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FORWARD-CONVEX CONVERGENCE IN PROBABILITY

OF SEQUENCES OF NONNEGATIVE RANDOM VARIABLES

CONSTANTINOS KARDARAS AND GORDAN ŽITKOVIĆ

(Communicated by Richard C. Bradley)

Abstract. For a sequence (fn)n∈N of nonnegative random variables, we pro-
vide simple necessary and sufficient conditions for convergence in probability
of each sequence (hn)n∈N with hn ∈ conv({fn, fn+1, . . . }) for all n ∈ N to the
same limit. These conditions correspond to an essentially measure-free version
of the notion of uniform integrability.

Introduction

A growing body of work in applied probability in general, and in the field of
mathematical finance in particular, has singled out L0, the Fréchet space of a.s.-
equivalence classes of random variables topologized by the convergence in proba-
bility, as especially important (see, e.g., [3, 8, 12, 15]). The reasons for this are
multiple, but if a single commonality is to be found, it would have to be the fact
that L0 is essentially measure-free. More precisely, the L0-spaces built over the
same measure space with different probabilities will coincide as long as the proba-
bilities are equivalent. The desirability and necessity of the measure-free property
in mathematical finance stems from the central tenet of replication (popularized by
the work of Black, Scholes, Merton and others) which finds its mathematical expres-
sion in the theory of stochastic integration. Since replication amounts to complete
removal of risk, the probability measure under which a financial system is modeled
should not matter, modulo its negligible sets. On the other hand, given that gen-
eral stochastic integration does not admit a canonical pathwise definition, we are
left with L0 as the only proper setting for the theory. The only other measure-free
member of the (Lp)p∈[0,∞] family, namely L∞, turns out to be inadequately small
for a large number of modeling tasks.

It is important to note that the interplay between L0, the measure-free prop-
erty, and stochastic integration reaches further into the history than the relatively
recent progress in mathematical finance. The seminal work [14] of Stricker on the
semimartingale property under absolutely continuous changes of measures and the
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920 CONSTANTINOS KARDARAS AND GORDAN ŽITKOVIĆ

celebrated result of Dellacherie and Bichteler (see [1, 2, 7]) on the theory of L0-
integrators are but two early examples. Even before that, results related to the
measure-free structure of L0, but without relation to stochastic integration, have
been published (see, e.g., [4, 13]).

While L0 seems to fit the modeling requirements perfectly, there is a steep price
that needs to be paid for its use: a large number of classical functional-analytic
tools which were developed for locally convex (and, in particular, Banach) spaces
must be renounced. Indeed, L0 fails the local-convexity property in a dramatic
fashion: if (Ω,F ,P) is nonatomic, the topological dual of L0 is trivial (see [9,
Theorem 2.2, p. 18]). Therefore, a new set of tools which do not rely on local
convexity (and the related principles such as the Hahn-Banach theorem) are needed
to treat even the most basic applied problems. Specifically, convexity has to be
“supplied endogenously”, leading to various substitutes for indispensable notions
such as compactness (see [5, 11, 15]). A central idea behind their introduction is
that a passage to a sequence of convex combinations, instead of a more classical
passage to a subsequence, yields practically the same analytic benefit, while working
much better with the barren structure of L0. The situation is not as streamlined
as in the classical case where true subsequences are considered. Indeed, there are
examples of sequences (fn)n∈N in L0

+ (the nonnegative orthant of L0) that converge
to zero, whereas the set of all possible limits of the convergent sequences (hn)n∈N

such that hn ∈ conv({fn, fn+1, . . . }) is the entire L0
+ (see Example 1.2 for details).

It is a goal of the present paper to give necessary and sufficient conditions on
a sequence (fn)n∈N in L0

+ to be forward-convexly convergent, i.e., such that each
sequence of its forward-convex combinations (meaning a sequence (hn)n∈N with
hn ∈ conv({fn, fn+1, . . . }) for all n ∈ N) converges in L0

+ to the same limit. Ar-
guably, forward-convex convergence plays as natural a role in L0 as the strong
convergence does in L1-spaces. It rules out certain pathological limits and, as will
be shown, imposes a measure-free locally convex structure on the sequence. Put
simply, it brings the benefits of local convexity to a naturally nonconvex framework.

