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Abstract. Valuation and parities for both European-style and American-style exchange options are presented in
a general financial model allowing for jumps, the possibility of default, and “bubbles” in asset prices.
The formulas are given via expectations of auxiliary probabilities using the change-of-numéraire
technique. Extensive discussion is provided regarding the way that folklore results such as Merton’s
no-early-exercise theorem and traditional parities have to be altered in this more versatile framework.
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Introduction. A multitude of contracts in financial markets can be regarded as options
to exchange units of one asset for certain units of another. The first paper to discuss and
consider such options is [Mar78]. Building upon the ground-breaking methodology of [BS73]
and [Mer73], formulas were provided for the fair value of exchange options for two no-dividend-
paying assets in a Black—Scholes—Merton modeling environment. Depending on which of the
two assets is chosen as a numéraire in order to denominate wealth, such exchange options can
be regarded as of either a call or a put type. From this perspective, and always in the Black—
Scholes—-Merton model, Merton’s no-early-exercise result [Mer73, Theorem 2] can be seen
to imply that American-style exchange options have the same value as their European-style
counterparts; then, the usual put-call parity translates to a single parity between exchange
options of either European or American style.

In recent literature, considerable interest has been placed in financial models where certain
anomalies exist, a prominent one concerning assets which contain bubbles—see, for example,
[DS95], [CHO5], [PP10], [Hull0], [JPS07], [JPS10], [KKN14]. An inspection of papers on the
subject reveals several possible directions that one may proceed in the mathematical definition
of a bubble. While no attempt will be made here to summarize or consolidate these views,
only for illustration purposes we mention the specialized case of complete markets (see, for
example, [JPS07]), where the different definitions essentially coincide: a certain asset contains
a bubble if the market allows for arbitrage relative to its cum-dividend' price process; in
other words, there exist free snacks (in the terminology of [LWO00]) relative to the asset with
the bubble. This last fact prevents the existence of an equivalent probability which would
render the (local) martingale property to wealth processes denominated in units of the asset
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containing the bubble. Such probability measures are used for valuation of illiquid financial
derivative securities; therefore, it would appear that existence of baseline assets containing
bubbles presents a hurdle in the development of the theory of financial mathematics. However,
a consistent theory of valuation and hedging can still be developed in models where assets with
bubbles exist, provided that one utilizes strictly positive local martingale deflators instead of
equivalent local martingale measures; the survey article [KF09] is a thorough reference in this
respect.”? Under appropriate assumptions on the underlying stochastic environment which
allow for the inference of existence of probability measures in the spirit of Kolmogorov’s
extension theorem (as explained, for example, in [Par67]), local martingale deflators can still
define auxiliary probabilities that can be used for valuation; see [F6172] and Theorem 2.1. It
should be noted, however, that these valuation probabilities may fail to be even locally (along
a sequence of deterministic times converging to infinity) equivalent to the original probability.

Several results that are folklore in traditional models fail to hold when valuation is done us-
ing strictly positive local martingale deflators as opposed to local martingale measures; typical
examples of such failure include the aforementioned no-early-exercise theorem for American
options, as well as certain parities—for a discussion, see [BKX12]. However, it is becom-
ing increasingly understood that an alternative viewpoint concerning such results enables the
provision of formulas that are valid in these more widely encompassing models, allowing for
valuation using local martingale deflators. Such a viewpoint also facilitates the understanding
of the exact attributes of earlier models that resulted in such formulas. The present paper
contributes to the existing literature by providing valuation and parities for exchange options
via the change-of-numéraire approach in a general modeling environment where equivalent
martingale measures may fail to exist, allowing for jumps and possible default. As mentioned
previously, in order to provide formulas in terms of expectations under auxiliary valuation
probabilities, mild assumptions have to be enforced on the underlying filtered measurable
space; canonical examples of such environments are Markovian models driven by economic
factors, a case that is discussed in detail in the paper. Due to the potential failure of existence
of equivalent martingale measures with respect to some assets, the value of American exchange
options may be higher than the corresponding value of exchange options of European type;
a general formula for the early exercise premium (in terms of explosion probabilities, among
other elements) is provided that covers all models. The latter discrepancy of American and
European option values affects the parities: several different parities relating European and
American exchange option values are provided.

The structure of the paper is as follows. Section 1 presents the underlying financial
framework, while section 2 establishes the existence of the valuation probabilities and studies
the behavior of ratios of asset prices under these probabilities. In section 3, several formulas
for valuation of European and American exchange options are presented. Finally, section 4
explores the different parities between exchange options of both European and American type,
including an example involving the three-dimensional Bessel process where explicit formulas
are available.

2Even when an equivalent local martingale measure exists in the market, it may still be the case that some
strictly positive local martingale deflator which is not an actual martingale is used for valuation. Indeed, this
may happen in cases where utility indifference valuation rules are considered, as is explained in [HKS05].
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1. Underlying framework.

1.1. The set-up. Later in the paper, the need will arise to infer the existence of probabili-
ties arising from local martingale density processes; in order to ensure such existence, we shall
require a special structure for the underlying probability space, which we introduce below.

The set of all possible states of the financial environment is modeled through a Polish
space F. Consider an additional isolated point A that is appended to £ and will model a
“cemetery” state for the economy. If w : [0,00) — E U {A} is a right-continuous function,
define

((w) :=inf{t e Ry |w(t) = A},

where  has the interpretation of the economy’s lifetime. With this understanding, let 2
denote the set of all right-continuous functions w : [0,00) — E U {A} such that w(0) € E
and w(t) = A holds for all ¢ € [((w), 00); in words, € consists of right-continuous paths which
are at /' at time zero, and remain forever in the cemetery state A, once reached. Note that
((w) € (0, 00] holds for all w € Q.

We denote by Z = (Z;)ier, the coordinate process on 2; i.e., for fixed t € Ry it holds
that Z;(w) = w(t) for all w € Q. Define F = (F})icr, as the right-continuous augmentation
of the smallest filtration that makes Z adapted. Define also F := \/tgR+ Fi. We denote by T
the class of all (possibly infinite-valued) stopping times on (€2, F). Note that ( € 7.

