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FORWARD-CONVEX CONVERGENCE IN PROBABILITY
OF SEQUENCES OF NONNEGATIVE RANDOM VARIABLES

CONSTANTINOS KARDARAS AND GORDAN ZITKOVIC

(Communicated by Richard C. Bradley)

ABSTRACT. For a sequence (fn)nen of nonnegative random variables, we pro-
vide simple necessary and sufficient conditions for convergence in probability
of each sequence (hn)pen With hy, € conv({fn, frnt1,...}) for all n € N to the
same limit. These conditions correspond to an essentially measure-free version
of the notion of uniform integrability.

INTRODUCTION

A growing body of work in applied probability in general, and in the field of
mathematical finance in particular, has singled out LY, the Fréchet space of a.s.-
equivalence classes of random variables topologized by the convergence in proba-
bility, as especially important (see, e.g., [3, 8 12l [I5]). The reasons for this are
multiple, but if a single commonality is to be found, it would have to be the fact
that L0 is essentially measure-free. More precisely, the L%-spaces built over the
same measure space with different probabilities will coincide as long as the proba-
bilities are equivalent. The desirability and necessity of the measure-free property
in mathematical finance stems from the central tenet of replication (popularized by
the work of Black, Scholes, Merton and others) which finds its mathematical expres-
sion in the theory of stochastic integration. Since replication amounts to complete
removal of risk, the probability measure under which a financial system is modeled
should not matter, modulo its negligible sets. On the other hand, given that gen-
eral stochastic integration does not admit a canonical pathwise definition, we are
left with LO as the only proper setting for the theory. The only other measure-free
member of the (ILP),¢[0,00] family, namely I.°°, turns out to be inadequately small
for a large number of modeling tasks.

It is important to note that the interplay between L, the measure-free prop-
erty, and stochastic integration reaches further into the history than the relatively
recent progress in mathematical finance. The seminal work [I4] of Stricker on the
semimartingale property under absolutely continuous changes of measures and the
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920 CONSTANTINOS KARDARAS AND GORDAN ZITKOVIC

celebrated result of Dellacherie and Bichteler (see [Il 2 [7]) on the theory of L°-
integrators are but two early examples. Even before that, results related to the
measure-free structure of L%, but without relation to stochastic integration, have
been published (see, e.g., [4, [13]).

While LY seems to fit the modeling requirements perfectly, there is a steep price
that needs to be paid for its use: a large number of classical functional-analytic
tools which were developed for locally convex (and, in particular, Banach) spaces
must be renounced. Indeed, L fails the local-convexity property in a dramatic
fashion: if (2, F,P) is nonatomic, the topological dual of LY is trivial (see [9]
Theorem 2.2, p. 18]). Therefore, a new set of tools which do not rely on local
convexity (and the related principles such as the Hahn-Banach theorem) are needed
to treat even the most basic applied problems. Specifically, convexity has to be
“supplied endogenously”, leading to various substitutes for indispensable notions
such as compactness (see [5, [T, [15]). A central idea behind their introduction is
that a passage to a sequence of convex combinations, instead of a more classical
passage to a subsequence, yields practically the same analytic benefit, while working
much better with the barren structure of L°. The situation is not as streamlined
as in the classical case where true subsequences are considered. Indeed, there are
examples of sequences (fy,)nen in L‘i (the nonnegative orthant of V) that converge
to zero, whereas the set of all possible limits of the convergent sequences (hy,)nen
such that h,, € conv({fn, fut1,...}) is the entire LY (see Example [L2 for details).

It is a goal of the present paper to give necessary and sufficient conditions on
a sequence (fn)nen in ]LE)F to be forward-convezly convergent, i.e., such that each
sequence of its forward-convex combinations (meaning a sequence (h,)neny with
hn € conv({fn, fn41,---}) for all n € N) converges in LY to the same limit. Ar-
guably, forward-convex convergence plays as natural a role in LY as the strong
convergence does in L!-spaces. It rules out certain pathological limits and, as will
be shown, imposes a measure-free locally convex structure on the sequence. Put
simply, it brings the benefits of local convexity to a naturally nonconvex framework.

