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Abstract

We present a short and self-contained proof of the following result: a random time is an honest time that
avoids all stopping times if and only if it coincides with the (last) time of maximum of a nonnegative local
martingale with zero terminal value and no jumps while at its running supremum, where the latter running
supremum process is continuous. Illustrative examples involving local martingales with discontinuous paths
are provided.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. The characterisation result

1.1. Honest times that avoid all stopping times

Let (Ω , F, P) be a filtered probability space, where F = (Ft )t∈R+
is a filtration satisfying the

usual conditions of right-continuity and saturation by P-null sets of F :=


t∈R+
Ft . All (local)

martingales and supermartingales on (Ω , F, P) are assumed to have P-a.s. càdlàg paths.

Definition 1.1. A random time is a [0, ∞]-valued, F -measurable random variable. The random
time ρ is said to avoid all stopping times if P[ρ = τ ] = 0 holds whenever τ is a (possibly,
infinite-valued) stopping time. The random time ρ is called an honest time if for all t ∈ R+ there
exists an Ft -measurable random variable Rt such that ρ = Rt holds on {ρ ≤ t}.
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Honest times constitute the most important class of random times outside the realm of
stopping times. They have been extensively studied in the literature, especially in relation to
filtration enlargements. It is impossible to present here the vast literature on the subject of honest
times; we indicatively mention the early papers [1–3,9,15], as well as the monographs [8,10].
Lately, there has been considerable revival to the study of honest times, due to questions arising
from the field of Financial Mathematics—see, for example, [5,11,6] and the references therein.

1.2. The class M0

Define M0 to be the class of all nonnegative local martingales L such that L0 = 1, the
running supremum process L∗

:= supt∈[0,·] L t is continuous (up to a P-evanescent set), and
P [L∞ = 0] = 1 holds, where L∞ := limt→∞ L t . (Note that the limit in the definition of L∞

exists in the P-a.s. sense, in view of the nonnegative supermartingale convergence theorem.)
For L ∈ M0, define1

ρL := sup

t ∈ R+ | L t− = L∗

t−


, (1.1)

where note that L0− = 1 = L∗

0−
implies that the (random) set


t ∈ R+ | L t− = L∗

t−


is non-

empty. Since P [L∞ = 0] = 1 holds for L ∈ M0, it follows that P [ρL < ∞] = 1.
For L ∈ M0 and t ∈ R+, define Rt := sup


s ∈ [0, t] | Ls− = L∗

s−


∧ t , which is an Ft -

measurable random variable such that ρL = Rt holds on {ρL ≤ t}. It follows that ρL is an honest
time whenever L ∈ M0.

1.3. The class L0

Let L ∈ M0. In view of (1.1), ρL coincides with the end of the predictable set


L− = L∗
−


.

Using the P-a.s. left-continuity of L− and the P-a.s. continuity of L∗, as well as the definition of
ρL from (1.1), we obtain that LρL− = L∗

ρL− = L∗
ρL

holds in the P-a.s. sense. (In particular, the
“sup” in (1.1) is really a “max”.) If one wishes to ensure that ρL is an actual time of maximum
of L , it suffices to ask that L has no jumps when L− is at its running supremum. Motivated by
this observation, we define the class L0 to consist of all L ∈ M0 with the additional property
that


L− = L∗

−


⊆ {1L = 0} holds up to a P-evanescent set. Whenever L ∈ L0, it P-a.s. holds

that LρL− = LρL = L∗
ρL

; in fact, as Theorem 1.2 will imply, the previous random variables are
also equal to L∗

∞, which makes ρL a time of overall maximum of L ∈ L0. On the other hand, if
L ∈ M0 \ L0 it may happen that L does not achieve its overall supremum; furthermore, it may
also happen that ρL fails to avoid all stopping times—for both previous points, see Remark 1.4.

1.4. The characterisation result

The following result shows that, for L ∈ L0, the random time ρL defined in (1.1) is the
canonical example of an honest time that avoids all stopping times.

Theorem 1.2. For a random time ρ, the following two statements are equivalent.
(1) ρ is an honest time that avoids all stopping times.
(2) ρ = ρL holds in the P-a.s. sense for some L ∈ L0.

Under (any of) the previous conditions, the equality Lρ− = Lρ = L∗
∞ holds in the P-a.s. sense;

furthermore, P [ρ > t | Ft ] = L t/L∗
t in the P-a.s. sense is valid for all t ∈ R+.

1 As usual, for any càdlàg process X, X− denotes the càglàd process defined in a way such that X t− is the left limit
of X at t ∈ (0, ∞); by convention, we also set X0− = X0.
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We proceed with some remarks on Theorem 1.2, the proof of which is given in Section 3.
Section 2 contains examples involving jump processes, illustrating Theorem 1.2.

Remark 1.3. Along with ρL from (1.1), for L ∈ M0 define also ρ′

L := sup

t ∈ R+ | L t = L∗

t


.