Remark 1.1. If a model having factors that change in a continuous fashion is desired, 2
can be chosen to consist of right-continuous functions that are actually continuous on [0, ([.

The following interpretation should be kept in mind throughout the paper: from time (
onward, all economic activity ceases, and no financial claims are honored. Incorporating a
(stochastic) recovery rate at default is also possible within the present framework; however,
we decide to treat only the case of no recovery in order to allow for some simplification in the
presented formulas.

1.2. Assets and stochastic discount factor. On the filtered measurable space (€2, F) sat-
isfying the tenets of subsection 1.1, we postulate the existence of nonnegative cadlag processes
S? for i € I, where I is an arbitrary finite index set. Each S, i € I, is modeling the price-
process of a no-dividend-paying asset in the financial market. All assets are denominated in
the same numéraire, which will not actually play any role in our treatment since from section
2 onward the assets (S%);c; themselves are going to be used as numéraires. (See also the
discussion after Assumption 1.2.)

To keep on par with the interpretation of  as the economy’s lifetime, it shall be assumed
that S = 0 holds on the stochastic interval [¢,c0] := {(w,t) € 2 x Ry |((w) <t} for all
i € 1.3 Earlier default for a specific asset is also possible in our framework.

The full probabilistic model for the movement of the asset prices is described by the
introduction of a probability P on the o-algebra F. The symbol “Ep” denotes expectation
with respect to P, with analogous notation used for expectation under other probabilities that
will eventually appear. Expressions of the form E [¢; A] for nonnegative F-measurable random
variable ¢ and A € F are shorthand notation for E [£1 4], where “14” denotes the indicator
of A.

3This fact is repeated in Assumption 1.2.
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The following will be a standing assumption throughout the paper.

Assumption 1.2. For alli € I, S* = 0 holds on [(, oo and S} is P-a.s. constant and strictly
positive. Furthermore, there exists a nonnegative process Y with P[Yy = 1] = 1 such that
Y S%is a P-a.s. (cadlag) local martingale on (2, F, P) for all i € I.

For the remainder of section 1.2, we discuss the economic significance of Assumption 1.2.
In the process, and in order to use previous classic results, additional structural assumptions
shall be made. We stress, however, that none of the extra assumptions that appear below will
be needed in the remainder of the text.

It is traditional in the field of mathematical finance to choose one of the assets (S%);cs as a
numéraire in order to denominate all other wealth; this numéraire is supposed to stay strictly
positive throughout the economy’s life. Wanting to keep symmetry in our framework and stay
on par with classical theory, we define S* := (ZZE I Si) / (ZZE I Sd) and make the additional
assumptions that {S* > 0} = [0, ([ holds up to a P-indistinguishable set and P’ [¢ < oo] = 0. 4
In this case, define S := (S);c; via S% := (S’/S*) [0 [ for all i € I, and assume that Sisa

d-dimensional semimartingale. For a predictable and S-mtegrable process H, set

<1+/ Zthst> 0.

ZGI

with the understanding that vector stochastic integration is used. The previous expression
for XH gives the value of the portfolio generated by the strategy H, denominated in terms of
S*. We also define X := §*XH as well as X to be the class of all nonnegative X | where
H is any predictable §-integrable process H. The class X contains all nonnegative wealth
processes that are denominated in the same units as all the assets with price-processes (S);c;.

Remark 1.3. Tt is important to note that the class X does not depend on the specific choice
of numéraire, as we now explain. Suppose that X* € & is such that {X* > 0} = [0, ([ holds
up to a P-indistinguishable set. Define S := (S%);c; via S% := (! /X*) o[> and note that S

is a d-dimensional semlmartlngale since S is. For a predictable and S—lntegrable process H,
set XH := (1 + f(o | 2iel H!dSiH)1y, [0,c[» Which gives the value of the portfolio denominated

in terms of X™. It can be checked that X’ coincides with the class of all nonnegative X * X H ,
where H ranges through all predictable S-integrable processes.
Along with X, define the class of all local martingale deflators ) via

Y:={Y >0|Yp=1and YX is a cadlag F-local P-martingale VX € X'}.

Under very mild conditions in the absence of “free lunches” in the market, one can ensure
that ) is nonempty and, in fact, contains a strictly positive process. (Condition NFLVR of
[DS94] will certainly be sufficient. More precisely, the weaker (than NFLVR) condition NA;
is equivalent to the statement that ) contains a strictly positive process; for example, see
[Kar12] or [T'S14].) The set ) is of importance in the problem of utility maximization, and
elements of ) can be used to compute utility indifference prices—the interested reader should

“Even when P[¢ < co] = 0 holds, the introduction of the cemetery state A in our framework is essential,
since the event {¢ < co} may have nonzero measure under the probabilities (Q");cr that are constructed in
Theorem 2.1.
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check [KS99] and [HKS05] for these facts. Processes in ), as in Assumption 1.2, are commonly
referred to as stochastic discount factors and are used for the valuation of financial derivatives.

1.3. Markovian factor models. We discuss here the validity of Assumption 1.2 in a wide
range of continuous-time Markovian factor models with possible jumps and default. We shall
specialize the framework of subsection 1.1 to the case £ = R™ for some m € N. Recall that
Z = (Z;)ier, denotes the coordinate process on 2.

Consider a bounded measurable a : R™ — R™, a bounded continuous ¢ : R™ ~ ST,
where S, denotes the space of strictly positive definite symmetric m x m matrices, as well
as v : R™ x B(R™) — R, such that v(z,-) is a o-additive measure on B(R™) for all z € R™,
and

R™ >z — / (1A |yl?) v(z, dy) is continuous and bounded VI' € B(R™).
r

With the above notation, and with (-, -) denoting (sometimes formally) the inner product on
R™, define the operator C§°(R™) > f — A(f) such that

(L.1)
AN = G VI ) + 5 3D M@ ()
k=1 1=1
+ [ (0 = 1) = (0 VHG) Lyen) vl dy), [ € CZR™), 2 €R™

Finally, fix a measurable and locally bounded function A : R™ — Ry and zy € R™. With the
previous notation and assumptions, and with Z denoting the identity operator on C§°(R™),
there exists a unique solution P to the martingale problem associated with A — AZ, with
“killing” rate function ), such that P[Zy = 2] = 1.° In particular, the continuous part of
the quadratic covariation process of Z is given by fOCA' ¢(Zy—)dt, and the compensator of the
jump measure p of Z is equal to fOCA' v(Z—, dy)dt.

