that agents face.

Institutionally enforced constraints can involve, for example, prevention of short sales.
Another important restriction that agents face is that of a finite credit limit; their wealth has
to remain positive in order to avoid bankruptcy.

The purpose of this work is to guarantee that small deviations from the above market
characteristics do not lead to radical changes in the structure of the numéraire portfolio. Naturally,
part of the problem is to rigorously define what is meant by “deviations” of the market
characteristics. In turn, this means that in order to achieve the desired continuous behavior of the
numéraire portfolio, certain economically reasonable topological structures have to be placed on
filtrations, probabilities and constraint sets.

Stability of the numéraire portfolio is a qualitative study; there are, however, good quantitative
reasons to undertake such study. Lately, there has been significant interest in quantifying the
value of insider information, as measured via the increase in the log-utility of an insider
with respect to a non-informed trader. One can check, for example, [2] and the wealth of
references therein. It then becomes plausible to examine marginal values of insider information,
or of investment freedom. The last question is intimately related to differentiability of the
numéraire portfolio (or at least of the value of the log-utility maximization problem) with
respect to market parameters. Such differentiability would give a first-order approximation of the
behavior of the numéraire portfolio. Before seeking conditions ensuring differentiability, which is
a possible topic for further research, a zeroth-order study concerning continuity has to be carried
out. In the present work, we only scratch the very surface of the problem of differentiability of
the numéraire portfolio and the calculation of its derivative.

The structure of the paper is as follows. Section 1 sets up the model with continuous asset-
price processes, where markets are parameterized via a triplet of data, including information
flows, statistical structure and investment constraints that agents face. A “proximity” concept for
the market parameters is introduced by defining modes of convergence for the three data inputs.
Theorem 1.3 is the result which establishes continuity of the numéraire portfolio in a rather strong
sense under convergence of market’s data. Then, Section 2 is dedicated to proving Theorem 1.3.

The workable expression that is obtained for the numéraire portfolios allows for a bare-hands
approach to proving Theorem 1.3. This should be contrasted with the treatment in [16] and [13],
where passage to the dual problem, as described in [15], is necessary. There, unnatural (from
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an economical point of view) uniform integrability conditions have to be assumed involving the
class of equivalent martingale measures of the market.

The assumption of continuity of the asset-price processes is made for simplifying the
presentation. (It should be noted however that an elementary example in Section 1.4 shows that
the result of Theorem 1.3 is not valid without additional control on the agent’s constraints.) Even
by assuming continuity of the asset-price processes, one cannot completely avoid dealing with
jumps in the proof of Theorem 1.3. Changing from the probability measure of one market to
the one of another, as has to be done, results in the appearance of martingale density processes
with possible jump components. These technical complications make the proof of Theorem 1.3
somewhat lengthy.

1. The result on the continuous behavior of the numéraire portfolio
1.1. The set-up

B Every stochastic process in What_follows is defined on a stochastic basis (2, ]_-", F, @). Here,
[P is a probability on ({2, F), where F is a o -algebra that will make all involved random variables
measurable. Further, F = (? ,) teR, is a “large” filtration that will dominate all other filtrations

that will appear. Of course, F;, € F for all t € Ry and F is assumed to satisfy the usual
hypotheses of right-continuity and saturation by P-null sets.

1.1.1. Assets and investing

The price processes of d traded financial assets, where d € N = {1, 2, ...}, are denoted by
st 89 Al processes St i=1,...,d, are F-adapted and are assumed to have been dis-
counted by a “baseline” asset that will act as a deflator for the denomination of all wealth pro-
cesses.

The minimal filtration that makes S adapted and satisfies the usual hypotheses will be denoted
by F. Since S is F-adapted, F C F. In what follows, the information flow of economic agents
acting in the market will be modeled via elements F such that

F is a filtration satisfying the usual hypotheses, and F € F C F. (INFO)
We shall also model statistical, or subjective, views of economic agents via P, where

PP is a probability, with P ~ P on F7 holding for all T € R, (P-LOC-EQUIV)
The following innocuous assumption on the structure of the S will be in force throughout:

Sisa(F, @)—semimartingale with P-a.s. continuous paths. (CON-SEMI-MART)

For a pair (F, P) satisfying (INFO) and (P-LOC-EQUIV), (CON-SEMI-MART) implies that S is
an (F, P)-semimartingale. Therefore, one can define the class of all possible nonnegative wealth
processes starting from (normalized) unit initial capital for a market in which the information-
probability structure is given by (F, P):

XF = {X" =1 +/ 9, dS; | ¥ is F-predictable and
0

S-integrable, and x? >0, IP’—a.s.}. (1.1)
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The dependence on P from X¥ in (1.1) above is suppressed, simply because there is no depen-
dence in view of (P-LOC-EQUIV). The following structural assumption on the class of wealth
processes will be in force throughout.

! lim sup P[X7 >m]=0, forallT e R,. (NUPBR)
oo XeXF

(Note that “| lim” denotes a nonincreasing limit.) In other words, the set {X7 | X € X F}
is bounded in P-probability for all 7 € R;. For a pair (F,P) satisfying (INFO) and
(P-LOC-EQUIV), (NUPBR) implies that {X7 | X € X F} is bounded in P-probability for all
T e R+.

Remark 1.1. According to [11], condition (NUPBR), an acronym for No Unbounded Profit with
Bounded Risk, is equivalent to existence of the numéraire portfolio (see Section 1.1.4) for any
pair (F, P) that satisfies (INFO), (P-LOC-EQUIV). Since this work is aimed at studying stability
of the numéraire portfolio, (NUPBR) is a minimal structural assumption.

