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GENERALIZED SUPERMARTINGALE DEFLATORS UNDER
LIMITED INFORMATION

CONSTANTINOS KARDARAS

Boston University

We undertake a study of markets from the perspective of a financial agent with
limited access to information. The set of wealth processes available to the agent is
structured with reasonable economic properties, instead of the usual practice of taking
it to consist of stochastic integrals against a semimartingale integrator. We obtain the
equivalence of the boundedness in probability of the set of terminal wealth outcomes
(which in turn is equivalent to the weak market viability condition of absence of
arbitrage of the first kind) with the existence of at least one strictly positive deflator
that makes the deflated wealth processes have a generalized supermartingale property.

KEY WORDS: limited information, generalized supermartingales, boundedness in probability, arbi-
trages of the first kind, fundamental theorem of asset pricing.

1. INTRODUCTION

An almost universal assumption in the literature of financial mathematics is that prices
of traded assets, and as a byproduct wealth processes resulting from trading, are di-
rectly observable from an acting agent in the market. In mathematical terminology, one
postulates that wealth processes are adapted with respect to the agent’s filtration. In
practice, however, it is not always reasonable to assume the agent’s information flow is
large enough to satisfy the previous requirement. This can model, for example, cases
where information arrives to the agent with a delay, or in limited form. Additionally,
it can model circumstances where there is lag between the decisions of the agent and
their implementation; in that case, prices at the moment when the act is implemented are
unknown at the moment when the decision is made.

The purpose of this work is to study market viability in scenarios like the ones described
above. All wealth processes available to an agent with some fixed initial capital are
modeled via an abstract set X . The agent possesses some information stream under
which the wealth processes are not necessarily adapted. The aforementioned set X is
endowed with a reasonable economical structure, but it is not assumed to be generated
by results of integrals against semimartingales. (To begin with, such an assumption would
not make sense in our “limited information” set-up. Furthermore, the freedom we are
allowing in the definition of a wealth-process set naturally allows for situations where an
infinite number of underlying assets are available for trading, as is for example, the case in
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the theoretical modeling of bond markets.) The main result of this paper establishes the
equivalence between the boundedness in probability of {XT | X ∈ X }, where T denotes a
finite time-horizon, and the existence of at least one strictly positive process Y such that
all deflated processes YX , where X ranges inX , have some “generalized supermartingale”
property under the agent’s filtration. Boundedness in probability of the set of terminal
wealth processes has been discussed in great detail in Delbaen and Schachermayer (1994),
Kabanov (1997), and Karatzas and Kardaras (2007); it is actually equivalent to a weak
market viability condition, namely absence of arbitrages of the first kind, discussed in
Kardaras (2010a). As it turns out, the correct description of a strictly positive deflator Y
to be used in the aforementioned equivalence involves a “multiplicative” generalization
of supermartingales. In the full-information case, meaning that wealth processes in X
are observable to the agent, the latter generalization exactly reduces to the familiar
supermartingale property.

Literature dealing with viability of markets where agents have limited information is
scarce. To the best of the author’s knowledge, a treatment of this problem in a continuous-
time setting has not appeared before. For discrete-time models, it was shown in Kabanov
and Stricker (2006) that the classical “No Arbitrage” condition is equivalent to the
existence of a probability Q, equivalent to P, such that the optional projection (on the
agent’s filtration) under Q of the discounted asset-prices are Q-martingales. In the latter
paper, the authors argue that questions regarding viability for continuous-time models
can be posed even for processes that are not semimartingales. It is then not hard to
understand why such line of research does not seem very promising in continuous time: all
the rich machinery of semimartingale theory cannot be directly used, since the processes
involved might fail to be adapted with respect to the agent’s filtration. Indeed, a portion
of the work carried out in this paper deals with establishing appropriate generalizations of
well-known results, such as Doob’s nonnegative supermartingale convergence theorem,
in order to achieve the goal of proving the main result. In this sense, this paper also
contributes to the general theory of stochastic processes.

The structure of the paper is simple: in Section 2 the result is stated, while Section 3
contains its somewhat lengthy and technical proof.

2. THE RESULT

2.1. Probabilistic Notation and Definitions

All stochastic elements in the sequel are defined on a probability space (�,G, P), where
G is a σ -field over � and P is a probability on (�,G). Fix some T ∈ R+ that models the
end of financial activity. We consider a right-continuous filtration F = (Ft)t∈[0,T] such
that Ft ⊆ G holds for all t ∈ [0, T ] and F0 is trivial modulo P. We assume that G is
P-complete and all P-null sets of G are contained in F0; in other words, the stochastic
basis satisfies the usual hypotheses.

We stress that the stochastic processes that will be considered in what follows are
not assumed to be F-adapted; by a “stochastic process X” we simply mean a collection
(Xt)t∈[0,T ] such that, for each t ∈ [0, T ], Xt is a G-measurable random variable.

By L0
+ we shall be denoting the set of all equivalence classes (modulo P) of nonnegative,

G-measurable random variables, endowed with the metric topology of convergence in
P-measure. (Note that we shall not differentiate between random variables and the
equivalence class in L0

+ they generate.) Furthermore, we shall use L0
++ to denote the set

of f ∈ L0
+ such that P[ f > 0] = 1.
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DEFINITION 2.1. A stochastic process X will be called nonnegative if Xt ∈ L0
+ for all

t ∈ [0, T ]; X will be called strictly positive if Xt ∈ L0
++ for all t ∈ [0, T ]. A nonnegative

stochastic process X will be called càd in probability if the mapping [0, T] � t �→ Xt ∈ L0
+

is right-continuous. Further, a nonnegative process X will be called càdlàg in prob-
ability if the mapping [0, T] � t �→ Xt ∈ L0

+ is right-continuous and admits left-hand
limits.