The m-dimensional factor process Z will drive the prices of (d + 1) financial assets, where
d € N. Let I ={0,1,...,d}; the index “0” is reserved for a locally riskless asset, which is
typical in the literature. Consider a short rate function r : R™ — R; furthermore, for i € [
consider excess rate of return functions o' : R™ — R, functions £ : R™ — R™ that will control
the continuous part of the quadratic variation of the assets, and functions v* : R™ x R™ s R
that will control the relative jump sizes of the asset prices. For purposes of unifying the
presentation, set also a : R™ — R, % : R™ = R™, and 4" : R x R™ R, to be identically

SWhen A = 0, one can consult [Jac79, Theorem (13.58)] or [Str75, Theorem 4.3] for existence of a unique
solution P° to the corresponding martingale problem. Once the probability P° is constructed, for which
P’ [¢ < c0] = 0, one may extend the probability space and introduce an independent (of Z) random vari-
able n with unit-rate exponential law, then set

g::mf{te}R+ ‘ /tx(zs,)ds>n},
0

and then define Z = Z110,e[ +Al1[¢,o0p- Finally, one defines P to be the law of Z under P° on the canonical space
(©, F); note that indeed P solves the martingale problem associated with A — A\Z, satisfying P [Zy = z0] = 1.
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equal to zero. The previous functions are assumed measurable and such that
(1.2)
swp (164 ) () + (8, ) () + [

z&(—n,n)™ m

(yi(z,y) - 1)21/(7:, dy)> <oo VYneN, iel.
Define processes (S%);cr, satisfying S¢ = Séé’(Ui)lﬂo,C[ for all i € I, where S} > 0, “€” denotes
the stochastic exponential operator throughout, and

(1.3)

Ul = /O <(r+o/) (Ze—)dt + (B'(Z,-), dZf) +/ (V' (Zi—,y) = 1) (u(dy, dt) — v(Z—, dy) dt))

holds for all i € I, where the previous process is well defined in view of (1.2). As was
already mentioned, the functions (3%);c; control the continuous part of the local covariation
between the asset-price movement and the driving economic factors, as well as the other assets.
Accordingly, since S* = S* 4/(Z_, AZ) holds for i € I, the functions (7%);c; control the jumps
in the asset-price movement given abrupt changes in the underlying economic factors. Note
that individual assets may default before time ¢, since we allow for the opportunity that ~*
takes the value 0 and v(-, dy) may have atomic parts.

In order to define the stochastic discount factor, consider measurable functions ¢ : R™ —
R™ and 9 : R™ x R™ — (0, 00) with

2
(14) %g%mg¢www+/Jwaw—uma@Q<m V€ N
as well as®
(1.5)

o' (2) + (¢(2), c(2)B'(2)) +/ (V' (zy) = 1) (W(z,y) =) v(z,dy) =0 Vz€R™ and i€ I.

m

Define the process Y satisfying Y = E(V)1[g ¢[, where
(1.6)

V= /0 (()\ —r)(Z—)dt + (p(Zi—), dZy) —I—/ (W(Zi—,y) — 1) (u(dy, dt) — v(Z,_, dy) dt)> ’

m

where the previous process is well defined in view of (1.4) and the fact that \ is locally bounded.
A straightforward use of the integration-by-parts formula shows that Y'.S* = Si& (Vi)l[[ovq,
where

1 V= /0 AN Z_)dt + /0 (B +6)(Zis), AZ5)
" /o (/m (V' (Zi—s )0(Zi—,y) = 1) (u(dy, dt) — v(Z;—, dy) dt)) Vi e l.

5The existence of at least one pair of functions (¢,) that satisfy (1.5) follows directly from no-arbitrage
considerations. We do ask that one may choose such a pair satisfying the extra local boundedness conditions
(1.4), which is a rather mild technical assumption.
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Define the nondecreasing sequence ((,)nen of stopping times via
(1.8) Coi=inf{t e Ry |Z; ¢ (—m,n)™} forn € N.

It is straightforward to check that ¢, < ¢, P [lim;,—00 ¢, = ¢] = 1 and lim,, oo P [, < ¢ < 00] =
0. Furthermore, (1.2), (1.4), the fact that i) — 1 = (¢ — 1)( — 1) + (v/ — 1) + (v — 1)
holds identically (which incidentally also shows that the last stochastic integral in (1.7) is
well defined), and local boundedness of A imply by [KLS78, Theorem 12] that the processes
(Ye, A.Sén ") ter, are (true) martingales for all n € N and i € I. In particular, Y'S® is a local
martingale on (2, F, P) for all i € I, and one obtains the validity of Assumption 1.2 in this
extremely versatile setting.

2. Valuation probabilities and asset ratios.

2.1. Valuation probabilities. As mentioned in subsection 1.2, the process Y of Assump-
tion 1.2 plays the role of a stochastic discount factor in the market. As such, it will be used for
valuation of securities: the present (time zero) value a contract that pays an Fp-measurable
nonnegative amount Hy at time 7' € T is Ep [YpHp; T < ¢]. It is customary to write valuation
formulas in terms of expectation under auxiliary valuation probabilities. In order to obtain
the latter from the representation in terms of expectations under P and stochastic discounting,
a “baseline” (or “numéraire”) asset has to be chosen in order to denominate wealth. Sections
3 and 4 deal with valuation and parities for exchange options; for this reason, we refrain from
choosing a single asset to use as a baseline; rather, a family of probabilities (Q?);c; will be
introduced, one for each asset indexed by 7 € I being used as a baseline. Care has to be
exercised in defining these probabilities, since the candidate “density processes” that have
to be used in defining them are in general only local martingales on (2, F, P). However,
as stated in Theorem 2.1 below, the structure of the filtered probability space described in
subsection 1.1 allows for such a construction under Assumption 1.2. A proof of Theorem 2.1
in this exact setting appears in [BBKN14]; of course, results of a similar nature have appeared
previously—see, for example, [F6172], [Mey72], [DS95], [PP10], [Rufl3], and [PR14].