1.1.2. Constraints on investment

Fix some pair (F,P) corresponding to the information-probability structure of the finan-
cial market. Agents in this market might be facing constraints on possible investment strate-
gies, which we now formally describe. Consider a set-valued process & : 2 x Ry +— B(RY),
where B(R?) denotes the class of Borel subsets of R?. A process in X” € XF will be called &-
constrained if ¥;(») € X (w)R(w, 1) for all (w, 1) € 2 x Ry; in short, ¥ € X? K. (Investment
constraints of this kind, but where no dependence of the constraint sets on (w,?) € {2 x Ry
is involved, appear in an Itd-process modeling context in the literature in [6].) We define
XER = (X ¢ X¥ | 9 € X" R} to be the class of all R-constrained wealth processes in
XF. For X? € XF poth & and X? are F-predictable. It makes sense, both from a mathe-
matical and a financial point of view, to give the constraint set a predictable structure as well. A
set-valued process R will be called F-predictable if {(w, t) | R(w, )NK # @} is an F-predictable
set for all compact K € R¢. For more information on this kind of measurability, see Appendix
1 of [11], or Chapter 17 of [1] for a more general treatment. Further, it is financially reasonable
to put some closedness and convexity structure on K. We call & closed and convex if &(w, t) has
these properties for all (w, t) € 2 x R;.

1.1.3. Financial market data

Before the formal definition of the financial market’s data is given, we tackle degeneracies that
might appear in the asset-price process. Call G := trace[S, S], where “trace” denotes the trace
operator on matrices and [§, §] denotes the continuous, (d X d)-matrix-valued quadratic covari-
ation process of S. It is straightforward that G is F-predictable and nondecreasing. There exists a
(d x d)-nonnegative-definite-matrix-valued, F-predictable process c such that [S, S] = fo c; dGy
(in obvious matrix notation). Define Ot := {x eR? | cx = O}, where the dependence of 9t on
(w, 1) is suppressed; I is F-predictable and takes values in linear subspaces of R?. We denote
by DM the orthogonal complement of ; this is also a F-predictable, R?-subset-valued process.
(The facts that 9 and M are F-predictable follow by the results of Appendix 1 of [11].) Now,
pick any F-predictable, S-integrable and 91-valued process . The gains process fo 9 dS; has
null quadratic variation. Under (NUPBR), fo ¥, dS; is identically equal to zero. Therefore, any
agent should be free to invest in these i-valued strategies, since they result in zero wealth. In
other words, we should have, in compact notation, )t C K.
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We are ready to give the modeling structure of the financial market environment.

Definition 1.2. A triplet (F, P, R) will be called financial market data, if F satisfies (INFO), P
satisfies (P-LOC-EQUIV), and R is an F-predictable, convex and closed R?-set-valued process
such that 91 C R.

1.1.4. Numéraire portfolios

Under (CON-SEMI-MART), and for a pair (F, IP) that satisfies (INFO) and (P-LOC-EQUIV),
decompose S = AED) 4y EP) where AFD) s an F-adapted, continuous process of locally
finite variation, and M ®P) is an F-local P-martingale. Assumption (NUPBR) implies that there
exists an F-predictable process a ) such that

) T
AED — / (c,at(F’P)) dG,;, where / <at(F’P), Cttlt(F’P)> dG; < o©
0 0

forall T € Ry. (1.2)

(This last fact was already present in [7], although not stated this way. The previous structural
conditions (1.2) have also appeared in [3] and [19].)

In the financial market with data (F, P, R), the numéraire portfolio is the unique wealth
process XEPR) ¢ yFR with the property that X/ XEPR) (F, P)-supermartingale for all
X € XN (For a complete list of the properties of the numéraire portfolio in connection to
what is described here, one could check [11].) It can be shown that the numéraire portfolio is
the one that maximizes the growth of the wealth process, where the (F, P)-growth of a wealth
process X € X with P[X, > 0, forall t € Ry] = 1 is defined to be the finite variation part
of log(X) in its (F, P)-semimartingale decomposition.

We shall now give a more concrete description of the numéraire portfolio. Start with some
X e X®R guch that P[X; > 0, forallr € Ry] = 1, and consider the F-predictable, d-
dimensional process 7 defined implicitly via dX; = X; (m;, dS;). Using Itd’s formula and (1.2),
the (F, P)-growth of X is easily seen to be equal to fd((n,, c,at(F’P)) — {7y, cy14) /2) dG,. As
discussed previously, if X ®F# is to be the numéraire portfolio, it must have maximal growth.
Therefore, let w(F'P’ﬁ) be the unique F-predictable, d-dimensional, (RN ML)-valued process that
satisfies

e FPR (o 1) :=arg  max ((f ¢, 0a% P (@, 1) - L o, t)f)) . (3)
feRNN(w,1) 2

forall (w, 1) € 2xR.. (If & = RY, g FPRD — 4(FP) ) The process o TP is well defined; this

follows from the fact that the maximization problem (1.3) defining ¢ PR strictly concave

and coercive on the closed convex set RN Its F-predictability follows from the corresponding

property of the inputs & N 9+, ¢, a®P); again, we refer the interested reader to Appendix 1

of [11]. Tt then follows that the (F, P, &)-numéraire portfolio X ®-F-9 satisties X&' = 1 and

the dynamics df(\,(F’P’ﬁ) = X\EF’P’R)(%(F’P’@ , dSy)

terms,

N L ("] ®ps F,P,/ " FPR
log XTPH . _E/ <¢§ BB )>th+] oFER gs,. (1.4)
0 0

Indeed, it is straightforward to check that X®P.% 45 defined above is such that X / XEPR) jgq
(F, P)-supermartingale for all X € X ®#®

for t € Ry. In other words, in logarithmic
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1.2. Convergence assumptions

In order to formulate the question of continuous behavior of the numéraire portfolio, several
markets will be considered. For each n € N U {oo}, the market structure will be modeled via the
data (F", P", £”). The limiting behavior of the data triplets will be given in the paragraphs that
follow. What is sought after is convergence, as n — 00, of the n'" market’s numéraire portfolio
to the numéraire portfolio of the market corresponding to n = oo.

