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We introduce the concepts of max-closedness and numéraires 
of convex subsets of L0

+, the nonnegative orthant of the topo-
logical vector space L0 of all random variables built over a 
probability space, equipped with a topology consistent with 
convergence in probability. Max-closedness asks that maxi-
mal elements of the closure of a set already lie on the set. We 
discuss how numéraires arise naturally as strictly positive op-
timisers of certain concave monotone maximisation problems. 
It is further shown that the set of numéraires of a convex, 
max-closed and bounded set of L0

+ that contains at least one 
strictly positive element is dense in the set of its maximal 
elements.
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0. Introduction

0.1. Discussion

Let L0 denote the set of all (equivalence classes of real-valued) random variables built 
over a probability space, equipped with a metric topology under which convergence of se-
quences coincides with convergence in probability. Denote by L0

+ the nonnegative orthant 
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of L0. In many problems of interest—notably, in the field of mathematical finance—one 
seeks maximisers of a concave and strictly monotone (increasing) functional U over con-
vex set C ⊆ L0

+. In order to ensure that such optimisers exist, some closedness property 
of C should be present. The strict monotonicity of U a priori implies that, if optimisers 
exist, they must be maximal elements of C with respect to the natural lattice structure 
of L0; therefore, a natural condition to enforce is that maximal points of the closure of C
already lie in C. We then refer to the set C as being max-closed, and the collection Cmax

of all its maximal elements is regarded as the “outer boundary” of C.
Concave maximisation problems as the one described above are particularly amenable 

to first-order analysis. Morally speaking, a maximiser of a concave functional U over C
should also be a maximiser of a nice nonzero linear functional over C. When nice means 
continuous, such an element is called a support point of C in traditional functional-
analytic framework, and existence of a supporting nonzero continuous linear functional 
is typically provided by an application of the geometric form of the Hahn–Banach theo-
rem. Unfortunately, L0 is rather unsuitable1 for application of standard convex-analytic 
techniques. More precisely, when the probability space is non-atomic:

• L0 fails to be locally convex, which implies that a rich body of results (including the 
Hahn–Banach theorem) cannot be used;

• the topological dual of L0 contains only the zero functional [5, Theorem 2.2, p. 18]; 
in particular, as the Namioka–Klee theorem [11] suggests, there is no real-valued 
nonzero positive linear functional on L0.

In particular, convex sets in L0 a fortiori lack support points according to the usual 
definition. The previous issue notwithstanding, this work aims at exploring special ele-
ments of convex subsets of L0

+ which can be regarded as support points. More precisely, 
we discuss the notion of a numéraire g of a set C ⊆ L0

+, asking that g is strictly posi-
tive (in the sense that {g = 0} is a null set) and there exists a probability measure Q, 
equivalent to the underlying probability measure, such that EQ [f/g] ≤ 1 holds for all 
f ∈ C, where “EQ” denotes expectation under Q. As is argued in the article (see Re-
mark 2.3), numéraires are closely related to support points in the classical sense, where 
the supporting “dual element” corresponds to a σ-additive, σ-finite, positive measure, 
equivalent to the underlying probability measure. Furthermore, by means of the rather 
wide-encompassing example in Section 2.2 it is rigorously illustrated that optimisers for 
a large class of concave monotone maximisation problems over convex sets are indeed 
numéraires according to the previous definition.

1 Note, however, that whenever C ⊆ L0
+ is a convex and bounded (in measure) set, there exists a probabil-

ity Q, equivalent to the underlying one, such that C is bounded in L1(Q)—see discussion after Theorem 3.1; 
although this sometimes facilitates the analysis on C, in general the L0-topology does not coincide with the 
L1(Q)-topology on C.
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Numéraires are maximal elements of convex sets. A natural question is to explore the 
richness of Cnum, the class of numéraires of a set C ⊂ L0

+, in its outer boundary Cmax. 
To ensure that the discussion is not void, it is established that if C contains a strictly 
positive element and is convex, max-closed and bounded in L0, then Cnum �= ∅. It is 
further shown by an example in Section 2.3 that there exists a space L0 and a convex 
and compact set C ⊂ L0

+ containing an element in Cmax \ Cnum. (An infinite-dimensional 
space is required for such example. In finite-dimensional Euclidean spaces all boundary 
points of a closed and convex set are support points, and it can be shown in the present 
non-standard set-up that any strictly positive maximal element is a numéraire. Note also 
that in infinite-dimensional spaces there are examples of proper closed convex subsets 
that have no support points—see [9].) On the positive side, it is shown in Theorem 3.1 for 
convex, max-closed and bounded sets C ⊂ L0

+ that contain at least one strictly positive 
element, Cnum is dense in Cmax. In the context of Banach spaces, Bishop and Phelps 
theorem [1, Theorem 7.43] states that support points of closed and convex sets are 
dense on the boundary of the set. Therefore, Theorem 3.1 can be seen as an analogue 
of the Bishop–Phelps theorem in an extremely non-standard environment, where the 
topological space in question fails to even be locally convex.

