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Abstract

We present a short and self-contained proof of the following result: a random time is an honest time that
avoids all stopping times if and only if it coincides with the (last) time of maximum of a nonnegative local
martingale with zero terminal value and no jumps while at its running supremum, where the latter running
supremum process is continuous. [llustrative examples involving local martingales with discontinuous paths
are provided.
© 2013 Elsevier B.V. All rights reserved.
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1. The characterisation result
1.1. Honest times that avoid all stopping times

Let ({2, F, IP) be a filtered probability space, where F = (F;);cRr. is a filtration satisfying the
usual conditions of right-continuity and saturation by P-null sets of F :=\/, R, F:. All (local)
martingales and supermartingales on ({2, F, IP) are assumed to have [P-a.s. cadlag paths.

Definition 1.1. A random time is a [0, oo]-valued, F-measurable random variable. The random
time p is said to avoid all stopping times if P[p = 7] = 0 holds whenever t is a (possibly,
infinite-valued) stopping time. The random time p is called an honest time if for all t € R there
exists an F;-measurable random variable R; such that p = R, holds on {p < t}.
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Honest times constitute the most important class of random times outside the realm of
stopping times. They have been extensively studied in the literature, especially in relation to
filtration enlargements. It is impossible to present here the vast literature on the subject of honest
times; we indicatively mention the early papers [1-3,9,15], as well as the monographs [8,10].
Lately, there has been considerable revival to the study of honest times, due to questions arising
from the field of Financial Mathematics—see, for example, [5,11,6] and the references therein.

1.2. The class My

Define M to be the class of all nonnegative local martingales L such that Ly = 1, the
running supremum process L* = sup,c[o.j L, is continuous (up to a P-evanescent set), and
P[Lo = 0] = 1 holds, where L := lim,_, o L;. (Note that the limit in the definition of L
exists in the P-a.s. sense, in view of the nonnegative supermartingale convergence theorem.)

For L € My, define!

pLi=sup{t € Ry | L— =Ly}, (b

where note that Lo— = 1 = L_ implies that the (random) set {t eRy | Li— = L:L} is non-
empty. Since P[Ly, = 0] = 1 holds for L € M, it follows that P[p; < oo] = 1.

For L € My and ¢t € Ry, define R, := sup {s e[0,t]| Ly— = L;‘_} A t, which is an F;-
measurable random variable such that p;, = R, holds on {p; < t}. It follows that p; is an honest
time whenever L € M.

1.3. The class Lo

Let L € My. In view of (1.1), pr coincides with the end of the predictable set {L_ =L* }
Using the P-a.s. left-continuity of L_ and the P-a.s. continuity of L*, as well as the definition of
pr from (1.1), we obtain that L, — = L7 _ = L7 holds in the P-a.s. sense. (In particular, the
“sup” in (1.1) is really a “max”.) If one wishes to ensure that p; is an actual time of maximum
of L, it suffices to ask that L has no jumps when L_ is at its running supremum. Motivated by
this observation, we define the class Lg to consist of all L € M with the additional property
that {L_ = L’i} C {AL = 0} holds up to a P-evanescent set. Whenever L € Ly, it P-a.s. holds
that L,,_ = L,, = L:;L; in fact, as Theorem 1.2 will imply, the previous random variables are
also equal to L%, which makes p;, a time of overall maximum of L € L. On the other hand, if
L € Mg\ Ly it may happen that L does not achieve its overall supremum; furthermore, it may
also happen that p;, fails to avoid all stopping times—for both previous points, see Remark 1.4.

1.4. The characterisation result

The following result shows that, for L € Ly, the random time p; defined in (1.1) is the
canonical example of an honest time that avoids all stopping times.

Theorem 1.2. For a random time p, the following two statements are equivalent.

(1) p is an honest time that avoids all stopping times.

(2) p = pr holds in the P-a.s. sense for some L € Ly.

Under (any of) the previous conditions, the equality L, = L, = L%_ holds in the P-a.s. sense;
furthermore, P [p >t | ;] = L;/L} in the P-a.s. sense is valid for all t € R.

L as usual, for any cadlag process X, X_ denotes the caglad process defined in a way such that X;_ is the left limit
of X att € (0, 00); by convention, we also set Xg_ = X.
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We proceed with some remarks on Theorem 1.2, the proof of which is given in Section 3.
Section 2 contains examples involving jump processes, illustrating Theorem 1.2.