First, convergence of filtrations is settled. Let us give some intuition. Assume, for simplicity,
that all markets work under that same probabilistic structure, given by P. For any A € G, an agent
with information F” can only project at each time ¢ € R, the conditional probability P[A | F
that A will happen or not. A natural way to define convergence of (F"),cn then would be to
require that P[A | Fit] converges in P-probability to P[A | F;], at least pointwise for all r € R..
We ask something somewhat weaker.

T
P- lim ‘]P’[A|]:;1]—IP’[A | 72| dG, = o0,
n—oo O

forall Ae Fand T € R,. (F-CONV)

Note that (F-CONV) certainly holds in the case where (F"),cn converges monotonically to F*°,
in the sense that 1 lim, o F7 = F7° or | lim, o0 Ff = F7° forall T € Ry, in view of the
martingale convergence theorems.

The assumption on convergence of (P"),en to P is:

- dPt
P- lim ( —
n—00 dP

dpee
= ——| , forallT e Ry. (P-CONV)
]‘—T) d]P) ?T
Note that, as a consequence of Scheffe’s lemma, (P-CONV) is equivalent to saying that (P"),,cn
converges in total variation to P> on Fr forall T € R.

We turn to the constraint sets. For two subsets K € R? and K’ € R? define their Hausdorff
distance

dist(K, K') := max { sup inf |x —x’|, sup inf |x — x/|} ) (1.5)
xeK x' €K’ Y ek X€K

Form € Ry, let B(m) := {x € R? | |x| < m}. For a collection (K™)peNUfoo) Of subsets of R4,
define

C- lim K" =K* ifandonlyif lim dist(K" N B(m), K> N B(m)) =0,
n— oo

n—o00
forallm € Ry.

Note that this convergence is weaker than requiring lim,_, o dist(K”, K*°) = 0 and that it is
equivalent to saying that K™ is the closed limit of the sequence (K"),cn (see Definition 3.66,
page 109 of [1]). We then ask that

C- li)n;o f(w, 1) = 8w, 1), forall (w,1) € 2 xRy (C-CONV)
n

1.3. Stability of the numéraire portfolio

Continuity of the log wealth of the numéraire portfolios will be obtained with respect to
a strong convergence notion, which is now defined. Consider a collection (§"),eNujoo}> €ach
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element bemg a continuous (F, P)- semimartingale. For n € N U {oo}, write §" = B+ 1",
where B" is F- adapted, continuous and of finite variation and L" is a F-local P- -martingale. We
say that (§"),cy S-converges to £ and write S-1im,_, o0 £" = £ if and only if P-lim,_, o
S 1d(B, —B)| = 0as well as P-lim,—o[L" — L™, L" — L]z = 0 hold for all T € Ry.
By the treatment in [18], it can be shown that g—convergence is equivalent to (local, in time)
convergence in the semimartingale topology on (2, F,F,P) that was introduced in [8]. In
particular S-convergence is stronger than the wuniform convergence on compacts in prob-
ability: S-lim,_c §" = & implies UCP-1im,, oo £ = £, the last equality meaning
P-limy,— 0o sup,cio.r1 1§/ — &1 =0, forall T € R,.

Theorem 1.3. Consider a collection of markets, each with data (F"*, P", &"), indexed by n € NU
{oo}. Assume that all (CON-SEMI-MART), (NUPBR), (F-CONV), (P-CONV) and (C-CONV)
are valid. For n € NU {00}, let X" := X¥""P" be the n numéraire portfolio. Then,

S- lim log X" = log X°.

n—oo

The proof of Theorem 1.3 is given in Section 2. It is easy to argue why Theorem 1.3 is true,
and this somewhat sets the plan for the proof. For notational simplicity, let a” := a®"F"#%") and
" = T PLR for all n € N U {oo0}. Under (P-CONV) and (F-CONV) one would expect
that (a"),en converges in some sense to a®°. Then, (C-CONYV) and (1.3) should imply that
(¢" )neN converges (again, in some sense) to ¢*°. After that, (1.4) makes it very plausible that
(log X n)nEN should converge to log X X, Of course, one has to give precise meaning to these

“senses” of convergence of the predictable processes. The details of the proof are technical, but
more or less follow the above intuitive steps.

Remark 1.4. The result of Theorem 1.3, given all its notation and assumptions, implies

X — X%
lim P> | sup N €|=0, forallT e Ry ande > 0, (1.6)
n—00 refo,71|  X7°
as well as
Yoo _ yn
lim P" [ sup A €|=0, forallT € Ry ande > 0. 1.7
n—>00 1€[0,T] X7

Both of the above limiting relationships are incarnations of the fact that small deviations from
information, probability and investment constraint structures will lead to a small relative change
in the numéraire portfolio. While (1.6) is from the point of view of the limiting market, (1.7)
takes the viewpoint of the approximating markets.

1.4. The case of asset prices with jumps

Theorem 1.3 need not hold in the case where jumps are present in the asset-price process. A
simple discrete one-time-period counterexample is given below; after that, a discussion follows
on what the issue is, along with a possible resolution.

E_xam_ple 1.5. Consider a one-_tirEe-period discrete stochastic basis (Q,.T, F, }I_D), where F =
(Fo, F1). Suppose that ({2, F,P) is rich enough to accommodate a sequence (&,),cNn Of
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independent standard normal random variables, as well as some random variable 7, independent

of the previous Gaussian sequence with P[n = 1] = p = 1 — Plyp = —1], where 0 < p < 1.
Define a collection (F"),eNu(ooy Of filtrations via F' = F| = o ((¢)jen. ), for all n €
N U {oo} (the information at the terminal date is the same in all markets), as well as
g =o0(e1,...,e,) forallneN, and fé”:?o (8])]eN \/7:"
neN

Of course, (F"),cn converges monotonically upwards to F*°.
The financial market has one risky asset: d = 1. With ¢ = Z 127/ 8/, set So = 0 and

S1 = &n. The classical No Arbitrage condition holds for the market with information F = F*°,
which is the equivalent of (NUPBR) for discrete-time models. The probabilistic structure is the
same in all the markets, given by P. Further, no institutionally enforced constraints are present
for agents acting in the market indexed by any n € N U {oo}.