Before the statement of Theorem 2.1, recall that the optional sigma-field O on QxR is the
one generated by all cadlag processes; then, a process is called optional if it is O-measurable.

Theorem 2.1. Under Assumption 1.2, for each i € I there exists a unique probability Q°
on (2, F) such that the following property is valid: for any nonnegative optional process H
on (2, F),

(2.1) Ep [YTHTS%; T < (]| = Sé]EQi [Hp; T < (] holds for allT € T.

Remark 2.2. Fori € Iand T € T, using (2.1) with H = 1;gi_¢y gives Q! [Srfp =0,T< {] =
0.

Remark 2.3. Assumption 1.2 and a straightforward application of the conditional version of
Fatou’s lemma implies that Y S is a (nonnegative) supermartingale on (Q, F, P) for all i € I.
Using H = 1 in (2.1) and taking T € T to be equal to t € R, it follows that S}Q [t < (] =
Ep [KSf;t < C] = Ep [YtSﬂ holds for all t € Ry and ¢ € I, where the last equation follows
from the fact that S} = 0 holds on {¢ <t}. It then follows in a straightforward way that
Q' [¢ < oo] = 0 holds for some i € I if and only if the process (Y;5})icr, is a (true) martingale
on (2, F, P).
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2.2. Foretellability of ¢. In general,  is not a predictable” stopping time on (9, F).
However, as we shall see, it actually is predictable on (€2, FQl) for all i € I, where FQ' is the
usual Q’-augmentation of F. We first give an essential definition.

Definition 2.4. Let Q be a probability on (2, F). A nondecreasing sequence ((n)nen of
stopping times will be said to foretell  under Q if §,, < ¢ foralln € N, Q[¢, < ¢, Vn € N] =1,
and Q [lim,, 0 ¢, = ¢] = 1.

Proposition 2.5. Let ((n)neny be a nmondecreasing sequence of stopping times such that
Cn < C foralln e N, Pllim, 00 ¢, =¢] = 1, and (YCn/\tSén/\t)teR+ s a uniformly integrable
martingale on (2, F, P) for alli € I. Then, (¢y)nen foretells ¢ under each of the probabilities
Q,iel.

Proof. Applying (2.1) with H = 1 and T = (,, gives S{ Q" [(, < (] = Ep [YCnSén; Cn < ] for
all n € N and i € I. Since Sénl{é“n:é“} = Sél{g,}:g} =0, Q'[¢, < (] = (1/S))Ep [YCnSZn] =1
follows for all n € N and ¢ € I. Therefore, Q" [(, < (Vn € N| = 1. Continuing, let (s :=
limy, 00 Cn-  Another application of (2.1) with H = 1 and T = (s gives S{Q' [( < (] =
Ep [YCOOSéoo; (oo < C] =0 for all ¢ € I, in view of the fact that P [, < (] = 0. Therefore, we
obtain Q' [(s < ¢] =0 or Q[ = ¢] = 1 for all i € I, which shows that ((,)nen of stopping
times foretell ¢ under each of the probabilities Q?, i € I. |

Remark 2.6. Note that sequences ((,)nen satisfying the tenets of Proposition 2.5 certainly
exist. For a specific example, define

Cn ::inf{t€R+ ‘ KmEaIXSf >n}/\( Vn € N.

Remark 2.7. Let ((n)nen be any localizing sequence as in Proposition 2.5. With L! :=
Y S?/S¢ fori € I, (2.1) implies that Lén = L2n1{<n<<} holds for all ¢ € I and n € N. Therefore,
Lén is the density of Q' with respect to P on F¢, for all i € I and n € N. This fact can help
in obtaining the behavior of processes under Q° for i € I; see Example 2.3 below for an
illustration.

Although Q' is absolutely continuous with respect to P on F¢, foralli € I and n € N, it
should be noted that there is no general relationship between Q' and P on F.

2.3. Markovian factor models, continued. We proceed with an illustration of Theorem
2.1 in the framework of subsection 1.3, from which we retain all notation. Let Y = £(V)1jo¢[,
where V' is as given in (1.6), and fix j € I. Recall the sequence ({, )nen of (1.8). By Proposition
2.5, (Cn)nen foretells ¢ under Q7.

A straightforward use of Girsanov’s theorem via localization (see Remark 2.7) over ({,)nen
implies that Z under_@j solves the martingale problem with possible explosion associated
with the operator A®' that is given as in (1.1), with a there replaced by agi = a+ c(B? +
?) + Jgm (yj(-,y)q/)(-,y) - 1) ylyy<1yv (s, dy), c staying the same, and v(-, dy) replaced by
voi(- dy) == (-, 9)¥(,y)v(,, dy). Furthermore, recalling (1.3), and noting (again, as a
consequence of Girsanov’s theorem) that the continuous local martingale part of Z under Q’

"Following standard terminology from the general theory of stochastic processes (see, for example, [JS03]),
a stopping time 7 € T is predictable on (€, F) if the stochastic interval [7,c0[ is a predictable set; note that
this notion does not take into account any underlying probability on the filtered probability space.
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on [0,¢[ is* 29% = Zg, — [ e(Zi-)(B' + ¢)(Z:-) dt, we obtain that S" = SE(U) 1y,
where U" is defined on [0, ([ via

U = /0 (r+a' + (B c(f7 +¢))) (Z,—) dt
* /0 < / (V@) = 1) (Y (e ) Zesy) = 1) vl dy)) at
+/0' <<5i(Zt_), de’@j> +/m (V(Zi—,y) — 1) (u(dy, dt) — vgs (Zi—, dy) dt)) Viel
Recalling (1.5), after simple algebra we obtain that, on [0, [,
v~ [+t o) @+ [
+/O- (<[3i(zt_), de’@j>+/Rm (V(Ze—,y) = 1) (u(dy, dt) — vgs (Ze—, dy) dt)) Viel.

m

(V' (Ze—,y) = 1) (¥ (Zi—,y) = 1) W(Zi—, y)v(Ze—, dy)> dt

In the setting of this example, note that S*/S7 = (Sé/Sg)E(Uij) holds on [0, ([, where
vi = [{(6 - )z, azs?)
0

' V(Zi-,y) =¥ (Zi-,y) | .
" /0 (/m v (Zi—,y) (w(dy, dt) = vgy(Zi-, dy) dt)> Viel.