(When L ∈ L0, it is straightforward to check that P

ρL ≤ ρ′

L


= 1.) Under the additional

proviso that the filtration is continuous – meaning that all martingales on (Ω , F, P) have P-
a.s. continuous paths – it was shown in [12, Corollary 2.4 and Theorem 4.1] that a random
time ρ is an honest time2 that avoids all stopping times if and only if ρ = ρ′

L holds for some
L ∈ M0. When the filtration is continuous, P


ρL = ρ′

L


= 1 holds and the classes M0 and L0

coincide; therefore, the aforementioned results in [12] constitute a special case of Theorem 1.2. In
[11, Theorem 3.2], it is shown that whenever ρ is an honest time that avoids all stopping times,
then ρ = ρ′

L holds for some L ∈ M0. Although there is no assumption regarding filtration
continuity in [11], Theorem 1.2 is stronger since it gives a full characterisation; indeed, when the
filtration fails to be continuous, Remark 1.4 shows that L0 may be a strict subclass of M0. Note
that the random time ρL (for L ∈ M0) is considered in the present paper in place of ρ′

L that
was used in [11], as it ties better with the definition of the important class L0 ⊆ M0. Finally, it
should be mentioned that the arguments in [11] make heavy use of previously-established results
regarding so-called processes of class (Σ ); in contrast, Section 3 contains a relatively short and
self-contained proof of Theorem 1.2.

Remark 1.4. Consider a complete probability space (Ω , F , P) that supports a R+-valued ran-
dom variable τ such that P [τ > t] = e−t holds for all t ∈ R+. Let F be the usual augmentation of
the smallest filtration which makes τ a stopping time. Define the process L via L t = exp(t)I{t<τ }

for all t ∈ R+. It is straightforward to check that L ∈ M0, as well as ρL = τ . In particular, ρL
fails the requirement to avoid all stopping times in a dramatic fashion, since it is actually equal
to a stopping time. Note also that L ∉ L0, since 1LρL = −LρL− = − exp(τ ) < 0 holds.

Remark 1.5. Let ρ be an honest time that avoids all stopping times. The process L ∈ L0 such
that ρ = ρL , which exists in view of Theorem 1.2, is necessarily unique (up to a P-evanescent
set). Indeed, let M ∈ L0 be another process such that P [ρ = ρM ] = 1. In view of Theorem 1.2,
one obtains the process equality L/L∗

= M/M∗, up to a P-evanescent set. The integration-by-
parts formula implies that

L

L∗
= 1 +


·

0

1
L∗

t
dL t −


·

0

L t

(L∗
t )

2 dL∗
t

= 1 +


·

0

1
L∗

t
dL t −


·

0

1
L∗

t
dL∗

t = 1 +


·

0

1
L∗

t
dL t − log


L∗

t


,

where the facts that


∞

0 I{L t <L∗
t }

dL∗
t = 0 and L∗ has continuous paths were used in the previous

equalities. The above calculation provides the Doob–Meyer decomposition of L/L∗; in exactly
the same way, we obtain that M/M∗

= 1 +


·

0


1/M∗

t


dMt − log


M∗

t


is the Doob–Meyer

decomposition of M/M∗. Combining the equality L/L∗
= M/M∗ with uniqueness of the

Doob–Meyer decomposition, the process equalities log (L∗) = log (M∗) and


·

0


1/L∗

t


dL t =

·

0


1/M∗

t


dMt follow; from these, one concludes in a straightforward way that L = M .

2 Actually, both [12,11] define an honest time as the end of an optional set, a concept that can be seen to be equivalent
to the one in Definition 1.1 when the random time involved is P-a.s. finite; see, for example, [8, Proposition 5.1].
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2. Examples involving processes with jumps

In this section we present examples where the process L ∈ L0 corresponding (in view of
Theorem 1.2) to an honest time ρ that avoids all stopping times has jumps. By Remark 1.5, the
aforementioned correspondence is one-to-one; then, it follows that Theorem 1.2 has indeed a
wider scope compared to the corresponding result that restricts filtrations to be continuous.

2.1. Maximum of downwards drifting spectrally negative Lévy processes with paths of infinite
variation

On the filtered probability space (Ω , F, P), assume that X is a one-dimensional càdlàg Lévy
process with X0 = 0. For information about Lévy processes, the interested reader can check [14],
a book which we shall be referring to in the following discussion.

The probability law of the process X can be fully characterised by its Lévy triplet (α, σ 2, ν),
where α ∈ R equals the drift rate of the Lévy process X −


t≤·

1X t I{|1X t |>1}, σ
2

∈ R+ is the
diffusion coefficient, and ν is a Lévy measure on R \ {0} (equipped with its Borel sigma-field),
which means that


R\{0}


1 ∧ |x |

2

ν[dx] < ∞.

The first assumption on X is that of no positive jumps; in terms of the Lévy measure:

(L1) ν [(0, ∞)] = 0.