The structure of the paper is simple. Section 1 introduces and discusses maximal 
elements and max-closedness, Section 2 introduces numéraires and shows that there 
exist maximal elements that are not numéraires, while in Section 3 the aforementioned 
density of numéraires in the maximal elements for convex, max-closed and bounded in 
L0 subsets of L0

+ that contains a strictly positive element is stated and proved.

0.2. Preliminaries

Throughout the paper, L0 denotes the set of all real-valued random variables over a 
probability space (Ω, F , P). The usual practice of not distinguishing a random variable 
from the equivalence class (modulo P) it generates is followed. All relationships between 
elements of L0 are to be understood in the P-a.s. sense. Define L0

+ :=
{
f ∈ L0 | f ≥ 0

}
to be the nonnegative orthant of L0; furthermore, let L0

++ be the class of all f ∈ L0
+

such that f > 0.
We use Q ∼ P (respectively, Q 
 P) to denote that Q is a probability measure that is 

equivalent with (respectively, absolutely continuous with respect to) P. The symbol EQ

is used to denote expectation with respect to Q 
 P; we simply use E instead of EP for 
expectation under P.

The topology on the vector space L0 is the one induced by the translation-invariant 
metric L0 × L0 � (f, g) �→ E [1 ∧ |f − g|], where “∧” is used to denote the minimum 
operation. With the above definition, L0 becomes a complete metric space and L0

+ a 
closed and convex subset. Convergence of sequences under this topology is convergence 
in P-measure. (In fact, the topology only depends on the equivalence class of P.) Un-
less explicitly stated otherwise, any topological property (closedness, etc.) pertaining to 
subsets of L0 will be understood under the aforementioned topology.
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For C ⊆ L0
+, C ⊆ L0

+ will denote the closure of C. A set C ⊆ L0
+ will be called bounded

if lim�→∞ supf∈C P[f > �] = 0—as can be easily seen, the last property coincides with 
boundedness of C when L0 is viewed as a topological vector space [1, Definition 5.36]. 
If C ⊆ L0

+ is bounded, it is straightforward to check that C is bounded as well. Finally, 
S ⊆ L0

+ will be called solid if the conditions g ∈ S, f ∈ L0
+ and f ≤ g imply f ∈ S.

1. Maximal elements and max-closedness

An element f ∈ C ⊆ L0
+ is called maximal in C if the conditions f ≤ g and g ∈ C

imply f = g; the notation Cmax is used to denote the set of all maximal elements in C.
The next definition introduces a concept of closedness that additionally takes into 

account the lattice structure of L0. It is exactly tailored for problems related to concave 
monotone maximisation, as is shown in Proposition 1.6 below.

Definition 1.1. A set C ⊆ L0
+ will be called max-closed if Cmax ⊆ C.

In words, max-closedness asks that all maximal elements in the closure of a set are 
already contained in the set itself. Max-closedness is a weaker property than closedness 
(see Example 1.5 later on), and has played an important background role in the proof 
of the Fundamental Theorem of Asset Pricing in [2].

The next result implies in particular that Cmax �= ∅ whenever C �= ∅ is max-closed 
and bounded. We omit the simple argument for its proof, which relies on a use of Zorn’s 
lemma and has already appeared in [2, proof of Lemma 4.3] and [4, paragraph after 
Theorem 3.1].

Lemma 1.2. Let C ⊆ L0
+ be max-closed and bounded. Then, for every f ∈ C there exists 

h ∈ Cmax with f ≤ h.

The next result gives an alternative definition of max-closedness for bounded subsets 
of L0

+.

Lemma 1.3. Suppose that C ⊆ L0
+ is bounded. Then, C is max-closed if and only if 

Cmax = Cmax.

Proof. If Cmax = Cmax, the fact that Cmax ⊆ C immediately implies that C is max-closed.
Suppose now that C is max-closed. Since C ⊆ C, the set-inclusion Cmax ⊆ C is equivalent 

to Cmax ⊆ Cmax. Now, let f ∈ Cmax. Since C is closed (in particular, max-closed) and 
bounded (because C is bounded; note that boundedness of C is only required in this is 
the part of the proof), Lemma 1.2 implies the existence of g ∈ Cmax with f ≤ g. Since C
is max-closed, it follows that g ∈ C, which with f ∈ Cmax implies that f = g. Therefore, 
f ∈ Cmax, which shows that Cmax ⊆ Cmax and completes the proof. �
Remark 1.4. If C ⊆ L0

+ fails to be bounded, Lemma 1.3 is not necessarily true. For 
example, take Ω = (0, 1), F be the Borel σ-field on Ω, and let P be Lebesgue measure on 
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(Ω, F). Define C = {1} ∪
{
f ∈ L0

+ | P [f < 1] > 0
}
. Then, C = L0

+, so that Cmax = ∅ and 
C is trivially max-closed. However, 1 ∈ Cmax, which shows that Cmax = Cmax is violated.