For the limiting market with F*°-information, the model is just a (conditional) binomial one,
since ¢ is ]—"go—measurable. We have X}’ﬁ = 14 99(S; — So) = 1 + vYpen. Since Vg €
F5° 2 o(e), it is easy to see (optimizing the expected log-utility) that the limiting market’s
numéraire portfolio is such that X2 := 14 (2p — . If p # 1/2, P[X° = 1] = 0.

Consider now the market with information F” for some n € N. Conditional on }"6’, € 1s in-
dependent of n and its law is Gaussian with mean Z;’: 1 27 /g ;j and variance 1/ 2"+1 Since the

conditional law of S| — Sy is supported on the whole real line, we get XF" (1) = {1}. There-
fore, for each n € N, every approximating market’s numéraire portfolio satisfies X := 1. This
obviously does not converge to X°, if p #£ 1/2.

In the previous example, all the nonnegative wealth process sets XY (1) are trivial, but the
limiting ¥~ (1) is non-trivial. Even though there are no institutionally enforced constraints in
the markets, agents still have to face the natural constraints K., n € N, that ensure the positivity
of the wealth process. As it turns out, K" = {0} for all n € N, while RS° = [—1/]¢], 1/|e]]. Such
behavior is of course absent in the case of continuous-path price processes.

A possible resolution to the previous problem could be the following. In a general discrete-
time model, if K . denotes the natural positivity constraints of the market with information F,
then R (w,1) € R (w,1) holds for all (w,1) € 2 x Ry and in n € N U {oo} in view of
(INFO). If one forces from the beginning the additional assumption & (w, 1) € &, (w, t) for all
n € N U {oo}, the problem encountered at Example 1.5 ceases to exist, and one should be able to
proceed.

1.5. First-order analysis

Once continuity of the numéraire portfolio is established, the next natural step is to study
the direction of change given specific changes of the inputs. We provide here a first insight
on how the numéraire portfolio changes when we alter only the probabilistic structure of the
problem, keeping the information fixed and working on the non-constrained case. In more general
situations the problem is expected to be rather involved.

For the purposes of this subsection, we shall change the notation slightly. We simply use
F = (F)ier,, instead of F, to denote the common filtration of all agents. Let P? be the
“limiting” probability (the one that we previously denoted by P>). Furthermore, let P! be some
probability that is equivalent to P, and let P¢ := (1 — €)P? + ¢P!. Write S = A€ + M* for
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the Doob—Meyer decomposition of S under (F, P€); here, A€ = fo ciai dG; and [M€, M€] =
[M°, M°] = [, ¢ dG, forall € € [0, 1].
Define Z' := (dP!/dP%)| £ ; since Z' isa strictly positive (F, IP’O)—martingale, one can write

, L
Z' = exp </O Al tho—E/(; <A},c,k})th> N,

where N'! is a local (F, P)-martingale that is strongly orthogonal to M°. (This multiplicative
decomposition of Z' follows in a straightforward way from its corresponding additive
decomposition — see Theorem II1.4.11 of [10].) It follows that Z¢ := (dPP¢ /dIP’O)| F =
(1 —€) + €Z! satisfies

2
ZG:exp< /)fdMO 'Z' /(Af,cle) dG,)Ne
0

where A€ := (Z'/Z€)A!, and N° is a local (F, P?)-martingale that is strongly orthogonal to MO,
With the above notation, and according to Girsanov’s theorem, we have a© = =a% + eArc.

Let X¢ denote the numéraire portfolio under market data (F, P€, R). Since there are no
constraints on investment, X¢ satisfies XS = 1 and dX€ = X6 <al, dSl) for t € R4; in other

words, and using the Doob—Meyer decomposition of S under IP’O, we have

_ : | :
log X¢ =/0 <<af,c,at0>— E(af,ctaﬂ) dG; —i—/o af dM;.

From a¢ = a® + €A we get <a5,ca0) — (1/2) {a®, ca®) = (ao, cao) — (1/2) (ao, ca0> —
(|€]%/2) (A€, cA€); therefore,

1 )?E € 4 € € ' € 0

- log (ﬁ) = _5/0 (A, crAf) dG, +/0 AS dM;. (1.8)
Given the above equality, and using the fact that UCP-lim, WAS = Z D= A0 it is

straightforward that

= 1 (Xe '
S- hm< log( )) :/ 20 dm?.
€l0 X0 0

In a similar manner, one can proceed to higher-order e-derivatives of log(f €)at ¢ = 0. For
example, (1.8) and simple algebra (remembering that A6 = A1 Z!/Z¢ = 10/Z¢) gives

(1 S 10 1270 L (e e L (e .o 0
c\oroe(zs) = [ A0 am?) = =5 [ 05 an)aci+ O(A,—A,) dm°.

1 .
_ _5[0 (A€, ci2E) dG, —/O AS (z} —1) dm?,
after which it is straightforward that

— 1(1 Xe :
S-lim (- (—log <A—) —/ by dM?))
elo\e \e X0 0

L ("o o0 .0 0
=—§/ < t,c,kt>dG,—/ 29z — 1) dM°.
0 0
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2. Proof of Theorem 1.3

Throughout the proof, all the assumptions of Theorem 1.3 are in force. Without loss of gener-
ality, and for notational convenience, it is assumed that P = P*°. Then, with Z" := (dP"/ dP)|F
for all n € N U {00}, P-lim,_ o0 Zh7 =1=ZPholdsforall T € R,.

