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1 Introduction

The descriptive notion of diversity for equity markets was introduced and studied
recently by Fernholz (1999, 2002). It postulates, roughly, that no individual stock
ever be allowed to dominate the entire market in terms of relative capitalization. In
the context of the standard Itô-process, geometric-Brownian-Motion-based model
introduced by Samuelson (1965), it is shown in Fernholz (2002) how to generate
fully-invested, all-long portfolios that outperform a diverse market over sufficiently
long time-horizons and how to exploit this property for passive asset management.
The present paper complements this effort by showing that diversity is indeed possi-
ble under appropriate, though rather delicate, conditions. These mandate, roughly,
that the largest stock have strongly negative rate of growth, resulting in a suffi-
ciently strong drift away from an appropriate boundary, and that all other stocks
have sufficiently high rates of growth. We also show that in diverse markets, relative
arbitrage opportunities exist over arbitrary time-horizons: it is possible to construct
two portfolios so that one outperforms the other with probability one. In particular,
no equivalent martingale measure can exist for such markets.

Section 2 sets up the model and the notation used throughout the paper. Section
3 introduces the market portfolio, in terms of which the notion of diversity and the
allied, successively weaker notions of weak diversity and asymptotic weak diversity
are defined in Sect. 4. The dynamics for the ranked market weights are studied in
Sect. 5, and in terms of them sufficient conditions for diversity are established
in Sect. 6. These are illustrated by means of several examples, including models
that are weakly diverse but fail to be diverse. Section 7 contains a model for which
weak diversity fails on finite time-horizons but prevails as the time-horizon becomes
infinite, in the asymptotic sense of Sect. 4.

We study in (4.4)–(4.5) a diversity-weighted portfolio that outperforms signif-
icantly any weakly-diverse market over sufficiently long time-horizons, leading to
arbitrage relative to the market. In Sect. 8 we introduce the mirror portfolios and
study their properties; these are then used to show that, in the context of a weakly-
diverse market, it is possible to outperform (or underperform) the market-portfolio
over arbitrary time-horizons.

Finally, in Sect. 9 we study diverse market models that contain a risk-free instru-
ment and allow for general trading strategies (with short-selling and borrowing).
Such models admit no equivalent martingale measure, no arbitrage opportunities
in the “classical” sense of non-negative wealth with probability one and positive
wealth with positive probability, but do admit so-called “free lunches with vanishing
risk” (or “free snacks”). Nevertheless, familiar techniques for hedging contingent
claims can be carried out in their context. This has ramifications for put-call parity
and for the hedging prices of call-options over exceedingly long time-horizons:
these hedging prices are shown to approach zero rather than the initial stock-value
(as they do when an equivalent martingale measure exists for every finite time-
horizon).
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2 The model

We shall place ourselves in the standard Itô-process model for a financial market
which goes back to Samuelson (1965). This model contains n risky assets (stocks),
with values-per-shareXi(·) driven bym independent Brownian motions as follows:

dXi(t) = Xi(t)

[
bi(t)dt+

m∑
ν=1

σiν(t)dWν(t)

]
, i = 1, . . . , n (2.1)

for 0 ≤ t < ∞, withm ≥ n. HereXi(t) stands for the value of the ith asset at time t
andW (·) = (W1(·), . . . ,Wm(·))′ is a vector ofm independent standard Brownian
motions, the “factors” of the model.All processes are defined on a probability space
(Ω,F , P ) and are adapted to a given filtration F = {F(t)}0≤t<∞ with F(0) =
{∅, Ω} mod.P ; this satisfies the “usual conditions” (right-continuity, augmentation
by P−negligible sets) and may be strictly larger than the one generated by the
driving m−dimensional Brownian motion W (·).

The vector-valued process b(·) =
(
b1(·), . . . , bn(·))′ of rates of return, and the

(n × m)-matrix-valued process σ(·) =
{
σiν(·)}1≤i≤n,1≤ν≤m

of volatilities, are
assumed to be F−progressively measurable and to satisfy almost surely (a.s.) the
conditions∫ T

0
||b(t)||2dt < ∞, ∀ T ∈ (0,∞), (2.2)

ε||ξ||2 ≤ ξ′σ(t)σ′(t)ξ ≤ M ||ξ||2, ∀ t ∈ [0,∞) and ξ ∈ IRn (2.3)

for some real constants M > ε > 0. We may re-write (2.1) in the equivalent form

d
(
logXi(t)

)
= γi(t)dt+

m∑
ν=1

σiν(t)dWν(t), i = 1, . . . , n. (2.4)

Here we have denoted by γi(t) := bi(t) − 1
2aii(t), i = 1, . . . , n the individual

stock growth-rates, and by a(·) =
{
aij(·)

}
1≤i,j≤n

the (n×n)-matrix of variation-
covariation rate processes

aij(t) :=
m∑

ν=1

σiν(t)σjν(t) =
(
σ(t)σ′(t)

)
ij

=
d

dt
〈 logXi, logXj 〉(t). (2.5)

Placed in the above market-model M of (2.1)–(2.3), an economic agent can de-
cide what proportion πi(t) of his wealth to invest in each of the stocks i = 1, . . . , n
at every time t ∈ [0,∞). The resulting portfolio processπ(·) =

(
π1(·), . . . , πn(·))′

takes values in the set

∆n
+ =

{
(π1, . . . , πn) ∈ IRn

∣∣∣π1 ≥ 0, . . . , πn ≥ 0 and
n∑

i=1

πi = 1

}
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(i.e., there is no money-market or hoarding of wealth) and is F−progressively
measurable. Starting with initial capital z > 0, the value process Zπ(·) of the
portfolio π(·) satisfies

dZπ(t)
Zπ(t)

=
n∑

i=1

πi(t) · dXi(t)
Xi(t)

= bπ(t)dt+
m∑

ν=1

σπ
ν (t)dWν(t), Zπ(0) = z

(2.6)

by analogy with Eq. (2.1), where

bπ(t) :=
n∑

i=1

πi(t)bi(t), σπ
ν (t) :=

n∑
i=1

πi(t)σiν(t) (2.7)

for ν = 1, . . . ,m, are respectively the rate-of-return and the volatility coëfficients
of the portfolio. As in (2.4) we may write the solution of the Eq. (2.6) in the form

d
(
logZπ(t)

)
= γπ(t)dt+

m∑
ν=1

σπ
ν (t)dWν(t), with

γπ(t) :=
n∑

i=1

πi(t)γi(t) + γπ
∗ (t),

γπ
∗ (t) :=

1
2

 n∑
i=1

πi(t)aii(t) −
n∑

i=1

n∑
j=1

πi(t)aij(t)πj(t)

 (2.8)

denoting, respectively, the growth-rate and the excess-growth-rate of the portfo-
lio π(·).

In order to set the stage for notions and developments that follow, let us introduce
the “order-statistics” notation for the weights

max
1≤i≤n

πi(t) =: π(1)(t) ≥ π(2)(t)≥ . . .≥π(n−1)(t) ≥ π(n)(t) := min
1≤i≤n

πi(t)

(2.9)

of a portfolio π(·), ranked at time t from the largest π(1)(t) to the smallest π(n)(t).
We introduce two notions of relative arbitrage. Given any two portfolios π(·),

ρ(·) with initial capital Zπ(0) = Zρ(0) = z > 0, we shall say that π(·) represents
relative to ρ(·)
• an arbitrage opportunity over the fixed, finite time-horizon [0, T ] if we have

P [Zπ(T ) ≥ Zρ(T )] = 1 and P [Zπ(T ) > Zρ(T )] > 0; (2.10)

• a superior long-term growth opportunity, if

Lπ,ρ := limT→∞
1
T

log
(
Zπ(T )
Zρ(T )

)
> 0 holds a.s. (2.11)
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3 The market portfolio

Suppose we normalize so that each stock has one share outstanding; then the stock-
value Xi(t) can be interpreted as the capitalization of the ith company at time t,
and the quantities

Z(t) := X1(t) + . . .+Xn(t) and µi(t) :=
Xi(t)
Z(t)

, i = 1, . . . , n (3.1)

as the total capitalization of the market and the relative capitalizations of the in-
dividual companies, respectively. Since 0 < µi(t) < 1, ∀ i = 1, . . . , n and∑n

i=1 µi(t) = 1, we may think of the vector process µ(·) =
(
µ1(·), . . . , µn(·))′

as a portfolio rule that invests a proportion µi(t) of current wealth in the ith asset,
at all times t ∈ [0,∞). Then the resulting value-process Zµ(·) satisfies

dZµ(t)
Zµ(t)

=
n∑

i=1

µi(t) · dXi(t)
Xi(t)

=
n∑

i=1

dXi(t)
Z(t)

=
dZ(t)
Z(t)

,

as postulated by (2.6) and (3.1); and if we start with initial capital Zµ(0) = Z(0)
we get Zµ(·) ≡ Z(·), the total market capitalization. In other words, investing
according to the portfolio process µ(·) amounts to ownership of the entire market
in proportion to the original investment. For this reason we call µ(·) the market
portfolio for M.