Remark 1.3. Along with p; from (1.1), for L € M define also p; := sup {t eRy | L= L;"}
(When L € Ly, it is straightforward to check that P [,oL < p/L] = 1.) Under the additional
proviso that the filtration is continuous — meaning that all martingales on ({2, F, P) have P-
a.s. continuous paths — it was shown in [12, Corollary 2.4 and Theorem 4.1] that a random
time p is an honest time? that avoids all stopping times if and only if p = p; holds for some
L € Mo. When the filtration is continuous, P [p, = p] | = 1 holds and the classes Mg and L
coincide; therefore, the aforementioned results in [12] constitute a special case of Theorem 1.2. In
[11, Theorem 3.2], it is shown that whenever p is an honest time that avoids all stopping times,
then p = pj holds for some L € M. Although there is no assumption regarding filtration
continuity in [11], Theorem 1.2 is stronger since it gives a full characterisation; indeed, when the
filtration fails to be continuous, Remark 1.4 shows that Ly may be a strict subclass of M. Note
that the random time pz (for L € M) is considered in the present paper in place of p; that
was used in [11], as it ties better with the definition of the important class £y & M. Finally, it
should be mentioned that the arguments in [11] make heavy use of previously-established results
regarding so-called processes of class (X); in contrast, Section 3 contains a relatively short and
self-contained proof of Theorem 1.2.

Remark 1.4. Consider a complete probability space ({2, F, IP) that supports a R -valued ran-
dom variable T such that P[t > #] = e~ holds for all t € R. Let F be the usual augmentation of
the smallest filtration which makes 7 a stopping time. Define the process L via L; = exp(¢)I{; <)
for all + € Ry.. It is straightforward to check that L € My, as well as p;, = t. In particular, pr,
fails the requirement to avoid all stopping times in a dramatic fashion, since it is actually equal
to a stopping time. Note also that L & Lo, since AL,, = —L,,_ = —exp(r) < 0 holds.

Remark 1.5. Let p be an honest time that avoids all stopping times. The process L € Lo such
that p = pr, which exists in view of Theorem 1.2, is necessarily unique (up to a P-evanescent
set). Indeed, let M € L be another process such that P[p = py/] = 1. In view of Theorem 1.2,
one obtains the process equality L/L* = M/M*, up to a P-evanescent set. The integration-by-
parts formula implies that

L 1+/'1dL f Le qp+
L* o Li T Joo w2
1

1+fidL —f —dL*=1+fidL —log (L})
o Li " JoLi ! o Ly v

where the facts that fooo I {Li< L,*}dL;" = 0 and L* has continuous paths were used in the previous
equalities. The above calculation provides the Doob—Meyer decomposition of L/L*; in exactly
the same way, we obtain that M/M* = 1 + fo (l/Mt*) dM; — log (Mt*) is the Doob—Meyer
decomposition of M/M*. Combining the equality L/L* = M/M™* with uniqueness of the
Doob-Meyer decomposition, the process equalities log (L*) = log (M*) and [ (1 / L;") dL; =
o (1/M;) dM; follow; from these, one concludes in a straightforward way that L = M.

2 Actually, both [12,11] define an honest time as the end of an optional set, a concept that can be seen to be equivalent
to the one in Definition 1.1 when the random time involved is [P-a.s. finite; see, for example, [8, Proposition 5.1].
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2. Examples involving processes with jumps

In this section we present examples where the process L € Lo corresponding (in view of
Theorem 1.2) to an honest time p that avoids all stopping times has jumps. By Remark 1.5, the
aforementioned correspondence is one-to-one; then, it follows that Theorem 1.2 has indeed a
wider scope compared to the corresponding result that restricts filtrations to be continuous.

2.1. Maximum of downwards drifting spectrally negative Lévy processes with paths of infinite
variation

On the filtered probability space ({2, F, IP), assume that X is a one-dimensional cadlag Lévy
process with Xo = 0. For information about Lévy processes, the interested reader can check [14],
a book which we shall be referring to in the following discussion.

The probability law of the process X can be fully characterised by its Lévy triplet (o, 0%, v),
where & € R equals the drift rate of the Lévy process X — >, - AX,Ijjax, =1}, 0> € Ry is the
diffusion coefficient, and v is a Lévy measure on R \ {0} (equipped with its Borel sigma-field),
which means that fR\{O} (1A fx?) vldx] < oo.

