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0. Introduction

0.1. Discussion

Let LY denote the set of all (equivalence classes of real-valued) random variables built

over a probability space, equipped with a metric topology under which convergence of se-

quences coincides with convergence in probability. Denote by LY. the nonnegative orthant
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of LO. In many problems of interest—mnotably, in the field of mathematical finance—one
seeks maximisers of a concave and strictly monotone (increasing) functional U over con-
vex set C C Lg. In order to ensure that such optimisers exist, some closedness property
of C should be present. The strict monotonicity of U a priori implies that, if optimisers
exist, they must be maximal elements of C with respect to the natural lattice structure
of IL%; therefore, a natural condition to enforce is that maximal points of the closure of C
already lie in C. We then refer to the set C as being maz-closed, and the collection C™**
of all its maximal elements is regarded as the “outer boundary” of C.

Concave maximisation problems as the one described above are particularly amenable
to first-order analysis. Morally speaking, a maximiser of a concave functional U over C
should also be a maximiser of a nice nonzero linear functional over C. When nice means
continuous, such an element is called a support point of C in traditional functional-
analytic framework, and existence of a supporting nonzero continuous linear functional
is typically provided by an application of the geometric form of the Hahn—Banach theo-
rem. Unfortunately, LY is rather unsuitable' for application of standard convex-analytic
techniques. More precisely, when the probability space is non-atomic:

o IO fails to be locally convex, which implies that a rich body of results (including the
Hahn-Banach theorem) cannot be used;

« the topological dual of L contains only the zero functional [5, Theorem 2.2, p. 18];
in particular, as the Namioka—Klee theorem [11] suggests, there is no real-valued
nonzero positive linear functional on L.

In particular, convex sets in IO a fortiori lack support points according to the usual
definition. The previous issue notwithstanding, this work aims at exploring special ele-
ments of convex subsets of ]]_43_ which can be regarded as support points. More precisely,
we discuss the notion of a numéraire g of a set C C LS_, asking that g is strictly posi-
tive (in the sense that {g = 0} is a null set) and there exists a probability measure Q,
equivalent to the underlying probability measure, such that Eqg[f/g] < 1 holds for all
f € C, where “Eg” denotes expectation under Q. As is argued in the article (see Re-
mark 2.3), numéraires are closely related to support points in the classical sense, where
the supporting “dual element” corresponds to a c-additive, o-finite, positive measure,
equivalent to the underlying probability measure. Furthermore, by means of the rather
wide-encompassing example in Section 2.2 it is rigorously illustrated that optimisers for
a large class of concave monotone maximisation problems over convex sets are indeed
numéraires according to the previous definition.

1 Note, however, that whenever C C ]LOJr is a convex and bounded (in measure) set, there exists a probabil-
ity Q, equivalent to the underlying one, such that C is bounded in L* (Q)—see discussion after Theorem 3.1;
although this sometimes facilitates the analysis on C, in general the L%-topology does not coincide with the
L' (Q)-topology on C.
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Numéraires are maximal elements of convex sets. A natural question is to explore the
richness of C™™, the class of numéraires of a set C C ]L:JL, in its outer boundary C™M*.
To ensure that the discussion is not void, it is established that if C contains a strictly
positive element and is convex, max-closed and bounded in L°, then C™™ # (. It is
further shown by an example in Section 2.3 that there exists a space LY and a convex
and compact set C C LY containing an element in C™ \ C™™. (An infinite-dimensional
space is required for such example. In finite-dimensional Euclidean spaces all boundary
points of a closed and convex set are support points, and it can be shown in the present
non-standard set-up that any strictly positive maximal element is a numéraire. Note also
that in infinite-dimensional spaces there are examples of proper closed convex subsets
that have no support points—see [9].) On the positive side, it is shown in Theorem 3.1 for
convex, max-closed and bounded sets C C LY. that contain at least one strictly positive
element, C™™ is dense in C™®. In the context of Banach spaces, Bishop and Phelps
theorem [1, Theorem 7.43] states that support points of closed and convex sets are
dense on the boundary of the set. Therefore, Theorem 3.1 can be seen as an analogue
of the Bishop—Phelps theorem in an extremely non-standard environment, where the
topological space in question fails to even be locally convex.

The structure of the paper is simple. Section 1 introduces and discusses maximal
elements and max-closedness, Section 2 introduces numéraires and shows that there
exist maximal elements that are not numéraires, while in Section 3 the aforementioned
density of numéraires in the maximal elements for convex, max-closed and bounded in
LY subsets of ]Lg that contains a strictly positive element is stated and proved.