The latter implies that the processes S?, when denominated in units of the asset j € I, become
local martingales on (Q, F, Q’) on each of the stochastic intervals [0, (,] for n € N. It then
follows in a straightforward way by use of Fatou’s lemma that (S Y ) 1(gis0y is a nonnegative
supermartingale on (2, F, Q/) for all i € I. The behavior of asset-price ratios in a general
setting is taken up in subsection 2.4 below.

2.4. Asset-price ratio processes. Define the family of nonnegative processes

(22) Rij = <%> 1{Sj>0}, 1€l andjel.

In words, R¥ represents the asset-price process i € I denominated in units of the asset-price
process j € I, as long as the latter asset has not defaulted yet. By Theorem 2.1, for any ¢ € I,
j € I, and nonnegative optional process H on (2, F), and any T' € T, it holds that

(23) SiEq [RiTjHT;T < g} — Ep [S}HT; S.>0,T < 4} — SiEq [HT; Si>0,T<¢|.

The following proposition is a result in the spirit of the supermartingale optional sampling
theorem.

8Note that the process 7% s well defined and finitely valued on the stochastic interval [0, ¢[, which is
indistinguishable from UneN[[O7 ¢n] under @’; however, it may happen that it explodes at .
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Proposition 2.8. Under Assumption 1.2, the process RY is a (nonnegative) supermartingale
on (0, F, Q%) foralli el and j € 1. - -

Proof. It suffices to show that Egi [RZTJ] < Eg [R?] holds for all fixed i €I, jelI
and o € T, 7 € T with 0 < 7. Note that RY = RY1jg[; therefore, we need to show
that Eg; [RZT] T < C] < Egi [Rf,j;a < C]. The first equality in (2.3) applied twice gives
SiEqi [RY:0 < (] = Ep[V,S:;8% > 0, 0 < ¢] and SjEq; [RY;7 < ¢] = Ep[Y;8%;87 > 0, 7 <
C]. Therefore, Egj [R?;T < C] < Eqs [Rf,j; o< C] is equivalent to Ep [YTSi; Sﬁ >0, 7< C] <
Ep [YGSZ,;S?; > 0,0 < C]. Recall from Remark 2.3 that, under Assumption 1.2, Y'.S7 is a
nonnegative supermartingale on (€2, F, P); therefore, it follows that ]P’[Sg =0,Y, >0, S >
0, 7< C] = 0. The last fact combined with {7 < (} C {o < (} implies the string of inequal-
ities YTl{SZ>0,r<(} < Y71{33>07T<<} < Y71{5g>07 o<ch holding modulo P. In turn, the last

fact implies the first inequality in
Ep[Y;SL; 57 >0, 7 < (] <Ep[Y;S5 82 >0, 0 < (] <Ep[Y,55;5. >0, 0 <(],

where the second equality follows from the fact that the process Y'S* is a supermartingale
on (2, F, P) and the optional sampling theorem for nonnegative supermartingales—see, for
example, [KS88, section 1.3.C]. The proof is complete. [ |

In section 3, we shall make use of the family of random variables

(2.4) P = limT%nfRij, i€l and jel,
t

where the notation “liminf” is used to signify that a left-hand-side inferior limit is consid-

ered. If (Cu)nen is any sequence that foretells ¢ under all Q°, i € I, the nonnegative super-

martingale convergence theorem [KS88, section 1.3.C] implies that, for all i € I and j € I, on

(Q, F, Q%) the F-measurable random variable p/ is R, -valued and the “liminf” in (2.4) is
an actual limit.

3. Valuation formulas for exchange options.

3.1. Valuation formulas for European-style exchange options. Given the stochastic dis-
count factor Y of Assumption 1.2, define the value of a European option to exchange asset
1€ I for asset j € I at time T' € T as

(3.1) EX(T) = Ep [V (Sh — Si) i T < g] .

In view of Theorem 2.1, note the validity of the relationships EX¥(T) < Ep [YTS%; T < {] =
SJQIT <¢] <Sjforalliel,jel,and T € T.

Remark 3.1. Under Assumption 1.2, S5 = 0 holds on {¢ < T} for all i € I. It follows
that the indicator of the event {T' < (} inside the expectation in (3.1) may be omitted. The
same holds for several equations that will appear below (although not all); we choose to keep
the indicator to explicitly reinforce the convention that no claims are honored from time ¢
onward.

The next result gives several representations for the value of European-style exchange
options. Recall from (2.2) the definition of the collection of processes R for i € I and j € I.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/15 to 158.143.192.135. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

150 CONSTANTINOS KARDARAS

Proposition 3.2. For alli € I, j €I, and T € T, the following formulas are valid:

EXY(T) = SIQI[Sh < S, T < (] — SiQ'[Sh < S5, T < (]
= SQ'[Sp < 8%, T < (] - S6Q'[Sh < 7, T < (]
= SiBqs [(1- RY) 5T < (]
— SBqs |(RE —1) 3T < ¢| + 407 [S =0, T < (].

Proof. Fix i € I and j € I. Since (87 — 5%)y = S 1gigiy — SUgicgiy = S 1gicgip —
Sil{sig si}, the first two equalities follow in a straightforward way from (2.1). Continuing,
note that (87 — 5%y = (87 — §") 1 1(gi=0p = S7(1 — R7)y holds. Using H = (1 — RY), in
(2.1) (with j replacing i there), the third equality follows immediately. Furthermore, upon
noting that (7 —5%)y = (87 —5%) { 1ggizoy + S 1gicgy = S'(R? —1)4 + 571 gi_oy and using
(2.1) twice, once with H = (R’ — 1) and another time with H = 1;gi_g, (and j replacing i
there), the last equality follows. |

Remark 3.3. Fix j € I, and suppose that Q7 [¢ < 0] = 0 holds, which in view of Remark
2.3 is equivalent to the process (Y;:57)er . being an actual martingale on (€2, F, P). In that
case, since Q7 [T < (] = 1 holds for all T € T with T" < oo, a combination of Propositions
2.8 and 3.2, the convexity of the function R 5 x +— x4 € Ry, and Jensen’s inequality give
EXY(0) < EX¥(7) whenever ¢ € T and 7 € T are such that o < 7 < oo holds. It follows
that the value EX¥(T') of the European exchange option is nondecreasing for finite maturities
TeT.