The notions of process-continuity in Definition 2.1 are weaker than the corresponding
“càd” and “càdlàg” notions referring to the paths of a process.

2.2. Generalized Supermartingales

We now introduce a “supermartingale” property with respect to F for nonnegative
processes, when these processes are not necessarily F-adapted.

DEFINITION 2.2. A nonnegative stochastic process Z will be called a generalized super-
martingale with respect to F if E[Zt/Zs | Fs ] ≤ 1 holds whenever s ∈ [0, T ] and t ∈ [s, T ].

In the context of Definition 2.2, the event {Zs = 0} ∈ G might not be P-null for s ∈ [0,
T ]; therefore, one should be careful in defining Zt/Zs on {Zs = 0}. We use the following
conventions: on {Zs = 0, Zt > 0} we set Zt/Zs = ∞, while on {Zs = 0, Zt = 0} we set
Zt/Zs = 1. In particular, if Z is a nonnegative generalized supermartingale with respect
to F, then P[Zs = 0, Zt > 0] = 0 holds whenever s ∈ [0, T ] and t ∈ [s, T ].

If a nonnegative process Z is F-adapted, it is straightforward to check (using our
division conventions) that Z is a generalized supermartingale with respect to F if and
only if E[Zt | Fs ] ≤ Zs holds whenever s ∈ [0, T ] and t ∈ [s, T ]; in other words, we retrieve
the classical definition of nonnegative supermartingales.

2.3. The Equivalence Result

We are ready to state the main result of the paper, which connects the boundedness
in probability of the terminal values of a set of wealth processes to the existence of a
strictly positive generalized supermartingale deflator. Theorem 2.3 below, whose proof
is given in Section 3, refines and widens the scope of previous findings obtained in the
“full information” case, like the ones in Christensen and Larsen (2007) and Karatzas and
Kardaras (2007).

THEOREM 2.3. Let X be a set of stochastic processes such that:

(a) Each X ∈ X is nonnegative and càd in probability, and satisfies X0 = 1.
(b) There exists a strictly positive process X ∈ X .
(c)X is convex: ((1 − α)X + αX′) ∈ X holds for any X ∈ X , X′ ∈ X , and α ∈ [0, 1].
(d)X has the following switching property: for all τ ∈ [0, T ] and A ∈ Fτ , all X ∈ X , and

all strictly positive X′ ∈ X , the process

I�\AX· + IA
X′

τ∨·
X′

τ

Xτ∧· =
{

Xt(ω), if t ∈ [0, τ ], or ω /∈ A;(
Xτ (ω)/X′

τ (ω)
)

X′
t(ω), if t ∈ [τ, T] and ω ∈ A

is also an element of X .
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Then, the following statements are equivalent

(1) The set {XT | X ∈ X } is bounded in probability: lim�→∞ supX∈X P[XT > �] = 0.
(2) There exists a càdlàg in probability and strictly positive process Y such that YX is a

generalized supermartingale with respect to F for all X ∈ X .

Under any of the above equivalent conditions, each X ∈ X is càdlàg in probability.
If X is such that (a) through (d) are satisfied and furthermore {XT | X ∈ X } is closed

in probability, conditions (1) and (2) above are also equivalent to condition (3) below.

(3) There exists a strictly positive wealth process X̂ ∈ X such that X/X̂ is a generalized
supermartingale with respect to F for all X ∈ X .

2.4. Remarks on Theorem 2.3

We continue by discussing some topics that are related to the statement of Theorem 2.3.

2.4.1. Financial Interpretation of the Set X . A set X that satisfies (a) through (d)
in the statement of Theorem 2.3 can be thought as modeling the wealth processes that
are available to some agent in a financial market. Condition (a) states that the initial
capital of the agent is normalized to unit, and that wealth processes satisfy an extremely
mild “regularity” requirement. Condition (b) states that one can find a wealth process in
X ∈ X that can be used as a “baseline” to denominate all other wealths—for this reason,
it has to be strictly positive. (Usually, X is taken to be the wealth process generated by the
bank account.) Note that, if we choose to actually denominate all wealths in units of X,
in other words if we replace X by X := {X/X | X ∈ X }, then properties (a) through (d)
of Theorem 2.3 still hold for the new wealth-process set X with (b) actually strengthened
to 1 ∈ X . Further, note that a process Y satisfies statement (2) of Theorem 2.3 if and
only if the process Y := YX satisfies statement (2) of Theorem 2.3 with X replacing X .
This simple “change of numéraire” trick helps reduce the proof of Theorem 2.3 to the
case where property (b) is strengthened to 1 ∈ X . Moving ahead, it is intuitively clear
why the convexity property (c) should hold: if an agent can invest in two wealth processes
X ∈ X and X′ ∈ X , the agent should be free to allocate at time t = 0 a fraction α ∈ [0, 1]
of the unit initial capital to wealth X ′ and the remaining fraction to the wealth X . The
switching property (d) has the following economic interpretation: if an agent can invest
in two wealth streams X ∈ X and X′ ∈ X , where the latter process is assumed strictly
positive, we should then allow for the possibility that, starting with the wealth process
X , at time τ the agent decides to either switch to the wealth process X ′, which happens
on A ∈ Fτ , or keep investing according to X , on the event �\A. Note that it is exactly
condition (d) which reflects that the information flow available to the agent is F.