The first assumption on X is that of no positive jumps; in terms of the Lévy measure:

(L1) v[(0,00)] =0.

By [14, Example 25.11], condition (L1) implies that E [exp (zX,)] < oo for z € Ry. There-
fore, one may consider the Laplace exponent function 6 : Ry +— R, defined implicitly via
exp(t0(z)) = E [exp (zX ,)] for z € R4 and ¢ € Ry. By the Lévy—Khintchine representation
[14, Section 8],

1
0(z) = az + 50212 + / (exp(zx) — 1 — zx[[_10)(x)) v[dx], VzeRy. (2.1
(=00.0)

The following is our second assumption on X:
(L2) o + f(iooﬁ])xv[dx] < 0.

Given (L1), condition (L2) is equivalent to asking that P [lim;_, o, X; = —oco] = 1, i.e., that
X is downwards drifting. To wit, first note that the function @ has a derivative 6’ on (0, c0),
and it is straightforward to see that 6'(0+) = lim;06'(z) = o + f(fooﬁl) xv[dx] < 0, the
last strict inequality holding from condition (L2). A straightforward argument using the equality
0(z) = log (IE [exp (zXl)]) for all z € Ry shows that E[X] = 6'(0+) < 0; then, the law of
large numbers for Lévy processes (see, for example, [14, Theorem 36.5]) immediately implies
that P[lim; o0 X; = —00] = 1.

Finally, we introduce the last assumption on X, equivalent to saying that the paths of X are of
infinite (first) variation.

(L3) If 62 = 0, then Ji_1.0) I¥Iv[dx] = oo

With X* := sup,c.; X; denoting the running supremum process of X, define the random
time

0 = sup {t eRy | Xi— = X;“_} ) (2.2)

In what follows, we shall show that p is an honest time that avoids all stopping times, by explicitly
computing L € L such that p = pr..
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Assume the validity of all conditions (L1)—(L3). The Laplace exponent function 6 defined in
(2.1)is such that 8" (z) = 02+f(—oo,0) x2 exp(zx)v[dx] for z € (0, 00); in particular, it is convex.
Furthermore, lim, o (6(2)/z%) = 02/2, while lim,, o (0(2)/2) = o — Ji—1.0)XvIdx] = o0
holds if 62 = 0 in view of condition (L3). It follows that lim, . 0(z) = oo. The facts
0(0) = 0,0(04+) < 0 and lim,_,» 0(z) = 0o, combined with the convexity of 8, imply that
there exists a unique zg € (0, 0o) such that 6(zg) = 0. A straightforward argument using the
Lévy property of X and the definition of 6 shows that the process L := exp(zoX) is a martingale
on ({2, F, P) such that Ly = 1, L* has continuous paths, and lim;_, », L; = 0, all holding in the
P-a.s. sense. It follows that L € My; furthermore, since zo > 0, a comparison of (1.1) and (2.2)
shows that p = py..

In order to show that L € Ly, it remains to establish that the set {L, =L*, AL # 0} is P-
evanescent. Since L = exp(zoX) with zg > 0, this last condition is equivalent to P-evanescence
of {X _=X*, AX # 0}, which is exactly the content of the result that follows.3

Lemma 2.1. Assume the validity of conditions (L1)—(L3). Then, {X_ =X*, AX # 0} is IP-
evanescent.

Proof. Condition (L3) implies that liminf; o (X,/t) = —o0; indeed, this follows from
[14, Theorem 47.1]. (Look also at [14, Definition 11.9] for the concept of Lévy processes
of so-called “type C”.) It follows that ]P’[infse[ov,] X = 0] = 0 holds for all t € (0, 00).
Furthermore, in view of [14, Remark 45.9], the probability laws of infsepo ] X and X, — X/
are the same for any fixed + € Ry. Combining the previous, it follows that P [X, = X} ] =
P [infyef0,1 X5 = 0] = 0 holds for all € (0, 00); in particular, fR+ P[X,— = X;_]dt = 0.
With u denoting the jump measure of X, and since {X =X i} is a predictable set, a use of
Fubini’s theorem gives

E |:/ ]I{XF:X;«?}/JL [dz, dx]] =E [/ </ ]I{X,:Xf}dt) % [dx]i|
R4 x(—00,0) (—00,0) R+
= / (/ P[X— =X/ ] dt) v[dx] =0,
(—00,0) \JR4

which implies that fR+x(—oo,0) H{X,,:X;f_}ﬂ [dz, dx] = O holds in the P-a.s. sense. The latter
is equivalent to that {X_ =X* AX < 0} is P-evanescent. Since AX < 0, the proof is
complete. [

Note that L has P-a.s. continuous paths only in the case v = O0; therefore, the above
construction provides a plethora of examples of honest times that avoid all stopping times for
which the unique (in view of Remark 1.5) representative L € L with the property that p = pr,
has jumps.