4 Notions of diversity

The notion of “diversity” for a financial market corresponds to the intuitive and
descriprive idea that no single company should be allowed to dominate the entire
market in terms of relative capitalization. To make this precise, let us say that
the model M of (2.1)–(2.3) is diverse on the time-horizon [0, T ], if there exists a
number δ ∈ (0, 1) such that the quantities of (3.1) satisfy almost surely

µ(1)(t) < 1 − δ, ∀ 0 ≤ t ≤ T (4.1)

in the notation of (2.9). In a similar vein, we say that M is weakly diverse on the
time-horizon [0, T ] if for some δ ∈ (0, 1) we have

1
T

∫ T

0
µ(1)(t)dt < 1 − δ (4.2)

almost surely. We say that M is uniformly weakly diverse over [T0,∞), if there
exists a δ ∈ (0, 1) such that (4.2) holds a.s. for every T ∈ [T0,∞). And M is called
asymptotically weakly diverse if, for some δ ∈ (0, 1), we have almost surely:

limT→∞
1
T

∫ T

0
µ(1)(t)dt < 1 − δ. (4.3)

The first two of these notions were introduced in the paper by Fernholz (1999)
and are studied in detail in the recent monograph Fernholz (2002). In particular, it
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is shown in Example 3.3.3 of this book that if the model M of (2.1)–(2.3) is weakly
diverse, then it contains arbitrage opportunities relative to the market portfolio.

We provide here another example of such an arbitrage opportunity, in a weakly
diverse market and for the so-called diversity-weighted portfolio π(p)(·) =(
π

(p)
1 (·), . . . , π(p)

n (·))′. For some fixed 0 < p < 1, this is defined in terms of
the market portfolio µ(·) of (3.1), by

π
(p)
i (t) :=

(
µi(t)

)p∑n
j=1

(
µj(t)

)p , ∀ i = 1, . . . , n. (4.4)

Compared to µ(·), the portfolio π(p)(·) in (4.4) decreases the proportion(s) held
in the largest stock(s) and increases those placed in the smallest stock(s), while
preserving the relative rankings of all stocks. The actual performance of this port-
folio relative to the S&P500 index over a 22-year period is discussed in detail by
Fernholz (2002), along with issues of practical implementation in the context of
passive asset management.

We show in the Appendix that if the model M of (2.1)–(2.3) is weakly diverse
on a finite time-horizon [0, T ], then π(p)(·) outperforms the market portfolio µ(·):
starting with initial capital equal to Zµ(0), the value Zπ(p)

(·) of the portfolio in
(4.4) satisfies

P
[
Zπ(p)

(T ) > Zµ(T )
]

= 1, provided that T ≥ T∗ :=
2
pεδ

· log n; (4.5)

and if M is uniformly weakly diverse over [T∗,∞) then π(p)(·) is a superior long-
term growth opportunity relative to the market, i.e., Lπ(p),µ ≥ εδ(1 − p)/2 a.s. in
the notation of (2.11).

What conditions on the coëfficients b(·), σ(·) of M are sufficient for guaran-
teeing diversity, as in (4.1)? Certainly M cannot be diverse if b1(·), . . . , bn(·) are
bounded uniformly in (t, ω), or even if they satisfy a condition of the Novikov type

E

[
exp

{
1
2

∫ T

0

∣∣∣∣∣∣b(t)∣∣∣∣∣∣2dt}] < ∞, ∀ T ∈ (0,∞). (4.6)

The reason is that, under the condition (4.6), the Girsanov theorem produces an
equivalent probability measure Q under which the processes X1(·), . . . , Xn(·) in
(2.1) become martingales. This proscribes (2.10), let alone the equation of (4.5),
for any T ∈ (0,∞); see the Appendix for an argument in a somewhat more general
context.

We shall see in Sect. 6 that diversity is ensured by a strongly negative rate of
growth for the largest stock, resulting in a sufficiently strong repelling drift (e.g., a
log-pole-type singularity) away from an appropriate boundary, and by non-negative
growth-rates for all the other stocks. It turns out, however, that such a structure
does not prohibit the familiar treatments of option pricing, hedging or portfolio
optimization problems in the context of diverse markets; we elaborate on this point
in Sect. 9.
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5 The dynamics of ranked market-weights

A simple application of Itô’s rule to the Eq. (2.4) gives

d
(
logµi(t)

)
= (γi(t)−γµ(t)) dt+

m∑
ν=1

(σiν(t)−σµ
ν (t)) dWν(t), i = 1, . . . , n

(5.1)

in the notation of (2.7), (2.8), or equivalently

dµi(t)
µi(t)

=
(
γi(t) − γµ(t) +

1
2
τµ
ii(t)

)
dt+

m∑
ν=1

(σiν(t) − σµ
ν (t)) dWν(t)

(5.2)

for i = 1, . . . , n. Here, by analogy with (2.5), we have introduced

τπ
ij(t) :=

m∑
ν=1

(σiν(t)−σπ
ν (t)) (σjν(t)−σπ

ν (t)) = aij(t)−aπ
i (t)−aπ

j (t)+aππ(t),

(5.3)

the relative covariance (matrix-valued) process of an arbitrary portfolio π(·), and
set

aπ
i (t) :=

n∑
j=1

πj(t)aij(t), aππ(t) :=
n∑

i=1

n∑
j=1

πi(t)aij(t)πj(t).

In terms of the quantities of (5.3) we can express the excess rate of growth of (2.8)
as

γπ
∗ (t) =

1
2

n∑
i=1

πi(t)τπ
ii(t), (5.4)

and for arbitrary portfolios π(·), ρ(·) we have the “numéraire-invariance” property

γπ
∗ (t) =

1
2

 n∑
i=1

πi(t)τ
ρ
ii(t) −

n∑
i=1

n∑
j=1

πi(t)πj(t)τ
ρ
ij(t)

 ; (5.5)

see Lemmata 1.3.4 and 1.3.6 in Fernholz (2002).
Now let us denote by (pt(1), . . . , pt(n)) the random permutation of (1, . . . , n)

for which

µpt(k)(t) = µ(k)(t), and pt(k) < pt(k + 1) if µ(k)(t) = µ(k+1)(t),
(5.6)

hold for k = 1, . . . , n. This means, roughly, that pt(k) is the name (index) of
the stock with the kth largest relative capitalization at time t, and that “ties are
resolved by resorting to the lowest index”. Using Itô’s rule for convex functions
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of semimartingales it is shown in Fernholz (2001, 2002) that the ranked market-
weights of (2.9) satisfy the dynamics

d
(
logµ(k)(t)

)
=
(
γpt(k)(t) − γµ(t)

)
dt+

m∑
ν=1

(
σpt(k)ν(t) − σµ

ν (t)
)
dWν(t)

+
1
2

·
[
dΛ(k,k+1)(t) − dΛ(k−1,k)(t)

]
. (5.7)

Here, for each k = 1, . . . , n−1, the quantityΛ(k,k+1)(t) := Λlog µ(k)−log µ(k+1)(t)
is the local time that the non-negative semimartingale log

(
µ(k)/µ(k+1)

)
(·) has

accumulated at the origin by calendar time t; and we set Λlog µ(0)−log µ(1)(·) ≡ 0
and Λlog µ(n)−log µ(n+1)(·) ≡ 0.

On the event {µ(1)(t) > 1/2} we have µ(2)(t) < 1/2, thus∫∞
0 1{µ(1)(t)>1/2}dΛ(1,2)(t) = 0. Therefore, with k = 1 the Eq. (5.7) reads

d
(
logµ(1)(t)

)
=
(
γ(1)(t)−γµ(t)

)
dt +

1
2

· 1{µ(1)(t)≤1/2} · dΛ(1,2)(t)

+
√
τµ
(11)(t) · dB(t) (5.8)

where B(·) is standard Brownian motion and

γ(k)(t) := γpt(k)(t), τµ
(kk)(t) := τµ

ii(t)
∣∣∣
i=pt(k)

. (5.9)

Remark 5.1 For a portfolio π(·) the conditions of (2.3) lead to the inequalities

ε
(
1 − πi(t)

)2
≤ τπ

ii(t) ≤ M(1 − πi(t))(2 − πi(t)) (5.10)

for the quantities of (5.3), and in the case of the market-portfolio to

ε
(
1 − µ(1)(t)

)2
≤ τµ

(kk)(t) ≤ 2M, t ≥ 0, k = 1, . . . , n. (5.11)

On the other hand, we show in the Appendix that the inequalities of (2.3) imply the
bounds

ε

2

(
1 − π(1)(t)

)
≤ γπ

∗ (t) ≤ M
(
1 − π(1)(t)

)
, 0 ≤ t < ∞ (5.12)

in the notation of (2.8), (2.9).