As far as sufficient conditions for forward-convex convergence are concerned,
the reader will quickly think of an example: almost sure convergence of the orig-
inal sequence will do, for instance. Other than the obvious ones, useful necessary
conditions are much harder to come by, and it is therefore surprising that one of
our main results has such a simple form. It says, inter alia, that the following two
statements are equivalent for sequences in L0

+:

(1) a sequence (fn)n∈N is forward-convexly convergent,
(2) there exists a probability measure Q in the equivalence class that generates

the topology of L0 such that (fn)n∈N is L1(Q)-convergent.

Effectively, this equivalence identifies forward-convex convergence as an essentially
measure-free version of the notion of uniform integrability.

Our main result also shows that failure of forward-convex convergence carries
an interesting structure with it. In fact, when an L0

+-valued sequence that is L0-
convergent to f ∈ L0

+ fails to be forward-convexly convergent, the set C of all
possible limits of its forward-convex combinations is a strict superset of {f}. A
surprising amendment we add to this statement is that f ≤ g holds in the almost
sure sense for all g ∈ C; in words, the limit f is always the smallest element in C.
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This extremality property can be viewed as an essentially measure-free no-loss-of-
mass condition on the original sequence, giving further support to the interpretation
of forward-convex convergence as a variant of uniform integrability.

After this introduction, we give a brief review of the notation and terminology
and state our main result in Section 1. The proof of our main result is presented
in Section 2.

1. The result

1.1. Preliminaries. Let (Ω,F ,P) be a probability space, and let Π be the collec-
tion of all probabilities on (Ω,F) that are equivalent to (the representative) P ∈ Π.
All probabilities in Π have the same sets of zero measure, which we shall call Π-null.
We write “Π-a.s.” to mean P-a.s. with respect to any, and then all, P ∈ Π.

By L+ we shall denote the set of all (equivalence classes modulo Π of) possibly
infinite-valued nonnegative random variables on (Ω,F). We follow the usual prac-
tice of not differentiating between a random variable and the equivalence class it
generates in L+. The expectation of f ∈ L+ under P ∈ Π is denoted by EP[f ]. For
fixed P ∈ Π, we define a metric dP on L+ via dP(f, g) = EP [|exp(−f)− exp(−g)|]
for f ∈ L+ and g ∈ L+. The topology on L+ that is induced by the previous metric
does not depend on P ∈ Π; convergence of sequences in this topology is simply
(extended) convergence in probability under any P ∈ Π.

A set C ⊆ L+ is convex if (αf + (1− α)g) ∈ C whenever f ∈ C, g ∈ C and
α ∈ [0, 1], where the multiplication convention 0 × ∞ = 0 is used. For A ⊆ L+,
conv(A) denotes the smallest convex set that contains A; conv(A) is just the set
of all possible finite convex combinations of elements in A. Further, conv(A) will
denote the L+-closure of conv(A).

The set of all f ∈ L+ such that {f = ∞} is Π-null is denoted by L0
+. We endow

L0
+ with the restriction of the L+-topology; convergence of sequences under this

topology is simply convergence in probability under any P ∈ Π. When we write
L0
+- limn→∞ fn = f , we tacitly imply that both the sequence (fn)n∈N and the limit

f are elements of L0
+.

1.2. Forward-convex convergence. The following is the central notion of the
paper:

Definition 1.1. Let (fn)n∈N be a sequence in L+. Any sequence (hn)n∈N with the
property that hn ∈ conv({fn, fn+1, . . .}) for all n ∈ N will be called a sequence of
forward-convex combinations of (fn)n∈N.

Since L0
+ is not a locally convex space, L0

+-convergence of a sequence (fn)n∈N

does not imply that sequences of forward-convex combinations (fn)n∈N L0
+-converge

to the same limit (or, for that matter, to any limit at all). We give an example of
a quite pathological behavior.

Example 1.2. Take Ω = (0, 1] equipped with the Borel σ-field and Lebesgue
measure P, and define the sequence (fn)n∈N by

fn = (m− 1)2m−1I((k−1)/2m−1, k/2m−1],

for n = 2m−1 + k− 1 with m ∈ N and 1 ≤ k ≤ 2m−1. It is straightforward to check
that L0

+- limn→∞ fn = 0, but as we shall show below, this sequence behaves in a
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strange way: for any f ∈ L0
+, there exists a sequence (hn)n∈N of forward-convex

combinations of (fn)n∈N such that L0
+- limn→∞ hn = f .