2.4.2. Market Viability. An arbitrage of the first kind in the market is a random
variable ξ ∈ L0

+ with P[ξ > 0] > 0 such that for all x > 0 there exists X ∈ X (which may
depend on x) which satisfies P[xXT ≥ ξ ] = 1. We shall say that condition NA1 holds if
there is no arbitrage of the first kind in the market. In par with the financial interpretation
of the set X given in Section 2.4.1 above, the set xX = {xX | X ∈ X } corresponds to
all attainable wealth processes starting from initial capital x > 0. Therefore, in words,
condition NA1 fails if and only if no matter how minute the initial capital is, an investor
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can invest in a way that certainly results at time T in at least a predetermined non-
zero (on a set of strictly positive probability) amount. According to proposition 1 in
Kardaras (2010a), boundedness in probability of {XT | X ∈ X } is equivalent to condition
NA1. (Although the set-up in Kardaras 2010a is different, the proof of proposition 1
from the latter paper can be copied mutatis mutandis for the present situation.) The
aforementioned equivalence clarifies the financial relevance of Theorem 2.3.

2.4.3. The Numéraire inX . When {XT | X ∈ X } is bounded and closed in probability,
it is natural to call a process X̂ that satisfies condition (3) of Theorem 2.3 above the
numéraire in X , which generalizes the definition for the full-information case (see Long
1990, Becherer 2001, Karatzas and Kardaras 2007). Note that the numéraire in X , if it
exists, is unique up to modification. Indeed, suppose that both strictly positive processes
X̂ ∈ X and X̂′ ∈ X are such that X̂/X̂′ and X̂′/X̂ are generalized supermartingales with
respect to F. In particular, E[X̂′

t/X̂t] ≤ 1 and E[X̂t/X̂′
t] ≤ 1 should hold simultaneously

for all t ∈ [0, T ]. Jensen’s inequality gives that P[X̂t = X̂′
t] = 1 for all t ∈ [0, T ].

2.4.4. Adaptedness of the Strictly Positive Generalized Supermartingale Deflator. As
a careful inspection of the proof of Theorem 2.3 in Section 3 reveals, the strictly positive
generalized supermartingale deflator Y that satisfies condition (2) of Theorem 2.3 can be
chosen to be adapted with respect to the usual augmentation of the filtration that makes
all the wealth processes in X adapted. In particular, if the processes in X are F-adapted,
Y can be chosen to be F-adapted.

3. PROOF OF THEOREM 2.3

We start by mentioning (without proof) a special case of lemma A1.1 in Delbaen and
Schachermayer (1994), which will be used constantly throughout the proof of Theo-
rem 2.3. Recall that a setB ⊆ L0

+ is called bounded in probability if lim�→∞ sup f ∈B P[ f >

�] = 0.

LEMMA 3.1. Let ( f n)n∈N be an L0
+-valued sequence and define Cn as the convex hull of

the set {f n, f n+1, . . . }, for each n ∈ N. Assume that C1 is bounded in probability. Then, there
exists g ∈ L0

+ and a sequence (gn)n∈N such that gn ∈ Cn for all n ∈ N and P- limn→∞ gn = g.

We now state and prove a “static” version of Theorem 2.3.

THEOREM 3.2. Let C ⊆ L0
+ with C ∩ L0

++ �= ∅. Assume that C is convex and closed in
probability. Then, the following statements are equivalent

(1) C is bounded in probability.
(2) There exists g ∈ L0

++ such that E[g f ] ≤ 1 holds for all f ∈ C.
(3) There exists f̂ ∈ C ∩ L0

++ such that E[ f / f̂ ] ≤ 1 holds for all f ∈ C.

Proof . Implication (3) ⇒ (2) trivially follows by setting g := 1/ f̂ . Further, assume
(2) and fix g ∈ L0

++ such that E[g f ] ≤ 1 holds for all f ∈ C. For all � ∈ R+ and f ∈ C,
� P[ fg > �] ≤ E[ fg] ≤ 1. Therefore, lim�→∞ sup f ∈C P[ fg > �] ≤ lim sup�→∞(1/�) = 0,
that is, { fg | f ∈ C} is bounded in probability. Since g ∈ L0

++, C is also bounded in
probability, that is, condition (1) holds.
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We now discuss the more difficult implication (1) ⇒ (3), which is the content of
theorem 1.1(4) in Kardaras (2010b). Since C ∩ L0

++ �= ∅, we may assume that 1 ∈ C.
Indeed, otherwise, we consider C̃ := (1/g)C for some g ∈ C ∩ L0

++. Then, 1 ∈ C̃ and C̃
is still convex, closed, and bounded in probability. Furthermore, if E[ f / f̃ ] ≤ 1 holds
for all f ∈ C̃, then, with f̂ := g f̃ , E[ f / f̂ ] ≤ 1 holds for all f ∈ C. Therefore, in the
sequel we assume that 1 ∈ C. We claim that we can further assume without loss of
generality that C is solid. Indeed, let C ′ be the solid hull of C, that is, C ′ := { f ∈ L0

+ | f ≤
h holds for some h ∈ C}. It is straightforward that 1 ∈ C ′, as well as that C ′ is still convex
and bounded in probability. It is also true that C ′ is still closed in probability. (To see the
last fact, pick a C ′-valued sequence ( f n)n∈N that converges P-a.s. to f ∈ L0