2.2. Geometric Brownian motion with jumps no higher than its running supremum

Consider a probability space ({2, F, P), rich enough to support the following independent
elements:

e aprocess W = (W;),er, , which is a standard Brownian motion in its natural filtration;

3 Note that condition (L3) is essential for P-evanescence of {X _=X* AX # 0}. For example, when X; = t/2— N;
fort € R4, where N is a standard Poisson process, condition (L3) fails and Xdoes jump downwards sometimes while
X _ is at its maximum (for instance, at the first arrival time of the Poisson process).
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e a sequence (0y),eN of independent and identically distributed random variables having the
exponential law with rate parameter A € (0, 00);

e a sequence (U,),en of independent and identically distributed random variables having the
standard uniform law on [0, 1].

Define 19 .= 0 and 7, = Zzpl o, for all n € N; then, the process N defined via N; =
> Iir, < forall 7 € Ry is a Poisson process (in its own filtration) with arrival rate A. Define

also the compound Poisson process C via C; = ZS’; 1 Uy for all t € R,. Let F be the usual
augmentation of the smallest filtration that makes W and C adapted. Note that N is F-adapted,
and that W and C are independent.

Given the above ingredients, we shall construct L € Ly that behaves like an exponential
Brownian motion with parameter o € (0, co) in each stochastic interval [[7,,—1, 7,[[ foralln € N,
and then will jump at each time 7, to a level that will be at most equal to L7 _. In contrast to
Section 2.1, L here will be allowed to jump upwards; however, the arrival rate of jumps will be
finite and equal to A.

Define = := { (x, x*) € (0,00)% | x < x* }, corresponding to the spate space of a nonnegative
local martingale and its running supremum. (We do not consider x = 0, since it is a “cemetery”
state for nonnegative local martingales.) For each (x, x*) € =, let F(-; x, x*) be the cumulative
distribution function of a probability law such that F (y; x, x*) = 0 holds for y € (—o0, —1) and
F(x*/x — 1; x,x*) = 1; in other words, the probability law corresponding to F(-; x, x*) does
not charge any set outside [—1, (x* — x)/x]. We also ask that

/ ydF(y; x,x™) = / ydF(y;x,x*) =0, V(x,x*)e€Z. 2.3)
R [-1,(x*—x)/x]
This family will be used in the following manner: for each n € N, conditional on the pair
(Ly,—, L7 ) and when L, > 0, the “relative jump” (Ly, — Lg,—)/Ly,— of L at time 7,
will have a probability law with cumulative distribution function F(-; L, —, Lfn_). More details
on the construction are given in the next paragraph. For the time being, note that there are many
choices for the class of distributions {F(-; x, x*) | (x, x*) € =} satisfying the aforementioned
constraints. Possibly the simplest such class is the following: for (x,x*) € =, F(; x, x*)
corresponds to the probability law of a two-point-mass with probability x/x* equalling (x* —
x)/x and probability 1 — x/x* equalling —1. According to the heuristic description given above,
this particular choice corresponds to L jumping at each time point 7, (and if L, > 0) either
to its running supremum Lj _ with probability L;,—/L} _ or to zero (and then staying there
forever) with probability 1 — L, /L7 _.