2.1. Setting out the plan

The first step towards proving Theorem 1.3 will involve the fixed-probability case, where
P" =Pforalln € NU {oo}. Then, the general case where (P-CONYV) is assumed will be dealt
with.

In order to lighten notation, we set

a" = a® P, o = (p(F”,IF’”,R”) and X" — g(F”,IP’",.@”)’
for all n € N U {o0}. 2.1

For the fixed-probability case, we also consider

a' = a(Fn’@), Q" = go(Fnﬁ’R”) and X" := )?(F”’PR"), foralln € NU {oc0}. (2.2)

Since P = P, we have_ X% = X Foreachn € NU {0}, X" is the numéraire portfolio for
an agent with data (F", P, £"). In order to prove Theorem 1.3, first we shall show that

S- lim log X" = log X*°, (2.3)
n—0oo
and then that
S- lim log(X"/X") = 0. (2.4)
n—0oo

2.2. A deterministic concave maximization problem

For fixedn € NU{oo} and (w, t) € 2 xRy, all ¢"(w, t) defined in (2.1) and ¢" (w, t) defined
in (2.2) appear as solutions to a deterministic concave maximization problem of the form

¢(c,a, R) == arg max ((f, )e — l|f|§> : 25)
fefnmt 2
for some « € R?, where the pseudo-inner-product (-, ). on R4 is defined via (x, Ve = {(x,cy)
(remember that (-, -) is the usual Euclidean inner product) for all vectors x and y of R4, where
c is a (d x d)-nonnegative-definite matrix. Of course, | - |- denotes the pseudo-norm generated
by the last pseudo-inner-product (-, -).. In (2.5), N == {x € R? | |x]. = 0} and we suppose that
I C R, so there is a unique solution to (2.5), and ¢ (c, o, K) is well defined.

It makes sense then to study the deterministic problem (2.5). Only for this subsection, all
elements involved, including ¢ and £ will be assumed deterministic. For the (d x d)-nonnegative-
definite matrix we shall be assuming that trace(c) = 1, which implies in particular that |x |, < |x|
for all x € R? where | - | is the Euclidean norm. Observe that the F-predictable process
(cr)rer, satisfies trace(c) = 1 since, formally, dG, = d (trace[S, S];) = trace (d[S, S];) =
trace (c; dG,) = trace (¢;) dG;.

The dependence of ¢ (c, o, K) of (2.5) on o and K will be now examined. Remember that
B(m) = {x € R? | |x| < m)} form € R, as well as the definition of “dist” from (1.5).
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Proposition 2.1. Let a, o’ be vectors in RY and R, & be closed and convex subsets of RY with
M C R and N C K. With the notation of problem (2.5), we have

(1) |¢(C7 C(/, R) - ¢(C1 a, -ﬁ)|c = |Ol/ - a'C'
2) 1¢(c, o, B)le < et
3) lp(c.a, &) — ¢(c. o, R)|2 < 4la|c dist (R N B(|al), &N B(lale)).

Proof. (1) Let ¢’ := ¢(c, @', R) and ¢ := ¢ (c, @, KR). First-order conditions for optimality imply
that <oc’ —¢',p—¢ )C < 0 and <a —¢, ¢ — ¢>C < 0. Adding the previous two inequalities
gives (¢ —¢ — (@' —),¢' — ), < 0, or, equivalently, |¢' — |2 < (& —a, ¢’ —¢) <
o’ — alc|¢p” — ¢|c, which proves the result.

(2) Let ¢ := ¢(c, , R). Since 0 € R, first-order conditions give (—¢, o — ¢). < 0. In other
words, |¢|2 = (¢, ), < (@, ¢). < |a|c|o|c, which gives |p|. < |alc.

(3) Let ¢/ = ¢(c,a, &) and ¢ = ¢(c, o, R). Let projg(¢’) denote the projection of
# on & N M under the inner product (-,-)., and define projg (¢) similarly. The pro-
jections are unique because we are restricting attention to . By first-order conditions,
(@ — ¢, proja (@) —¢'). < 0 and (@ —¢,projg(¢’) — ), < 0, which we rewrite as
@—9¢'. ¢ — ¢/)c <(le—¢.0- prOjﬁ/(‘P))c and (o — ¢, ¢ — ¢>c <{la—¢.¢' - projﬁ(¢/)>c-
Adding them up and using the Cauchy—Schwarz inequality, we get |¢’ — ¢|> < | — ¢'||¢ —
Proja (@)|c + e — ¢lcl¢’” — projg(¢')|c. Using now statement (2), the definition of “dist” from
(1.5), as well as the fact that |x|, < |x| for all x € R, statement (3) is straightforward. [

Corollary 2.2. Let (a")neNujoo) be a collection of vectors of R? and (R")neNu{oo) be a
collection of closed, convex subsets of R? with M € &" for all n € N U {oo}. If lim,, oo 0" —
a®|. = 0 and C-1lim,,_, o R" = K™, then lim,_, » |p(c, a”, ") — ¢ (c, a™, R®)| = 0, in the
notation of (2.5).