6 Ensuring diversity

Suppose that we select a number δ ∈
(
0, 1 − µ(1)(0)

)
where µ(1)(0) =

max1≤i≤nXi(0)/(X1(0)+ · · ·+Xn(0)), and ask under what conditions we might
have

µ(1)(t) < 1 − δ, ∀ 0 ≤ t < ∞ (6.1)
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almost surely; this condition implies the requirement (4.1) of diversity on any finite
time-horizon [0, T ]. To simplify the analysis we shall assume 1

2 ≤ µ(1)(0) < 1− δ
and consider

R := inf
{
t ≥ 0

∣∣∣µ(1)(t) ≤ 1
2

}
, S := inf

{
t ≥ 0|µ(1)(t) ≥ 1 − δ

}
, (6.2)

as well as the stopping times

Sk := inf
{
t ≥ 0|µ(1)(t) ≥ 1 − δk

}
, δk = δ +

1
k

(6.3)

for all k ∈ N sufficiently large. For diversity, it will be enough to guarantee

limk→∞P [Sk < R] = 0; (6.4)

because then P [S < R] ≤ limk→∞P [Sk < R] = 0, and this leads to (6.1).

Theorem 6.1 Suppose that on the event
{ 1

2 ≤ µ(1)(t) < 1 − δ
}

we have

γ(k)(t) ≥ 0 ≥ γ(1)(t), ∀ k = 2, . . . , n (6.5)

min
2≤k≤n

γ(k)(t) − γ(1)(t) +
ε

2
≥ M

δQ(t)
, where Q(t) := log

(
1 − δ

µ(1)(t)

)
. (6.6)

Then (6.4), (6.1) are satisfied. On any given, finite time-horizon [0, T ] the market

is diverse and
∫ T

0 Q−2(t)dt < ∞ holds a.s.

Remark 6.1 The condition (6.6) holds, in particular, if all stocks but the largest have
non-negative growth rates, whereas the growth rate of the largest stock is negative
and exhibits a log-pole-type singularity as the relative capitalization of the largest
stock approaches 1 − δ: namely, γ(1)(t) ≤ − M

δQ(t) on the event {1/2 ≤ µ(1)(t) <
1 − δ}.

Remark 6.2 In terms of our market-model M of Sect. 2 we may specify, for in-
stance, a constant volatility matrix σ = {σiν}1≤i≤n,1≤ν≤m with the properties
(2.3) and a vector g = (g1, . . . , gn)′ of non-negative numbers, and impose (2.4) in
the form of a system

d
(
logXi(t)

)
=

gi · 1Oc
i
(X(t)) − M

δ
· 1Oi(X(t))

log
(

1−δ
Xi(t)

∑n
j=1Xj(t)

)
 dt

+
m∑

ν=1

σiνdWν(t) (6.7)

of stochastic differential equations for the vector of stock-capitalization processes
X(·) =

(
X1(·), . . . , Xn(·))′ . We are using here the notation

O1:=
{
x∈(0,∞)n|x1≥ max

2≤j≤n
xj

}
, On:=

{
x∈(0,∞)n|xn > max

1≤j≤n−1
xj

}
,
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Oi :=
{
x ∈ (0,∞)n|xi > max

1≤j≤i−1
xj, xi ≥ max

i+1≤j≤n
xj

}
, for i = 2, . . . , n−1

in order to keep track of the name of the stock with the largest capitalization in
accordance with the convention of (5.6): X(t) ∈ Oi ⇔ pt(1) = i. With this spec-
ification all stocks but the largest behave like geometric Brownian motions (with
growth rates gi ≥ 0 as long as i �= pt(1), and variances

∑m
ν=1 σ

2
iν), whereas the

log-capitalization of the largest stock is subjected to a log-pole-type singularity in its
drift, away from an appropriate right-boundary. Standard theory (see Veretennikov
1981) guarantees that the system of (6.7) has a pathwise unique, strong solution
X(·) on each interval [0, Sk], for all k ∈ N sufficiently large, and thus also on
[0, S) = [0,∞) by the Theorem. The Eq. (6.7) prescribe rates

bi(t) =
1
2
aii + gi · 1Oc

i
(X(t)) − M

δ
· 1Oi

(X(t))

log
(

1−δ
Xi(t)

∑n
j=1Xj(t)

) , i = 1, · · · , n

for the model of (2.1), (2.5). From the last assertion of Theorem 6.1 these rates
satisfy

∑n
i=1

∫ T

0 (bi(t))2dt < ∞ a.s., which is the requirement (2.2).

Proof of Theorem 6.1 On the event
{ 1

2 ≤ µ(1)(t) < 1 − δ
}

under consideration
the conditions of (6.5) and (6.6) lead to

γµ(t) − γ(1)(t) =
n∑

k=1

µ(k)(t)γ(k)(t) − γ(1)(t) + γµ
∗ (t) (6.8)

=
n∑

k=2

µ(k)(t)γ(k)(t) − (1 − µ(1)(t)
)
γ(1)(t) + γµ

∗ (t)

≥ (1 − µ(1)(t)
)(

min
2≤k≤n

γ(k)(t) − γ(1)(t)
)

+
ε

2
· (1 − µ(1)(t)

)
≥ δ

[
min

2≤k≤n
γ(k)(t) − γ(1)(t) +

ε

2

]
≥ M

Q(t)
,

almost surely, with the help of (5.4), (5.12) and (6.1). For the process Q(·) of (6.6)
we have from Itô’s rule and (5.8) the semimartingale decomposition

d(logQ(t)) =
1

Q(t)

(
γµ(t) − γ(1)(t) −

τµ
(11)(t)

2Q(t)

)
dt

−
√
τµ
(11)(t)

Q(t)
dB(t) +

1{µ(1)(t)≤1/2}
Q(t)

dΛ(1,2)(t); (6.9)

in conjunction with (6.8) and the second inequality in (5.11), this gives for all
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integers � and k large enough:

log
Q(� ∧R ∧ Sk)

Q(0)
≥
∫ �∧R∧Sk

0

(
2M − τµ

(11)(t)

2Q2(t)

)
dt

−
∫ �∧T∧Sk

0

1
Q(t)

√
τµ
(11)(t) · dB(t)

≥ −
∫ �∧R∧Sk

0

1
Q(t)

√
τµ
(11)(t) · dB(t), a.s. (6.10)

Now let us take expectations in (6.10). On the event {t ≤ R ∧ Sk} we have

εδ2 ≤ τµ
(11)(t) ≤ 2M, log

(
1 − δ

1 − δk

)
≤ Q(t) ≤ log

(
1 − δ

1/2

)
from (5.11) and (6.1)–(6.3), (6.6). These bounds imply that the expectation of the
stochastic integral is equal to zero. We are led to the inequalities

log(Q(0)) ≤ E [log (Q (� ∧R ∧ Sk))]

≤ log log
(

1−δ
1−δk

)
·P [Sk<� ∧R] + log log

(
1−δ
1/2

)
·P [� ∧R≤Sk],

and letting � → ∞ we obtain

− log log
(

1−δ
1−δk

)
·P [Sk < R] ≤ − log log

(
1−δ
µ(1)(0)

)
+ log log (2(1−δ)) ·P [R≤Sk]. (6.11)

This inequality is valid for all k ∈ N sufficiently large. Finally, we divide by

the number − log log
(

1−δ
1−δk

)
> 0 in (6.11), and then let k → ∞; the desired

conclusion (6.4) follows.
Now from (6.9) the quadratic variation of the semimartingale logQ(·) satisfies

εδ2
∫ T

0

1
Q2(t)

dt <

∫ T

0

τµ
(11)(t)

Q2(t)
dt = 〈logQ〉(T ) < ∞, a.s.

in conjunction with (5.11) and (6.1), and the last claim of the theorem follows. ��
The part of this proof leading up to (6.11) is similar to the argument used

to establish the non-attainability of the origin by Brownian motion in dimension
n ≥ 2; see, for instance, pp. 161–162 in Karatzas and Shreve (1991). The fact that
a pole-type singularity creates opportunities for relative arbitrage is reminiscent
of a well-known example due to A.V. Skorohod (e.g., Karatzas and Shreve 1998,
p. 11), or of the work by Delbaen and Schachermayer (1995) and by Levental and
Skorohod (1995).
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Remark 6.3 The inequality of condition (6.6) can be replaced by

min
2≤k≤n

γ(k)(t) − γ(1)(t) +
ε

2
≥ M

δ
· F (Q(t)), (6.12)

where F : (0,∞) → (0,∞) is a continuous function with the property that the
associated scale function

U(x) :=
∫ x

1
exp
[
−
∫ y

1
F (z)dz

]
dy, 0 < x < ∞ (6.13)

satisfies U(0+) = −∞. For instance, U(x) = log x when F (x) = 1/x as in (6.6)
or (6.8).