By [14, Example 25.11], condition (L1) implies that E

exp (zX t )


< ∞ for z ∈ R+. There-

fore, one may consider the Laplace exponent function θ : R+ → R, defined implicitly via
exp(tθ(z)) = E


exp (zX t )


for z ∈ R+ and t ∈ R+. By the Lévy–Khintchine representation

[14, Section 8],

θ(z) = αz +
1
2
σ 2z2

+


(−∞,0)


exp(zx) − 1 − zxI[−1,0)(x)


ν[dx], ∀z ∈ R+. (2.1)

The following is our second assumption on X :

(L2) α +

(−∞,−1)

xν[dx] < 0.

Given (L1), condition (L2) is equivalent to asking that P [limt→∞ X t = −∞] = 1, i.e., that
X is downwards drifting. To wit, first note that the function θ has a derivative θ ′ on (0, ∞),
and it is straightforward to see that θ ′(0+) := limz↓0 θ ′(z) = α +


(−∞,−1)

xν[dx] < 0, the
last strict inequality holding from condition (L2). A straightforward argument using the equality
θ(z) = log


E


exp (zX1)


for all z ∈ R+ shows that E [X1] = θ ′(0+) < 0; then, the law of

large numbers for Lévy processes (see, for example, [14, Theorem 36.5]) immediately implies
that P [limt→∞ X t = −∞] = 1.

Finally, we introduce the last assumption on X , equivalent to saying that the paths of X are of
infinite (first) variation.

(L3) If σ 2
= 0, then


(−1,0)

|x |ν[dx] = ∞.

With X∗
:= supt∈[0,·] X t denoting the running supremum process of X , define the random

time

ρ := sup

t ∈ R+ | X t− = X∗

t−


. (2.2)

In what follows, we shall show that ρ is an honest time that avoids all stopping times, by explicitly
computing L ∈ L0 such that ρ = ρL .



C. Kardaras / Stochastic Processes and their Applications 124 (2014) 373–384 377

Assume the validity of all conditions (L1)–(L3). The Laplace exponent function θ defined in
(2.1) is such that θ ′′(z) = σ 2

+

(−∞,0)

x2 exp(zx)ν[dx] for z ∈ (0, ∞); in particular, it is convex.

Furthermore, limz→∞


θ(z)/z2


= σ 2/2, while limz→∞ (θ(z)/z) = α −


(−1,0)

xν[dx] = ∞

holds if σ 2
= 0 in view of condition (L3). It follows that limz→∞ θ(z) = ∞. The facts

θ(0) = 0, θ ′(0+) < 0 and limz→∞ θ(z) = ∞, combined with the convexity of θ , imply that
there exists a unique z0 ∈ (0, ∞) such that θ(z0) = 0. A straightforward argument using the
Lévy property of X and the definition of θ shows that the process L := exp(z0 X) is a martingale
on (Ω , F, P) such that L0 = 1, L∗ has continuous paths, and limt→∞ L t = 0, all holding in the
P-a.s. sense. It follows that L ∈ M0; furthermore, since z0 > 0, a comparison of (1.1) and (2.2)
shows that ρ = ρL .

In order to show that L ∈ L0, it remains to establish that the set


L− = L∗
−, 1L ≠ 0


is P-

evanescent. Since L = exp(z0 X) with z0 > 0, this last condition is equivalent to P-evanescence
of


X− = X∗

−, 1X ≠ 0

, which is exactly the content of the result that follows.3

Lemma 2.1. Assume the validity of conditions (L1)–(L3). Then,


X− = X∗
−, 1X ≠ 0


is P-

evanescent.

Proof. Condition (L3) implies that lim inft↓0 (X t/t) = −∞; indeed, this follows from
[14, Theorem 47.1]. (Look also at [14, Definition 11.9] for the concept of Lévy processes
of so-called “type C”.) It follows that P


infs∈[0,t] Xs = 0


= 0 holds for all t ∈ (0, ∞).

Furthermore, in view of [14, Remark 45.9], the probability laws of infs∈[0,t] Xs and X t − X∗
t

are the same for any fixed t ∈ R+. Combining the previous, it follows that P

X t = X∗

t


=

P

infs∈[0,t] Xs = 0


= 0 holds for all t ∈ (0, ∞); in particular,


R+

P

X t− = X∗

t−


dt = 0.

With µ denoting the jump measure of X , and since


X− = X∗
−


is a predictable set, a use of

Fubini’s theorem gives

E


R+×(−∞,0)

I{X t−=X∗
t−}µ [dt, dx]


= E


(−∞,0)


R+

I{X t−=X∗
t−}dt


ν [dx]


=


(−∞,0)


R+

P

X t− = X∗

t−


dt


ν [dx] = 0,

which implies that


R+×(−∞,0)
I{X t−=X∗

t−}µ [dt, dx] = 0 holds in the P-a.s. sense. The latter

is equivalent to that


X− = X∗
−, 1X < 0


is P-evanescent. Since 1X ≤ 0, the proof is

complete. �

Note that L has P-a.s. continuous paths only in the case ν ≡ 0; therefore, the above
construction provides a plethora of examples of honest times that avoid all stopping times for
which the unique (in view of Remark 1.5) representative L ∈ L0 with the property that ρ = ρL
has jumps.