As far as sufficient conditions for forward-convex convergence are concerned,
the reader will quickly think of an example: almost sure convergence of the orig-
inal sequence will do, for instance. Other than the obvious ones, useful necessary
conditions are much harder to come by, and it is therefore surprising that one of
our main results has such a simple form. It says, inter alia, that the following two
statements are equivalent for sequences in ]Lg_:

(1) a sequence (fn)nen is forward-convexly convergent,
(2) there exists a probability measure Q in the equivalence class that generates
the topology of LY such that (f,)nen is L!(Q)-convergent.

Effectively, this equivalence identifies forward-convex convergence as an essentially
measure-free version of the notion of uniform integrability.

Our main result also shows that failure of forward-convex convergence carries
an interesting structure with it. In fact, when an Lgr—valued sequence that is L0-
convergent to f € ]Lg_ fails to be forward-convexly convergent, the set C of all
possible limits of its forward-convex combinations is a strict superset of {f}. A
surprising amendment we add to this statement is that f < g holds in the almost
sure sense for all g € C; in words, the limit f is always the smallest element in C.
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FORWARD-CONVEX CONVERGENCE OF SEQUENCES IN 1L0+ 921

This extremality property can be viewed as an essentially measure-free no-loss-of-
mass condition on the original sequence, giving further support to the interpretation
of forward-convex convergence as a variant of uniform integrability.

After this introduction, we give a brief review of the notation and terminology
and state our main result in Section [Il The proof of our main result is presented
in Section

1. THE RESULT

1.1. Preliminaries. Let (2, F,P) be a probability space, and let II be the collec-
tion of all probabilities on (€2, F) that are equivalent to (the representative) P € II.
All probabilities in IT have the same sets of zero measure, which we shall call IT-null.
We write “Il-a.s.” to mean P-a.s. with respect to any, and then all, P € II.

By L we shall denote the set of all (equivalence classes modulo II of) possibly
infinite-valued nonnegative random variables on (Q, F). We follow the usual prac-
tice of not differentiating between a random variable and the equivalence class it
generates in L. The expectation of f € L under P € II is denoted by Ep[f]. For
fixed P € II, we define a metric dp on L4 via dp(f,g) = Ep [|lexp(—f) — exp(—9)]]
for f € Ly and g € L. The topology on L that is induced by the previous metric
does not depend on P € II; convergence of sequences in this topology is simply
(extended) convergence in probability under any P € II.

A set C C L, is convex if (af + (1 —a)g) € C whenever f € C, g € C and
a € [0,1], where the multiplication convention 0 x co = 0 is used. For A C L,
conv(A) denotes the smallest convex set that contains A; conv(A) is just the set
of all possible finite convex combinations of elements in 4. Further, conv(A) will
denote the L -closure of conv(A).

The set of all f € Ly such that {f = oo} is II-null is denoted by LY. We endow
]LE)F with the restriction of the L -topology; convergence of sequences under this
topology is simply convergence in probability under any P € II. When we write
]L(«JF lim,, 0o fr = f, we tacitly imply that both the sequence (f,)nen and the limit
[ are elements of LY.

1.2. Forward-convex convergence. The following is the central notion of the
paper:
Definition 1.1. Let (f,)nen be a sequence in L. Any sequence (hy,)nen with the

property that h,, € conv({f,, fnt1,...}) for all n € N will be called a sequence of
forward-convex combinations of (fp,)nen-

Since LY is not a locally convex space, L -convergence of a sequence (fy,)nen
does not imply that sequences of forward-convex combinations ( f,,)nen Lg—converge
to the same limit (or, for that matter, to any limit at all). We give an example of
a quite pathological behavior.

Example 1.2. Take Q = (0,1] equipped with the Borel o-field and Lebesgue
measure P, and define the sequence (fy,)nen by

fn= (m — 1)2m_11[((k_1)/2'm.717 k/2m—1],

forn=2""1'4+k—1withm & Nand 1<k <2m™ L It is straightforward to check
that Lg- lim, o fn = 0, but as we shall show below, this sequence behaves in a
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922 CONSTANTINOS KARDARAS AND GORDAN ZITKOVIC

strange way: for any f € ]LE)H there exists a sequence (hy,,)nen of forward-convex
combinations of (f,)nen such that ]Lg— lim, o hy = f.