The following example demonstrates, inter alia, that max-closedness is a strictly 
weaker notion than closedness.

Example 1.5. Let Ω = (0, 1), F be the Borel σ-field on Ω, and let P be Lebesgue 
measure on (Ω, F). Consider C =

{
f ∈ L0

+ | E [f ] = 1
}
. The set-inclusion C ⊆{

f ∈ L0
+ | E[f ] ≤ 1

}
follows from Fatou’s lemma. Now, let zn := n−1I(0,n−1), so that 

zn ∈ C for all n ∈ N. Note that limn→∞ zn = 0. For any f ∈ L0
+ with E[f ] ≤ 1, the 

C-valued sequence (f + (1 − E[f ])zn)n∈N converges to f , which shows that f ∈ C. It 
follows that C =

{
f ∈ L0

+ | E[f ] ≤ 1
}
; in particular, C is not closed. However, note that 

Cmax =
{
f ∈ L0

+ | E[f ] = 1
}

= Cmax, which implies that C is max-closed.
In this setting, note that S =

{
f ∈ L0

+ | f ≤ g for some g ∈ C
}

(the solid hull of C) 
is equal to 

{
f ∈ L0

+ | E[f ] ≤ 1
}
, which is closed. This did not happen by chance: it is 

shown in Proposition 1.8 that the solid hull of a convex, max-closed and bounded set is 
always closed.

Let us make one more observation. With ∂C denoting the topological boundary of C, 
it actually holds that ∂C = C. Indeed, for f ∈ C =

{
f ∈ L0

+ | E[f ] ≤ 1
}

note that 
(f + 2zn)n∈N is an (L0

+ \ C)-valued sequence which converges to f .

In the example above, C turned out to be a much larger set than C. Even though C
is not closed, in many cases of interest the “important” elements of C lie on the “outer 
boundary” Cmax of C. (As was seen in Example 1.5, the topological boundary of C ⊆ L0

+
might be simply too large to provide useful information about optimal elements.) To 
this effect, the next result demonstrates that the notion of max-closedness ties nicely 
together with concave monotone maximisation.

Proposition 1.6. Suppose that U : L0
+ �→ [−∞, ∞) is concave, upper semi-continuous and 

monotone, the latter meaning that U(f) ≤ U(g) holds whenever f ≤ g. Let C ⊂ L0
+ be 

convex, max-closed and bounded. Then, there exists g ∈ Cmax such that supf∈C U(f) =
U(g) < ∞.

Proof. Note that C is convex, closed and bounded. Since U is concave and upper 
semi-continuous, [13, Lemma 4.3] implies the existence of g0 ∈ C such that U(g0) =
supf∈C U(f). Furthermore, since C is closed (in particular, max-closed) and bounded, 
Lemma 1.2 implies that there exists g ∈ Cmax such that g0 ≤ g. Since U is monotone, 
U(g0) ≤ U(g) holds, which means that U(g) = supf∈C U(f). Finally, since C is max-
closed, g ∈ Cmax follows. �
Remark 1.7. Functions U : L0

+ �→ [−∞, ∞) with the properties in the statement of 
Proposition 1.6 appear in problems of mathematical finance, where U represents a utility 
functional. An interesting—in terms of structure—example is given in Section 2.2.
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The next result (which was announced in Example 1.5) associates convexity, max-
closeness, boundedness, solidity, and closedness. Before we state it, a definition is re-
quired. Let (fn)n∈N be a sequence in L0

+. Any sequence (gn)n∈N with the property that 
gn lies in the convex hull of {fn, fn+1, . . .} for all n ∈ N will be called a sequence of 
forward convex combinations of (fn)n∈N.

Proposition 1.8. Let C ⊆ L0
+ be convex, max-closed and bounded, and define its solid hull 

S =
{
f ∈ L0

+ | f ≤ g for some g ∈ C
}
. Then, S is solid, convex, closed and bounded.

Proof. It is straightforward to check that S is solid, convex and bounded. It remains to 
show that it is closed. Let (fn)n∈N be an S-valued sequence converging to f ∈ L0

+; we 
shall establish that f ∈ S. By passing to a subsequence if necessary, assume that (fn)n∈N

converges P-a.s. to f . (The importance of P-a.s. convergence is that any sequence of 
forward convex combinations of (fn)n∈N also converges to f , which will be tacitly used 
in the proof later on—R is a locally convex space, while L0 is not.) For each n ∈ N, 
there exists gn ∈ C such that fn ≤ gn. Note that C is convex, closed and bounded; then, 
[2, Lemma A1.1] implies the existence of a sequence of forward convex combinations of 
(gn)n∈N that P-a.s. converges to some g ∈ C. Since (fn)n∈N converges P-a.s. to f and 
fn ≤ gn for all n ∈ N, it follows that f ≤ g. Now, invoking Lemma 1.2, it follows that 
there exists h ∈ Cmax such that g ≤ h. As Cmax ⊆ C and f ≤ g, we obtain that f ≤ h ∈ C, 
which implies that f ∈ S. �

The final result of this section—Proposition 1.10—is concerned with “stability” of 
convergence of sequences to points of the outer boundary of convex subsets of L0

+. Before 
stating it, we mention the following result, which is a special case of [8, Theorem 1.3]
and will be used thrice in the proof of Proposition 1.10.