0.2. Preliminaries

Throughout the paper, L° denotes the set of all real-valued random variables over a
probability space (2, F,P). The usual practice of not distinguishing a random variable
from the equivalence class (modulo PP) it generates is followed. All relationships between
elements of L° are to be understood in the P-a.s. sense. Define IL& = {f el f> 0}
to be the nonnegative orthant of L°; furthermore, let I[,(j_ 4 be the class of all f € ]Lg_
such that f > 0.

We use Q ~ P (respectively, Q < P) to denote that Q is a probability measure that is
equivalent with (respectively, absolutely continuous with respect to) P. The symbol Eg
is used to denote expectation with respect to Q < P; we simply use E instead of Ep for
expectation under P.

The topology on the vector space LY is the one induced by the translation-invariant
metric LO x LY 5 (f,g) = E[1A|f — g|], where “A” is used to denote the minimum
operation. With the above definition, L° becomes a complete metric space and ]L9r a
closed and convex subset. Convergence of sequences under this topology is convergence
in P-measure. (In fact, the topology only depends on the equivalence class of P.) Un-
less explicitly stated otherwise, any topological property (closedness, etc.) pertaining to
subsets of IO will be understood under the aforementioned topology.



3222 C. Kardaras / Journal of Functional Analysis 268 (2015) 3219-3231

For C C ]L(jr, CC ]Lg will denote the closure of C. A set C C ]Li will be called bounded
if limy— o0 SUPfec P[f > ¢] = 0—as can be easily seen, the last property coincides with
boundedness of C when L° is viewed as a topological vector space [1, Definition 5.36].
IfC C ]L?F is bounded, it is straightforward to check that C is bounded as well. Finally,
S C LY. will be called solid if the conditions g € S, f € LY and f < g imply f € S.

1. Maximal elements and max-closedness

An element f € C C I[,(j_ is called mazimal in C if the conditions f < g and g € C
imply f = g; the notation C™* is used to denote the set of all maximal elements in C.

The next definition introduces a concept of closedness that additionally takes into
account the lattice structure of LY. It is exactly tailored for problems related to concave
monotone maximisation, as is shown in Proposition 1.6 below.

Definition 1.1. A set C C ]Lg_ will be called maz-closed if C™2* C C.

In words, max-closedness asks that all maximal elements in the closure of a set are
already contained in the set itself. Max-closedness is a weaker property than closedness
(see Example 1.5 later on), and has played an important background role in the proof
of the Fundamental Theorem of Asset Pricing in [2].

The next result implies in particular that C™® # @ whenever C # ) is max-closed
and bounded. We omit the simple argument for its proof, which relies on a use of Zorn’s
lemma and has already appeared in [2, proof of Lemma 4.3] and [4, paragraph after
Theorem 3.1].

Lemma 1.2. Let C C Lg be maz-closed and bounded. Then, for every f € C there exists
h € C™ with f < h.

The next result gives an alternative definition of max-closedness for bounded subsets
of LY.
+

Lemma 1.3. Suppose that C C Lg_ is bounded. Then, C is max-closed if and only if

émax — (Cmax

Proof. If C™* = C™* the fact that C™® C C immediately implies that C is max-closed.

Suppose now that C is max-closed. Since C C C, the set-inclusion C™* C C is equivalent
to C™> C C™*. Now, let f € C™®. Since C is closed (in particular, max-closed) and
bounded (because C is bounded; note that boundedness of C is only required in this is
the part of the proof), Lemma 1.2 implies the existence of g € C™> with f < g. Since C
is max-closed, it follows that g € C, which with f € C™® implies that f = g. Therefore,
f € C™, which shows that C™> C C™* and completes the proof. O

Remark 1.4. If C C ]L?F fails to be bounded, Lemma 1.3 is not necessarily true. For
example, take Q = (0,1), F be the Borel o-field on {2, and let P be Lebesgue measure on
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(Q,F). Define C = {1} U {f € LY | P[f < 1] > 0}. Then, C =LY, so that C™> = () and
C is trivially max-closed. However, 1 € C™®, which shows that C™® = C™* is violated.

The following example demonstrates, inter alia, that max-closedness is a strictly
weaker notion than closedness.