We start by noting that it suffices to establish the above claim only for f ∈ L∞
+

and, consequently, pick f ∈ L∞
+ with f ≤ M for some M ∈ R+. For each m ∈ N, let

Fm be the σ-field on Ω generated by the intervals ((k−1)2−m, k2−m], 1 ≤ k ≤ 2m.
For m ∈ N, define gm := EP[f | Fm]; by the martingale convergence theorem,
L0
+- limm→∞ gm = f . Furthermore,

gm =

2m∑
k=1

2mEP

[
fI((k−1)/2m, k/2m]

]
I((k−1)/2m, k/2m]

=

2m∑
k=1

EP

[
fI((k−1)/2m, k/2m]

]
m

f2m+k−1.

Set αm,k = m−1EP

[
fI((k−1)/2m, k/2m]

]
∈ R+ for m ∈ N and 1 ≤ k ≤ 2m so that,

for m ≥ M , we have
2m∑
k=1

αm,k =
EP[f ]

m
≤ M

m
≤ 1.

Define the sequence (hn)n∈N as follows: for m ∈ N with m < M , simply set
h2m−1+k−1 = f2m−1+k−1 for all 1 ≤ k ≤ 2m−1, while for m ∈ N with m ≥ M , set

h2m−1+k−1 =

(
1−

2m∑
�=1

αm,�

)
f2m +

2m∑
k=1

αm,�f2m+�−1 =

(
1− EP[f ]

m

)
f2m + gm

for all 1 ≤ k ≤ 2m−1. Then, (hn)n∈N is a sequence of forward-convex combinations
of (fn)n∈N, and L0

+- limn→∞ hn = f .

In the above example, note that the limit of (fn)n∈N is clearly minimal (in
the Π-a.s. sense) in the set of all possible limits of sequences of forward-convex
combinations of (fn)n∈N. As Theorem 1.3 will reveal, this did not happen by
chance.

1.3. The main result. Having introduced all the ingredients, we are ready to
state our main equivalence result.

Theorem 1.3. Let (fn)n∈N be a sequence in L0
+. Assume that

(CONV) L0
+- lim

n→∞
fn = f

holds for some f ∈ L0
+. Then, the following three statements are equivalent:

(1) Every sequence of forward-convex combinations of (fn)n∈N L0
+-converges to

f .
(2) Whenever a sequence of forward-convex combinations of (fn)n∈N is L+-

convergent, its L+-limit is f .
(3) There exists Q ∈ Π such that supn∈N EQ[fn] < ∞ and limn→∞ EQ

[
|fn −

f |
]
= 0.

• With (CONV) holding, and under any of the above equivalent conditions,
we have

(1.1) conv({f1, f2, . . .}) =
{∑

n∈N

αnfn +

(
1−

∑
n∈N

αn

)
f

∣∣∣∣ (αn)n∈N ∈ �N

}
,
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where �N is the infinite-dimensional simplex:

�N :=

{
α = (αn)n∈N

∣∣∣∣ αn ∈ R+ for all n ∈ N, and
∑
n∈N

αn ≤ 1

}
.

Furthermore, if a measure Q ∈ Π satisfies condition (3) above, then the
set conv({f1, f2, . . .}) is L1

+(Q)-compact and the L0
+-topology and the

L1
+(Q)-topology coincide on conv({f1, f2, . . .}). In particular, under the

L0
+-topology, conv({f1, f2, . . .}) is locally convex and compact.

• With (CONV) holding, if any of the equivalent conditions above fail, the set
C ⊆ L+ of all possible L+-limits of forward-convex combinations of (fn)n∈N

is such that {f} � C, and f is minimal in C in the sense that f ≤ g holds
Π-a.s. for all g ∈ C.

In the special case f = 0, the equivalences of the above three statements and the
properties discussed after them hold even without assumption (CONV).