+. Let (hn)n∈N

be a C-valued sequence with f n ≤ hn for all n ∈ N. By Lemma 3.1, we can extract a
sequence (̃hn)n∈N such that, for each n ∈ N, h̃n is a convex combination of hn, hn+1, . . . ,
and such that h := P- limn→∞ h̃n exists. Of course, h ∈ C and it is easy to see that f ≤
h. We then conclude that f ∈ C ′.) Suppose that there exists f̂ ∈ C ′ such that E[ f / f̂ ] ≤ 1
holds for all f ∈ C ′. Then, f̂ ∈ C (since f̂ has to be a maximal element of C ′ with
respect to the order structure of L0), and E[ f / f̂ ] ≤ 1 holds for all f ∈ C (simply because
C ⊆ C ′). To recapitulate, in the course of the proof of implication (1) ⇒ (3), we shall be
assuming without loss of generality that C ⊆ L0

+ is solid, convex, closed, and bounded
in probability, as well as that 1 ∈ C.

For all n ∈ N, let Cn := { f ∈ C | f ≤ n}, which is convex, closed, and bounded in
probability and satisfies Cn ⊆ C. Consider the following optimization problem:

find f n
∗ ∈ Cn such that E[log( f n

∗ )] = sup
f ∈Cn

E[log( f )].(3.1)

The fact that 1 ∈ Cn implies that the value of the above problem is not −∞. Further,
since f ≤ n for all f ∈ Cn , one can use of Lemma 3.1 in conjunction with the inverse
Fatou’s lemma and obtain the existence of the optimizer f n

∗ of (3.1). For all f ∈ Cn and
ε ∈ ]0, 1/2], one has

E
[

ε( f | f n

∗ )
] ≤ 0, where 
ε( f | f n

∗ ) := log ((1 − ε) f n
∗ + ε f ) − log ( f n

∗ )
ε

.(3.2)

Fatou’s lemma will be used on (3.2) as ε↓0. For this, observe that 
ε( f | f n
∗ ) ≥ 0 on the

event { f > f n
∗ }. Also, the inequality log (y) − log (x) ≤ (y − x)/x, valid for 0 < x < y,

gives that, on { f ≤ f n
∗ }, the following lower bound holds (remember that ε ≤ 1/2)


ε( f | f n
∗ ) ≥ − f n

∗ − f
f n∗ − ε( f n∗ − f )

≥ − f n
∗ − f

f n∗ − ( f n∗ − f )/2
= −2

f n
∗ − f

f n∗ + f
≥ −2.

Using Fatou’s lemma on (3.2) gives E[( f − f n
∗ )/ f n

∗ ] ≤ 0 for all f ∈ Cn .
Lemma 3.1 again gives the existence of a sequence ( f̂ n)n∈N such that each f̂ n is a finite

convex combination of f n
∗ , f n+1

∗ , . . . , and f̂ := limn→∞ f̂ n exists. Since C is convex,
f̂ n ∈ C for all n ∈ N; therefore, since C is closed, f̂ ∈ C as well. Fix n ∈ N and some
f ∈ Cn . For all k ∈ N with k ≥ n, we have f ∈ Ck. Therefore, E[ f / f k

∗ ] ≤ 1, for all k ≥ n.
Since f̂ n is a finite convex combination of f n

∗ , f n+1
∗ , . . ., an easy application of Jensen’s

inequality for the convex function ]0, ∞[ � x �→ 1/x ∈ ]0, ∞[ gives that E[ f / f̂ n ] ≤ 1.
Then, Fatou’s lemma implies that for all f ∈ ⋃

k∈N
Ck one has E[ f / f̂ ] ≤ 1. The extension

of the last inequality to all f ∈ C follows from the solidity of C by an application of the
monotone convergence theorem. �
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By Jensen’s inequality, an element f̂ ∈ C satisfying condition (3) of Theorem 3.2 above
is necessarily unique. (In this respect, see also Section 2.4.3.) Therefore, the next definition
makes sense.

DEFINITION 3.3. Let C ⊆ L0
+ with C ∩ L0

++ �= ∅ be convex, closed, and bounded in
probability. The (unique) f̂ ∈ C satisfying condition (3) of Theorem 3.2 will be called the
numéraire in C.

We proceed with stating and proving two results of independent interest that
will help establish Proposition 3.7, a result concerning regularization of generalized
supermartingales.

LEMMA 3.4. Consider two L0
+-valued sequences (gn)n∈N, (hn)n∈N with E[gn ] ≤ 1 and

E[hn ] ≤ 1 for all n ∈ N, as well as P- limn→∞(gnhn) = 1. Then, P- limn→∞ gn = 1 =
P- limn→∞ hn .