We start by noting that it suffices to establish the above claim only for f € L°
and, consequently, pick f € IL5° with f < M for some M € R,. For each m € N, let
Fm be the o-field on Q generated by the intervals ((k—1)27™, k27™], 1 < k < 2™.
For m € N, define g,, := Ep[f | Fn]; by the martingale convergence theorem,
]L'i— lim,, 00 gm = f. Furthermore,

om

gm = 2" Be [fI(k-1)/2m, k2] Lh=1)j2m, k /2]
k=1

f27”+k‘—1 .

_Z]EP (L /2m kj2m]]

Set ) = mEp [fH((k,l)/Qm,k/Qm]] € Ry for m € Nand 1 < k < 2™ so that,
for m > M, we have
gm

E Oémk—

Define the sequence (hn)neN as follows: for m € N with m < M, simply set
hom-1,p 1 = f2m71+k,1 for all 1 < k < 2™~! while for m € N with m > M, set

E
hom-14p_1 = (1 - Zam L/) fam + Zam efomge1 = (1 - %) fom + gm

(=1

M
1Moy
m

for all 1 < k < 2™~ L Then, (hy,)nen is a sequence of forward-convex combinations
of (fn)nen, and LY-lim, o0 hy, = f.

In the above example, note that the limit of (f,)nen is clearly minimal (in
the II-a.s. sense) in the set of all possible limits of sequences of forward-convex
combinations of (f,)nen. As Theorem [[3] will reveal, this did not happen by
chance.

1.3. The main result. Having introduced all the ingredients, we are ready to
state our main equivalence result.

Theorem 1.3. Let (fn)nen be a sequence in LY. Assume that
(CONV) LY- lim f, = f

holds for some f € ]L?r. Then, the following three statements are equivalent:

(1) Every sequence of forward-convex combinations of (fn)nen LY. -converges to
7.

(2) Whenever a sequence of forward-convex combinations of (fn)nen s Lo -
convergent, its Ly -limit is f.

(3) There exists Q € 11 such that sup, ey Eqlfyn] < 0o and limy, o0 Eg[|f —

fll =o0.
o With (CONV) holding, and under any of the above equivalent conditions,
we have
(1'1) COHV({flvaa'”}) = {Zanfn“‘ (1_Zan> an neN € A }
neN neN
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FORWARD-CONVEX CONVERGENCE OF SEQUENCES IN 1L0+ 923

where AN is the infinite-dimensional simplez:

AN = {a = (@n)nen

an € Ry for alln € N, and Zangl}.
neN

Furthermore, if a measure Q € II satisfies condition (3) above, then the
set conv({f1, fa,...}) is L. (Q)-compact and the L9 -topology and the
Lg(@)-topologoincide on m({fl,fg, ...}). In particular, under the
LY -topology, conv ({ f1, fa, .. .}) is locally convex and compact.

o With ([CORV)) holding, if any of the equivalent conditions above fail, the set
C C Ly of all possible L -limits of forward-conver combinations of (fn)nen
is such that {f} & C, and f is minimal in C in the sense that f < g holds
I-a.s. for all g € C.

In the special case f =0, the equivalences of the above three statements and the
properties discussed after them hold even without assumption (CONVY)).

Implications (1) = (2) and (3) = (1) are straightforward, and (CONYV)) is not
required. Indeed, (1) = (2) is completely trivial. Also, the implication (3) = (1)
is immediate since

limsup Eq [|hy, — f|] < limsup < sup Eg[|fx — f|]) =0
n—oo n—o00 N3k>n

holds for any sequence (h;,)nen of forward-convex combinations of (fy)nen. The

proof of the implication (2) = (3) is significantly harder and will be discussed in

Section 2L

Remark 1.4. Consider an ]L?r—convergent sequence (fn)nen, and let f be its limit
= ]Lg_- lim,, o0 frn. From a qualitative viewpoint, Theorem [[.3] aids our under-
standing of the cases where a sequence (hy,)nen of forward-convex combinations of
(fn)nen Lg—converges to a limit other than f. Indeed, in those cases f is “subopti-
mal” in a very strong sense: all other possible limits of sequences of forward-convex
combinations of (f,)nen dominate it in the II-a.s. pointwise sense.