Implications (1) ⇒ (2) and (3) ⇒ (1) are straightforward, and (CONV) is not
required. Indeed, (1) ⇒ (2) is completely trivial. Also, the implication (3) ⇒ (1)
is immediate since

lim sup
n→∞

EQ [|hn − f |] ≤ lim sup
n→∞

(
sup

N�k≥n
EQ [|fk − f |]

)
= 0

holds for any sequence (hn)n∈N of forward-convex combinations of (fn)n∈N. The
proof of the implication (2) ⇒ (3) is significantly harder and will be discussed in
Section 2.

Remark 1.4. Consider an L0
+-convergent sequence (fn)n∈N, and let f be its limit

f := L0
+- limn→∞ fn. From a qualitative viewpoint, Theorem 1.3 aids our under-

standing of the cases where a sequence (hn)n∈N of forward-convex combinations of
(fn)n∈N L0

+-converges to a limit other than f . Indeed, in those cases f is “subopti-
mal” in a very strong sense: all other possible limits of sequences of forward-convex
combinations of (fn)n∈N dominate it in the Π-a.s. pointwise sense.

Remark 1.5. In the special case f = 0, (CONV) is not needed in Theorem 1.3.
However, when f 	= 0, (CONV) is crucial for (2) ⇒ (1) of Theorem 1.3 to hold. We
present an example to illustrate this fact. Assume that (Ω,F ,P) is rich enough to
accommodate a sequence (fn)n∈N of random variables that are independent under
P and have identical distributions given by P[fn = 0] = P[fn = 2] = 1/2. By
Kolmogorov’s zero-one law, it follows that any possible L+-limit of sequences of
convex combinations of (fn)n∈N has to be constant. Now, (fn)n∈N is uniformly
integrable (in fact, uniformly bounded) under P, which means that the set C of all
possible L+-limits of sequences of convex combinations of (fn)n∈N is C = {1}. With
f = 1 we have (2) of Theorem 1.3 holding. However, both (1) and (3) fail.

Remark 1.6. The reader will note that we state our main result, Theorem 1.3,
under the assumption that all fn are nonnegative. While this assumption seems
to be crucial for our method of proof to apply, we were unable to construct a
counterexample to the appropriately modified version of the theorem for a general
sequence (fn)n∈N ⊆ L0.

Remark 1.7. Forward-convexly convergent sequences appear quite naturally in ap-
plications. Indeed, it has been shown in [6, Proposition A1.1] that every sequence
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in L0
+ whose convex hull is bounded in probability admits an a.s.-convergent (and

therefore forward-convexly convergent) sequence of forward-convex combinations.
This statement can also be deduced from Komlós’ lemma (see [11]).

2. Proof of Theorem 1.3

2.1. Preparatory remarks. We start by mentioning a result [6, Lemma A1.1]
which will be used in a few places throughout the proof of Theorem 1.3. Recall
that a set B ⊆ L0

+ is called L0
+-bounded if ↓ lim�→∞ supf∈B P[f > �] = 0 holds for

some (and then for all) P ∈ Π. If B ⊆ L0
+ is L0

+-bounded, its L+-closure is a subset
of L0

+ and coincides with its L0
+-closure.

Lemma 2.1. Let (gn)n∈N be an L0
+-valued sequence. Then, there exists h ∈ L+

and a sequence (hn)n∈N of forward-convex combinations of (gn)n∈N such that L+-
limn→∞ hn = h. If, furthermore, conv {gn | n ∈ N} is L0

+-bounded, then h ∈ L0
+.

We introduce some notation that will be used throughout the proof: for n ∈ N,
set Cn := conv ({fn, fn+1, . . .}) ⊆ L+ so that C =

⋂
n∈N Cn. Also, let Sn ⊆ L+ be

the solid hull of Cn: g ∈ Sn if and only if 0 ≤ g ≤ h for some h ∈ Cn. It is clear
that Sn is convex and solid and that Cn ⊆ Sn. Furthermore, set C :=

⋂
n∈N Cn ⊆

L+. It is clear that C is the set of all possible L+-limits of sequences of forward-
convex combinations of (fn)n∈N. In particular, condition (2) of Theorem 1.3 can
be succinctly written as C = {f}.

We shall split the proof into several steps, indicating each time what is being
proved or discussed. Until the end of subsection 2.3, condition (CONV) is not
assumed.