Proof . The fact that P- limn→∞(gnhn) = 1 implies that P- limn→∞
√

gnhn = 1; then

lim sup
n→∞

(
1 − E

[√
gnhn

])
= 1 − lim inf

n→∞ E
[√

gnhn
]

≤ 0,

as follows from Fatou’s lemma. Now, since

E

[(√
gn −

√
hn

)2
]

= E [gn ] + E [hn ] − 2E
[√

gnhn
]

≤ 2
(

1 − E
[√

gnhn
])

,

we obtain that P- limn→∞(
√

gn − √
hn) = 0. In view of gn − hn = (√

gn − √
hn

)(√
gn +√

hn
)

and the fact that both sequences (gn)n∈N, (hn)n∈N are bounded in probability
(because E[gn ] ≤ 1 and E[hn ] ≤ 1 for all n ∈ N), we also have P- limn→∞(gn − hn) =
0. Furthermore, the equality gn + hn = (√

gn − √
hn

)2 + 2
√

gnhn gives P- limn→∞(gn +
hn) = 2. Finally, combining P- limn→∞(gn − hn) = 0 and P- limn→∞(gn + hn) = 2 gives
P- limn→∞ gn = 1 = P- limn→∞ hn . �

PROPOSITION 3.5. For each n ∈ N ∪ {∞}, let Cn be a convex, closed, and bounded subset
of L0

+ with Cn ∩ L0
++ �= ∅, and let f̂ n be the numéraire in Cn. (These numéraires exist in

view of Theorem 3.2.) Then, P- limn→∞ f̂ n = f̂ ∞ holds in either of the following cases

(1) (Cn)n∈N is nondecreasing and C∞ is the closure in probability of
⋃

n∈N
Cn .

(2) (Cn)n∈N is nonincreasing and C∞ = ⋂
n∈N

Cn .

Proof . In the course of the proof below, we drop all superscripts “∞” to ease the
readability. To establish both statements (1) and (2) below, we shall just show the exis-
tence of a subsequence ( f̂ mn )n∈N of ( f̂ n)n∈N such that P- limn→∞ f̂ mn = f̂ . By the same
argument, it will follow that any subsequence of ( f̂ n)n∈N has a further subsequence that
converges to f̂ . Since L0

+ is equipped with a metric topology, this will imply that the
whole sequence ( f̂ n)n∈N converges to f̂ .

Proof of (1). Lemma 3.1 gives the existence of a sequence ( f̃ n)n∈N such that each
f̃ n is a convex combination of ( f̂ k)k=n,...,mn for some n ≤ mn ∈ N, and such that
f̃ := P- limn→∞ f̃ n exists. Of course, f̃ ∈ C. Obviously, limn→∞mn = ∞; we can also
assume that (mn)n∈N is an increasing sequence, forcing it to be if necessary.
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Since E[ f / f̂ k] ≤ 1 holds for all f ∈ Cn and n ≤ k, Jensen’s inequality applied by using
the convex function ]0, ∞[� x �→ 1/x ∈ ]0, ∞[ implies that E[ f / f̃ k] ≤ 1 holds for all
f ∈ Cn and n ≤ k. By Fatou’s lemma, E[ f / f̃ ] ≤ 1 holds for all n ∈ N and f ∈ Cn . In
particular, f̃ ∈ C ∩ L0

++. As (Cn)n∈N is nondecreasing and C is the L0-closure of
⋃

n∈N
Cn ,

Fatou’s lemma applied once again will give E[ f / f̃ ] ≤ 1 for all f ∈ C. By uniqueness of
the numéraire, we get f̃ = f̂ . Since f̂ ∈ L0

++, it follows that P- limn→∞( f̃ n/ f̂ ) = 1.
Since f̂ mn is the numéraire in Cmn and f̃ n ∈ Cmn for all n ∈ N, E[ f̃ n/ f̂ mn ] ≤ 1 holds for

all n ∈ N. Also, E[ f̂ mn / f̂ ] ≤ 1 is obvious because f̂ is the numéraire in C. Letting gn :=
f̃ n/ f̂ mn and hn := f̂ mn / f̂ for all n ∈ N, the conditions of the statement of Lemma 3.4 are
satisfied. Therefore, P- limn→∞ hn = 1, which exactly translates to P- limn→∞ f̂ mn = f̂ .

Proof of (2). One applies again Lemma 3.1 to get the existence of a sequence ( f̃ n)n∈N

such that each f̃ n is a convex combination of ( f̂ k)k=n, ... ,�n for some n ≤ �n ∈ N, and such
that f̃ := P- limn→∞ f̃ n exists. We can assume that (�n)n∈N is an increasing sequence,
forcing it to be if necessary. Following the same reasoning as in the proof of case (1) one
can show that f̃ = f̂ .

Define m0 = 1 and a N-valued increasing sequence (mn)n∈N inductively via mn =
�mn−1 for all n ∈ N. Then, it is straightforward to check that E[ f̂ mn / f̃ mn−1 ] ≤ 1 and
E[ f̃ mn / f̂ mn ] ≤ 1 hold for all n ∈ N. Letting gn := f̂ mn / f̃ mn−1 and hn := f̃ mn / f̂ mn for
all n ∈ N, the conditions of the statement of Lemma 3.4 are satisfied. Therefore,
P- limn→∞ hn = 1, which, in view of P- limn→∞ f̃ mn = f̂ gives P- limn→∞ f̂ mn = f̂ . �

REMARK 3.6. The result of Proposition 3.5(2) does not necessarily hold if C∞ ∩ L0
++ =

∅. Indeed, let � = (0, 1], F be the Borel σ -field on � and P be Lebesgue measure on
(�,F). Define two nonincreasing sequences ( f̂ n)n∈N and (gn)n∈N via f̂ n := (1/2)I(0, 1/3] +
(1/n)I(1/3, n/(n+1)] + I(n/(n+1), 1] and gn := I(0, 1/3] + (1/(5n))I(1/3, 1]. For each n ∈ N, define

Cn := {
h ∈ L0

+ | h ≤ (1 − α) f̂ n + αgn for some α ∈ [0, 1]
}
.