We now proceed to the formal inductive construction of L. Let Ly = 1, and assume that L has
been defined on the stochastic interval [[0, 7,—1]] for some n € N.If L, |, = 0, define L; = 0
forall ¢ € (z,, oo) and terminate the process. If L, | > 0, first define L on [z,—1, 7,[ via

2
o
Li =L, ,exp (O’(Wt - Wi, ) — 7(t — 1:,,1)> , fort e (ty—1,1). 2.4)
For (x,x™) € =, let F’1(~; x,x*) 1 [0,1] = [—1, c0) denote the “inverse” of F(-; x, x*),

formally defined via

F'u;x,x*) =sup{y e R| F(y;x,x*) <u}, Vuel0,1],

and assume that the mapping F “1.70,11 x &+ [—1, 00) is (jointly) Borel-measurable. Then,
according to [4, Theorem 1.2.2], the random variable F -1 (Uy; x, x*) has a law with cumulative
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distribution function F(-; x, x*). With j, = F~! (U,,; L., _, Ljn_), set Ly, = Lo, —(1 + jn),
which defines L on the whole stochastic interval [[0, 7,,]] and completes the induction step. Since
lim;,_, 5, T, = 00 holds in the P-a.s. sense, it follows that L is defined for all times in R..

We proceed in showing that L € M. Note that (L, —, Lj”_) is independent of U, for
all n € N; therefore, given (L., —, Lfn_) and L, > 0, j, has a law with cumulative
distribution function F' (-; L, Lfn_). In particular, we have the P-a.s. inequalities 0 < L, <
Ly, (L} _/Ls,—) = L7 _, which imply that L stays nonnegative and does not jump over its
running supremum. This shows that L* is continuous in the P-a.s. sense. Furthermore, L is a
nonnegative semimartingale such that L = £(oc W + J) holds, where “£” denotes the stochastic
exponential operator and the pure-jump process J with AJ > —1 is defined via J; = Z;V; 1 Jn
for all + € R4. With n denoting the predictable compensator of the jump measure of J, it is
straightforward to check that 5 [df, dy] = AdtdF (y; L;_, L:L) holds for (¢, y) € Ry x R. In
particular, since Fubini’s theorem and (2.3) imply that

/ yn [dt, dy] =/ (f ydF (y; Lz_,L?‘_)> Adt =0
[0,-]xR [0,-] R

identically holds, it follows that J is a purely discontinuous local martingale. Since oW is a
continuous local martingale, L = E(c W + J) = E(oc W)E(J) is a nonnegative local martingale.
The law of large numbers for Brownian motion and the fact that ¢ € (0, oo) give the limiting
equality E(W)s = exp (limy— o (0 W; —0?t/2)) = 0, valid in the P-as. sense. Since
P [5 (Do € R+] = 1 holds in view of the nonnegative supermartingale convergence theorem,
Loo = E(0W)€(J) = 0 holds in the IP-a.s. sense, which implies that L € M.

In order to establish that L € L, which will finalise the discussion of this example, it remains
to show that {L_ =L*, AL # 0} is P-evanescent. For each n € N, note that the random
variable o, := 1, — 1,1 is independent of the sigma-field generated by 7, , and (the whole
process) W. Furthermore, there is zero probability that an exponential Brownian motion sampled
at an independent random time is equal to either its running maximum or to any fixed value. The
last two facts and (2.4) imply that PP [Lrn, = wa | ]-"TH] = 0 holds for all n € N. In view of
the obvious set-inclusion {AL # 0} € |, enllTn, T, valid up to a IP-evanescent set, we deduce
that {L_ =L* AL # 0} is P-evanescent.

3. Proof of Theorem 1.2

During the course of the proof of Theorem 1.2, and in an effort to be as self-contained as
possible, we shall provide full details for every step.

For a random time o and a process X = (X)/er,, X7 = (Xoar)rer, Will denote throughout
the process X stopped at o. For any unexplained, but fairly standard, notation and facts regarding
stochastic analysis, we refer the reader to [13].

3.1. Doob’s maximal identity

We start by proving a slightly elaborate version of Doob’s maximal identity—see [12]. It will
be quite useful throughout, sometimes in its “conditional” version.