Proof. This follows directly from statements (1) and (3) of Proposition 2.1, as long as one notices
that | - | and | - | are equivalent norms on 9. [0

2.3. The consequence of (F-CONV)

The purpose here is to show that the sequence (a"),cn of (2.2) converges to @* in some
sense to be made precise below. We start with Lemma 2.3, which is a result on convergence of
predictable projections. Before doing so, some remarks on the extended definition of predictable
projections will be given; the interested reader is referred to [ 10] for more details. Start with some
process x that is measurable with respect to the product o-algebra F ® B(R ), where B(R )
denotes the Borel-o-algebra on R.. Consider also some filtration F = (F;);cr, satisfying
(INFO). If x is a nonnegative process, there exists a [0, +oo]-valued, F-predictable process,
uniquely defined up to P-indistinguishability, which is called the predictable projection of x

with respect to (F, P) and is denoted by xf(FP), such that sz EP) _ Elx: | Fr—] for all
finite F-predictable stopping times 7, where [£ denotes expectation with respect to P. If x is any

R-valued measurable process, split as usual x = x+ — x—, where x4 is the positive part, and x—
the negative part, of x. Of course, |x| = x+ + x—. On the F-predictable set {|x I?(F’P) < 400}
= {xy 7 < —i—oo,xf(F’P) PEDR) .— xf(F’P) — xf(F’P); on the set

{|)(|P(F P — 400}, define XP(F’P) := 4-00. The extended predictable projection XP(FP) thus

< +o00}, define x



342 C. Kardaras / Stochastic Processes and their Applications 120 (2010) 331-347

defined still satisfies er EP) _ E[ Xz | Fr—] for all finite F-predictable stopping times 7, if one

agrees that E[ x, | F;—] = +o0 on {E[|x;| | F;—] = +oo}.

PEP)
Xt

forall T € Ry. If the collection (F"),eNu(oo) Satisfies (F-CONV), we have:

Lemma 2.3. Consider a F ® BR.)-measurable process x such that fOT dG,; < 40

(1) fOT ’XP(FHP)‘ dG, < ooforalln ¢ NU{oo}and T € Ry, and

(2) P-limy o0 fiy

X,P(FH’P) — X?(Fw’m‘ dG, =0, forall T € R;.

Proof. Observe initially that, since G is an increasing F-predictable process, it suffices to show
the validity of (1) and (2) for all finite F-stopping-times 7 such that E[Gr] < 400, instead of all
deterministic times T € R... Fix then a F-stopping-time 7 with E[G7] < +oc and consider
the positive finite measure w7 on (2 x Ry, F ® B(R,)) defined via pur (Ax]t, 12]) =
E[]IA (GtzAT — thAT)] for A € Fand f; < tp times in R, . By a slight abuse of notation,

for a measurable process & with E[fOT 1&1dG,] < oo, let ur(§) == [Edur = E[fOT & dG].
Note that, for any F satisfying (INFO),

Ur (IéP(F‘@) ) < ur(l€ IP(F’@) = ur(|§]), for all measurable processes §. (2.6)

Also, it is obvious that lim,,_, oo 7 (|€"|) = 0 implies P-limy,— o fOT & dG; = 0.

(1) Consider the F-predictable process A := fo | X,|7>(EF) dG;. Foreachm € R, the inequalities
Jo 1L, <my I PEDAG, =[5 1% PEDL 4, <) dG, < m hold. Then, for n € N U {oo} and
m e Ry, ur(IxLa<mlPF D) = wr(IxLiaemyPEP) < m. This means that, P-a.s,
I 1 P®PdG, < oo on {Ar <m) foralln € NU {oo} and m € Ry. Since 1 limy,— o0
{Ar < m} = {2, P-a.s., we obtain the result of statement (1).

(2) A process & that is a finite linear combination of processes of the form I Iy, ,,) for A € F
PELE) — PLA | F_1I},.1,) holds

and 11 < 1 will be called simple measurable. Since (Tl 1),

for all # € R4, the continuity of G and (F-CONV) will give
lim ur (‘gm”ﬁ) _ ngm,F)D —0 2.7
n— o0

for any simple measurable process &. A simple density argument shows that for all measurable
& with u7(J€]) < oo and for any € > 0, there exists a simple measurable process &’ with
ur (&' —&|) < €. Then, (2.6) implies that (2.7) is valid whenever § is measurable with w7 (|§]) <
oo. Now, pick any measurable x that satisfies fOT | x,P (E’P)| dG; < +oo. Forany m € Ry, we
have pur(IxILia<m}l) < m < oo (remember that A = fo Ix:|PEP) dG,). Then, lim,_, oo 7
(‘ xPEPL L PED Ag,,,}‘) — 0 holds by (2.7). In other words, P-limy,_, o
JodFED — }PEP146, = 0 on (A7 < m) for all m € N, and since 1
limy,— o0 {A7 < m} = 2, P-a.s., statement (2) is proved. [

Corollary 2.4. We have P-1im, o0 [ |c:@" — @®)| dG, = 0 forall T € Ry.
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Proof. Call @ := a®PR)_ The statement of the corollary follows from Lemma 2.3 as soon as
one notices the following: the form of the semimartingale decomposition of S under (F”, P"),

n € N, implies that (cE)P(F"F) = ca" foralln € N U {oo}. (Observe here that, since ¢ is
predictable with respect to each F”, n € N, we have cPELP) — c) O

2.4. The proof of (2.3)

We proceed now to show the validity of (2.3). In accordance with the deterministic notation
of Section 2.2, for any d-dimensional processes § and x we set (§, x). = (&, Xt)¢, )ieR, =

(&, cixeDier, as well as [E]c = (1§l )rer, = ( (&, Ctét>),ER+-
For each n € N U {00}, write log X" of (2.2) in its (F, @)-decomposition:

~ e 1 : P
log X" = /0 (((pf,al)c’ - 5@?@) dG, + /O gram®H. (2.8)

Define §" := (¢", a). — |¢"|2/2 for all n € N U {oo}; then, [, 3" dG; is the (F, P)-growth of
X" In order to prove (2.3), we need to show that P- lim,,_, fOT [g7 —9°°|dG; = 0, as well as
P-limy oo fy 18} — §®12 dG, = 0.