The function U(·) of (6.13) is of class C2
(
0,∞), so we can apply Itô’s rule to

the process U(Q(t)), 0 ≤ t < S as in (6.9). Using the strict increase and strict
concavity propertiesU ′(·) > 0,U ′′(·) < 0 of the scale function in (6.13), as well as
the equation U ′′(·) + F (·)U ′(·) = 0, we can now repeat the steps of the argument
that leads to the analogue

−U
(
log

1−δ
1−δk

)
·P [Sk<R] ≤−U

(
log

1 − δ

µ(1)(0)

)
+U
(
log(2(1 − δ)

)
·P [R≤Sk]

of (6.11), and hence to (6.4) with the help of the requirement U(0+) = −∞.

7 An asymptotically weakly diverse market

Suppose we have a two-stock market model of the form

dXi(t)=Xi(t)
[
bi(t)dt+

1√
2
dWi(t)

]
, Xi(0)=x∈(0,∞) for i=1, 2 (7.1)

driven by the planar Brownian motionW = (W1,W2). ThenW := 1√
2

(
W2−W1

)
is standard Brownian motion, and we have

X2(t) = X1(t)· exp(Z(t)), where Z(t):=
∫ t

0
(b2(s) − b1(s))ds+W (t), (7.2)

µ1(t) =
X1(t)

X1(t) +X2(t)
=

1
1 + eZ(t) , µ2(t) =

1
1 + e−Z(t) ,

thus µ(1)(t) =
1

1 + e−|Z(t)| (7.3)

for 0 ≤ t < ∞. Now let us select b1(·) ≡ 0 and b2(·) ≡ −αZ(·)1[1,∞)(·) for a
suitable real constantα > 0 to be determined below. With these choices the process
Z(·) of (7.2) becomes Z(t) = W (t) for 0 ≤ t ≤ 1 and

Z(t) = W (1) − α

∫ t

1
Z(s)ds+ W̃ (t) for 1 ≤ t < ∞, (7.4)
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where {W̃ (t) := W (t) − W (1), 1 ≤ t < ∞} is standard Brownian motion
and independent of Z(1) = W (1). In other words, the process {Z(t), 1 ≤ t <
∞} is Ornstein-Uhlenbeck, with gaussian initial distribution N (0, 1) and gaussian
invariant distribution N (0, 1/2α); see Karatzas and Shreve (1991), p. 358 for the
latter assertion. With the choice α = 1/2 the process Z(·) is stationary, and its
ergodic behavior gives

lim
T→∞

1
T

∫ T+1

1
µ(1)(t)dt = lim

T→∞
1
T

∫ T

0

dt

1 + e−|Z(t+1)|

= E

(
1

1 + e−|Z(1)|

)
< 1 − δ, a.s.

for any 0 < δ < E
(

e−|Z(1)|
1+e−|Z(1)|

)
=
√

2
π

∫∞
0

e−z

1+e−z e
−z2/2dz. Thus, the model M

of (7.1) is asymptotically weakly diverse.
However, diversity fails for this model. For any T ∈ [1,∞) and δ ∈ (0,∞) we

have

P
[
µ(1)(T ) ≥ 1 − δ

]
= P [|Z(T )| ≥ K] =

2√
2π

∫ ∞

K

e−u2/2du > 0,

whereK := log(1−δ)− log δ. In fact, weak diversity fails as well. For an arbitrary

T ∈ (1,∞) and δ ∈ (0, 1), select ε ∈ (0, T ) and ζ > 0 so that δ ≥ (ε/T )+e−ζ

1+e−ζ ;
then it is straightforward that the eventAε,ζ := {infε≤t≤T |Z(t)| ≥ ζ} has positive
probability P (Aε,ζ) > 0 and that

1
T

∫ T

ε

µ(1)(t)dt =
1
T

∫ T

ε

dt

1 + e−|Z(t)| ≥ T − ε

T (1 + e−ζ)
≥ 1−δ

holds a.e. on Aε,ζ , thus leading to P
(∫ T

0 µ(1)(t)dt ≥ (1 − δ)T
)
> 0. It can be

shown that the model of (7.1) admits a unique equivalent martingale measure.

Remark 7.1 The examples of Sect. 6 can be easily modified to produce a model M
which is weakly diverse but not diverse. Indeed, let us start by considering a model
M(2δ) with constant volatilities σij and with rates of return b(2δ)

i (·), i = 1, · · · , n
such that P

(
µ(1)(t) < 1 − 2δ, ∀0 ≤ t ≤ T

)
= 1 is satisfied for some T ∈ (0,∞)

and δ ∈ (0, 1/4). The idea is to divide the time-horizon [0, T ] into the two intervals
[0, T/2) and [T/2, T ], select η ∈ (2δ, 1/2), and set

bi(t):=b
(2δ)
i (t) · 1{S≤t≤T, S≤T/2}, where S:= inf{t ≥ 0|µ(1)(t) ≥ 1 − η} ∧ T.

(7.5)

We claim that the model M, with volatilities σij and rates of return given by (7.5),
is weakly diverse on [0, T ]. To see this, consider two cases: For ω ∈ {S ≤ T/2}
the recipe (7.5) and (4.1) guarantee µ(1)(t, ω) < 1 − 2δ < 1 − δ, ∀0 ≤ t ≤ T ; and
for ω ∈ {S > T/2} we have

1
T

∫ T

0
µ(1)(t, ω)dt ≤ 1

T

∫ T/2

0
(1 − η)dt+

1
T

∫ T

T/2
1 · dt = 1 − (η/2) < 1 − δ.
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But for this M the property (4.1) fails: the eventB := {S > T/2} has positive
probability, and withA :=

{
max0≤t≤T µ(1)(t) ≥ 1 − δ

}
we have P (A∩B) > 0.

To see this, consider the special case n = 2, σ12 = σ21 = 0, σ11 = σ22 = 1/
√

2
as in (7.1), and observe that on the event B = {S > T/2} we have Z(·) ≡ W (·)
in (7.2) and

max
0≤t≤T

µ(1)(t) ≥ 1 − δ ⇐⇒ max
0≤t≤T

|Z(t)| ≥ K := log
(

1 − δ

δ

)
.

Consequently,

P (A ∩B) = P
[

max
0≤t≤T

|W (t)| ≥ K;S > T/2
]

≥ P
[

max
T/2≤t≤T

|W (t) −W (T/2)| ≥ 2K;S > T/2
]

= P

(
max

T/2≤t≤T
|W (t) −W (T/2)| ≥ 2K

∣∣∣S > T/2
)

· P (S > T/2)

≥ P

(
max

0≤t≤T/2
|W (t)| ≥ 2K

)
· P (S > T/2) > 0,

since {W (t) − W (T/2);T/2 ≤ t < ∞} is a Brownian motion and independent
of F(T/2), a σ−algebra that contains the event {S > T/2}.

8 Mirror portfolios, short-horizon relative arbitrage

We saw in (4.5) that, in weakly diverse markets and over sufficiently long time-
horizons, there exist portfolios (e.g., the diversity-weighted portfolio π(p)(·) of
(4.4)) that represent arbitrage opportunities relative to the market portfolio µ(·).
We shall show in this section that relative arbitrage can be constructed on arbi-
trary time-horizons; there always exist portfolios that constistently outperform or
underperform a weakly diverse market.

In order to do this we have to introduce the notion of extended portfolio: a pro-
gressively measurable and uniformly bounded process π(·) = (π1(·), · · · , πn(·))′

with values in ∆n = {(π1, · · · , πn) ∈ IRn|∑n
i=1 πi = 1}. In other words, an ex-

tended portfolio can sell one or more stocks short, but certainly not all. By contrast,
the portfolios of Sect. 2 are “all-long” portfolios: they allow no short-selling.

Let us fix a baseline portfolio m(·); this will typically, though not necessarily,
be the market portfolio µ(·). For any extended portfolio π(·) and any fixed real
number p �= 0 we define the p−mirror-image of π(·) with respect to µ(·) by

π̃(p)(·) := pπ(·) + (1 − p)m(·). (8.1)

This is clearly an extended portfolio, and a portfolio in the strict (“all-long”) sense
of Sect. 2 if this is the case for π(·) and 0 < p < 1. If p = −1 we call π̃(−1)(·) =
2m(·) − π(·) the “mirror image” of π(·) with respect to m(·). We notice(

π̃(p)
)̃ (q)

= π̃(pq),
(
π̃(p)
)̃ (1/p)

= π. (8.2)
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Let us recall the notation τm(·) =
{
τm
ij (·)}

1≤i,j≤n
of (5.3) for the matrix-valued

covariance process of m(·), define the relative covariance of π(·) with respect to
m(·) by

τm
ππ(t) := (π(t) −m(t))′a(t)(π(t) −m(t)) ≥ ε||π(t) −m(t)||2, (8.3)

and make the elementary observations

τm(·)m(·)≡0, τm
ππ(·)=π′(·)τm(·)π(·)=τπ

mm(·), τm
π̃(p)π̃(p)(·)=p2 · τm

ππ(·).
(8.4)

We shall take m(·) ≡ µ(·) from now on. The relative performance of π(·) with
respect to µ(·) is given in (1.2.16) of Fernholz (2002) by

d log
(
Zπ(t)
Zµ(t)

)
=

n∑
i=1

(πi(t)−µi(t))d logµi(t) + (γπ
∗ (t)−γµ

∗ (t)) dt. (8.5)

Writing this expression for π̃(p)(·) in place of π(·), recalling π̃(p)−µ = p(π−µ)
from (8.1), and then subtracting (8.5) multiplied by p, we obtain

d log

(
Z π̃(p)

(t)
Zµ(t)

)
=p · d log

(
Zπ(t)
Zµ(t)

)
+(p−1)γµ

∗ (t)dt+
(
γπ̃(p)

∗ (t)−pγπ
∗ (t)
)
dt.