2.2. C ⊆ L0
+ implies that conv({f1, f2, . . .}) is L0

+-bounded. We start by show-
ing that Sn is L+-closed, for n ∈ N. For that, we pick an Sn-valued sequence (gk)k∈N

that converges P-a.s. to g ∈ L+. Let (hk)k∈N be a Cn-valued sequence with gk ≤ hk

for all k ∈ N. By Lemma 2.1, we can extract a sequence (h̃k)k∈N of forward-convex

combinations of (hk)k∈N such that h := limk→∞ h̃k ∈ L+ Π-a.s. exists. Of course,
h ∈ Cn, and it is straightforward that g ≤ h. We conclude that g ∈ Sn; i.e., Sn is
L+-closed.

Let S =
⋂

n∈N Sn; then, C ⊆ S and S is L+-closed, convex and solid. We claim
that S actually is the solid hull of C; to show this, we only need to establish that
for any g ∈ S there exists h ∈ C with g ≤ h. For all n ∈ N, since g ∈ S ⊆ Sn,
there exists hn ∈ Cn with g ≤ hn. By another application of Lemma 2.1, we can

extract a sequence (h̃n)n∈N of forward-convex combinations of (hn)n∈N such that

h := L+- limk→∞ h̃k exists. Then, h ∈ C and g ≤ h.
Each Sn is L+-closed, convex and solid; therefore, a straightforward general-

ization of [3, Lemma 2.3] gives, for each n ∈ N, the existence of a partition Ω =
Φn ∪ (Ω \ Φn), where Φn ∈ F , {fIΦn

| f ∈ Sn} is L0
+-bounded, while hIΩ\Φn

∈ Sn

for all h ∈ L+. Clearly, Cn ⊇ Cn+1 implies Φn ⊆ Φn+1, for all n ∈ N. However,
since fn ∈ L0

+, i.e., {fn = ∞} is Π-null for all n ∈ N, it follows that Φn+1 = Φn for
all n ∈ N. In other words, Φn = Φ1 for all n ∈ N. Then, hIΩ\Φ1

∈ S for all h ∈ L+.

Since C ⊆ L0
+, and, therefore, S ⊆ L0

+ as well, it follows that Ω \ Φ1 is Π-null.
Therefore, S1 is L0

+-bounded, which completes this part of the proof. Observe that
all Sn, n ∈ N, are convex, solid, L0

+-bounded, and L0
+-closed; we shall use this later.
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2.3. Equivalence of (1), (2) and (3) in Theorem 1.3 when f = 0. As already
discussed, the proofs of (1) ⇒ (2) and (3) ⇒ (1) are immediate, and (CONV) is
not used. Here, we prove (2) ⇒ (3) when f = 0 without assuming (CONV).

Since S1 is convex, L0
+-bounded and L0

+-closed, there exists P ∈ Π such that
suph∈S1

EP[h] < ∞. Although this result is somewhat folklore, we provide here a

quick argument for its validity. Fixing a baseline probability P ∈ Π, [10, Theo-

rem 1.1(4)] implies that there exists ĥ ∈ S1 such that E
P
[h/(1 + ĥ)] ≤ 1 holds for

all h ∈ S1. Define P via the recipe dP/dP = c/
(
1 + ĥ

)
, where c = 1/EP[1/(1 + ĥ)].

Then, P ∈ Π and

sup
h∈S1

EP[h] = c sup
h∈S1

EP

[
h

1 + ĥ

]
≤ c < ∞.

In particular, we have supn∈N EP[fn] < ∞. Given the existence of such a P ∈ Π, the
following result will be useful in order to extract a probability Q ∈ Π that satisfies
condition (3) of Theorem 1.3.

Lemma 2.2. Fix P ∈ Π with supn∈N EP[fn] < ∞. Then, the following statements
are equivalent:

(1) For some Q ∈ Π, supn∈N EQ[fn] < ∞ and limn→∞ EQ[fn] = 0.
(2) For any ε > 0, there exists Aε ∈ F such that limn→∞ EP[fnIAε

] = 0 and
P[Ω \Aε] ≤ ε.