2.2. Geometric Brownian motion with jumps no higher than its running supremum

Consider a probability space (Ω , F , P), rich enough to support the following independent
elements:

• a process W = (Wt )t∈R+
, which is a standard Brownian motion in its natural filtration;

3 Note that condition (L3) is essential for P-evanescence of


X− = X∗
−

, 1X ≠ 0

. For example, when X t = t/2−Nt

for t ∈ R+, where N is a standard Poisson process, condition (L3) fails and Xdoes jump downwards sometimes while
X− is at its maximum (for instance, at the first arrival time of the Poisson process).
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• a sequence (σn)n∈N of independent and identically distributed random variables having the
exponential law with rate parameter λ ∈ (0, ∞);

• a sequence (Un)n∈N of independent and identically distributed random variables having the
standard uniform law on [0, 1].

Define τ0 := 0 and τn =
n

m=1 σm for all n ∈ N; then, the process N defined via Nt =
∞

n=1 I{τn≤t} for all t ∈ R+ is a Poisson process (in its own filtration) with arrival rate λ. Define
also the compound Poisson process C via Ct =

Nt
n=1 Un for all t ∈ R+. Let F be the usual

augmentation of the smallest filtration that makes W and C adapted. Note that N is F-adapted,
and that W and C are independent.

Given the above ingredients, we shall construct L ∈ L0 that behaves like an exponential
Brownian motion with parameter σ ∈ (0, ∞) in each stochastic interval [[τn−1, τn[[ for all n ∈ N,
and then will jump at each time τn to a level that will be at most equal to L∗

τn−. In contrast to
Section 2.1, L here will be allowed to jump upwards; however, the arrival rate of jumps will be
finite and equal to λ.

Define Ξ :=

(x, x∗) ∈ (0, ∞)2

| x ≤ x∗

, corresponding to the spate space of a nonnegative

local martingale and its running supremum. (We do not consider x = 0, since it is a “cemetery”
state for nonnegative local martingales.) For each (x, x∗) ∈ Ξ , let F(·; x, x∗) be the cumulative
distribution function of a probability law such that F(y; x, x∗) = 0 holds for y ∈ (−∞, −1) and
F(x∗/x − 1; x, x∗) = 1; in other words, the probability law corresponding to F(·; x, x∗) does
not charge any set outside [−1, (x∗

− x)/x]. We also ask that
R

ydF(y; x, x∗) ≡


[−1,(x∗−x)/x]

ydF(y; x, x∗) = 0, ∀(x, x∗) ∈ Ξ . (2.3)

This family will be used in the following manner: for each n ∈ N, conditional on the pair
(Lτn−, L∗

τn−) and when Lτn− > 0, the “relative jump” (Lτn − Lτn−)/Lτn− of L at time τn
will have a probability law with cumulative distribution function F(·; Lτn−, L∗

τn−). More details
on the construction are given in the next paragraph. For the time being, note that there are many
choices for the class of distributions {F(·; x, x∗) | (x, x∗) ∈ Ξ } satisfying the aforementioned
constraints. Possibly the simplest such class is the following: for (x, x∗) ∈ Ξ , F(·; x, x∗)

corresponds to the probability law of a two-point-mass with probability x/x∗ equalling (x∗
−

x)/x and probability 1 − x/x∗ equalling −1. According to the heuristic description given above,
this particular choice corresponds to L jumping at each time point τn (and if Lτn− > 0) either
to its running supremum L∗

τn− with probability Lτn−/L∗
τn− or to zero (and then staying there

forever) with probability 1 − Lτn−/L∗
τn−.

We now proceed to the formal inductive construction of L . Let L0 = 1, and assume that L has
been defined on the stochastic interval [[0, τn−1]] for some n ∈ N. If Lτn−1 = 0, define L t = 0
for all t ∈ (τn, ∞) and terminate the process. If Lτn−1 > 0, first define L on [[τn−1, τn[[ via

L t = Lτn−1 exp


σ(Wt − Wτn−1) −
σ 2

2
(t − τn−1)


, for t ∈ (τn−1, τn). (2.4)

For (x, x∗) ∈ Ξ , let F−1(·; x, x∗) : [0, 1] → [−1, ∞) denote the “inverse” of F(·; x, x∗),
formally defined via

F−1(u; x, x∗) := sup


y ∈ R | F(y; x, x∗) < u

, ∀u ∈ [0, 1],

and assume that the mapping F−1
: [0, 1] × Ξ → [−1, ∞) is (jointly) Borel-measurable. Then,

according to [4, Theorem 1.2.2], the random variable F−1(Un; x, x∗) has a law with cumulative
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distribution function F(·; x, x∗). With jn := F−1

Un; Lτn−, L∗

τn−


, set Lτn = Lτn−(1 + jn),

which defines L on the whole stochastic interval [[0, τn]] and completes the induction step. Since
limn→∞ τn = ∞ holds in the P-a.s. sense, it follows that L is defined for all times in R+.