Remark 1.5. In the special case f = 0, (CONV]) is not needed in Theorem [[3
However, when f # 0, (CONY)) is crucial for (2) = (1) of Theorem [[.3] to hold. We
present an example to illustrate this fact. Assume that (2, 7, P) is rich enough to
accommodate a sequence (f,,)nen of random variables that are independent under
P and have identical distributions given by P[f, = 0] = P[f, = 2] = 1/2. By
Kolmogorov’s zero-one law, it follows that any possible L,-limit of sequences of
convex combinations of (f,)nen has to be constant. Now, (f,)nen is uniformly
integrable (in fact, uniformly bounded) under P, which means that the set C of all
possible L -limits of sequences of convex combinations of (f,)nen is C = {1}. With
f =1 we have (2) of Theorem [[3 holding. However, both (1) and (3) fail.

Remark 1.6. The reader will note that we state our main result, Theorem [I.3]
under the assumption that all f,, are nonnegative. While this assumption seems
to be crucial for our method of proof to apply, we were unable to construct a
counterexample to the appropriately modified version of the theorem for a general
sequence (fp)nen C LO.

Remark 1.7. Forward-convexly convergent sequences appear quite naturally in ap-
plications. Indeed, it has been shown in [6, Proposition A1.1] that every sequence
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924 CONSTANTINOS KARDARAS AND GORDAN ZITKOVIC

in L& whose convex hull is bounded in probability admits an a.s.-convergent (and
therefore forward-convexly convergent) sequence of forward-convex combinations.
This statement can also be deduced from Komlés’ lemma (see [11]).

2. PrRoOF oF THEOREM [L.3]

2.1. Preparatory remarks. We start by mentioning a result [6 Lemma A1l.1]
which will be used in a few places throughout the proof of Theorem [[L3 Recall
that a set B C LY is called LY -bounded if | limy_,o0 sup ;s P[f > €] = 0 holds for
some (and then for all) P € II. If B C LY is LY -bounded, its L -closure is a subset
of LY and coincides with its LS -closure.

Lemma 2.1. Let (gn)nen be an Li-valued sequence. Then, there exists h € L
and a sequence (hp)nen of forward-conver combinations of (gn)nen Such that L -
limy, o0 by, = h. If, furthermore, conv{g, | n € N} is LY -bounded, then h € LY.

We introduce some notation that will be used throughout the proof: for n € N,
set Cp := o0V ({fn, fut1,...}) € Ly so that C = (), Cn. Also, let S,, C L, be
the solid hull of C,: g € S, if and only if 0 < g < h for some h € C,,. It is clear
that S,, is convex and solid and that C,, C S,,. Furthermore, set C := ﬂneN C, C
L;. It is clear that C is the set of all possible L -limits of sequences of forward-
convex combinations of (f,)nen. In particular, condition (2) of Theorem [[3] can
be succinctly written as C = {f}.

We shall split the proof into several steps, indicating each time what is being
proved or discussed. Until the end of subsection 23] condition (CONV) is not
assumed.

2.2. C CLY implies that conv({f1, f2,...}) is L -bounded. We start by show-
ing that S,, is L -closed, for n € N. For that, we pick an S,,-valued sequence (gx)ren
that converges P-a.s. to g € L. Let (hg)ren be a Cp-valued sequence with g < hy,
for all k € N. By Lemma[2.J] we can extract a sequence (Ek) ken of forward-convex
combinations of (hj)ren such that h := limy_ 0o hi € L, TI-a.s. exists. Of course,
h € C,,, and it is straightforward that g < h. We conclude that g € S,; ie., S, is
L -closed.

Let S = (),,en Sn; then, C € S and S is L -closed, convex and solid. We claim
that S actually is the solid hull of C; to show this, we only need to establish that
for any g € S there exists h € C with ¢ < h. For all n € N, since g € S C S,
there exists h,, € C, with g < h,,. By another application of Lemma 21, we can
extract a sequence (hy,)nen of forward-convex combinations of (hy)nen such that
h = Li-limg_, o Ek exists. Then, h € C and g < h.