Theorem 1.9. Let (fn)n∈N be a sequence in L0
+ such that conv ({fn | n ∈ N}) is bounded. 

Assume that limn→∞ fn = g holds for some g ∈ L0
+. Then, the following statements are 

equivalent:

(1) Every sequence of forward convex combinations of (fn)n∈N converges to g.
(2) If a sequence of forward convex combinations of (fn)n∈N is convergent, its limit is g.

(In the case f = 0, the equivalence of (1) and (2) holds even without assuming 
limn→∞ fn = 0.)

If any of the equivalent conditions above fail, the set K ⊆ L0
+ of all possible limits of 

forward convex combinations of (fn)n∈N is such that {g} � K, and g ≤ h holds for all 
h ∈ C.

Proposition 1.10. Let C ⊆ L0
+ be convex. Let (fn)n∈N be a C-valued sequence converging 

to g ∈ Cmax. Then,
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(1) Any sequence of forward convex combinations of (fn)n∈N also converges to g.
(2) Any C-valued sequence (gn)n∈N such that fn ≤ gn holds for all n ∈ N also converges 

to g.

Proof. In the sequel, (fn)n∈N is a C-valued sequence that converges to g ∈ Cmax.
Suppose that (gn)n∈N is a sequence of forward convex combinations of (fn)n∈N that 

converges to h �= g. By Theorem 1.9, this would contradict the fact that g ∈ Cmax. 
Therefore, any convergent sequence of forward convex combinations of (fn)n∈N must have 
the same limit g that (fn)n∈N has. Again, by Theorem 1.9 it follows that all sequences of 
forward convex combinations of (fn)n∈N converge to g, which establishes statement (1).

Now, pick any C-valued sequence (gn)n∈N such that fn ≤ gn holds for all n ∈ N, 
and define ζn := gn − fn for n ∈ N; then, ζn ∈ L0

+ for all n ∈ N. If limn→∞ ζn = 0
is established, limn→∞ fn = g will imply limn→∞ gn = g. For n ∈ N, let Tn denote 
the closure of the convex hull of {ζk | k = n, n + 1, . . .}, and set T∞ :=

⋂
n∈N Tn. For 

ψ ∈ T∞, there exists a sequence (ψn)n∈N of forward convex combinations of (ζn)n∈N such 
that limn→∞ ψn = ψ. Since g ∈ Cmax, T∞ cannot contain any ψ ∈ L0

+ with P[ψ > 0] > 0; 
indeed, if this was the case, using statement (1) of Proposition 1.10 that was just proved, 
one would be able to construct a C-valued sequence (hn)n∈N with limn→∞ hn = g + ψ, 
which would mean that (g + ψ) ∈ C and would contradict g ∈ Cmax. On the other 
hand, as each Tn, n ∈ N, is convex, closed and bounded and (Tn)n∈N is a non-increasing 
sequence, it follows from [13] that T∞ �= ∅. We conclude that T∞ = {0}—in other words, 
all convergent sequences of forwards convex combinations of (ζn)n∈N converge to zero. 
Then, another application of Theorem 1.9 (for the special case of zero limit) implies that 
limn→∞ ζn = 0, completing the proof of statement (2). �
2. Numéraires

2.1. The numéraire property

In the theory of financial economics, a convex set C ⊆ L0
+ frequently models the class 

of all possible choices available for future consumption given (normalised) unit budget. 
Any element g ∈ C ∩ L0

++ (note that g is strictly positive) can be used as a numéraire, 
in the sense of a benchmark under which the value of all other consumption choices is 
compared to; more precisely, for f ∈ C, the random variable f/g measures f in units 
of g. We regard g ∈ C to be a “good” numéraire if there exists a valuation probability 
Q ∼ P that gives value at most one to all elements f ∈ C denominated in units of g. (For 
more motivation and discussion on the previous theme, we send the interested reader 
to [3].)

Definition 2.1. Let C ⊆ L0
+ be such that C ∩ L0

++ �= ∅. An element g ∈ C will be called 
a numéraire of C if g ∈ L0

++ and there exists Q ∼ P such that EQ [f/g] ≤ holds for all 
f ∈ C. The set of all numéraires of C is denoted by Cnum.
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Remark 2.2. For C ⊆ L0
+ with C∩L0

++ �= ∅, it is straightforward to check that a numéraire 
of C ⊆ L0

+ is a maximal element of C; in other words, Cnum ⊆ Cmax ∩ L0
++.