We proceed in showing that L ∈ M0. Note that (Lτn−, L∗
τn−) is independent of Un for

all n ∈ N; therefore, given (Lτn−, L∗
τn−) and Lτn− > 0, jn has a law with cumulative

distribution function F

·; Lτn−, L∗

τn−


. In particular, we have the P-a.s. inequalities 0 ≤ Lτn ≤

Lτn−(L∗
τn−/Lτn−) = L∗

τn−, which imply that L stays nonnegative and does not jump over its
running supremum. This shows that L∗ is continuous in the P-a.s. sense. Furthermore, L is a
nonnegative semimartingale such that L = E (σ W + J ) holds, where “E ” denotes the stochastic
exponential operator and the pure-jump process J with 1J ≥ −1 is defined via Jt =

Nt
n=1 jn

for all t ∈ R+. With η denoting the predictable compensator of the jump measure of J , it is
straightforward to check that η [dt, dy] = λdtdF


y; L t−, L∗

t−


holds for (t, y) ∈ R+ × R. In

particular, since Fubini’s theorem and (2.3) imply that
[0,·]×R

yη [dt, dy] =


[0,·]


R

ydF

y; L t−, L∗

t−


λdt = 0

identically holds, it follows that J is a purely discontinuous local martingale. Since σ W is a
continuous local martingale, L = E (σ W + J ) = E (σ W )E (J ) is a nonnegative local martingale.
The law of large numbers for Brownian motion and the fact that σ ∈ (0, ∞) give the limiting
equality E (σ W )∞ = exp


limt→∞


σ Wt − σ 2t/2


= 0, valid in the P-a.s. sense. Since

P


E (J )∞ ∈ R+


= 1 holds in view of the nonnegative supermartingale convergence theorem,

L∞ = E (σ W )∞E (J )∞ = 0 holds in the P-a.s. sense, which implies that L ∈ M0.
In order to establish that L ∈ L0, which will finalise the discussion of this example, it remains

to show that


L− = L∗
−, 1L ≠ 0


is P-evanescent. For each n ∈ N, note that the random

variable σn := τn − τn−1 is independent of the sigma-field generated by Fτn−1 and (the whole
process) W . Furthermore, there is zero probability that an exponential Brownian motion sampled
at an independent random time is equal to either its running maximum or to any fixed value. The
last two facts and (2.4) imply that P


Lτn− = L∗

τn− | Fτn−1


= 0 holds for all n ∈ N. In view of

the obvious set-inclusion {1L ≠ 0} ⊆


n∈N[[τn, τn]], valid up to a P-evanescent set, we deduce
that


L− = L∗

−, 1L ≠ 0


is P-evanescent.

3. Proof of Theorem 1.2

During the course of the proof of Theorem 1.2, and in an effort to be as self-contained as
possible, we shall provide full details for every step.

For a random time σ and a process X = (X t )t∈R+
, Xσ

= (Xσ∧t )t∈R+
will denote throughout

the process X stopped at σ . For any unexplained, but fairly standard, notation and facts regarding
stochastic analysis, we refer the reader to [13].

3.1. Doob’s maximal identity

We start by proving a slightly elaborate version of Doob’s maximal identity—see [12]. It will
be quite useful throughout, sometimes in its “conditional” version.

Lemma 3.1. Let L be a nonnegative local martingale with L0 = 1. Then, P

L∗

∞ > x


≤ 1/x
holds for all x ∈ (1, ∞). Furthermore, P


L∗

∞ > x


= 1/x holds for all x ∈ (1, ∞) if and only
if L ∈ M0.
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Proof. For x ∈ (1, ∞), define the stopping time τx := inf {t ∈ R+ | L t > x}, and note that
L∗

∞ > x


= {τx < ∞}. Since E

L∗

τx


≤ x + E


Lτx


≤ x + 1, Lτx is a uniformly integrable

martingale for all x ∈ (1, ∞). It follows that xP

L∗

∞ > x


= xP[τx < ∞] = E[xI{τx <∞}] ≤

E[Lτx ] = 1 for x ∈ (1, ∞), with equality holding if and only if P[Lτx = xI{τx <∞}] = 1.
Whenever L ∈ M0, the equality P[Lτx = xI{τx <∞}] = 1 is immediate for all x ∈ (1, ∞).
Conversely, assume that P[Lτx = xI{τx <∞}] = 1 holds for all for x ∈ (1, ∞). It is clear that L∗

must have P-a.s. continuous paths; furthermore, since P


n∈N {τn = ∞}


= 1, P[L∞ = 0] = 1
follows. Therefore, L ∈ M0. �

Suppose that the equivalence between conditions (1) and (2) of Theorem 1.2 has been
established. For fixed t ∈ R+, let L t := supv∈[t,∞) Lv; the set-inclusions


L t > L∗

t


⊆

{ρL > t} ⊆


L t ≥ L∗
t


and a conditional version of Lemma 3.1 give

L t

L∗
t

= P

L t > L∗

t | Ft


≤ P [ρL > t | Ft ] ≤ P

L t ≥ L∗

t | Ft


=
L t

L∗
t
, ∀t ∈ R+.