Each S,, is Ly-closed, convex and solid; therefore, a straightforward general-
ization of [3, Lemma 2.3] gives, for each n € N, the existence of a partition Q =
P, U (Q\ ®,), where ®, € F, {fls, | f € Sy} is LY -bounded, while hlg\e, € S,
for all h € L. Clearly, C, 2 Cp41 implies ®,, C ®,,41, for all n € N. However,
since f, € LY, i.e., {f, = oo} is Il-null for all n € N, it follows that ®,,, = ®,, for
all n € N. In other words, ®, = ®; for all n € N. Then, hlg\g, € Sforall h € L.
Since C C ]L?r, and, therefore, S C ]Lg as well, it follows that Q \ ®; is IT-null.
Therefore, S is ]Lg_—bounded, which completes this part of the proof. Observe that
all S,,, n € N, are convex, solid, L‘i—bounded, and Lg—closed; we shall use this later.
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2.3. Equivalence of (1), (2) and (3) in Theorem [1.3] when f = 0. As already
discussed, the proofs of (1) = (2) and (3) = (1) are immediate, and (CONV]) is
not used. Here, we prove (2) = (3) when f = 0 without assuming (CONVI).

Since &7 is convex, ]Lgr—bounded and ]L(Jr—closed, there exists P € II such that
supyes, Ep[h] < oo. Although this result is somewhat folklore, we provide here a
quick argument for its validity. Fixing a baseline probability P € II, [10, Theo-
rem 1.1(4)] implies that there exists h € 8, such that Egh/(1 + ?L)] < 1 holds for
all h € 8;. Define P via the recipe dP/dP = ¢/(1 —|—E), where ¢ = 1/Ep[1/(1 +;\L)]
Then, P € II and

h

sup Ep[h] = ¢ sup Ep { A} <e < oo.
hes: hes: 1+h

In particular, we have sup,,cn Ep[f,] < 0o. Given the existence of such a P € I, the

following result will be useful in order to extract a probability Q € II that satisfies
condition (3) of Theorem [[3]

Lemma 2.2. Fiz P € II with sup, ey Ep[fn] < 0co. Then, the following statements
are equivalent:

(1) For some Q € 1I, sup,,cy Eq[fn] < 00 and lim,, o Eg[fn] = 0.
(2) For any € > 0, there exists A. € F such that lim,_, . Ep[f,14.] = 0 and
PQ\ A <e.

Proof. First assume (1) in the statement of Lemma[22l Define Z := dQ/dP; then,
P[Z > 0] = 1. For fixed € > 0, let § = §(¢) > 0 be such that, with 4. := {Z > §} €
F,P[Q\ A < € holds. Then,

limﬁsupEp[fn]IAé] = linlsupEQ[(l/Z)fn]I{Zﬁ}] <(1/4) linisupIEQ[fn] =0.

Now, assume (2) in the statement of Lemma For each k € N, let B, € F
be such that P[Q\ Bx] < 1/k and lim, o Ep[f,Ip,] = 0. By replacing Bj with
Ufn:l B,,, for each k € N consecutively, we may assume without loss of generality
that (By)ren is a nondecreasing sequence of sets in F with limg_,o, P[Bg] = 1, as
well as that lim, o Ep[f,Ip,] = 0 holds for each fixed k¥ € N. Define By = 0,
ng = 0, and a strictly increasing N-valued sequence (ng)geny with the following
property: for all k& € N, Ep[f,Ip,] < 1/k holds for all n > ng_;. (Observe that
this is trivially valid for k¥ = 1.) Then, define a sequence (E,),en of sets in F
by setting F, = By whenever ng_1 < n < ng. It is clear that (E,)nen is a
nondecreasing sequence, that lim, ., P[E,] = 1, and that lim, _, . Ep[f,Ig, ] = 0.
With Ey := 0, define Z := ¢}, cy2 "Ig,\pg,_,, Where ¢ > 0 is a normalizing
constant in order to ensure that Ep[Z] = 1. Define Q € II via dQ/dP = Z and
let K := sup, ey Ep[fn] < 0o so that sup, ey Eqlfn] < csup,cnEp[fn] = ¢K < oo.
Furthermore,

Eqlfn] = EqlfnlE,] + Eolfulo\g, ] < cEp[fulg,] + 27 "Ep[fulo\g, |
< CEIP’[anEn] +cK27".