(8.6)

But now recall the expressions of (5.5), (8.4) and (5.4), to obtain

2
(
γπ̃(p)

∗ (t) − pγπ
∗ (t)
)

=
n∑

i=1

(
π̃

(p)
i (t) − pπi(t)

)
τµ
ii(t) − τµ

π̃(p)π̃(p)(t) + pτµ
ππ(t)

= (1 − p) ·
n∑

i=1

µi(t)τ
µ
ii(t) + pτµ

ππ(t) − p2τµ
ππ(t)

= (1 − p) · [2γµ
∗ (t) + pτµ

ππ(t)] .

Substituting back into (8.6) we get

log

(
Z π̃(p)

(T )
Zµ(T )

)
= p · log

(
Zπ(T )
Zµ(T )

)
+
p(1 − p)

2

∫ T

0
τµ
ππ(t)dt (8.7)

and note that the last term is non-negative, by (8.3).

Lemma 8.1 Suppose that the extended portfolio π(·) is such that the conditions

P

(
Zπ(T )
Zµ(T )

≥ β

)
= 1 or P

(
Zπ(T )
Zµ(T )

≤ 1
β

)
= 1 (8.8)

and

P

(∫ T

0
τµ
ππ(t)dt ≥ η

)
= 1 (8.9)
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hold, for some β > 0 and η > 0. Then there exists an extended portfolio π̂(·) such
that

P
(
Z π̂(T ) < Zµ(T )

)
= 1. (8.10)

Remark 8.1 Condition (8.8) postulates that the extended portfolio π(·) is “not
very different” from the market portfolio. But condition (8.9) mandates that π(·)
“must be sufficiently different” from the market portfolio; indeed,

∫ T

0 τµ
ππ(t)dt ≥

ε
∑n

i=1

∫ T

0 |πi(t) − µi(t)|2dt from (8.3), so (8.9) holds if the expression
||π − µ||L2([0,T ]) is bounded away from zero, a.s.

Proof of Lemma 8.1 If we have P [(Zπ(T )/Zµ(T )) ≤ 1/β] = 1, then it suffices
to take p > 1 + (2/η) · log(1/β) and observe from (8.9), (8.7) that π̂(·) ≡ π̃(p)(·)
satisfies

log
(
Z π̂(T )
Zµ(T )

)
≤ p ·

[
log
(

1
β

)
+
η

2
(1 − p)

]
< 0, a.s.

If on the other hand we have P [(Zπ(T )/Zµ(T )) ≥ β] = 1, then it suffices to
take p < min

(
0, 1 − (2/η) · log(1/β)

)
and observe from (8.7) that π̂(·) ≡ π̃(p)(·)

satisfies

log
(
Z π̂(T )
Zµ(T )

)
≤ p ·

[
− log

(
1
β

)
+
η

2
(1 − p)

]
< 0, a.s.

��
Example 8.1 With π = e1 = (1, 0, · · · , 0)′ and m(·) ≡ µ(·) the market portfolio,
take a number p > 1 (to be detemined in a moment) and define the extended
portfolio

π̂(t) := π̃(p)(t) = pe1 + (1 − p)µ(t), 0 ≤ t < ∞, (8.11)

which takes a long position in the first stock and a short position in the market.
(This is not a very easy portfolio to implement in actual practice.) In particular,
π̂1(t) = p + (1 − p)µ1(t) and π̂i(t) = (1 − p)µi(t) for i = 2, · · · , n. Then we
have

log
(
Z π̂(T )
Zµ(T )

)
= p ·

[
log
(
µ1(T )
µ1(0)

)
− p− 1

2

∫ T

0
τµ
11(t)dt

]
(8.12)

from (8.7). But taking β := µ1(0) we have (µ1(T )/µ1(0)) ≤ 1/β, and if the
market is weakly diverse on [0, T ] we obtain from (5.10) and the Cauchy-Schwarz
inequality ∫ T

0
τµ
11(t)dt ≥ ε

∫ T

0

(
1 − µ(1)(t)

)2
dt > εδ2T =: η. (8.13)

From Lemma 8.1 the market portfolio represents then an arbitrage opportunity with
respect to the extended portfolio π̂(·) of (8.11), provided that for any given T ∈
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(0,∞) we select p > p(T ) := 1+ 2
εδ2T · log

(
1

µ1(0)

)
. Note that limT↓0 p(T ) = ∞.

��
The extended portfolio π̂(·) of (8.11) can be used to create all-long portfolios

that underperform (Example 8.2) or outperform (Example 8.3) the market portfolio
µ(·), over any given time-horizon T ∈ (0,∞). The idea is to embed π̂(·) in a sea
of market portfolio, swamping the short positions while retaining the essential
portfolio characteristics. Crucial in these constructions is the a.s. comparison

Z π̂(t) ≤
(
µ1(t)
µ1(0)

)p

· Zµ(t), 0 ≤ t < ∞, (8.14)

a direct consequence of (8.12). Here and in what follows we assume Zµ(0) =
Z π̂(0) = 1.

Example 8.2 Consider an investment strategy ρ(·) that places one dollar in the
portfolio π̂(·) of (8.11) and (p−1)/(µ1(0))p dollars in the market portfolio µ(·) at
time t = 0, and makes no change afterwards. The number p is chosen as in Example
8.1. The valueZρ(·) of this strategy is clearlyZρ(t) = Z π̂(t)+ p−1

(µ1(0))p ·Zµ(t) > 0,
0 ≤ t < ∞, and is generated by the extended portfolio with weights

ρi(t) =
1

Zρ(t)

[
π̂i(t) · Z π̂(t) +

p− 1
(µ1(0))p · µi(t)Zµ(t)

]
, for i = 1, · · · , n.

Clearly
∑n

i=1 ρi(t) = 1; and since both π̂1(t) and µ1(t) are positive, we have
ρ1(t) > 0 as well. To check that ρ(·) is an all-long portfolio, observe that the dollar
amount it invests at time t in any stock i = 2, · · · , n is

−(p−1)µi(t) ·Z π̂(t)+
p− 1

(µ1(0))p ·µi(t)Zµ(t)� (p−1)µi(t)
(µ1(0))p

[
1−(µ1(t))

p]
Zµ(t)>0

thanks to (8.14). On the other hand, ρ(·) underperforms at t = T a market portfolio
that starts out with the same initial capital z := Zρ(0) = 1 + (p − 1)/(µ1(0))p,
since ρ(·) holds a mix ofµ(·) and π̂(·), and π̂(·) underperforms the market at t = T :

Zρ(T ) = Z π̂(T ) +
p− 1

(µ1(0))pZ
µ(T ) < zZµ(T ) = Zz,µ(T ) a.s., from (8.10).

Example 8.3 Now consider a strategy η(·) that invests p/(µ1(0))p dollars in the
market portfolio and −1 dollar in π̂(·) at time t = 0, and makes no change thereafter.
The number p > 1 is chosen again as in Example 8.1. The value Zη(·) of this
strategy is

Zη(t) =
p

(µ1(0))p ·Zµ(t)−Z π̂(t) ≥ Zµ(t)
(µ1(0))p

[
p− (µ1(t))

p]
> 0, 0 ≤ t < ∞

(8.15)

thanks to (8.14) and p > 1 > (µ1(t))
p. As before, Zη(·) is generated by an

extended portfolio η(·) with weights

ηi(t) =
1

Zη(t)

[
pµi(t)

(µ1(0))p · Zµ(t) − π̂i(t) · Z π̂(t)
]
, i = 1, · · · , n (8.16)
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that clearly satisfy
∑n

i=1 ηi(t) = 1. Now for i = 2, · · · , n we have π̂i(t) =
−(p − 1)µi(t) < 0, so η2(·), . . . , ηn(·) are strictly positive. To check that η(·) is
actually an all-long portfolio, it remains to verify η1(t) ≥ 0; but the dollar amount

pµ1(t)
(µ1(0))p · Zµ(t) − [p− (p− 1)µ1(t)

] · Z π̂(t)

invested by η(·) in the first stock at time t, dominates pµ1(t)
(µ1(0))p · Zµ(t)−[

p− (p− 1)µ1(t)
] ·
(

µ1(t)
µ1(0)

)p

Zµ(t), or equivalently the quantity

Zµ(t)µ1(t)
(µ1(0))p ·

[
(p− 1) (µ1(t))

p + p
{

1 − (µ1(t))
p−1
}]

> 0,

again thanks to (8.14) and p > 1 > (µ1(t))
p. Thus η(·) is indeed an all-long

portfolio.
On the other hand, η(·) outperforms at t = T a market portfolio with the same

initial capital of ζ := Zη(0) = p/(µ1(0))p − 1 > 0 dollars, because η(·) is long
in the market µ(·) and short in the extended portfolio π̂(·), which underperforms
the market at t = T :

Zη(T ) =
p

(µ1(0))pZ
µ(T ) − Z π̂(T ) > ζZµ(T ) = Zζ,µ(T ) a.s., from (8.10).