Since P [ρ = ρL ] = 1, it follows that P [ρ > t | Ft ] = L t/L∗
t holds for all t ∈ R+.

Implication (2) ⇒ (1) of Theorem 1.2 is dealt with in Section 3.2. The more difficult
implication (1) ⇒ (2) is the content of Section 3.3; there, the fact that Lρ− = Lρ = L∗

∞

holds in the P-a.s. sense is also established (in Lemma 3.5).

3.2. Proof of implication (2) ⇒ (1)

It has already been shown in Section 1.2 that ρL is an honest time if L ∈ M0; in particular,
ρL is an honest time if L ∈ L0. Implication (2) ⇒ (1) will follow once we establish that
ρL avoids all stopping times whenever L ∈ L0. To this end, fix some stopping time τ ; it will
be shown below that P[ρL = τ | Fτ ] = 0 holds up to a P-null set. Since P [ρL = ∞] =

0, P[ρL = τ | Fτ ] = 0 trivially holds (up to a P-null set) on {τ = ∞}. Furthermore, note
that


ρL = τ < ∞, Lτ < L∗

τ


⊆


τ < ∞, Lτ− = L∗

τ−, 1Lτ < 0

; since L ∈ L0, the latter

event has zero probability, from which we obtain that P[ρL = τ | Fτ ] = 0 also holds on
τ < ∞, Lτ < L∗

τ


, up to a P-null set. Finally, on


τ < ∞, Lτ = L∗

τ


, where in particular

Lτ > 0, a conditional form of Lemma 3.1 gives that P

supt∈[τ,∞) L t > L∗

τ | Fτ


= Lτ /L∗

τ = 1
holds; therefore, P[ρL = τ | Fτ ] = 0 also holds on


τ < ∞, Lτ = L∗

τ


, up to a P-null set.

3.3. Proof of implication (1) ⇒ (2) and the equality Lρ− = Lρ = L∗
∞

Throughout Section 3.3, fix an honest time ρ that avoids all stopping times. Let Z be the
[0, 1]-valued (càdlàg) Azéma supermartingale that satisfies Z t = P[ρ > t | Ft ] for all t ∈ R+.
The next result follows from [8, Lemma 4.3(i) and Proposition 5.1]—we provide its proof for
completeness.

Lemma 3.2. With the above notation, P[Zρ = 1] = 1 holds.

Proof. Let (R0
t )t∈R+

be an adapted process such that ρ = R0
t holds on {ρ ≤ t} for all t ∈ R+.

Note that the adapted process (R0
t ∧ t)t∈R+

has the same property as well; therefore, we may
assume that R0

t ≤ t holds for all t ∈ R+. With D denoting a dense countable subset of R+,
define the process R := limD∋t↓·


sups∈D∩(0,t) R0

s


; then, R is right-continuous, adapted and non-

decreasing, and Rt ≤ t still holds for all t ∈ R+. Furthermore, since for s ∈ R+ and t ∈ R+ with
s ≤ t, ρ = R0

s = R0
t holds on {ρ ≤ s} ⊆ {ρ ≤ t}, it follows that ρ = Rt holds on {ρ ≤ t} for all
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t ∈ R+. Define a {0, 1}-valued optional process I via It = I{Rt =t} for t ∈ R+. The properties of
R can be seen to imply {I = 1} ⊆ [[0, ρ]], as well as Iρ = 1 on {ρ < ∞}; since P[ρ = ∞] = 0
holds due to the fact that ρ avoids all stopping times, we conclude that P[Iρ = 1] = 1. Fix a
finite stopping time τ . Using again the fact that ρ avoids all stopping times, Zτ = P[ρ ≥ τ | Fτ ]

holds. Then, Iτ ∈ Fτ and {I = 1} ⊆ [[0, ρ]] imply that E [Iτ Zτ ] = E

Iτ I{τ≤ρ}


= E [Iτ ]. Since

I is {0, 1}-valued and Z is [0, 1]-valued, E [Iτ Zτ ] = E [Iτ ] implies that {Iτ = 1} ⊆ {Zτ = 1}.
Since the latter holds for all finite stopping times τ and both I and Z are optional, the optional
section theorem implies that {I = 1} ⊆ {Z = 1}, modulo P-evanescence. Then, P


Iρ = 1


= 1

implies P

Zρ = 1


= 1. �

Continuing, let A be the unique (up to P-evanescence) adapted, càdlàg, nonnegative and non-
decreasing process such that E[Vρ] = E


∞

0 Vt dAt


holds for all nonnegative optional processes
V —in other words, A is the dual optional projection of I[[ρ,∞[[. Since E


Aτ − Aτ−


= P[ρ =

τ ] = 0 holds for all finite stopping times τ , the optional section theorem implies that A0 = 0 and
A has P-a.s. continuous paths. Define also M as the nonnegative uniformly integrable martingale
such that Mt = E [A∞ | Ft ] holds for all t ∈ R+. By the definition of A and M , note that

Mt = At + E [A∞ − At | Ft ] = At + P [ρ > t | Ft ] = At + Z t , ∀t ∈ R+.