Of course, (Cn)n∈N is a nonincreasing sequence of sets that are convex, closed, and
bounded in probability. In fact, f̂ n is the numéraire in Cn for all n ∈ N as it easily follows
from the inequality

E

[
gn

f̂ n

]
= 2

(
1
3

)
+ 1

5

(
n

n + 1
− 1

3

)
+ 1

5n

(
1

n + 1

)
≤ 2

3
+ 2

15
+ 1

5
= 1.

Now, C∞ = ⋂
n∈N

Cn = {hI(0, 1/3] | h ∈ L0
+ with h ≤ 1}, from which it follows that f̂ =

I(0, 1/3] is the numéraire in C∞. However, the sequence ( f̂ n)n∈N converges in probability to
(1/2)I(0,1/3], which is distinct from f̂ .

The next result concerns the “regularization in probability” of processes and is the
analogue of path regularization of nonnegative supermartingales (see, for example,
proposition 1.3.14 of Karatzas and Shreve 1991). Before the statement of Proposition
3.7, we introduce some notation. Fix a nonnegative process X ∈ X . For s ∈ [0, T [, if
P- limn→∞ Xtn exists and is the same for any strictly decreasing [0, T ]-valued sequence
(tn)n∈N such that limn→∞tn = s, we shall be denoting this common limit by P- limt↓↓s Xt.
By definition, we set P- limt↓↓T Xt = XT. Similarly, if t ∈ ]0, T ] and P- limn→∞ Xsn

exists and is the same for any strictly increasing [0, T ]-valued sequence (sn)n∈N such
that limn→∞sn = t, we shall be denoting this latter limit by P- lims↑↑t Xs .
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PROPOSITION 3.7. Let Z be a strictly positive generalized supermartingale with respect to
F. Then, for all t ∈ [0, T ], Zt+ := P- limτ↓↓t Zτ exists. If τ ∈ ]0, T ], Zτ− := P- limt↑↑τ Zt

exists as well. Furthermore, (Zt+)t∈[0,T ] is a strictly positive generalized supermartingale
with respect to F, and P- limt↑↑τ Zt+ exists and is equal to Zτ− for all τ ∈ ]0, T ].

Proof . For t ∈ [0, T ], let Ct be the closed (in probability) convex hull of {Zτ | τ ∈ [t,
T ]}. It follows that Ct ⊆ Cs whenever s ∈ [0, T ] and t ∈ [s, T ]. Also, Zt is the numéraire
in Ct, since E[Zτ /Zt] ≤ 1 whenever t ∈ [0, T ] and τ ∈ [t, T ]. In particular, in view of
Theorem 3.2, Ct is bounded in probability for all t ∈ [0, T ].

For all t ∈ [0, T [, let Ct+ := ⋃
τ∈ ]t,T] Cτ , as well as CT+ := CT. For all t ∈ [0, T ],

Ct+ ⊆ Ct, and Ct+ = ⋃
n∈N

Cτ n holds for any strictly decreasing [0, T ]-valued sequence
(τ n)n∈N with limn→∞τ n = t whenever t ∈ [0, T [. An application of Proposition 3.5 gives
that Zt+ := P- limτ↓↓t Zτ exists for all t ∈ [0, T ] and it is actually equal to the numéraire in
Ct+, where Ct+ will denote the closure in probability of Ct+. (Observe that the numéraire
in Ct+ exists by Theorem 3.2, as Ct+ ∩ L0

++ �= ∅ and Ct+ is convex and bounded in
probability.)

Consider now the process Z·+ := (Zt+)t∈[0,T ]. Since Ct+ ∩ L0
++ �= ∅ for all t ∈ [0, T ] and

Zt+ is the numéraire in Ct+, it follows that Zt+ ∈ L0
++, that is, Z·+ is strictly positive.

We claim that Z·+ is càdlàg in probability; indeed, for t ∈ [0, T [, and as Ct+ coincides
with the closure in probability of

⋃
τ∈ ]t,T] Cτ+, an application of Proposition 3.5(1) gives

that Zt+ = P- limτ↓↓t Zτ+. Now, for all τ ∈ ]0, T ] we have
⋂

t∈[0,τ [ Ct+ = ⋂
t∈[0,τ [ Ct. An

application of Proposition 3.5(2) gives that P- limt↑↑τ Zt+ and P- limt↑↑τ Zt exist, and
they are actually equal.

It only remains to show that E[Zt+/Zs+ | Fs ] ≤ 1 holds whenever s ∈ [0, T ] and t ∈
[s, T ]. Fix s ∈ [0, T ] and t ∈ [s, T ], as well as A ∈ Fs . For all n ∈ N, with sn :=
(1 − 1/n)s + T/n and tn := (1 − 1/n)t + T/n, the generalized supermartingale prop-
erty of Z with respect to F and the fact that A ∈ Fs ⊆ Fsn give E[(Ztn /Zsn )IA] ≤ P[A].
Then, Fatou’s lemma gives E[(Zt+/Zs+)IA] ≤ P[A]. Since A ∈ Fs was arbitrary we get
E[Zt+/Zs+ | Fs ] ≤ 1. �

REMARK 3.8. The proof of Proposition 3.7 is based on a generalization of Doob’s
celebrated result regarding the convergence of nonnegative supermartingales. For sim-
plicity, we discuss the case where the time-set is discrete, that is, the process is in-
dexed by N—the extension to R+-indexed processes is straightforward. Let (gn)n∈N

be an L0
+-valued sequence of random variables such that E[gn/gm] ≤ 1 holds when-

ever N � m ≤ n ∈ N, and such that the convex hull of {gn | n ∈ N} is bounded away
from zero in probability. Following the ideas in the proof of Proposition 3.7—more
precisely, using statement (2) of Proposition 3.5—we can obtain that P- limn→∞ gn ex-
ists. To compare this result with the nonnegative supermartingale convergence theo-
rem, let Hn denote the smallest σ -field that makes all random variables g1, . . . , gn

measurable. Doob’s well-known result states that if E[gn | Hm] ≤ gm holds whenever
N � m ≤ n ∈ N, then limn→∞gn P-a.s. exists. Rewrite the supermartingale property
E[gn | Hm] ≤ gm as E[gn/gm | Hm] ≤ 1, and note in particular that E[gn/gm] ≤ 1 when-
ever N � m ≤ n ∈ N. (This is just the generalized supermartingale property of (gn)n∈N

under the trivial filtration.) Therefore, the supermartingale convergence theorem be-
comes a special case of our result, since no conditioning is used in the generalized
supermartingale property of (gn)n∈N. However, one can no longer claim that (gn)n∈N con-
verges P-a.s.; this is the reason why only a regularization “in probability” is obtained in
Proposition 3.7.
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We remark that this generalization of Doob’s supermartingale convergence theorem
seems new (the author was not able to spot any such occurrence in the literature) and its
proof does not use “traditional” methods and tools of martingale theory.

We are now ready to give the proof of Theorem 2.3.

Proof of Theorem 2.3. We show the implications (1) ⇒ (2), (1) ⇒ (3), (3) ⇒ (2), and
(2) ⇒ (1) below. The fact that all processes in X are càdlàg in probability under any of the
equivalent conditions (1) or (2) in Theorem 2.3 is discussed after the proof of implication
(2) ⇒ (1). As discussed in Section 2.4.1, we can, and shall, assume that property (b) of
the set X in the statement of Theorem 2.3 is strengthened into 1 ∈ X .

(1) ⇒ (2). For all t ∈ [0, T ], let Ct := {Xt | X ∈ X }. The convexity of X implies that
Ct is convex for all t ∈ [0, T ]. Let X ∈ X . The switching property of X , combined with
1 ∈ X gives that X̃ := Xt∧· is also in X ; since X̃T = Xt, we obtain that {Xt | X ∈ X } ⊆
{XT | X ∈ X }. Therefore, Ct is bounded in probability for all t ∈ [0, T ]. From Theorem 3.2
it follows that, for all t ∈ [0, T ], there exists f̂ t in the closure in probability of Ct such that
E[ f / f̂ t] ≤ 1 holds for all f ∈ Ct.

Now, let (ξ n)n∈N be a sequence in X such that ξ n
T ∈ L0

++ for all n ∈ N and
P- limn→∞ ξ n

T = f̂ T. We shall show that P- limn→∞ ξ n
t = f̂ t actually holds for all t ∈

[0, T ]. Fix t ∈ [0, T ] and let (χn)n∈N be a sequence in X such that χn
t ∈ L0

++ for all n ∈ N

and P- limn→∞ χn
t = f̂ t. We can assume without loss of generality that E[ξ n

t /χn
t ] ≤ 1

for all n ∈ N. (Indeed, if the latter fails we can replace χn with ψn, an appropriate con-
vex combination of χn and ξ n, such that E[ξ n

t /ψn
t ] ≤ 1 and E[χn

t /ψn
t ] ≤ 1 hold for all

n ∈ N; in effect, ψn
t is the numéraire in {(1 − α)χn

t + αξ n
t | α ∈ [0, 1]}. Lemma 3.4 with

gn := χn
t /ψn

t and hn = ψn
t / f̂ t for all n ∈ N implies that this new Ct-valued sequence

(ψn
t )n∈N will still converge to f̂ t.) Now, for each n ∈ N, let ζ n := χn

t∧·(ξ
n
t∨·/ξ

n
t ). We have

ζ n ∈ X by the switching property, and ζ n
T = (χn

t /ξ n
t )ξ n

T. Then, E[ξ n
T/ζ n

T] = E[ξ n
t /χn

t ] ≤ 1
for all n ∈ N. An application of Lemma 3.4 with gn := ξ n

T/ζ n
T and f n := ζ n

T/ f̂ T

for n ∈ N gives P- limn→∞ ζ n
T = f̂ T. Combining this with P- limn→∞ χn

t = f̂ t, we get
P- limn→∞(ξ n

t /ξ n
T) = f̂ t/ f̂ T, and, therefore, P- limn→∞ ξ n

t = f̂ t, which is the claim we
wished to establish.

Define Ŷt := 1/ f̂ t for all t ∈ [0, T ]; as f̂ t ∈ L0
++, Ŷ is a well-defined and strictly positive

process. We claim that limn→∞ E
[|Ŷtξ

n
t − 1|] = 0 holds for each t ∈ [0, T ]. Indeed, since

P- limn→∞(Ŷtξ
n
t ) = 1 and (Ŷtξ

n
t ) ∈ L0

+ for all n ∈ N, by theorem 16.14(ii), page 217 in
Williams (1991) one needs to establish that limn→∞ E[Ŷtξ

n
t ] = 1, which follows from 1 =

E
[

lim infn→∞ Ŷtξ
n
t

] ≤ lim infn→∞ E[Ŷtξ
n
t ] ≤ lim supn→∞ E[Ŷtξ

n
t ] ≤ 1. In particular, for

all A ∈ G we have limn→∞ E[Ŷtξ
n
t IA] = P[A].