Proof. First assume (1) in the statement of Lemma 2.2. Define Z := dQ/dP; then,
P[Z > 0] = 1. For fixed ε > 0, let δ = δ(ε) > 0 be such that, with Aε := {Z > δ} ∈
F , P[Ω \Aε] ≤ ε holds. Then,

lim sup
n→∞

EP[fnIAε
] = lim sup

n→∞
EQ

[
(1/Z)fnI{Z>δ}

]
≤ (1/δ) lim sup

n→∞
EQ[fn] = 0.

Now, assume (2) in the statement of Lemma 2.2. For each k ∈ N, let Bk ∈ F
be such that P[Ω \ Bk] ≤ 1/k and limn→∞ EP[fnIBk

] = 0. By replacing Bk with⋃k
m=1 Bm for each k ∈ N consecutively, we may assume without loss of generality

that (Bk)k∈N is a nondecreasing sequence of sets in F with limk→∞ P[Bk] = 1, as
well as that limn→∞ EP[fnIBk

] = 0 holds for each fixed k ∈ N. Define B0 = ∅,
n0 = 0, and a strictly increasing N-valued sequence (nk)k∈N with the following
property: for all k ∈ N, EP[fnIBk

] ≤ 1/k holds for all n ≥ nk−1. (Observe that
this is trivially valid for k = 1.) Then, define a sequence (En)n∈N of sets in F
by setting En = Bk whenever nk−1 ≤ n < nk. It is clear that (En)n∈N is a
nondecreasing sequence, that limn→∞ P[En] = 1, and that limn→∞ EP[fnIEn

] = 0.
With E0 := ∅, define Z := c

∑
n∈N 2−nIEn\En−1

, where c > 0 is a normalizing
constant in order to ensure that EP[Z] = 1. Define Q ∈ Π via dQ/dP = Z and
let K := supn∈N EP[fn] < ∞ so that supn∈N EQ[fn] ≤ c supn∈N EP[fn] = cK < ∞.
Furthermore,

EQ[fn] = EQ[fnIEn
] + EQ[fnIΩ\En

] ≤ cEP[fnIEn
] + c2−nEP[fnIΩ\En

]

≤ cEP[fnIEn
] + cK2−n.

Since limn→∞ EP[fnIEn
] = 0, we obtain limn→∞ EQ[fn] = 0, which completes the

argument. �
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We continue with the proof of the implication (2) ⇒ (3), fixing P ∈ Π with
supn∈N EP[fn] < ∞ until the end of subsection 2.3.

For any A ⊆ L0
+, define its polar A◦ :=

{
g ∈ L0

+ | EP[gh] ≤ 1 for all h ∈ A
}
. It

is straightforward that
(⋃

n∈N An

)◦
=

⋂
n∈N A◦

n, for all collections {An | n ∈ N} of

subsets of L0
+. Also, consider the bipolar A◦◦ := (A◦)◦ of A; Theorem 1.3 of [3]

states that if a set is convex and solid, A◦◦ coincides with the L0
+-closure of A.

For each n ∈ N, Sn ⊆ L0
+ is convex, solid and L0

+-closed; therefore, S◦◦
n = Sn.

Since S =
⋂

n∈N Sn is the solid hull of C = {0}, i.e., S = {0}, we have( ⋃
n∈N

S◦
n

)◦◦

=

( ⋂
n∈N

S◦◦
n

)◦

=

( ⋂
n∈N

Sn

)◦

= {0}◦ = L0
+.

Since
⋃

n∈N S◦
n is convex and solid, the above means that the L0

+-closure of
⋃

n∈N S◦
n

is L0
+.
Fix ε > 0. Define an N-valued and strictly increasing sequence (nk)k∈N with the

following property: for all k ∈ N there exists gk ∈ S◦
nk

such that P[|gk − 2k| ≤ k] ≤
ε2−(k+1). (This can be done in view of the fact that the L0

+-closure of
⋃

n∈N S◦
n is

L0
+.) In particular, P[gk ≤ k] ≤ ε2−(k+1) and EP[gkfn] ≤ 1 hold for all k ∈ N and

n ≥ nk. Define Aε :=
⋂

k∈N {gk > k}; then, P[Ω \ Aε] ≤ ε. Furthermore, for all
k ∈ N and n ≥ nk,

EP[fnIAε
] ≤ EP[fnI{gk>k}] ≤ EP[(gk/k)fnI{gk>k}] ≤ (1/k)EP[gkfn] ≤ 1/k.