Since lim,,—, oo Ep[frnlE,] = 0, we obtain lim,_, . Eg[f,] = 0, which completes the
argument. ]
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926 CONSTANTINOS KARDARAS AND GORDAN ZITKOVIC

We continue with the proof of the implication (2) = (3), fizing P € II with
sup,en Ep[fn] < 0o until the end of subsection 23

For any A C LY, define its polar A° := {g € LY | Ep[gh] < 1 for all h € A}. It
is straightforward that (U,,cy An)” = Nyen A3, for all collections {A, | n € N} of
subsets of LY. Also, consider the bipolar A°° := (A°)° of A; Theorem 1.3 of [3]
states that if a set is convex and solid, A°° coincides with the ]Lg_—closure of A.

For each n € N, §,, C }L‘?F is convex, solid and Lg—closed; therefore, $7° = S,.
Since S = (,,cy Sn is the solid hull of C = {0}, i.e., S = {0}, we have

(0] () () o
neN neN neN

Since |J,,cy Sy, is convex and solid, the above means that the L} -closure of |, ¢ Sy
is LY.

Fix € > 0. Define an N-valued and strictly increasing sequence (ny)gen with the
following property: for all £ € N there exists g € Sy, such that P[|gr — 2k < k] <
€2~ ("1 (This can be done in view of the fact that the L9 -closure of Uen Sn is
L9.) In particular, Plgy < k] < e2~**V and Ep[gx f,] < 1 hold for all k € N and
n > ng. Define Ac := (\,cy{gx > k}; then, P[Q\ A] < e. Furthermore, for all
k € N and n > ng,

Eplfnla,.] < Ep[fulig, iyl < Epl(ge/k) fulig, >y < (1/k)Eplgrfn] < 1/k.

Then, lim, o Ep[fnla.] = 0. Invoking Lemma [Z2] we obtain the existence of
Q € II such that sup, ey Eg[fn] < 0o and lim,, o Eg[f,] = 0.

2.4. A domination result. The next simple result will be important for estab-
lishing the validity of Theorem [L.3

Proposition 2.3. Let (fn)nen satisfy (CONY). Furthermore, let (gn)nen be a
sequence of forward-convex combinations of (fn)nen such that Ly -lim, o0 gn = g.
Then, I-a.s., f <g.

Proof. By way of a contradiction, assume that P[f > g] > 0, where P € II, and
consider the probability P which is P conditioned on the event {f > g}. Note that
P[f > g] = 1 and that lim, _, f, = f and lim, . g, = ¢ still hold under the
measure P. Let U : [0,00] — [0, 1] be the strictly increasing and concave function
defined via U(z) = 1—exp(—=x) for x € [0, 00]. The dominated convergence theorem
implies that lim,, . Ep [U(fr)] = Ep [U(f)] and lim,, o Ep [U(g,)] = Ep [U(9)]
In view of the concavity of U, one has Ep [U(g,)] > infi>, Ep[U(fx)] for all n €
N. Since lim,,—, o infy>, Ep [U(fx)] = Ep[U(f)], we conclude that Ep [U(f)] <
Ep [U(g)]. The last inequality combined with the fact that U is strictly increasing
contradicts P[f > g] = 1. Therefore, we conclude that, II-a.s., f < g. |

2.5. Equivalence of (1), (2) and (3) in Theorem [I.3} general case. We shall
now tackle the general case f € LY, working under the assumption (CONV]). Of
course (1) = (2) and (3) = (1) are still trivially valid. The proof of (2) = (3) will
be reduced to the special case f = 0, which we have already established, via the
following result.
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Lemma 2.4. The following statements are equivalent:

(i) Buery sequence of forward-convex combinations of (fn)nen LY. -converges to
7.

(ii) Every sequence of forward-convex combinations of (|fn — f|)nen LY-
converges to zero.