9 Hedging in weakly diverse markets

Suppose now that we place a small investor in a marketM as in (2.1)–(2.5) and allow
him to invest also in a money-market with interest rate r : [0,∞) × Ω → [0,∞),
a progressively measurable, locally square-integrable process. A dollar invested at
time t = 0 in the money market grows toB(T ) = exp{∫ T

0 r(u)du} at time t = T .
Starting with initial capital z > 0, the investor can choose at any time t a trad-

ing strategy ϕ(t) = (ϕ1(t), · · · , ϕn(t))′. With Zz,ϕ(t) denoting the value of the
strategy at time t, the quantity ϕi(t) is the dollar amount invested in the ith stock
and Zz,ϕ(t) −∑n

i=1 ϕi(t) the amount in the money-market. These quantities are
real-valued, and any one of them may be negative: selling stock short is allowed,
as is borrowing from (as opposed to depositing into) the money-market. We re-
quire only that the trading strategy ϕ(·) be progressively measurable and satisfy∑n

i=1

∫ T

0 [(ϕi(t))2 + |ϕi(t)||bi(t) − r(t)|]dt < ∞ a.s., on any given time-horizon
[0, T ]. With this understanding the value-process Z(·) ≡ Zz,ϕ(·) satisfies

dZ(t) =
n∑

i=1

ϕi(t) · dXi(t)
Xi(t)

+

(
Z(t) −

n∑
i=1

ϕi(t)

)
· dB(t)
B(t)

(9.1)

= r(t)Z(t)dt+
n∑

i=1

ϕi(t)

(
(bi(t) − r(t))dt+

m∑
ν=1

σiν(t)dWν(t)

)
= r(t)Z(t)dt+ ϕ′(t)σ(t)dŴ (t),
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a simple linear equation. We have introduced the processes

Ŵ (t) := W (t) +
∫ t

0
ϑ(s)ds, ϑ(t) := σ′(t)

(
σ(t)σ′(t)

)−1[b(t) − r(t)1]

(9.2)

with 1 = (1, · · · , 1)′ ∈ IRn and
∫ T

0 ||ϑ(t)||2dt < ∞ a.s. for any T ∈ (0,∞);
recall here the conditions (2.2), (2.3) and the local square-integrability of r(·). In
this notation we can write the Eq. (2.1) as

d

(
Xi(t)
B(t)

)
=
(
Xi(t)
B(t)

)
·

m∑
ν=1

σiν(t)dŴν(t), i = 1, · · · , n. (9.3)

The solution of the Eq. (9.1) is given by

Zz,ϕ(t)/B(t) = z +
∫ t

0
(ϕ′(s)/B(s))σ(s)dŴ (s), 0 ≤ t < ∞. (9.4)

We shall denote by ΦT (z) the class of trading strategies ϕ(·) that satisfy
P
[
Zz,ϕ(t) ≥ 0, ∀ 0 ≤ t ≤ T

]
= 1 for a given T ∈ (0,∞), and set

Φ(z) := ∩0<T<∞ΦT (z). This class contains the extended portfolios of Sect. 8:
if π(·) is an extended portfolio and Zπ(·) its value-process with initial capital
Zπ(0) = z > 0, then ϕi(·) := πi(·)Zπ(·), 1 ≤ i ≤ n defines a trading strategy,
and Zz,ϕ(·) ≡ Zπ(·) > 0 satisfies the analogue of (9.4)

d(Zπ(t)/B(t)) = (Zπ(t)/B(t)) · π′(t)σ(t)dŴ (t).

Remark 9.1 If M is weakly diverse on some finite horizon [0, T ], then the process

L(t) := exp
(

−
∫ t

0
ϑ′(s)dW (s) − 1

2

∫ t

0
||ϑ(s)||2ds

)
> 0, 0 ≤ t < ∞

(9.5)

is a local martingale and a supermartingale, but is not a martingale. For if it were,
then the measureQT (A) := E[L(T ) · 1A] would be a probability on F(T ). Under
this probability measure the process Ŵ (·) of (9.2) would be Brownian motion, and
the discounted capitalization-processes Xi(·)/B(·) would be martingales on the
interval [0, T ], from (9.3), (2.3). But this would proscribe (2.10) on this interval for
any two extended portfolios π(·) and ρ(·), contradicting (4.5) and the examples of
Sect. 8 (see the Appendix for a formal argument along these lines).

Thus, in a weakly diverse market the process L(·) of (9.5) is a strict local
martingale in the sense of Elworthy et al. (1997): we have E[L(t)] < 1 for every
t ∈ (0,∞).
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Remark 9.2 Because L(·) is a local martingale there exists an increasing sequence
{Sk}k∈N of stopping times with limk→∞ Sk = ∞ a.s. such that L(· ∧ Sk) is a
martingale for every k ∈ N (for instance, take Sk = inf{t ≥ 0| ∫ t

0 ||ϑ(s)||2ds ≥
k}). Thus, if we replace T by T ∧ Sk in (2.10), this property cannot hold for any
extended portfolios π(·) and ρ(·): there is no possibility for relative arbitrage on the
horizon [0, T ∧ Sk] for any k ∈ N. But in the limit as k → ∞ a relative arbitrage
of the type (2.10) appears, as in (4.5) or in Example 8.1, if M is weakly diverse
on [0, T ].

• The failure of the exponential process L(·) in (9.5) to be a martingale does
not preclude, however, the possibility for hedging contingent claims in a market
M which is weakly diverse on some finite horizon [0, T ]. To see why, consider an
F(T )-measurable random variable Y : Ω → [0,∞) that satisfies

0 < y0 := E[Y L(T )/B(T )] < ∞. (9.6)

If we view Y as a liability (contingent claim) that the investor faces and has to
cover (hedge) at time t = T , the question is to characterize the smallest amount of
initial capital that allows the investor to hedge this liability without risk; namely,
the hedging price

hY := inf{z > 0|there exists ϕ(·) ∈ ΦT (z) such that Zz,ϕ(T ) ≥ Y holds a.s.}.
(9.7)

We proceed as in the standard treatment of this question (e.g., Karatzas and
Shreve (1998), Chapt. 2) but under the probability measure P , the only one
now at our disposal. From (9.1)–(9.3) and the differential equation dL(t) =
−L(t)ϑ′(t)dW (t) for the exponential process L(·) of (9.5), we obtain that each of
the processes

X̃i(t) :=
L(t)Xi(t)
Xi(0)B(t)

=1+
∫ t

0
X̃i(s)·

m∑
ν=1

(σiν(s)−ϑν(s))dWν(s), i=1, · · ·, n (9.8)

Z̃ϕ(t) :=
L(t)Zz,ϕ(t)
zB(t)

=1+
∫ t

0

L(s)
zB(s)

(
ϕ′(s)σ(s)−Zz,ϕ(s)ϑ′(s)

)
dW (s) (9.9)

(products ofL(·) with the discounted stock-capitalizations and with the discounted
values of investment strategies in Φ(z), respectively) is a non-negative local mar-
tingale, hence a supermartingale. It is not hard to see (in the Appendix) that

the processes X̃i(·), i = 1, · · · , n of (9.8) are strict local martingales. (9.10)

In particular, E[L(T )Xi(T )/B(T )] < Xi(0) holds for all T ∈ (0,∞). And for
any z > 0 in the set of (9.7), there exists some ϕ(·) ∈ ΦT (z) such that

E[Y L(T )/B(T )] ≤ E[Zz,ϕ(T )L(T )/B(T )] ≤ z, (9.11)

so y0 = E[Y L(T )/B(T )] ≤ hY .