In contrast to the situation where ¢ is Q/-a.s. infinite for some j € I, when Q/ [¢ < oo] > 0
the previous monotonicity property need not hold, due to the nontriviality of the indicator of
the event {T' < ¢} in the expression EX”(T) = SéEQj [(1- Rg)Jr; T < ¢]. The latter event is
nonincreasing in T and may result in reversal of the inequality EX¥ (o) < EX¥(7) whenever
o €T and 7 € T are such that 0 < 7 < oo holds. In fact, an example presented in [PP10]
shows a case where the function Ry 3 7T EXij(T ) is initially strictly increasing and then
strictly decreasing.

Remark 3.4. The representation EX¥(T) = SéEQj (1 - Rfﬁ) T < ¢] gives the value
of the exchange option in terms of a put option on the asset i € I by considering asset
j € I as a numéraire. Similarly, the expression EX¥(T) = SéEQi[(RQ[Z — 1) T < C] +
Sg@j [Srfp =0,T< {] follows from the use of asset 7 € I as a numéraire, in terms of a call
option on asset j € I. Note, however, that there is an asymmetry between the two repre-
sentations, since the equality EXY(T) = SéIEQi [(R%f — 1) IRFARS C] is actually valid only if
Q[Sh=0,T<(]=0for TeT.

3.2. Valuation formulas for American-style exchange options. For T' € T define 7Ty 1
as the class of all 7 € T such that 0 < 7 < T holds. Given the process Y of Assumption 1.2,
the value of an American option to exchange asset i € I for asset j € I up to time T is defined
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to be?

(3.2) AXI(T) == sup Ep[V;(SL—SL) 7 < (] = sup EXY(r).
7'67—[0,1"] 7'67’[0,1"]

The inequalities EX¥(T) < AXY(T) < Sg hold for all i € I, j € I, and T" € T. Proposition
3.5 provides, inter alia, a formula for the early exercise premium AXY(T) — EX¥(T) of the
American versus the European option. Recall from (2.4) the random variables p% for i € I
and j € I.

Proposition 3.5. Fizi €I, jelI, and T € T, as well as any sequence ((y)nen which
foretells ¢ under all (Qi)iel (see Remark 2.6). Then, the following are true:

(1) The sequence (EX (T A C"))nEN is nondecreasing. Furthermore,
(3.3) AX(T) = lim EX(T A Cp).

(2) The early exercise premium is given by
(3.4) AXY(T) — EXY(T) = S{Bq, [(1 - p7) ;¢ < T).

Proof. In the course of the proof, fixt €I, j€I,and T € T.
(1). Let 7 € Tjp ). By Proposition 3.2, and since Q7 [¢, < ¢] = 1 holds for all n € N, we
obtain

EXY (1 A Gu) = SiEq [(1 —RY )T A < C] = SyEqs [(1 - RijACn)ﬁL] ’

The fact Q7 [¢,, < ¢] = 1 and Proposition 2.8 imply the inequality Eg; [RijACm] < Egj [RZT]ACH]
whenever N 5 n < m € N. The convexity of the function R 5 x +— x4y € R, and Jensen’s
inequality imply that EXY (7 A ¢,) < EXY(7 A () holds whenever N > n < m € N, which
shows that the sequence (EXU (T A Cn))n ¢y 1s nondecreasing. Furthermore, in view of the fact
that limy, 00 Gy = ¢, it @/-a.s. holds that (1— RY)  1(rc¢y < liminf, o0 (1—RZ, . )4). This
fact, coupled with Fatou’s lemma, implies that

EX(r) = Egy [(1 = RY)437 < (] < Egy [liminf (1= R, )1 )] < lim EXY(r A G).

TACn,

In a similar way as was reasoned above, Proposition 2.8 and the facts that Q/ [¢, < (] = 1
for all n € N and 7 < T give EXY (7 A () < EXY(T A () for all n € N; therefore, EX¥(7) <
lim,, 00 EX¥ (T A () holds for all 7 € To,7)- Equation (3.3) immediately follows.

(2). Since lim;, o R?ACH = pijl{CST} + Rf}l{T«} holds Q’-a.s., the dominated conver-
gence theorem gives

AXI(T) = Tim EXY(T AG,) =SBy (1= p7) ¢ <T| + SEq |(1- RBY) 3T < (]

9For a justification of why this definition of the value of an American-style option is reasonable, the interested
reader can check [BKX12].
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By Proposition 3.2, the second term on the right-hand side of the the above equation is equal
to EX¥(T'); therefore, (3.4) has been established. [ |

Remark 3.6. Proposition 3.5 implies that, for any 7' € T, the supremum in (3.2) for
AX"(T) is monotonically achieved through the sequence (T'A (), oy of stopping times in
To,r]> this being true for all combinations of i € I and j € I. This fact has the important
consequence that a parity for American exchange options follows from the corresponding
parity for European options—see the statement and proof of Proposition 4.1.

Remark 3.7. While in the Black—Scholes—Merton modeling environment discussed in
[Mar78] it is never optimal to exercise an American-style exchange option before a finite
maturity 7' € T, Proposition 3.5 implies that, if Q7 [¢ < T] > 0 holds, it is not optimal to
keep an American option to exchange any asset ¢ € I for some asset j € I until maturity
T € T. Instead, (3.3) reasonably suggests that one should keep the option until maturity
T € T provided that the end of the whole economy does not appear imminent; otherwise,
early exercise may be preferable.