Remark 2.3. One may offer a functional-analytic interpretation of numéraires, in terms 
of “support points” of convex sets, as we now explain. For a measure (note that all 
measures will be assumed countably additive, non-negative and σ-finite) μ ∼ P, consider 
the linear mapping

L0
+ � f �→ 〈μ, f〉 :=

∫
Ω

fdμ ∈ [0,∞]. (2.1)

Let C ⊆ L0
+ be such that C ∩ L0

++ �= ∅. It is then straightforward to check that g ∈
C ∩ L0

++ is a numéraire of C if and only if there exists a measure μ ∼ P such that 
supf∈C 〈μ, f〉 = 〈μ, g〉 < ∞. Although the mapping of (2.1) fails to be continuous in 
general (in view of Fatou’s lemma, it is at least lower semi-continuous), we may still 
regard a numéraire as a non-standard support point of C. Note, however, that there are 
special properties involved in the definition of a numéraire g of C; not only does g have 
to be a strictly positive element, but also the “supporting functional” given by μ has to 
be strictly positive (in the sense that μ ∼ P) as well.

2.2. A canonical example

According to Proposition 1.6, optimisers of concave, upper semi-continuous and mono-
tone functionals over convex, max-closed and bounded sets C ⊂ L0

+ exist and lie on Cmax. 
As mentioned in the introductory discussion, additional analysis using first order condi-
tions suggests that optimisers should “support” the convex set C. In fact, the following 
example (which builds on Proposition 1.6) demonstrates that these optimisers are in-
deed numéraires of C, elaborating on the connection of numéraires and support points 
mentioned in Remark 2.3.

Consider a utility random field U : Ω × (0, ∞) �→ R, such that U(·, x) ∈ L0 for all 
x ∈ (0, ∞) and U(ω, ·) : (0, ∞) �→ R is a strictly increasing, concave and continuously 
differentiable function for all ω ∈ Ω. Define the derivative (with respect to the spatial 
variable) random field U ′ : Ω × (0, ∞) �→ R+ in the obvious way. By means of continuity, 
the definition of U and U ′ is extended so that U(·, 0) := limx↓0 U(·, x) and U ′(·, 0) :=
limx↓0 U

′(·, x)—note that the latter random variables may take with positive probability 
the values −∞ and ∞, respectively. Assume in the sequel that the Inada condition
P [U ′(0) = ∞] = 1 holds, and that E [0 ∨ U(∞)] < ∞, where U(∞) := limx→∞ U(·, x)
and “∨” denotes the maximum operation. Define the functional U : L0

+ �→ [−∞, ∞)
via U(f) = E [U(f)], where for f ∈ L0

+ the map U(f) : Ω �→ [−∞, ∞) is defined via 
(U(f)) (ω) = U(ω, f(ω)) for ω ∈ Ω. Clearly, U is concave and monotone. A combination 
of E [0 ∨ U(∞)] < ∞ and Fatou’s lemma implies that U is upper semi-continuous.

Consider a convex, max-closed and bounded C ⊂ L0
+ with C ∩ L0

++ �= ∅. Proposi-
tion 1.6 provides the existence of g ∈ Cmax such that U(g) = supf∈C U(f) < ∞. In fact, 
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because U is strictly concave, the previous maximiser in unique. In order to avoid un-
necessary technical complications, a final mild assumption involving the optimiser g is 
introduced: we impose that U(ag) > −∞ holds for all a ∈ (0, 1), which implies that the 
function (0, ∞) � a �→ U(ag) is concave, strictly increasing and R-valued. Such mapping 
must have a finite (right-hand-side) derivative; then, a use of the monotone convergence 
theorem gives that E 

[
U ′(ag)gI{g>0}

]
< ∞ holds for all a ∈ (0, ∞). Define the convex set 

Cg := {f ∈ C | f ≥ ag for some a ∈ (0, 1)}. Note that g ∈ Cg; furthermore, since for all 
f ∈ C the Cg-valued sequence 

(
(1 − n−1)f + n−1g

)
n∈N

converges to f , Cg is dense in C. 
Fix f ∈ Cg and let a ∈ (0, 1) be such that f ≥ ag. Since U(f) ≥ U(ag) > −∞, it holds 
that P[U(f) = −∞] = 0, i.e., U(f) ∈ L0. Similarly, U(g) > −∞ implies U(g) ∈ L0. For 
ε ∈ (0, 1), define

fε := (1 − ε)g + εf, and Δ(fε | g) := U(fε) − U(g)
ε

∈ L0.