• Let us suppose from now on that m = n, i.e., that we have exactly as many
sources of randomness as there are stocks in the market M; that the square-matrix
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σ(t, ω) = {σij(t, ω)}1≤i,j≤n is invertible for every (t, ω) ∈ [0, T ] × Ω; and that
the filtration F = {F(t)}0≤t≤T is generated by the Brownian motion W (·) itself,
namely, F(t) = σ(W (s); 0 ≤ s ≤ t). The martingale representation property of
this Brownian filtration gives

M(t) := E

[
Y L(T )
B(T )

∣∣∣F(t)
]

= y0 +
∫ t

0
ψ′(s)dW (s) ≥ 0, 0 ≤ t ≤ T

(9.12)

for some progressively measurable process ψ : [0, T ] × Ω → IRn with∑n
i=1

∫ T

0 (ψi(t))2dt < ∞ a.s. Setting

Ẑ(·) := M(·)B(·)/L(·), ϕ̂(·) :=
B(·)
L(·)

(
σ−1(·)

)′(
ψ(·) +M(·)ϑ(·))

and comparing (9.9) with (9.12), we observe Ẑ(0) = y0, Ẑ(T ) = Y and Ẑ(·) ≡
Zy0,ϕ̂(·) ≥ 0, almost surely.

Therefore, the trading strategy ϕ̂(·) is in ΦT (y0) and satisfies the exact repli-
cation property Zy0,ϕ̂(T ) = Y a.s. This implies that y0 belongs to the set on
the right-hand-side of (9.7), and so y0 ≥ hY . But we have already established the
reverse inequality, actually in much greater generality, so for the hedging price of
(9.7) we get the Black-Scholes-type formula

hY = E[Y L(T )/B(T )] (9.13)

under the assumptions of the preceding paragraph. In particular, a market M that
is weakly diverse – hence without an equivalent probability measure under which
discounted stock-prices are (at least local) martingales – can nevertheless be com-
plete.

But in such a market we shall have from (9.10), (9.13) that hX1(T ) < X1(0),
namely, that the hedging price for the stock value (capitalization) at time T > 0
is strictly less than the current value X1(0): the existence of relative arbitrage has
made this ‘reduction’ possible.

Remark 9.3 In order to make a connection with the classical non-arbitrage theory
(e.g. Delbaen and Schachermayer 1994, 1998; Lowenstein and Willard 2000), let us
note that we have constrained ourselves to trading strategies that start from a strictly
positive wealth and stay strictly positive – while the classical notions of arbitrage
(including the so-called “free lunches with vanishing risk” or “free snacks”) require
that wealth start from zero and remain bounded from below. A slight reformulation
of these arbitrage notions for our model makes them completely equivalent to the
ones in the above-mentioned papers. With this in mind it can be seen that Eq. (4.5)
implies the existence of a (classical) arbitrage opportunity – not in the original
market, but in one where the market portfolio is the numéraire. We are indebted to
Profs. Steven Shreve and Julien Hugonnier for helpful discussions on these issues.
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Example 9.1 A European call-option. Consider the contingent claim Y =(
X1(T ) − q

)+
: this is a European call-option with strike q > 0 on the first stock.

Let us assume also that the interest-rate process r(·) is bounded away from zero,
namely that P [r(t) ≥ r, ∀t ≥ 0] = 1 holds for some r > 0, and that the market
M is weakly diverse on all time-horizons T ∈ (0,∞) sufficiently large. Then for
the hedging price of this contingent claim, written now as a function h(T ) of the
time-horizon, we have from (9.10), (9.13) and E[L(T )] < 1:

X1(0) > E[L(T )X1(T )/B(T )] ≥ E[L(T )(X1(T ) − q)+/B(T )] = h(T )

≥
(
E[L(T )X1(T )/B(T )] − q · E

(
L(T ) · e− ∫ T

0 r(t)dt
))+

≥ (E[L(T )X1(T )/B(T )] − qe−rTE[L(T )]
)+

≥ (E[L(T )X1(T )/B(T )] − qe−rT
)+

because L(·)X1(·)/B(·) is a supermartingale and a strict local martingale.
Therefore

0 ≤ h(∞) := lim
T→∞

h(T ) = lim
T→∞

↓ E
(
L(T )X1(T )

B(T )

)
< X1(0) : (9.14)

the hedging price of the option is strictly less than the capitalization of the underlying
stock at time t = 0, and tends toh(∞) ∈ [0, X1(0)) as the horizon increases without
limit.

We claim that if M is uniformly weakly diverse over some [T0,∞), then the
limit in (9.14) is actually zero: a European call-option that can never be exercised
has zero hedging price. Indeed, for every fixed p ∈ (0, 1) and T ≥ 2 log n

pεδ ∨T0, the
quantity

E

(
L(T )
B(T )

X1(T )
)

≤ E

(
L(T )
B(T )

Zµ(T )
)

≤ E

(
L(T )
B(T )

Zπ(p)
(T )
)

· n 1−p
p e−εδ(1−p)T/2

is dominated by Z(0)n
1−p

p · e−εδ(1−p)T/2, from (3.1), (11.4) and the supermartin-
gale property of L(·)Zπ(p)

(·)/B(·). Letting T → ∞ as in (9.14), this leads to
h(∞) = 0.

Remark 9.4 Note the sharp difference between this case and the situation where an
equivalent martingale measure exists on every finite time-horizon; namely, when
both L(·) and L(·)X1(·)/B(·) are martingales. Then E[L(T )X1(T )/B(T )] =
X1(0) holds for all T ∈ (0,∞), and h(∞) = X1(0): as the time-horizon increases
without limit, the hedging price of the call-option approaches the current stock
value (Karatzas and Shreve 1998, p. 62).

Example 9.2 Put-call parity. Suppose that Ξ1(·), Ξ2(·) are positive, continuous
and adapted processes, representing the values of two different assets in a market

M with r(·) ≡ 0. Let us set Y1 :=
(
Ξ1(T ) − Ξ2(T )

)+
and Y2 :=

(
Ξ2(T ) −
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Ξ1(T )
)+

; then from (9.13) the quantity hj = E[L(T )Yj ] is the hedging price at

time t = 0 of a contract that offers its holder the right, but not the obligation, to
exchange asset 2 for asset 1 with j = 1 (resp., asset 1 for asset 2 with j = 2) at
time t = T . We have clearly

h1 − h2 = E[L(T )(Ξ1(T ) −Ξ2(T ))],

and say that the two assets are in put-call parity if h1 − h2 = Ξ1(0) −Ξ2(0). This
will be the case when both L(·)Ξ1(·), L(·)Ξ2(·) are martingales. (For instance,
whenever (4.6) is valid we can take Ξj(·) ≡ Xi(·) or Ξj(·) ≡ Zπ(·) for any
i = 1, · · · , n, j = 1, 2 and any extended portfolio π(·); then put-call parity holds
as in Karatzas and Shreve (1998, p. 50.)

It is easy to see that put-call parity need not hold if M is weakly diverse: for
instance, take Ξ1(·) ≡ Zµ(·), Ξ2(·) ≡ Z π̂(·) with Zµ(0) = Z π̂(0) in the notation
of (3.1) and (8.11), and observe from (8.10) that h1 − h2 = E[L(T )(Zµ(T ) −
Z π̂(T ))] > 0 = Zµ(0) − Z π̂(0). (A similar observation appears in Lowenstein
and Willard 2000.)

10 Concluding remarks

We have presented examples of diverse and weakly diverse market models posited
in Fernholz (1999, 2002), and shown that the diversity-weighted portfolio of (4.4)
represents an arbitrage relative to a weakly-diverse market over sufficiently long
time-horizons. We have also shown that weakly-diverse markets are themselves
arbitrages relative to suitable extended portfolios, over arbitratry time-horizons. In
particular, no equivalent martingale measure can exist for such markets. But we have
also shown that, even in diverse markets, this does not interfere with the develop-
ment of option pricing; quite the contrary, one is led to more realistic hedging-prices
for warrants over exceedingly long time-horizons. Similar treatments are possible
for solving utility maximization problems along the lines of Karatzas et al. (1991),
for showing that diversity is compatible with economic equilibrium considerations
as in Chapt. 4 of Karatzas and Shreve (1998), and for treating general semimartin-
gale market models (see Kardaras 2004). It would be of interest to determine the
optimal hedging strategy ϕ̂(·) under suitable (e.g., Markovian) structure conditions,
and to treat in the framework of Sect. 9 the hedging of American options.

Appendix: Proofs of selected results

Proof of (5.10)–(5.12) With ei = (0, · · · , 0, 1, 0, · · · , 0)′ the ith unit vector
in IRn, we have τπ

ii(t) =
(
π(t) − ei

)′
a(t)
(
π(t) − ei

) ≥ ε||π(t) − ei||2 =

ε
[(

1 − πi(t)
)2 +

∑
j 
=i π

2
j (t)
]

≥ ε
(
1 − πi(t)

)2
from (5.3) and (2.3). Back into
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(5.4), this gives

γπ
∗ (t) ≥ ε

2
·

n∑
i=1

πi(t)

(1 − πi(t)
)2 +

∑
j 
=i

π2
j (t)


=
ε

2
·
 n∑

i=1

πi(t)
(
1 − πi(t)

)2 +
n∑

j=1

π2
j (t)
(
1 − πj(t)

)
=
ε

2
·

n∑
i=1

πi(t)
(
1 − πi(t)

) ≥ ε

2
(
1 − π(1)(t)

)
.