Fix s ∈ [0, T ], t ∈ [s, T ], A ∈ Fs and a strictly positive X ∈ X . For n ∈ N, let
X̃n := I�\A ξ n

· + IA(ξ n
s /Xs)Xs∨·. The switching property of X implies that X̃n ∈ X . Fur-

thermore, X̃n
t = I�\A ξ n

t + IA(ξ n
s /Xs)Xt. Then, E[X̃n

t Ŷt] ≤ 1 translates to the inequality
E

[
(Xt/Xs)Ŷtξ

n
s IA

] ≤ 1 − E[I�\AŶtξ
n
t ]. Using Fatou’s lemma on the left-hand side of this

inequality and the fact that limn→∞ E[I�\AŶtξ
n
t ] = 1 − P[A] on the right-hand side, we

obtain

E

[
XtŶt

XsŶs
IA

]
≤ P[A].(3.3)

Since A ∈ Fs was arbitrary, it follows that E
[
XtŶt/(XsŶs) | Fs

] ≤ 1 for all strictly positive
X ∈ X .
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Since 1 ∈ X , using Proposition 3.7 with Z := Ŷ we obtain a strictly positive gener-
alized supermartingale Y with respect to F, such that Y 0 = 1 and Yt = P- limτ↓↓t Ŷτ

holds for all t ∈ [0, T ]. Fix s ∈ [0, T ], t ∈ [s, T ], A ∈ Fs and a strictly positive
X ∈ X . For all n ∈ N, let sn := (1 − 1/n)s + T/n and tn := (1 − 1/n)t + T/n. For
all n ∈ N, and since A ∈ Fs , we have E[(Ŷtn Xtn /(Ŷsn Xsn ))IA] ≤ P[A] by (3.3). As X is
càd in probability, Fatou’s lemma gives E[(Yt Xt/(Ys Xs))IA] ≤ P[A]. Since A ∈ Fs was
arbitrary we obtain E[Yt Xt/(Ys Xs) | Fs ] ≤ 1 for all strictly positive X ∈ X . We have
to show that the last inequality actually holds also for all X ∈ X , not necessarily
strictly positive. Fix then X ∈ X and let Xn := (1/n) + (1 − 1/n)X for all n ∈ N;
then, Xn ∈ X and Xn is strictly positive. It follows that E[Yt Xn

t /(Ys Xn
s ) | Fs ] ≤ 1 for

all n ∈ N. Now, lim infn→∞(Xn
t /Xn

s ) = (Xt/Xs)I{Xs>0} + I{Xs=0, Xt=0} + ∞I{Xs=0, Xt>0}. As
E[lim infn→∞(Yt Xn

t /(Ys Xn
s )) | Fs ] ≤ 1 holds by the conditional version of Fatou’s lemma,

and P[Ys > 0, Yt > 0] = 1, we obtain P[Xs = 0, Xt > 0] = 0. Then, using the division
conventions mentioned in Section 2.2, we get E[Yt Xt/(Ys Xs) | Fs ] ≤ 1 for all X ∈ X . In
other words, YX is a nonnegative generalized supermartingale with respect to F for all
X ∈ X .

(1) ⇒ (3). The implication (1) ⇒ (3) of Theorem 3.2, applied to the setC := {XT | X ∈
X } (which is assumed closed) implies that there exists X̂ ∈ X such that E[XT/X̂T] ≤ 1
for all X ∈ X . We shall show that X/X̂ is a nonnegative generalized supermartingale
with respect to F for all X ∈ X . The proof of implication (1) ⇒ (2) above shows that
E[Xt/X̂t] ≤ 1 for all X ∈ X and t ∈ [0, T ]; in particular, X̂ is strictly positive. Using the
notation of the proof implication (1) ⇒ (2), it is clear that X̂ = 1/Ŷ. Then, the result
follows directly from (3.3).

(3) ⇒ (2). Assume that X̂ exists and set Ŷ := 1/X̂. A priori, Ŷ is not necessarily
càdlàg in probability. However, passing to Y as in the proof of implication (1) ⇒ (2) above
and following the rest of the argument, we can conclude the existence of a generalized
supermartingale deflator.

(2) ⇒ (1). Pick Y with the properties of statement (2). For all � ∈ R+, we have the
inequality � supX∈X P[YT XT > �] ≤ supX∈X E[YT XT] ≤ 1. Therefore, the set {YT XT | X ∈
X } is bounded in probability. Since YT ∈ L0

++, {XT | X ∈ X } is bounded in probability.

Finally, we establish that if Y is a process satisfying condition (2) of Theorem 2.3, all
wealth processes in X are càdlàg in probability. Pick X ∈ X . Let X ′ = (1 + X)/2; then
X′ ∈ X and X ′ is strictly positive. It follows that YX ′ is a strictly positive generalized
supermartingale with respect to F. According to Proposition 3.7, P- limt↑↑τ (Yt X′

t) exists
for all τ ∈ ]0, T ]; as P- limt↑↑τ Yt also exists and is an element of L0

++, we obtain that
P- limt↑↑τ X′

t exists for all τ ∈ ]0, T ]. This is equivalent to saying that P- limt↑↑τ Xt exists
for all τ ∈ ]0, T ]. Since X is already càd in probability, we conclude that X is càdlàg in
probability. �
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KARDARAS, C. (2010b): Numéraire-invariant Preferences in Financial Modeling, Ann. Appl.
Probab. 20(5), 1697–1728.
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