Remark 3.8. Formulas like (3.3) appeared in [MY06] as “corrected” values for European-
style options. In fact, Proposition 3.5 implies that they correspond to values of American-style
options. N

Remark 3.9. Using the (self-explanatory) notation RT ACm) = = R} Tireey + pY 1<y for
i1e€l,jel,and T €T, it follows by a combination of Propositions 3.2 and 3.5 that

AX9(T) = SiEq, {(1 - RE}A(C_))J ,

which provides a direct representation for the value of American-style exchange options.

Remark 3.10. The formulas in Propositions 3.2 and 3.5 open the way in the numerical
approximation of European and American exchange option values, as well as early exercise
premia. Indeed, in the setting of Example 2.3 (which continues the discussion in subsection 1.3)
one can use standard Monte Carlo simulation techniques in order to identify the corresponding
expectations; one simply needs to identify ¢ with (,, for some large n € N, for the sequence
(Cn)nen which is given in (1.8). This procedure can also be used for calibration of parametric
models to match Furopean and American exchange option prices observed in the market.

An interesting special case in Proposition 3.5 is when Q7 [pij = O] = 1 holds for some 7 € I
and j € [I; this is, for example, true in the case of the Black—Scholes—Merton model where the
logarithms of asset-price processes are (not perfectly) correlated drifted Brownian motions.
When Q7 [p¥ = 0] = 1 holds for i € I and j € I, the simpler formula AX“(T') — EXY(T) =
Sé@j [¢ < T for the early exercise premium holds for all T € 7. The next result gives several
equivalent formulations of the latter condition.

Proposition 3.11. Fiz it € I and j € I, as well as any sequence ((,)nen which foretells ¢
under all (Qi)iel (see Remark 2.6). Under Assumption 1.2, the following statements are
equivalent: ‘

(1) limy 500 AXY(C) = S,

(2) limy, 00 EX”(C )=252.

(3) hmn_moQ [Sén < Sén] =0 and lim,_o Q" [ ‘ < SZ“n] =0.

W @01
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(5) AXU(T) — EXY(T) = S{QI[¢ < T) holds for all T € T.

Proof. Fix i € I and j € I. By Proposition 3.5, AX¥(¢,) = limum_yee EX(Co A Gn) =
EX“(¢y,) holds for all n € N. This shows the equivalence of statements (1) and (2). Further-
more, since Q' [¢, < (] =1 and Q’ [¢, < ¢] = 1 hold for all n € N, EX"(¢,) = SJQ’ [Sén <
Sén] - SiQ¢ [Sén < Sén] follows from Proposition 3.2. Therefore, lim,,_,o, EX¥ (Cn) = Sé is
equivalent to the validity of both lim,, s, Q7 [Sgn < Sén] =0 and lim,,_, Q" [Sén < Sgn] =0.

SoQ’[S¢, = S¢.] = PS¢, = 5, G < ] = SyQ@[SE, =S¢,

holds in view of Theorem 2.1, lim,,_, oo EX¥ (Cn) = Sé is equivalent to lim,, oo Q7 [Sén < Sén] =
0 and lim,, o Q° [Sén < Sgn] = 0. This shows the equivalence of (2) and (3). Therefore, the
equivalence of conditions (1), (2), and (3) has been established. Continuing, a combina-
tion of Proposition 3.2 and the dominated convergence theorem gives lim, oo EXY (Cn) =
S{Eqi [(1 — p")+]. Therefore, conditions (2) and (4) are equivalent. The fact that condition
(4) implies condition (5) follows from (3.4). Furthermore, if (5) holds, then (3.4) with T'= ¢
gives Eq; [ (1 — pij)+] = 1, which is equivalent to Q’ [,oij = O] =1, i.e., condition (4). [ |

Remark 3.12. Note that condition (3) of Proposition 3.11 is symmetric in ¢ € I and j € I.
This means that conditions (1), (2), (4), and (5) of Proposition 3.11 are also equivalent to the
corresponding conditions where the roles of i and j are interchanged.

Remark 3.13. Fix ¢ € I and j € I. Under any of the equivalent conditions of Proposition
3.11, the equality AXY (T) = Sg holds whenever T" € T is such that 7" > (. In fact, one can get
an expression for the difference Sg — AXY(T) for all T € T. Assuming any of the equivalent
conditions of Proposition 3.11, S} — AX¥(T) = SJQ/ [T < ¢] — EXY(T) holds for all T € T.
Since EXY(T) = SgEQj [(1- R¥)+; T < ¢] holds by Proposition 3.2, we obtain

SI—AXH(T) = SiEq, [1 ARET < g] — SiQ [RiTj >1,T < g} +SIE g [RiTj;R;Z <1,T< g] .

Now, QI [RE > 1, T < ¢] = Q[S} < S, S5 >0, T < (] = QIS < Sk, T <], the last
equality following from Q7 [S% =0,T < C] = 0 in Remark 2.2. Furthermore, note that (2.3)
gives
SEq |RERY < 1,T < ¢| = SiQ[SF < 84, 84 >0, T < (] = Si@'[$ < 8§, T < (],
the last equality following from the nonnegativity of S*. It follows that
S — AXU(T) = S§Q7 S5 < Shr, T < ¢] + SQ°[Sh < S5, T < ¢].
4. Parities involving exchange options.

4.1. Parities. The following result gives two parities—one regarding European-style and
another regarding American-style exchange options.

Proposition 4.1. Let i€l and j€ I, as well as T € T. Under Assumption 1.2, the
following parities hold:

(4.1) EXY(T) + SHQ [T < ¢] = EXI(T) + S{Q7 [T < ¢],
(4.2) AXY(T) + S§ = AXIY(T) + S2.
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Proof. Combining the relationships EXY(T) = Sg@j [S% < S%, T < C] - SiQ [S’T <
Sy, T < ¢] and EXP{(T) = SiQI[S] < Sk, T < ¢] — SJQ/[S < Sk, T < ¢], both following
from Proposition 3.2, one obtains EX¥(T") — EX/{(T) = Sg@j [T < (] — SiQ! [T < (], which
shows (4.1). Let ({n)nen be a sequence which foretells ¢ under all (QZ)Z ;- Replacing T' by

T A ¢, and using the fact that Q° <l =1= @’ [¢, < (] holds for all n € N, we obtain

EXY(TAG,)+ S = EXPY(TACy)+S). Sending n to infinity and using (3.3), (4.2) follows. [ ]
Remark 4.2. An alternative, more direct proof of (4.1) utilizes the equality

(4.3) (879 -8, +8°=(8"-8)  +8 foricTandjecl.