Proof. As (ii) = (i) is immediate, we only treat the implication (i) = (ii). For
x € Rand y € R, we denote by z the positive part of  and by z Ay the minimum
between x and y. We shall first argue that every sequence of forward-convex com-
binations of ((f — fn)+),en LY -converges to zero. The facts that 0 < f, A f < f
for all n € N and I[&—limnﬁOo fn = [, coupled with Proposition 23] imply that
whenever a sequence of forward-convex combinations of (f, A f)nen L-converges,
the limit is f. Since (f — fn)+ = f — f A fn, it follows that whenever a sequence
of forward-convex combinations of ((f — fn)+),cn L -converges, the limit is zero.
From the special case of Theorem [[.3]that we have established previously, it actually
follows that every sequence of forward-convex combinations of ((f — fn)4),en Li-
converges to zero. Note also that this implies that every sequence of forward-convex
combinations of ((f A fn)+),en Ly-converges to f. We now proceed to show that
every sequence of forward-convex combinations of ((fn — f)+),cy L-converges to
zero, which will complete the argument. The fact that (f, — f)e = fu — f A fa
for all n € N and Proposition 2.3 imply that whenever a sequence of forward-
convex combinations of ((fn — f)+),ey L-converges, its limit is zero. Once again,
by the special case of Theorem [[L3] that we have established previously, it actu-
ally follows that every sequence of forward-convex combinations of ((fn — f)+),en
L -converges to zero. This completes the proof. O

In view of the result of Lemma[Z4l and the treatment in subsection 23] we obtain
the existence of Q € Il such that sup,,cy Eg[| frn—f|] < 0o and lim, o Eq[|fn—f]] =
0. Replacing Q, if necessary, by Q' € II defined via dQ’/dP = ¢(1 + f)~! where

c= (Egl(1+ f)_l])fl, we may further assume that Eg[f] < oo; in other words,
sup,en Eglfn] < 0o and lim,, o Eq[| f, — f|] = 0.

2.6. Proof of the claims after the equivalences. To begin with, assume that
any one of the equivalent statements of Theorem [[3]is not valid. Then, we must
have that {f} C C, since C = {f} is actually statement (2). Then, Proposition [Z3]
implies that for all g € C we have, Il-a.s., f < g.

Continuing, assume the validity of any of the equivalent statements of Theo-
rem [[.3l The following result will help to establish all the properties of C; that are
mentioned in Theorem [[3

Lemma 2.5. Let C; C Ly be the set on the right-hand side of (). If Q € II is
such that condition (3) of Theorem [L3] holds, then C} is L} (Q)-compact.

Proof. First of all, since sup,,cyEq[fn] < oo, which in particular implies that
Eg[f] < oo by Fatou’s lemma, it is clear that supgcer Eglg] < oo; in particular,
i c LY.

We shall show that any sequence (gx)ren in C] has an L1 (Q)-convergent sub-
sequence. For all k& € N, write gx = > cyrnfn + (1 — D0, cy@rn)f, where
ar = (g.n)nen € AN, By a diagonalization argument, we can find a subsequence
of (gx)ren, which we shall still denote by (gi)ren, such that «, = limg_ o agp
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exists for all n € N. Fatou’s lemma implies that o = (ay)neny € AN, Let g =
Y onen Wnfn + (1 =3, cnan) f. We shall show that limg o Eg[lgx — g|] = 0. For
€ > 0, pick N = N(¢) € N such that sup,,ey Eg[|fni+n — f]] < €/2. Define g¥) =

SN tnfat (1= 0 an)f as well as g == SV agenfu+ (1= S0y arn) f
for all kK € N. Observe that

Eq [|s™ - ¢|] = Eq 3 onenlinn )| £ 3 owBall i~ £l <

€
5 .

Similarly, Eg [| g,gN) - ng < ¢/2 holds for all k£ € N. Furthermore,

k—oco k—o0

N
limsup Eq Hg,im - g(N)H < lim sup Z |tk — an| Egllfn — fI] | = 0.
n=1

It follows that limsup,_, .. Eg[lgr —g|] < €. Since € > 0 is arbitrary, we have
limy 00 Eg [l — g]] = 0. O

To finish the proof of Theorem [[3] it remains to show that C; = €} and that
the L9 -topology coincides with the L1 (Q)-topology on C;. First of all, since
f € Ci, fn € C for all n € N, and C; is closed, we have C{ C C;. On the
other hand, conv({fi, fa,...}) C Ci; since C] is LY -closed by Lemma 2F C; =
conv({ f1, f2,...}) C Ci. Therefore, C; = C;. Finally, let (gi)ren be a Ci-valued
and L&-convergent sequence, and call g = ]L(-)F limg oo g € C1. Lemma [Tl
implies that every subsequence of (gi)ren has a further subsequence that is L (Q)-
convergent. All the latter subsequences have to I[Jl+ (Q)-converge to g, which means

that (gx)ren L1 (Q)-converges to g.
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