The optimality of g gives E [Δ(fε | g)] ≤ 0, for all ε ∈ (0, 1). Note that Δ(fε | g) ≥ 0
holds on {fε ≥ g}; furthermore, for all ε ∈ (0, 1), fε ≥ ag implies that Δ(fε | g) ≥
−U ′(fε)(g − f) ≥ −U ′(ag)gI{g>0} holds on {fε < g}. Since E 

[
U ′(ag)gI{g>0}

]
< ∞, 

and lim infε↓0 Δ(fε | g) = U ′(g)(f − g) holds in the P-a.s. sense, Fatou’s lemma implies 
that E [U ′(g)(f − g)] ≤ 0, where in particular P [U ′(g)(f − g) = −∞] = 0 is implied. 
By assumption, there exists h ∈ C ∩ L0

++. It can be assumed without loss of generality 
that h ∈ Cg (otherwise, replace h by (h + g)/2); therefore, P [U ′(g)(h− g) = −∞] = 0
implies that g ∈ L0

++, which in particular implies that U ′(g) ∈ L0
+. The fact that 

E [U ′(g)g] = E 
[
U ′(g)gI{g>0}

]
< ∞ holds allows to write E [U ′(g)(f − g)] ≤ 0 as 

E [U ′(g)f ] ≤ E [U ′(g)g] for all f ∈ Cg. Upon defining the probability measure Q via 
the recipe dQ = (U ′(g)g/E [U ′(g)g]) dP, note that Q ∼ P and EQ [f/g] ≤ 1 holds for all 
f ∈ Cg. As Cg is dense in C, Fatou’s lemma implies that EQ [f/g] ≤ 1 holds for all f ∈ C. 
Therefore, g ∈ Cnum.

Remark 2.4. It is straightforward to construct strictly increasing, concave and con-
tinuously differentiable deterministic functions U : (0, ∞) �→ R such that U ′(0) = ∞
and U ((0,∞)) is a bounded subset of R. With U defined as in the example above, if C
is convex, max-closed and bounded then the unique maximiser g of U over C trivially 
satisfies U(ag) > −∞ for all a ∈ (0, 1); therefore, g ∈ Cnum. In particular, we deduce 
that Cnum �= ∅ holds whenever C ⊂ L0

+ with C ∩ L0
++ �= ∅ is convex, max-closed and 

bounded.

Remark 2.5. In the discussion of the above example, under certain assumptions on the 
utility random field U , the set C and the optimiser g ∈ Cmax, it is concluded that g ∈ Cnum. 
The most restrictive assumption is the boundedness from above of the utility random 
field, encoded in the requirement E [0 ∨ U(∞)] < ∞. This assumption is there to ensure 
that U is [−∞, ∞)-valued and upper semi-continuous, in order to allow the invocation 
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of Proposition 1.6 and obtain existence of an optimiser g ∈ Cmax. However, if existence 
of an optimiser g ∈ C can be obtained with other methods, in which case Lemma 1.2
ensures that it can be additionally assumed that g ∈ Cmax, the discussion of the above 
example goes through even without enforcing boundedness conditions on U . (The other, 
milder, assumptions should of course still be satisfied.) There has been a significant body 
of work in the field of mathematical finance where existence of optimisers for such types 
of expected utility maximisation problems is established using convex duality methods; 
for more examples, see [10] in the case of deterministic U and [6] for the case where U
may actually be a random field.

2.3. Maximal points versus numéraires

Let C be convex, max-closed and bounded and such that C∩L0
++ �= ∅. As was discussed 

in Remark 2.2 and Remark 2.4, it holds that Cnum �= ∅ and Cnum ⊆ Cmax ∩L0
++. However, 

the inclusion Cnum ⊆ Cmax ∩ L0
++ can be strict, as will be shown below by an example, 

which has also appeared in [7]. (Note that there are indeed special—but important—cases 
where Cnum ⊆ Cmax ∩ L0

++ can be established; for example, see [3].)
Consider the probability space (Ω, F , P), where Ω = (0, ∞), F the Borel σ-field 

over (0, ∞), and P is a probability measure equivalent to Lebesgue measure on (0, ∞). 
Define ξ : Ω �→ (0, ∞) via ξ(ω) = ω for all ω ∈ (0, ∞). Furthermore, define 
K :=

{
(α, β) ∈ R2 | 0 ≤ β ≤ √

α ≤ 1
}
, and note that K is a convex and compact subset 

of R2
+. Let C := {1 − α + (α + β)ξ | (α, β) ∈ K}. Being the image of K via a continu-

ous linear mapping, C is a convex and compact subset of L0
+—therefore, it is closed (in 

particular, max-closed) and bounded.
Note that P[ξ ≤ ε] > 0 and P[ξ−1 ≤ ε] > 0 hold for all ε ∈ (0, ∞); given this, 

Cmax = {1 − α + (α +
√
α)ξ | α ∈ [0, 1]} ⊆ L0

++ follows in a rather straightforward way. 
In particular, it holds that 1 ∈ Cmax ∩ L0