Lemma 3.1. Let L be a nonnegative local martingale with Ly = 1. Then, P [Lj;Q > x] <1/x
holds for all x € (1, 00). Furthermore, P [L;‘O > x] = 1/x holds for all x € (1, 00) if and only
if L e M.
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Proof. For x € (1, 00), define the stopping time 7, := inf{f € R} | L; > x}, and note that
{L’;<> > x} = {1y < oo}. Since E [L’;X] <x+E [er] < x + 1, L™ is a uniformly integrable
martingale for all x € (1, co). It follows that xIP [L;‘o > x] = xP[ty < o0] = E[x[{z, <o0}] <
E[L. ] = 1 for x € (1,00), with equality holding if and only if P[L; = xIj; <c0}] = 1.
Whenever L € My, the equality P[L;, = xIj; <o0}] = 1 is immediate for all x € (1, 00).
Conversely, assume that P[L; = xI{;, <o0)] = 1 holds for all for x € (1, 00). It is clear that L*
must have P-a.s. continuous paths; furthermore, since P[UneN {t, = oo}] =1,P[Lo =0] =1
follows. Therefore, L € M. O

Suppose that the equivalence bet\leen conditions (1) and (2) of Theorem LZ has been
established. For fixed 1 € Ry, let L; = sup,gp; o) Lvs the set-inclusions {L:>L}} ¢
{pr >t} € {L; > L}} and a conditional version of Lemma 3.1 give

L;

Ly
Since P[p = pr] = 1, it follows that P[p > ¢t | F;] = L;/L} holds forall r € R.

Implication (2) = (1) of Theorem 1.2 is dealt with in Section 3.2. The more difficult

implication (1) = (2) is the content of Section 3.3; there, the fact that L, = L, = L}
holds in the IP-a.s. sense is also established (in Lemma 3.5).

L - L
=P[L, > LI | F]<Plor >t | FI<P[L > L} | 7] = —,
t

Vt € R+.

3.2. Proof of implication (2) = (1)

It has already been shown in Section 1.2 that py, is an honest time if L € My; in particular,
oL is an honest time if L € Ly. Implication (2) = (1) will follow once we establish that
pr avoids all stopping times whenever L € Ly. To this end, fix some stopping time t; it will
be shown below that P[p; = t | F;] = 0 holds up to a P-null set. Since P[p;, = oo] =
0,Plpr, = t | Fr] = O trivially holds (up to a P-null set) on {t = co}. Furthermore, note
that {,oL =1<00, L; < Lf} C {r <oo, L =L¥_, AL; < 0}; since L € Ly, the latter
event has zero probability, from which we obtain that P[p;, = t | F;] = 0 also holds on
{t <00, Ly < L¥}, up to a P-null set. Finally, on {r < oo, Ly = L%}, where in particular
L. > 0, a conditional form of Lemma 3.1 gives that P[sup,c(; o) Li > L} | Fr] = Lo/L¥ =1
holds; therefore, P[p;, = 7 | ;] = 0 also holds on {‘L’ < o0, Ly = Lt} up to a P-null set.

3.3. Proof of implication (1) = (2) and the equality L,_ = L, = L%,

Throughout Section 3.3, fix an honest time p that avoids all stopping times. Let Z be the
[0, 1]-valued (cadlag) Azéma supermartingale that satisfies Z; = P[p > ¢ | F;] forall t € R;..
The next result follows from [8, Lemma 4.3(i) and Proposition 5.1]—we provide its proof for
completeness.

Lemma 3.2. With the above notation, P{Z, = 1] = 1 holds.

Proof. Let (R?),ER . be an adapted process such that p = R? holds on {p <t} forallr € R,.
Note that the adapted process (R? A t)ier, has the same property as well; therefore, we may
assume that R? < t holds for all + € R;. With D denoting a dense countable subset of R,
define the process R = limps, . (supseDﬁ(O,,) RE); then, R is right-continuous, adapted and non-
decreasing, and R; < ¢ still holds for all ¢+ € R. Furthermore, since for s € R4 and ¢t € R with
s<t,p= R? = R? holds on {p < s} C {p < t}, it follows that p = R, holds on {p < ¢t} for all
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t € Ry. Define a {0, 1}-valued optional process I via I; = I{g,—; for € R,. The properties of
R can be seen to imply {I = 1} C [0, p]l, as well as I, = 1 on {p < oo}; since P[p = 00] =0
holds due to the fact that o avoids all stopping times, we conclude that P[I, = 1] = 1. Fix a
finite stopping time 7. Using again the fact that p avoids all stopping times, Z; = P[p > t | F¢]
holds. Then, I; € F; and {I = 1} C [0, p]) imply that E[I; Z;] = E [I;I{r<,}] = E[I;]. Since
I is {0, 1}-valued and Z is [0, 1]-valued, E [I; Z;] = E[I,] implies that {I; = 1} € {Z, = 1}.
Since the latter holds for all finite stopping times T and both / and Z are optional, the optional
section theorem implies that {/ = 1} € {Z = 1}, modulo P-evanescence. Then, P[I, = 1] = 1
implies]P’[Zp = 1] =1 0O