Applying (4.3) with the processes sampled at 7' € T on the event {T' < (}, multiplying both
sides by Y7 and taking expectation with respect to P, one obtains (4.1) by Proposition 3.2,
given the equalities Ep[Y7S5; T < ¢] = SiQ' [T < (] and Ep[Y7 ST < (] = S)QI [T < (]
that follow from (2.1).

For i € I, the quantity Sé@i [T < (] is the value of the contract that pays S} at time
T € T when T < (. Being a European-style contract, its value may be strictly less than
Sé, which happens exactly when Q¢ [¢ < T] > 0. In contrast, the value of the corresponding
“American” option that pays St at any chosen time 7 € To,r) for T' € T would be

(4.4) sup Ep [YTSi; T< C] = sup Sé@i [r<(]= Sé@i ¢ >0]= 56,
T€T0,1] T€T0,1]

since ¢ > 0 holds identically (recall the set-up of subsection 1.1). In models where Q! [¢ < oo] =
0 is valid for all 4 € I, EX¥(T) = AXY(T) holds for alli € I, j € I, and T € T with T < oo.
Then, (4.2) becomes a parity for both American-style and European-style exchange options
(the latter upon replacing AX¥ by EX% and AX/* by EX’"). The fact that (4.1), instead of
(4.2), holds for European options has sometimes lead to claims that the “usual” parity is not
valid in markets where bubbles exist. Of course, in order for a parity to hold, the contracts
used have to be of similar type. In this sense, (4.1) is the correct and perfectly valid parity for
European options; this has already been made clear in [Hul10] in the setting of the example of
subsection 4.2 below. On the other hand, when American-style exchange options are involved,
American-style contracts that pay off the stock price have to be used on both sides; in view
of (4.4), (4.2) is the parity to be expected. As noted in Remark 3.6 and demonstrated in the
proof of Proposition 4.1, the American parity (4.2) follows from the validity of (4.1) and the
fact that the approximating sequence (T'A(,)nen is the same for all choices of i € I and j € I.

In the special case where any of the equivalent conditions of Proposition 3.11 hold, two
more parities are valid, mixing European and American options.

Proposition 4.3. Under Assumption 1.2 and the validity of any of the equivalent conditions
of Proposition 3.11, the following parities hold:

AXU(T) + S§QF [T < ¢] = EXIN(T) + S,
EXY(T) + Si = AXP(T) + SIQ7 [T < ].

Proof. Since Proposition 3.11 gives AX9(T) = EXY(T) + Sg@j [T < ¢] and AXIY(T) =
EX7Y(T) + S{Q* [T < (], both relationships follow directly from (4.1). [ |
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Remark 4.4. The underlying reason for the parities in Proposition 4.3 under any of the
equivalent conditions of Proposition 3.11 is that the early exercise premium of the exchange
option with payoff (S% —Sh)4 at time T € T for i € I and j € I coincides with the difference
between the asset price Sé and S(J)Q [¢ > T, the latter being the “European value of a claim
that pays S% at time 7.7

4.2. An illustrative example involving the three-dimensional Bessel process. Consider
the case where E' = (0,00) and PP is such that Z under P is behaving like a three-dimensional
Bessel process with unit initial value. Note that P[( < oo] = 0. Let I = {0, 1}, and suppose
that S = K1y [ for some K € (0,00) and St = Z1jg[- It can be shown in a straightforward
way that Y = (1/Z)1jg [ is the (essentially, modulo P-evanescence) unique process such that
Y S? is a local martingale on (Q, F, P) for i € I. Clearly Q' = P, while Q" can be seen to
coincide with the probability on F such that Z is a Brownian motion starting from one and
killed when it reaches zero. The equality Q' [,001 = 0] = P[limy_,00 Z; = 00| = 1 follows from
the fact that Z behaves like three-dimensional Bessel process under P. In particular, we obtain
all relations of Proposition 3.11 when ¢ = 0 and j = 1, as well as when ¢ = 1 and j = 0.

As Q' [¢ < 00] = P[¢ < o] = 0, it follows that AX(T') = EX®(T) holds for all T € R,
Furthermore, Proposition 3.2 gives EX?/(T) = P [Zr > K]-KQ [Zp > K,( > T) for T € R,
Let @ : R — (0,1) denote the cumulative distribution function of the standard normal law,
and set ® = 1 — ®. The joint distribution of Brownian motion and its minimum gives

@O[ZT>K,§>T]:@<%>—§<%>, T e R,.

Furthermore, from properties of the noncentral chi-squared distribution one can obtain that

1-K —[(1+ K 2T 1+ K2\ | K
Pl|Z K=o — O — — — h(|{— TeR,.
\Zr > K] <ﬁ>+ <\/T>+Vwe’<p< 2T >S”‘ <T> <R+

(For the last formula see also [Hull0, Proposition 1].) It then follows that

EX°NT) = (1+ K)® (%) +(1-K)® (%) + \/?exp (—1 ;f2) sinh (?) , TeRy,

with the same equality valid for AX?Y(T). Equation (4.2) gives AX!0(T) = AX"Y(T) — (1 - K),
ie.,

AX'(T)=(1+K)® (%) ~(1-K)® (%) + \/gexp (—1 ‘;jf@) sinh (?) , TER,.

Furthermore, the law of the minimum of Brownian motion gives Q°[¢ < T] = 2®(1/V/T)
holding T € R, , which implies that EX'®(T") = AX!(T) — 2K®(1/+/T) holds for T € R,.

Note that the previous closed-form expressions give limz_, o, EX%! (T) =1=limr_ AXO1 (1),

as well as limp_,o EXY(T) = 0 < K = limp_, oo AXIO(T).
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