Given the P-a.s. continuity of the paths of A, it follows that Z = M − A is the (additive)
Doob–Meyer decomposition of Z . The following result provides the multiplicative Doob–Meyer
decomposition of Z , a topic first treated in [7]. In the present case where it is known that the
predictable process A is actually continuous, the proof simplifies.

Lemma 3.3. With the above notation, one has Z = L(1 − K ), where L is a nonnegative local
martingale with L0 = 1 and K is a [0, 1]-valued nondecreasing adapted process with P-a.s.
continuous paths. Furthermore, A =


·

0 L t dKt holds.

Proof. For each n ∈ N, define the stopping time ζn := inf {t ∈ R+ | Z t < 1/n}. Furthermore,
set ζ := limn→∞ ζn = inf {t ∈ R+ | Z t− = 0 or Z t = 0}.

Define K := 1 − exp

−

 ζ∧·

0 (1/Z t )dAt

, which obviously is a [0, 1]-valued nondecreasing

adapted process. The fact that A has P-a.s. continuous paths implies that K is P-a.s. continuous
on [[0, ζn]] and that P


Kζn < 1


= 1 holds for all n ∈ N. Furthermore, it is straightforward to

check that A = Aζ holds; therefore, we conclude that K has P-a.s. continuous paths.
Setting Ln

:= Z ζn /(1−K ζn ), a straightforward application of the integration-by-parts formula
gives Ln

= 1 +
 ζn∧·

0 (Ln
t /Z t )dMt , implying that Ln is a nonnegative local martingale for

all n ∈ N. For m ≤ n, it holds that Lm
= Ln on [[0, ζm]]; then, the nonnegative martingale

convergence theorem implies that ℓ := limn→∞ Ln
ζn

exists and is R+-valued in the P-a.s. sense.
One may therefore define a nonnegative càdlàg process L such that L = Ln holds on [[0, ζn]] for
all n ∈ N and L t = ℓ holds for all t ≥ ζ . In view of Lemma 3.1, the fact that Lζn is a nonnegative
local martingale with Lζn

0 = 1 implies that P[L∗
ζn

> x] ≤ 1/x holds for all n ∈ N. Since

L = Lζ and P [limn→∞ ζn = ζ ] = 1, we obtain that P

L∗

∞ < ∞


= 1. Therefore, defining the
stopping time τk := inf {t ∈ R+ | L t > k} for all k ∈ N, it follows that P [limk→∞ τk = ∞] = 1.
Furthermore, since L = Lζ , P [limn→∞ ζn = ζ ] = 1, and E


Lτk∧ζn


= E


Lζn

τk


= 1 holds for

all k ∈ N and n ∈ N, Fatou’s lemma gives

E

L∗

τk


= E


lim

n→∞
L∗

τk∧ζn


≤ lim inf

n→∞
E


L∗

τk∧ζn


≤ lim inf

n→∞


k + E


Lτk∧ζn


= k + 1 < ∞, ∀k ∈ N.
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For 0 ≤ s ≤ t < ∞, the (conditional version of the) dominated convergence theorem gives

E

Lτk

t | Fs


= E


lim
n→∞

Lτk∧ζn∧t | Fs


= lim

n→∞
E


Lζn

τk∧t | Fs


= lim

n→∞
Lζn

τk∧s = Lτk
s , ∀k ∈ N.

It follows that Lτk is a martingale for all k ∈ N; therefore, L is a nonnegative local martingale.
Since K = K ζ , L = Lζ and Z = Z ζ , we conclude that Z = L(1 − K ) holds. By the

integration-by-parts formula, Z = 1 +


·

0(1 − Kt )dL t −


·

0 L t dKt holds; comparing with the
Doob–Meyer decomposition Z = M − A of Z , and recalling that A0 = 0, we obtain that
A =


·

0 L t dKt . �

Lemma 3.4. With the above notation, Kρ has the standard uniform law.

Proof. For u ∈ [0, 1), define the stopping time τu := inf {t ∈ R+ | Kt > u}, with the convention
τu = ∞ if the last set is empty. Since K has P-a.s. continuous paths, Kτu = u holds P-a.s. on
{τu < ∞} for all u ∈ [0, 1). Recalling that A =


·

0 L t dKt holds from Lemma 3.3, a use of the
change-of-time technique gives

∞

0
f (Kt )dAt =


∞

0
f (Kt )L t dKt =

 1

0
Lτu I{τu<∞} f (u)du,

for any Borel f : [0, 1) → R+. (3.1)

Since Z = L(1 − K ), the facts that Z ≤ 1 and K ≤ u hold up to P-evanescence on
[[0, τu]] imply that P


L∗

τu
≤ 1/(1 − u)