First we show that P- lim,,_, oo fOT [g7 — 92| dG; = 0. With some abuse of notation, let G also

denote the random measure induced by G on Ry, i.e., forall I € B(Ry) let G(I) = f ; dG,.
Jointly, Corollaries 2.4 and 2.2 imply that, forall T € R,

P[ lim 177 — L, =0, for G-ae.r €[0,T]] = 1. 2.9)
n— o0

This certainly implies that, for all T € Ry, P [limn_moa? =g, for G-ae.r € [0, T]] = 1.
Now, if ¢ = w(F’@’Rd) =aandg = (p,a), — |¢|3/2 = |E|g/2, we have 0 < g" < g for
all n € N U {00}, since fo 9, dG; is the growth of the numéraire portfolio with market data
(F, P, Rd). The (NUPBR) condition reads fOT 9,dG; < ocoforall T € Ry; therefore, in view of
the dominated convergence theorem, we have P-lim,,_, o fOT [g7 —§°|dG, = 0.

The proof of P-lim,_, o fOT |7 — @X’li dG; = 0 follows along the same lines. Statement
(2) of Proposition 2.1 gives |¢"|. < 2|a|. for all n € N U {oo}. Since fOT |Et|3[ dG; < oo for all

T € Ry from (NUPBR), (2.9) gives P-1im,_, o fOT &' — @12 dG; = 0, where the dominated
convergence theorem was used again.

2.5. A positive-martingale convergence result

The next line of business is to show (2.4), and for this we have to establish that the sequence
(@™ — a"),eN converges to zero in some sense. For each n € N, define the density process
Z" := (dP"/ dP)|g~, and consider the following multiplicative decomposition of Z", following
from its corresponding additive decomposition, as is presented for example in Theorem I11.4.11
(page 182) of [10]:

. .
Z" = exp (/0 ¢ dm® P — 5/0 2 dG,) N™. (2.10)
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Here, for each n € N, N" is a strictly positive F”-local P-martingale with [M®"F) N7] = 0,
i.e., N" is strongly orthogonal to M¥"®) A simple application of Girsanov’s theorem shows
that {" = a" — a". Therefore, we first have to establish some result that connects convergence
of (Z™),eny to Z%° = 1 to convergence to zero of the quadratic variation of their stochastic
logarithms. This is done in Theorem 2.5. Then, Corollary 2.7 gives us convergence to zero of
(¢™)neN, in an appropriate sense.

In the course of the proof of Theorem 2.5 we make use of (one side of) the Davis
inequality. Namely, if L is a one-dimensional F-local P-martingale with quadratic variation
[L, L], then E[M] < 6E[sup,€[ojj |L;|] for all T € Ry; see Theorem 4.2.12, page
213 of [5]. (Remember that E denotes expectation under the probability P.) In particular, if
a sequence of (L"),cN, where each L" is an F"-local Pmartingale for each n € N, satisfies
L' (P)- lim,_ oo sup;cio.71 1L | = 0, then also L' (P)- lim,_, o ~/[L", L"I7 = 0.

Theorem 2.5. Consider a sequence (Z"),cN of cadlag processes, such that:

o Zy=1land Z} > O forallt € Ry, P-a.s., foralln € N.
e Each 7" is an ¥"-local P-martingale.

o P-lim, .o Z} = 1 forall T € Ry.

Then, we have the following:

(1) LY(P)- limy, 00 Z7 =1forall T € Ry.

(2) ucP-lim,_, o Z" = 1.

(3) P-lim,— 00[Z", Z" 7 = O forall T € R.

4) P-lim,—oo[R", R"]7 = 0 forall T € R4, where R" = fo'(l/Z;L) dZp, i.e, R" is the
stochastic logarithm of Z", for n € N.

Proof. (1) Since E[Z;] < 1 for all n € N, it is a consequence of Fatou’s lemma that
lim,, s o E[Z?] = 1forall T € Ry. Theorem 16.14(ii), page 217 in [20] implies the P-uniform
integrability of (Z7.),e. We thus obtain L (P)-lim,— o Z = 1 forall T € R.

(2) Fix T € R,. We first show that P-lim,,_, o sup;co.r1 Z¢ = 1; in the next paragraph we
will establish that P- lim,,_, oo inftefo,71 Z;' = 1, which completes the proof of the statement. Fix
€ > 0and T € Ry and define the F"-stopping-time t" := inf{r € [0, T] | Z]' > 1 + €} A T for
all n € N. Since E[Z%] < E[Z,] < 1 by the optional sampling theorem (see for example Sec-
tion 1.3.C of [12]), it follows that lim,_, o E[Z",] = 1. Showing that lim,_, o P[t" < T] = 0
will imply that P-1im,_, « sup,cpo.771 Z¢ = 1, since € > 0 is arbitrary. Suppose on the con-
trary (passing to a subsequence if necessary) that lim,_ .., P[t" < T] = § > 0. Then, since
E[Z}1(en=1}] — P[x" = T1| = [E[(Z} — DIer=1y]| < E[|Z} — 1]], and the last quantity
converges to zero as n — 00, we get lim,,_, o E [Z4T(zn=1}] = 1 — §. In turn, this implies

1= lim E[z!.] > lim gfﬁ[zgnﬂ{rnd}] + lim E[Z} er=1)]
> (1+e)8+(1—38)=1+¢s,

which contradicts the fact that § > 0. Thus, P- lim,_, o, Sup, cf0.71 Z¢ = 1 has been shown.

Now, to prove P- lim,,_,  inf;e[o,77 Z} = 1 for fixed T € R,. Fix some € > 0, and for
each n € N, redefine t" = inf{r € [0,T] | Z}' < 1 — €} A T — we only need to show that
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lim,_, o P[t"* < T] = 0. Observe that on the event {t”* < T} we have F[Z'T’ >1—€?| Fml <
(1—¢)/(1 —€*) =1/(1 + €). Then,

- s - - 1
P[Z} > 1 - €| =E[P[Z} > 1 —€* | Fn]] < P[" = T+ P[v" < Tl
€

Using P[t" = T] = 1 — P[t" < T}, rearranging the previous inequality and taking the superior

limit as n — oo, we get

_ 1 _
limsupP[t" < T] < te limsupP[Z} <1 — €21 =0,

n—oo € n—oo

which completes the proof of statement (2).