Then, limn→∞ EP[fnIAε
] = 0. Invoking Lemma 2.2, we obtain the existence of

Q ∈ Π such that supn∈N EQ[fn] < ∞ and limn→∞ EQ[fn] = 0.

2.4. A domination result. The next simple result will be important for estab-
lishing the validity of Theorem 1.3.

Proposition 2.3. Let (fn)n∈N satisfy (CONV). Furthermore, let (gn)n∈N be a
sequence of forward-convex combinations of (fn)n∈N such that L+-limn→∞ gn = g.
Then, Π-a.s., f ≤ g.

Proof. By way of a contradiction, assume that P[f > g] > 0, where P ∈ Π, and
consider the probability P which is P conditioned on the event {f > g}. Note that
P[f > g] = 1 and that limn→∞ fn = f and limn→∞ gn = g still hold under the
measure P. Let U : [0,∞] �→ [0, 1] be the strictly increasing and concave function
defined via U(x) = 1−exp(−x) for x ∈ [0,∞]. The dominated convergence theorem
implies that limn→∞ EP [U(fn)] = EP [U(f)] and limn→∞ EP [U(gn)] = EP [U(g)].
In view of the concavity of U , one has EP [U(gn)] ≥ infk≥n EP [U(fk)] for all n ∈
N. Since limn→∞ infk≥n EP [U(fk)] = EP [U(f)], we conclude that EP [U(f)] ≤
EP [U(g)]. The last inequality combined with the fact that U is strictly increasing
contradicts P[f > g] = 1. Therefore, we conclude that, Π-a.s., f ≤ g. �

2.5. Equivalence of (1), (2) and (3) in Theorem 1.3: general case. We shall
now tackle the general case f ∈ L0

+, working under the assumption (CONV). Of
course (1) ⇒ (2) and (3) ⇒ (1) are still trivially valid. The proof of (2) ⇒ (3) will
be reduced to the special case f = 0, which we have already established, via the
following result.
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Lemma 2.4. The following statements are equivalent:

(i) Every sequence of forward-convex combinations of (fn)n∈N L0
+-converges to

f .
(ii) Every sequence of forward-convex combinations of (|fn − f |)n∈N L0

+-
converges to zero.

Proof. As (ii) ⇒ (i) is immediate, we only treat the implication (i) ⇒ (ii). For
x ∈ R and y ∈ R, we denote by x+ the positive part of x and by x∧y the minimum
between x and y. We shall first argue that every sequence of forward-convex com-
binations of ((f − fn)+)n∈N L0

+-converges to zero. The facts that 0 ≤ fn ∧ f ≤ f

for all n ∈ N and L0
+-limn→∞ fn = f , coupled with Proposition 2.3, imply that

whenever a sequence of forward-convex combinations of (fn ∧ f)n∈N L+-converges,
the limit is f . Since (f − fn)+ = f − f ∧ fn, it follows that whenever a sequence
of forward-convex combinations of ((f − fn)+)n∈N L+-converges, the limit is zero.
From the special case of Theorem 1.3 that we have established previously, it actually
follows that every sequence of forward-convex combinations of ((f − fn)+)n∈N L+-
converges to zero. Note also that this implies that every sequence of forward-convex
combinations of ((f ∧ fn)+)n∈N L+-converges to f . We now proceed to show that
every sequence of forward-convex combinations of ((fn − f)+)n∈N L+-converges to
zero, which will complete the argument. The fact that (fn − f)+ = fn − f ∧ fn
for all n ∈ N and Proposition 2.3 imply that whenever a sequence of forward-
convex combinations of ((fn − f)+)n∈N L+-converges, its limit is zero. Once again,
by the special case of Theorem 1.3 that we have established previously, it actu-
ally follows that every sequence of forward-convex combinations of ((fn − f)+)n∈N

L+-converges to zero. This completes the proof. �

In view of the result of Lemma 2.4 and the treatment in subsection 2.3, we obtain
the existence ofQ ∈ Π such that supn∈N EQ[|fn−f |] < ∞ and limn→∞ EQ[|fn−f |] =
0. Replacing Q, if necessary, by Q′ ∈ Π defined via dQ′/dP = c(1 + f)−1 where

c =
(
EQ[(1 + f)−1]

)−1
, we may further assume that EQ[f ] < ∞; in other words,

supn∈N EQ[fn] < ∞ and limn→∞ EQ[|fn − f |] = 0.