= 1 holds for all u ∈ [0, 1). Therefore, E[Lτu ] = 1

holds for all u ∈ [0, 1). Since P[ρ = ∞] = 0, it follows that P[Z∞ = 0] = 1; then,
P[Z∞ = L∞(1 − K∞)] = 1 implies P [K∞ < 1, L∞ > 0] = 0. Therefore, for u ∈ [0, 1),
the set-inclusion {τu = ∞} ⊆ {K∞ < 1} implies P


Lτu I{τu<∞} = Lτu


= 1. Then, E[Lτu ] = 1

gives E

Lτu I{τu<∞}


= 1 for u ∈ [0, 1). By Fubini’s Theorem and (3.1), we obtain E


f (Kρ)


=

E


∞

0 f (Kt )dAt


=
 1

0 f (u)du. Since the latter holds for any Borel f : [0, 1) → R+, it follows
that Kρ has the standard uniform law. �

Lemma 3.5. With the above notation, it holds that L ∈ M0 and P

Lρ− = Lρ = L∗

∞


= 1.

Proof. Since P[Zρ = Lρ(1 − Kρ)] = 1, Lemma 3.2 gives P

Lρ = 1/(1 − Kρ)


= 1. Then,

Lemma 3.4 implies that P[Lρ > x] = P[Kρ > 1 − 1/x] = 1/x for all x ∈ (1, ∞). As
P


Lρ ≤ L∗

∞


= 1, Lemma 3.1 implies both that L ∈ M0 and that P


Lρ = L∗

∞


= 1. It remains

to show that P

Lρ− = Lρ


= 1, which is equivalent to E


|1Lρ |


= 0. By the definition of A,

it holds that E

|1Lρ |


= E


R+

|1L t |dAt


= 0, the last equality holding from the fact that A is
such that A0 = 0 and has P-a.s. continuous paths (since ρ avoids all stopping times), combined
with the P-a.s. countability of the (random) set {t ∈ R+ | 1L t ≠ 0}. �

Lemma 3.6. With the above notation, P [ρ = ρL ] = 1 holds.

Proof. Since Lρ− ≤ L∗
ρ− ≤ L∗

∞, the equality P

Lρ− = L∗

∞


= 1 that was established in

Lemma 3.5 implies that P

Lρ− = L∗

ρ−


= 1; by the definition of ρL in (1.1), P [ρ ≤ ρL ] = 1 is

evident. For t ∈ R+, let L t := supv∈[t,∞) Lv and note the set-inclusions


L t > L∗
t


⊆ {ρ > t}

and {ρL > t} ⊆


L t ≥ L∗
t


, valid modulo P. A use of the conditional version of Lemma 3.1 gives
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P

L t ≥ L∗

t | Ft


= L t/L∗
t = P


L t > L∗

t | Ft

, for all t ∈ R+. It follows that P [ρL > t] ≤

P [ρ > t] holds for all t ∈ R+. Combined with P

ρ ≤ ρL


= 1, we obtain P


ρ = ρL


= 1. �

The next result concludes the proof of implication (1) ⇒ (2) of Theorem 1.2.

Lemma 3.7. With the above notation, it holds that L ∈ L0.

Proof. A use of Lemma 3.5 gives L ∈ M0 and P

1Lρ ≠ 0


= 0. If the set


L− = L∗

−,

1L ≠ 0


failed to be P-evanescent, one would infer the existence of a stopping time τ with
the property that P


τ < ∞, Lτ− = L∗

τ−, 1Lτ < 0


= P [τ < ∞] > 0 holds. Recalling that
P [ρ = ρL ] = 1 from Lemma 3.6, a conditional version of Lemma 3.1 gives

P [ρ = τ | Fτ ] = P [ρL = τ | Fτ ] = 1 −
Lτ

L∗
τ

= 1 −
Lτ− + 1Lτ

Lτ−

= −
1Lτ

Lτ−

.

It follows that P [ρ = τ | Fτ ] > 0 holds on the Fτ -measurable event

τ < ∞, Lτ− =

L∗
τ−, 1Lτ < 0


, implying that P


1Lρ < 0


≥ P [1Lτ < 0, ρ = τ ] > 0, which is a

contradiction. (Note that one may arrive at the contradiction alternatively by noticing that if
P [ρ = τ | Fτ ] > 0 held on an Fτ -measurable event of strictly positive probability, ρ would
fail to avoid all stopping times.) We deduce that


L− = L∗

−, 1L ≠ 0


is P-evanescent, i.e., that
L ∈ L0. �
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[7] Kiyoshi Itô, Shinzo Watanabe, Transformation of Markov processes by multiplicative functionals, Ann. Inst. Fourier

(Grenoble) 15 (fasc. 1) (1965) 13–30.
[8] T. Jeulin, Semi-Martingales et Grossissement d’une Filtration, in: Lecture Notes in Mathematics, vol. 833, Springer,

Berlin, 1980.
[9] T. Jeulin, M. Yor, Grossissement d’une filtration et semi-martingales: formules explicites, in: Séminaire de
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