++. However, we claim that 1 /∈ Cnum. In fact, 
we shall show that there cannot exist any Q 
 P such that EQ [f ] ≤ 1 holds for all 
f ∈ C. To wit, if such a probability measure Q existed, EQ [1 − α + (α +

√
α)ξ] ≤ 1 for 

all α ∈ [0, 1] would follow. Rearranging, EQ [ξ] ≤ α/ (α +
√
α) =

√
α/ (

√
α + 1) would 

hold for all α ∈ (0, 1]. This would imply that EQ [ξ] = 0, i.e., Q [ξ > 0] = 0 which, in view 
of P[ξ > 0] = 1, contradicts the fact that Q is a probability measure which is absolutely 
continuous with respect to P.

In fact, one can say more: in this example, it holds that Cnum = Cmax \ {1}. Indeed, 
fix γ ∈ (0, 1] and define gγ := 1 − γ + (γ + √

γ)ξ; we shall show that gγ ∈ Cnum. Note 
that the law of the random variable 1/gγ under P is equivalent to Lebesgue measure on (
0, (1 − γ)−1). Therefore, setting cγ :=

(
1 + 2√γ

) (
1 + √

γ
)−2, the strict inequality cγ <

1 ≤ (1 − γ)−1 implies that there exists a probability Qγ ∼ P such that EQγ
[1/gγ ] = cγ . 

The straightforward calculation ξ/gγ = γ−1/2(1 +√
γ)−1 − γ−1/2(1 −√

γ)(1/gγ) implies 
EQγ

[ξ/gγ ] = γ−1/2(1 +√
γ)−1−γ−1/2(1 −√

γ)cγ = 2√γ
(
1 + √

γ
)−2. Therefore, it follows 

that
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EQγ

[
1 − α + (α + β)ξ

gγ

]
=

1 + 2√γ − α + 2√γβ(
1 + √

γ
)2

≤ 1 + 2√γ − α + 2√γα(
1 + √

γ
)2 , for all (α, β) ∈ K.

It is easily seen that the latter expression, as a function of (α, β) ∈ K, is maximised 
when (α, β) =

(
γ,

√
γ
)
, and that the maximum is 1. It indeed follows that gγ ∈ Cnum.

Before abandoning this example, a final remark is in order. Even though 1 ∈
Cmax \ Cnum, note that the Cnum-valued sequence 

(
(1 − n−1) +

(
n−1 + n−1/2) ξ)

n∈N
actu-

ally converges to 1. Theorem 3.1 in the next section will generalise this observation.

3. Density of numéraires in maximal elements

3.1. The main result

What follows is a density result of numéraires in maximal elements for convex, max-
closed and bounded sets of L0

+ that contain at least one strictly positive element.

Theorem 3.1. Let C ⊂ L0
+ be convex, max-closed and bounded, and such that C∩L0

++ �= ∅. 
Then, Cnum is dense in Cmax.

Keeping in mind the discussion in Remark 2.3, the statement of Theorem 3.1 bears 
resemblance to the celebrated result of Bishop and Phelps [1, Theorem 7.43, statement 1], 
stating that support points of closed and convex sets in Banach spaces are dense on the 
boundary of the set. Note, however, that the present setting is by all means non-standard, 
especially since L0 typically fails to be locally convex. For a convex and bounded C ⊂
L0

+, there exists a probability Q ∼ P, such that supf∈C EQ [f ] < ∞; see, for example, 
[12, combination of Lemmata 1, 2 and 3 of p. 147]. This fact seems to provide hope that 
one could use the classical version of the Bishop–Phelps theorem by applying L1(Q)-L∞

duality. In fact, under the assumptions of Theorem 3.1 it is not hard to see that, if 
C ⊆ L1

+(Q), then Cmax is actually contained in the L1(Q)-topological boundary of C. 
However, for a given g ∈ Cmax, it is not at all clear that the sequence of (usual) support 
points that approximates g is Cnum-valued. As the previous issue does not appear a 
priori trivial, a bare-hands alternative route is taken in the proof of Theorem 3.1, given 
in Section 3.2 below.

3.2. Proof of Theorem 3.1

Assume that C is convex, max-closed and bounded, and such that C ∩ L0
++ �= ∅. Let 

g ∈ Cmax; we shall show that there exists a Cnum-valued sequence (fn)n∈N such that 
limn→∞ fn = g. We first treat the case where g ∈ Cmax ∩L0

++; then, the general case will 
follow through an approximation argument.
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3.2.1. Case where g ∈ Cmax ∩ L0
++

In order to obtain the approximating sequence (fn)n∈N, we shall use the construction 
of Section 2.2. For fixed n ∈ N, define Un : Ω × (0, ∞) �→ (−∞, 0) via

Un(x) = − (g/x)n , ∀x ∈ (0,∞),

where the dependence on ω (coming from g ∈ C) is suppressed, as usual. Note that Un

is concave, strictly increasing, continuously differentiable, bounded above by zero, and 
that the Inada condition U ′

n(0) = ∞ is satisfied for all n ∈ N. Define Un : L0
+ �→ [−∞, 0)

via Un(f) = E [Un(f)] for all f ∈ L0
+ and n ∈ N. Note that Un(f) > −∞ implies 

Un(af) > −∞ for all a ∈ (0, 1). In view of the general example in Section 2.2, for all 
n ∈ N we infer the existence of fn ∈ Cnum with the property that Un(fn) = supf∈C Un(f). 
It remains to show that limn→∞ fn = g.