2.6. Proof of the claims after the equivalences. To begin with, assume that
any one of the equivalent statements of Theorem 1.3 is not valid. Then, we must
have that {f} � C, since C = {f} is actually statement (2). Then, Proposition 2.3
implies that for all g ∈ C we have, Π-a.s., f ≤ g.

Continuing, assume the validity of any of the equivalent statements of Theo-
rem 1.3. The following result will help to establish all the properties of C1 that are
mentioned in Theorem 1.3.

Lemma 2.5. Let C′
1 ⊆ L+ be the set on the right-hand side of (1.1). If Q ∈ Π is

such that condition (3) of Theorem 1.3 holds, then C′
1 is L1

+(Q)-compact.

Proof. First of all, since supn∈N EQ[fn] < ∞, which in particular implies that
EQ[f ] < ∞ by Fatou’s lemma, it is clear that supg∈C′

1
EQ[g] < ∞; in particular,

C′
1 ⊆ L0

+.
We shall show that any sequence (gk)k∈N in C′

1 has an L1
+(Q)-convergent sub-

sequence. For all k ∈ N, write gk =
∑

n∈N αk,nfn + (1 −
∑

n∈N αk,n)f , where

αk = (αk,n)n∈N ∈ �N. By a diagonalization argument, we can find a subsequence
of (gk)k∈N, which we shall still denote by (gk)k∈N, such that αn := limk→∞ αk,n
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exists for all n ∈ N. Fatou’s lemma implies that α = (αn)n∈N ∈ �N. Let g :=∑
n∈N αnfn + (1 −

∑
n∈N αn)f . We shall show that limk→∞ EQ[|gk − g|] = 0. For

ε > 0, pick N = N(ε) ∈ N such that supn∈N EQ[|fN+n − f |] ≤ ε/2. Define g(N) :=∑N
n=1 αnfn+(1−

∑N
n=1 αn)f , as well as g

(N)
k :=

∑N
n=1 αk,nfn+(1−

∑N
n=1 αk,n)f

for all k ∈ N. Observe that

EQ

[∣∣∣g(N) − g
∣∣∣] = EQ

[∣∣∣∣∣∑
n∈N

αN+n(fN+n − f)

∣∣∣∣∣
]
≤

∑
n∈N

αN+nEQ [|fN+n − f |] ≤ ε

2
.

Similarly, EQ

[∣∣g(N)
k − gk

∣∣] ≤ ε/2 holds for all k ∈ N. Furthermore,

lim sup
k→∞

EQ

[∣∣∣g(N)
k − g(N)

∣∣∣] ≤ lim sup
k→∞

(
N∑

n=1

|αk,n − αn|EQ[|fn − f |]
)

= 0.

It follows that lim supk→∞ EQ [|gk − g|] ≤ ε. Since ε > 0 is arbitrary, we have
limk→∞ EQ [|gk − g|] = 0. �

To finish the proof of Theorem 1.3, it remains to show that C1 = C′
1 and that

the L0
+-topology coincides with the L1

+(Q)-topology on C1. First of all, since
f ∈ C1, fn ∈ C1 for all n ∈ N, and C1 is closed, we have C′

1 ⊆ C1. On the
other hand, conv({f1, f2, . . .}) ⊆ C′

1; since C′
1 is L0

+-closed by Lemma 2.5, C1 =
conv({f1, f2, . . .}) ⊆ C′

1. Therefore, C1 = C′
1. Finally, let (gk)k∈N be a C1-valued

and L0
+-convergent sequence, and call g := L0

+- limk→∞ gk ∈ C1. Lemma 1.1
implies that every subsequence of (gk)k∈N has a further subsequence that is L1

+(Q)-
convergent. All the latter subsequences have to L1

+(Q)-converge to g, which means
that (gk)k∈N L1

+(Q)-converges to g.
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(2001d:60044)

6. Freddy Delbaen and Walter Schachermayer, A general version of the fundamental theorem of
asset pricing, Math. Ann. 300 (1994), no. 3, 463–520. MR1304434 (95m:90022b)
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