Continuing, let A be the unique (up to P-evanescence) adapted, cadlag, nonnegative and non-
decreasing process such that E[V,] = E [ fooo V; dA,] holds for all nonnegative optional processes
V—in other words, A is the dual optional projection of Iy, cof. Since E[A; — A;_] = P[p =
7] = 0 holds for all finite stopping times t, the optional section theorem implies that Ao = 0 and
A has P-a.s. continuous paths. Define also M as the nonnegative uniformly integrable martingale
such that M; = E[A | F;] holds for all r € R . By the definition of A and M, note that

M =A+E[Ao — A | Fl=A+Plo>t | Fl=A+Z;, VieR,.

Given the [P-a.s. continuity of the paths of A, it follows that Z = M — A is the (additive)
Doob—Meyer decomposition of Z. The following result provides the multiplicative Doob—Meyer
decomposition of Z, a topic first treated in [7]. In the present case where it is known that the
predictable process A is actually continuous, the proof simplifies.

Lemma 3.3. With the above notation, one has Z = L(1 — K), where L is a nonnegative local
martingale with Ly = 1 and K is a [0, 1]-valued nondecreasing adapted process with P-a.s.
continuous paths. Furthermore, A = fo L.dK; holds.

Proof. For each n € N, define the stopping time ¢, = inf{r € Ry | Z; < 1/n}. Furthermore,
set ¢ ==1limy 0 & =inf{t e Ry | Z;— =0o0r Z; = 0}.

Define K := 1 — exp(— O“'(l/Z,)dAt), which obviously is a [0, 1]-valued nondecreasing
adapted process. The fact that A has P-a.s. continuous paths implies that K is P-a.s. continuous
on [0, ¢,]] and that P [K o < 1] = 1 holds for all n € N. Furthermore, it is straightforward to
check that A = A¢ holds; therefore, we conclude that K has P-a.s. continuous paths.

Setting L" := Z% /(1—K %), a straightforward application of the integration-by-parts formula
gives L" = 1 + fO”A'(L;’ /Z;)dM;, implying that L" is a nonnegative local martingale for
all n € N. For m < n, it holds that L = L" on [0, ¢,]; then, the nonnegative martingale
convergence theorem implies that £ := lim,,_, o LE‘” exists and is R -valued in the P-a.s. sense.
One may therefore define a nonnegative cadlag process L such that L = L" holds on [0, &, ] for
alln € Nand L, = £ holds for all t > ¢. In view of Lemma 3.1, the fact that L% is a nonnegative
local martingale with Lé” = 1 implies that lP’[L;n > x] < 1/x holds for all » € N. Since

L = L% and P[lim,— o0 &y = ] = 1, we obtain that P [L%, < co] = 1. Therefore, defining the
stopping time 7 := inf {t € R} | L; > k} for all k € N, it follows that P [limj_, o, 7y = 00] = 1.
Furthermore, since L = L¢, P[limyo0 & =¢] = 1, and E [erMn] = E[L%] = 1 holds for
all k € Nand n € N, Fatou’s lemma gives

E [ij] = ]E I:nli)rgo LtkAZn] S I}IH_I)IO%fE [Lik/\é‘n]

< liminf (k + E[Lyng,]) =k+1 <00, VkeN.

n—oo
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For 0 < s <t < o0, the (conditional version of the) dominated convergence theorem gives
Tk _ . _ . §
E[LF | B] = B[ lim Lyrgn | ] = lim E[L8,, | 7]

= lim LY, =L%, VkeN.

Tk NS
n—o00

It follows that L™ is a martingale for all k € N; therefore, L is a nonnegative local martingale.

Since K = K% L = L% and Z = Z¢%, we conclude that Z = L(1 — K) holds. By the
integration-by-parts formula, Z = 1 + fo'(l — K)dL, — fo L;dK; holds; comparing with the
Doob-Meyer decomposition Z = M — A of Z, and recalling that A = 0, we obtain that
A= [jLdK,. O

Lemma 3.4. With the above notation, K, has the standard uniform law.