Note first that, since Un(g) = E [Un(g)] = −1, it follows that E [Un(fn)] ≥ −1 for all 
n ∈ N; in other words, E [(g/fn)n] ≤ 1 holds for all n ∈ N. In view of Markov’s inequality, 
it holds that

P [fn/g < β] ≤ βnE [(g/fn)n] ≤ βn, ∀n ∈ N and ∀β ∈ (0, 1).

The Borel–Cantelli lemma implies that for any fixed β ∈ (0, 1), βg ≤ lim infn→∞ fn
holds in the P-a.s. sense. It then follows that g ≤ lim infn→∞ fn holds in the P-a.s. 
sense.

We proceed in showing that limn→∞ P [fn/g > 1 + ε] = 0 holds for all ε ∈ (0, ∞). 
Assume on the contrary that there exists ε > 0 and a subsequence (fnk

)k∈N of (fn)n∈N

such that P [fnk
/g > 1 + ε] > ε holds for all k ∈ N. Since C is convex and bounded, 

[2, Lemma A1.1] gives the existence of a sequence (hk)k∈N of forward convex combina-
tions of (fnk

)k∈N that converges to some h ∈ L0
+; since C is convex, it follows that h ∈ C. 

More precisely, write hk =
∑lk

m=k αk,mfnm
for all k ∈ N, where lk ≥ k, αk,m ≥ 0

for all k ∈ N and m ∈ {k, . . . , lk}, as well as 
∑lk

m=k αk,m = 1. Convexity implies 
that

E [(g/hk)nk ] ≤
lk∑

m=k

αk,mE [(g/fnm
)nk ] , ∀k ∈ N.

Jensen’s inequality gives E [(g/fnm
)nk ] ≤ (E [(g/fnm

)nm ])nk/nm ≤ 1, for all N �
k ≤ m ∈ N. A combination of the previous gives E [(g/hk)nk ] ≤ 1, for all k ∈ N. 
As before, this implies that g ≤ lim infk→∞ hk holds in the P-a.s. sense; in par-
ticular, g ≤ h. On the other hand, the fact that P [fnk

/g > 1 + ε] > ε holds for 
all k ∈ N, combined with lim infk→∞ (fnk

/g) ≥ 1 holding in the P-a.s. sense, im-
plies that lim supk→∞ E [exp(−fnk

/g)] ≤ (1 − ε) exp(−1) + ε exp(−1 − ε). Then, con-
vexity and boundedness of the function (0, ∞) � x �→ exp(−x) ∈ (0, 1) imply
that
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E [exp(−h/g)] = lim
k→∞

E [exp(−hk/g)]

≤ lim sup
k→∞

(
lk∑

m=k

αk,mE [exp(−fnm
/h)]

)

≤ lim sup
k→∞

E [exp(−fnk
/h)] ≤ (1 − ε) exp(−1) + ε exp(−1 − ε) < exp(−1).

We obtain that P [h/g > 1] > 0, which together with g ≤ h contradicts the fact 
that g ∈ Cmax = Cmax, the last set-equality coming from Lemma 1.3. Therefore, 
limn→∞ P [fn/g > 1 + ε] = 0 holds for all ε ∈ (0, ∞); coupled with the fact that 
g ≤ lim infn→∞ fn holds in the P-a.s. sense that was previously established, we con-
clude that limn→∞ fn = g.

3.2.2. Case of arbitrary g ∈ Cmax

Let g ∈ Cmax, and fix some f ∈ C ∩L0
++. For all n ∈ N, set hn := (1 − 1/n)g+(1/n)f

and note that hn ∈ C ∩ L0
++. Furthermore, by Lemma 1.2 it follows that for each n ∈ N

there exists gn ∈ Cmax with hn ≤ gn; of course, gn ∈ Cmax ∩ L0
++ holds for all n ∈ N. 

According to what we have already proved, there exists a Cnum-valued sequence (fn)n∈N

such that limn→∞ (gn − fn) = 0 holds. Theorem 3.1 will be fully established if we can 
show that limn→∞ gn = g holds. Since limn→∞ hn = g, g ∈ Cmax and hn ≤ gn holds for 
all n ∈ N, this fact follows from statement (2) of Proposition 1.10, which completes the 
proof.
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