Similarly, we get τπ
ii(t) ≤ M

[(
1 − πi(t)

)2 +
∑

j 
=i π
2
j (t)
]

≤ M
(
1 −πi(t)

)(
2 −

πi(t)
)

as claimed in (5.10), and this leads to (5.11) and to

γπ
∗ (t) ≤ M

2
·

n∑
i=1

πi(t)
(
1 − πi(t)

)
=
M

2
·
[
π(1)(t)

(
1 − π(1)(t)

)
+

n∑
k=2

π(k)(t)
(
1 − π(k)(t)

)]

≤ M

2
·
[(

1 − π(1)(t)
)

+
n∑

k=2

π(k)(t)

]
= M

(
1 − π(1)(t)

)
.

Proof of (4.5) Let us start by introducing the function D(x) :=
(∑n

i=1 x
p
i

)1/p

,

which we shall interpret as a “measure of diversity”. An application of Itô’s rule to
the process {D(µ(t)), 0 ≤ t < ∞} leads after some computation to the expression

log

(
Zπ(p)

(T )
Zµ(T )

)
= log

(
D(µ(T ))
D(µ(0))

)
+ (1 − p)

∫ T

0
γπ(p)

∗ (t)dt, 0 ≤ T < ∞

(11.1)

for the value-process Zπ(p)(·) of the diversity-weighted portfolio π(p)(·) of (4.4).
Useful in the computation (11.1) is the numéraire-invariance property (5.5).

Suppose that the market is weakly diverse on the finite time-horizon [0, T ],
namely, that

∫ T

0

(
1 − µ(1)(t)

)
dt > δT holds almost surely, for some 0 < δ <

1. We have then 1 =
∑n

i=1 µi(t) ≤ ∑n
i=1

(
µi(t)

)p =
(
D(µ(t))

)p

≤ n1−p

(minimum diversity occurs when the entire market is concentrated in one stock,
and maximum diversity when all stocks have the same capitalization), so that

log
(
D(µ(T ))
D(µ(0))

)
≥ −1 − p

p
· log n. (11.2)

This provides, in particular, the lower bound Zπ(p)
(·)/Zµ(·) ≥ n−(1−p)/p. On

the other hand, we have already remarked in Sect. 4 that the largest weight of
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the portfolio π(p)(·) in (4.4) does not exceed the maximum weight of the market
portfolio, namely

π
(p)
(1)(t) := max

1≤i≤n
π

(p)
i (t) =

(
µ(1)(t)

)p∑n
k=1

(
µ(k)(t)

)p ≤ µ(1)(t) (11.3)

(the reverse inequality holds for the smallest weights, namely π
(p)
(n)(t) :=

min1≤i≤n π
(p)
i (t) ≥ µ(n)(t)). From (5.12) and (11.3) we see that the aassumption

(4.2) of weak diversity implies∫ T

0
γπ(p)

∗ (t)dt ≥ ε

2
·
∫ T

0

(
1 − µ(1)(t)

)
dt >

ε

2
· δT, a.s.

and in conjunction with (11.2) this lead to (4.5) via

log

(
Zπ(p)

(T )
Zµ(T )

)
> (1 − p)

[
εT

2
· δ − 1

p
· log n

]
. (11.4)

Now if M is uniformly weakly diverse over [T∗,∞), then (11.4) gives the long-
term comparison Lπ(p),µ = limT→∞

1
T log(Zπ(p)

(T )/Zµ(T )) ≥ (1 − p) εδ
2 > 0,

a.s.

Proof that the martingale property of L(·) (valid under condition (4.6)) proscribes
(2.10). Suppose that the exponential process {L(t); 0 ≤ t ≤ T} of (9.5) is a
P−martingale; then {Ŵ (t); 0 ≤ t ≤ T} of (9.2) is Brownian motion under the
equivalent probability measure QT (A) = E[L(T ) · 1A] on F(T ), by the Girsanov
theorem. For instance, this will be the case under the Novikov condition (4.6);
cf. Theorem 3.5.1 and Proposition 3.5.12 in Karatzas and Shreve (1991). For any
extended portfolio π(·) we have

d(Zz,π(t)/B(t))=(Zz,π(t)/B(t)) ·
n∑

i=1

m∑
ν=1

πi(t)σiν(t)dŴν(t), Zz,π(0)=z>0

from (9.4) and the discussion following it; this shows that under QT the process
Zz,π(·)/B(·) is then a martingale with moments of all orders (in particular, square-
integrable). If ρ(·) is another extended portfolio, the differenceH(·) := (Zz,π(·)−
Zz,ρ(·))/B(·) is again a (square-integrable) martingale with H(0) = 0, therefore
EQT [H(T )] = 0. But if H(T ) ≥ 0 holds a.s. (with respect to P , or equivalently
with respect to QT ), then this gives H(T ) = 0 a.s. and rules out the second
requirement P [H(T ) > 0] > 0 of (2.10).

Proof of (9.10). Suppose that the processes L(·)Xi(·)/B(·) for i = 1, · · · , n are
all martingales; then so is their sum, the process Z̃(·) := L(·)Zµ(·)/B(·) with
Zµ(·) :=

∑n
i=1Xi(·) as in (3.1). With z = 1, ϕ(·) ≡ Zµ(·)µ(·) and ϑµ(t) :=

σ′(t)µ(t) − ϑ(t), the Eq. (9.9) takes the form dZ̃µ(t) = Z̃µ(t)(ϑµ(t))′dW (t) or
equivalently

Z̃µ(t) = exp
(∫ t

0
(ϑµ(s))′dW (s) − 1

2

∫ t

0
||ϑµ(s)||2ds

)
, (11.5)
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and we get

1

Z̃µ(t)
= exp

(
−
∫ t

0
(ϑµ(s))′dW̃ (s) − 1

2

∫ t

0
||ϑµ(s)||2ds

)
,

where W̃ (·) := W (·) −
∫ ·

0
ϑµ(s)ds.

Now on any given finite horizon [0, T ], this process W̃ (·) is Brownian motion under
the equivalent probability measure P̃T (A) := E[Z̃µ(T ) · 1A] on F(T ), and Itô’s
rule gives

d

(
Zπ(t)
Zµ(t)

)
=
(
Zπ(t)
Zµ(t)

)
·

n∑
i=1

m∑
ν=1

(πi(t) − µi(t))σiν(t)dW̃ν(t) (11.6)

for an arbitrary extended portfolioπ(·). From (2.3) we see that, for any suchπ(·), the

ratio Zπ(·)/Zµ(·) is a martingale under P̃T ; in particular, EP̃T [Zπ(T )/Zµ(T )] =
1. But if π(·) satisfies P [Zπ(T ) ≥ Zµ(T )] = 1, we must have also

P̃T [Zπ(T )/Zµ(T ) ≥ 1] = 1; in conjunction with EP̃T [Zπ(T )/Zµ(T )] = 1,
this leads to P̃T [Zπ(T ) = Zµ(T )] = 1, or equivalently Zπ(T ) = Zµ(T ) a.s. P ,
contradicting (4.5). Thus the process

X̃j(t) = exp
(∫ t

0
(ϑ(j)(s))′dW (s) − 1

2

∫ t

0
||ϑ(j)(s)||2ds

)
, 0 ≤ t < ∞

(11.7)

of (9.8) is a strict local martingale, for some (at least one) j ∈ {1, · · · , n}; we have
set ϑ(k)

ν (t) := σkν(t) − ϑν(t), ν = 1, · · · , n, for any k ∈ {1, · · · , n}.

Suppose now that (9.10) fails, i.e., that X̃i(·) is a martingale for some i �= j.
Then for any T ∈ (0,∞) the measure P (i)

T (A) := E[X̃i(T ) · 1A] is a probability

on F(T ), under which the process W̃ (i)(t) := W (t) − ∫ t

0 ϑ
(i)(s)ds, 0 ≤ t ≤ T

is standard IRn−valued Brownian motion. By analogy with (11.5)–(11.7) we have
now

1

X̃i(t)
= exp

(
−
∫ t

0
(ϑ(i)(s))′dW̃ (i)(s) − 1

2

∫ t

0
||ϑ(i)(s)||2ds

)
,

and

d

(
Xj(t)
Xi(t)

)
=
(
Xj(t)
Xi(t)

)
·

m∑
ν=1

(σjν(t) − σiν(t))dW̃ (i)
ν (t).

Thus, thanks to condition (2.3), the process Xj(·)/Xi(·) is a P (i)
T −martingale on

[0, T ], with moments of all orders. In particular,

Xj(0)
Xi(0)

= EP
(i)
T

[
Xj(T )
Xi(T )

]
= E

[
L(T )Xi(T )
B(T )Xi(0)

· Xj(T )
Xi(T )

]
,

which contradictsE[L(T )Xj(T )/B(T )] < Xj(0) and thus the strict local martin-
gale property of L(·)Xj(·)/B(·) under P .
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