(3) Fix some T € Ry and let t”* :=inf{t € Ry | Z!' > 2} A T; each t"* is an F"*-stopping time.
Let Y be defined via Y]' = Z}, , — AZY,[{zn<y; in other words, Y is the process Z" stopped
Jjust before time t"*. Since AZ”, > 0, Y" is a (P, F")-supermartingale and 0 < Y" < 2 holds
for all n € N. Since lim,,_s oo P[t" = T] = 1, as well as P- lim,,_ o0 AZ!, = 0 holding in view
of statement (2), for statement (3) to hold it suffices to show that P- lim, 5 [Y", Y"]7r = O.
For each n € N, write Y" = —B" + L" for the Doob-Meyer decomposition of ¥Y" under
(F", P). Since,_for each n € N, Y" is a uniformly bounded (F"_ , P)-supermartingale, B"
is increasing, P-integrable and F"-predictable, while L" is a (F", P)-martingale with L{j =
l. Now, L§ = 1, L" > Y" and P-limyoc ¥} = 1 imply that P-lim,.oo L} = I;
otherwise lim supn%ooE[L’%] > 1, which is impossible. Using P-lim,_ o Y7 =1 and
P-limy— 0o L% =1, we get P-limy— o0 B} = 0. Note that both sequences (Y7),en and (L7),eN
are P-uniformly integrable; the first because it is uniformly bounded; the second because it
is actually converging in L!(P) according to statement (1) of this Theorem. This means that
(Bf)nen = (LT — Y7)uen is P-uniformly integrable as well. Since sup,cio L7 — 1| <
sup;co.71 1Y/ — 11+ B} < 1+ BY., this further means that the collection (sup, o 1 |L} — 1|)neN
is P-uniformly integrable as well. As, by statement (2) of this Theorem, ucP- lim, oo L" =1,
we actually have L!(P)-1lim,_, « sup,cpo.77 1L — 11 = 0. The Davis inequality now gives

L' (P)-lim,_, o0 ~/[L", L"]7 = 0, which implies P-lim,_,oo[L", L"]7 = 0. Finally, since
[B", B"]r —2[L", B"]r = —[B" +2Y", B"]r < =2[Y", B"]r
= -2 )  AY'AB! <4B},
1€10,T]
the last inequality holding because AY" > —2, we are able to estimate [Y", Y"]r = [L", L"]r +

[B", By — 2[L", B*]y < [L", L"]r + 4Bj.. Therefore, P-1lim,_ 0o[Y”, Y*]7 = 0, which fin-
ishes the proof of statement (3).

(4) Given statements (2) and (3), statement (4) readily follows since [Z",Z"] =
[o1Zr2d[R", R",. O

Remark 2.6. Theorem 2.5 is valid under the weaker assumptions:

e Zp =land Z! > Oforallt € Ry, P-as, foralln € N.
e Each Z” is a (F", P)-supermartingale.
o P-lim,_ o Z% = 1forall T € Ry.
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However, we have to make some sense of the stochastic logarithms R" in the case where Z"
might become zero. For each n € N and € > 0, define the F"-stopping-time t"(¢) := inf
{t eRy | Z} < 6}. There exists an F"-local P-supermartingale R"(¢) with Rj(e) = 0 such
that dZ} = Z!'dR](¢) for t € [0, t"(e)]. It is straightforward to see that for ¢’ < € we have
t"(e) < t"(¢’) and that R/'(e) = RJ'(¢’) for ¢t € [0, t"(¢)]. We can then define a process R" on
the stochastic interval I := [ ([0, t"(€)] such that dZ} = Z!'dR} for all 1 € I'"; we call
this R” the extended stochastic logarithm of Z". Since P-1lim,,_, o Zp =1forall T € Ry, we
get that P- lim,,— oo sup(I'™) = 4-o00; therefore, there is no problem in the pathwise definition of
R™ for compact intervals of Ry as n — oo. In this sense, statement (4) of Theorem 2.5 follows.

Corollary 2.7. In the notation of (2.1) and (2.2), P-lim, oo fOT la} — c?,”|gt dG; = 0 holds for
all T € Ry.

Proof. For all n € N, Z" as defined in (2.10) is a (F", F)-martingale. (P-CONYV) implies that
P-lim;, 00 Z7 = 1 holds for all T € R,. In the notation of Theorem 2.5, fo |§,”|3[ dG, <

[R", R"]. The result follows because ¢" = a" — @" for all n € N, and P-lim,_ o
[R", R"]y = 0holds for all T € R4 by Theorem 2.5. [J

2.6. The proof of (2.4)

We now finish the proof of Theorem 1.3 by showing (2.4). The semimartingale decomposition
of log(X"/X") under (F, P) reads

5(\" ’ _ 1 ’ FP
1°g(Xn) =[0 ((rp - @), —E(noﬁ%,—@;”ﬁ,)) dc,+/0(¢, AL

Since a” = a"+¢", statement (1) of Proposition 2.1 implies that |¢" —¢" |, < |£"|. = |a" —a"|..
The quadratic variation of fo (o=@ dM, FP) ; is equal to fo lo} —¢ |2 dGy, which is dominated
by, [, la} —ay |Cx dG;. Therefore, Corollary 2.7 gives that

P- lim [/ (0" — ") dM®D, /(<p, ~”)dM(FP)} =0, forall T e R,.
T

Furthermore, for fixed T € R,

n—oo

— - 1
IP’|: lim ((gof - <pt",5,)ct ~3 (|<pt"|§t — @?'i)) =0, for G-a.e.rt € [0, T]] =1.

One can then use the domination relationship |((p" —@",a), — (|<p"|g - |<Z"|§) /2| < 2g to
actually get that P-lim,,_, o fOT ’((pf - o7, E’)e, - (|q)f| — @] | )/2‘ dG; = 0,forall T €
R, and finish the proof of (2.4).
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