Proof. For u € [0, 1), define the stopping time 7, := inf{r € Ry | K; > u}, with the convention
7, = oo if the last set is empty. Since K has [P-a.s. continuous paths, K;, = u holds P-a.s. on
{ry < oo} forall u € [0, 1). Recalling that A = fO L,dK; holds from Lemma 3.3, a use of the
change-of-time technique gives

[ee) [ee) 1
/0 f(Kt)dAt = /0 f(Kt)Ltth = /0 LruH{ru<oo}f(M)du,
for any Borel f : [0, 1) — R,. 3.1

Since Z = L(1 — K), the facts that Z < 1 and K < u hold up to P-evanescence on
[0, 7, 1] imply that P [Lj“ <1/(1— u)] = 1 holds for all u € [0, 1). Therefore, E[L,,] = 1
holds for all u € [0, 1). Since P[p = oo] = 0, it follows that P[Z,, = 0] = 1; then,
P[Zso = Loo(l — Kso)] = 1 implies P[Ks < 1, Ly > 0] = 0. Therefore, for u € [0, 1),
the set-inclusion {r, = 00} € {Ko < 1} implies P [L¢, Iz, <o0) = Lz, | = 1. Then, E[L,] = 1
gives E [ Ly, Iz, <00} | = 1 foru € [0, 1). By Fubini’s Theorem and (3.1), we obtain E [ f(K )] =
E[fo° f(K)dA] = fol f(u)du. Since the latter holds for any Borel f : [0, 1) — R, it follows
that K, has the standard uniform law. [J

Lemma 3.5. With the above notation, it holds that L € Mo and P[L,_ = L, = L% ] = 1.

Proof. Since P[Z, = L,(1 — K,)] = 1, Lemma 3.2 gives P[L, = 1/(1 — K,)] = 1. Then,
Lemma 3.4 implies that P[L, > x] = P[K, > 1 —1/x] = 1/x for all x € (1,00). As
P[L, < L%] = 1,Lemma 3.1 implies both that L € Mg and that P[L, = L% ] = 1. It remains
to show that P|L,_ = Lp] = 1, which is equivalent to E [|ALp|] = 0. By the definition of A,
itholds that E ||AL, |] = IEl[f]R+ |AL; |dAt] = 0, the last equality holding from the fact that A is
such that Ag = 0 and has P-a.s. continuous paths (since p avoids all stopping times), combined
with the P-a.s. countability of the (random) set {r e R | AL, #£0}. O

Lemma 3.6. With the above notation, P[p = pr] = 1 holds.

Proof. Since L, < L% < L%, the equality P[L, = L} ] = 1 that was established in
Lemma 3.5 implies that IP’[Lp_ = L;_] = 1; by the definition of p in (1.1),P[p < pr] =11is
evident. For r € R, let L, = SUPyefr.00) L and note the set-inclusions {Z, > L;“} C{p >t}
and {p; >t} C {Z, > L7 } valid modulo IP. A use of the conditional version of Lemma 3.1 gives
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P[L; = L} | Fi] = Li/L} = P[L; > L} | F;], for all t € Ry. It follows that P[p; > t] <
P[p > t]holds for all 1 € Ry. Combined with P[p < p.] =1, we obtain P[p = p. | =1. O

The next result concludes the proof of implication (1) = (2) of Theorem 1.2.

Lemma 3.7. With the above notation, it holds that L € Ly.

Proof. A use of Lemma 3.5 gives L € Mg and P[AL, # 0] = 0. If the set {L_ = L*,
AL # 0} failed to be P-evanescent, one would infer the existence of a stopping time 7 with
the property that IP’['L' <00, Ly =L%_, AL, < O] = P[r < 0o] > 0 holds. Recalling that
P[p = pr] = 1 from Lemma 3.6, a conditional version of Lemma 3.1 gives

L. L.+ AL, AL

IF) = T:IP) = :1——:1 = .
[o=1|F] oL =1 | F£] L I I

It follows that P[p =t | 7] > O holds on the F;-measurable event {1: < 00, L— =
LY , AL, < O}, implying that ]P’[ALp < O] > P[AL; <0, p=1t] > 0, which is a
contradiction. (Note that one may arrive at the contradiction alternatively by noticing that if
Plp =1 | Fz] > 0 held on an F;-measurable event of strictly positive probability, p would
fail to avoid all stopping times.) We deduce that {L, =L*, AL # ()} is P-evanescent, i.e., that
Le/ly. 0O
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