Example 1.5. Let Q = (0,1), F be the Borel o-field on 2, and let P be Lebesgue
measure on (€, F). Consider C = {feLl |E[f]=1}. The set-inclusion C C
{f €LY | E[f] <1} follows from Fatou’s lemma. Now, let z, := n~'[(,-1), so that
zn € C for all n € N. Note that lim,, ,o, 2, = 0. For any f € ]L& with E[f] < 1, the
C-valued sequence (f + (1 —E[f])zn),cn converges to f, which shows that f € C. It
follows that C = {f € Lg | E[f] < 1}; in particular, C is not closed. However, note that
Cmx = {f € ]LS_ | E[f] = 1} = C™ which implies that C is max-closed.

In this setting, note that S = {f €LY | f < g for some g € C} (the solid hull of C)
is equal to {f € LY | E[f] < 1}, which is closed. This did not happen by chance: it is
shown in Proposition 1.8 that the solid hull of a convex, max-closed and bounded set is
always closed.

Let us make one more observation. With dC denoting the topological boundary of C,
it actually holds that C = C. Indeed, for f € C = {f € IL(_)|r | E[f] < 1} note that
(f + 225 )nen is an (LY \ C)-valued sequence which converges to f.

In the example above, C turned out to be a much larger set than C. Even though C
is not closed, in many cases of interest the “important” elements of C lie on the “outer
boundary” C™ of C. (As was seen in Example 1.5, the topological boundary of C C ]L,E)F
might be simply too large to provide useful information about optimal elements.) To
this effect, the next result demonstrates that the notion of max-closedness ties nicely
together with concave monotone maximisation.

Proposition 1.6. Suppose that U : ]Lg — [—00,00) is concave, upper semi-continuous and
monotone, the latter meaning that U(f) < U(g) holds whenever f < g. Let C C LY. be
convex, maz-closed and bounded. Then, there exists g € C™ such that supscc u(f) =
U(g) < oo.

Proof. Note that C is convex, closed and bounded. Since U is concave and upper
semi-continuous, [13, Lemma 4.3] implies the existence of gy € C such that U(gy) =
SUp e U(f). Furthermore, since C is closed (in particular, max-closed) and bounded,
Lemma 1.2 implies that there exists g € C™® such that gy < g. Since U is monotone,
U(go) < U(g) holds, which means that U(g) = supcz U(f). Finally, since C is max-
closed, g € C™ follows. O

Remark 1.7. Functions U : LY ~ [—o00,00) with the properties in the statement of
Proposition 1.6 appear in problems of mathematical finance, where U represents a utility
functional. An interesting—in terms of structure—example is given in Section 2.2.
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The next result (which was announced in Example 1.5) associates convexity, max-
closeness, boundedness, solidity, and closedness. Before we state it, a definition is re-
quired. Let (fn)nen be a sequence in LY. Any sequence (gn)nen with the property that
gn lies in the convex hull of {f,, fnt1,...} for all n € N will be called a sequence of
forward convex combinations of (fn)nen-

Proposition 1.8. Let C C ]LS)r be conver, mazx-closed and bounded, and define its solid hull
S = {f € ]Lg | f<g for someg € C}, Then, S is solid, convex, closed and bounded.

Proof. It is straightforward to check that S is solid, convex and bounded. It remains to
show that it is closed. Let (f,)nen be an S-valued sequence converging to f € Lg; we
shall establish that f € S. By passing to a subsequence if necessary, assume that (f,,)nen
converges P-a.s. to f. (The importance of P-a.s. convergence is that any sequence of
forward convex combinations of (fy,)nen also converges to f, which will be tacitly used
in the proof later on—R is a locally convex space, while L is not.) For each n € N,
there exists g, € C such that f,, < g,. Note that C is convex, closed and bounded; then,
[2, Lemma A1.1] implies the existence of a sequence of forward convex combinations of
(gn)nen that P-a.s. converges to some g € C. Since (f,,)nen converges P-a.s. to f and
fn < g for all n € N, it follows that f < g. Now, invoking Lemma 1.2, it follows that
there exists h € C™ such that g < h. As C™> C C and f < g, we obtain that f < h € C,
which implies that f € S. O

The final result of this section—Proposition 1.10—is concerned with “stability” of
convergence of sequences to points of the outer boundary of convex subsets of ]Lg. Before
stating it, we mention the following result, which is a special case of [8, Theorem 1.3]
and will be used thrice in the proof of Proposition 1.10.

Theorem 1.9. Let (fn)nen be a sequence in LY. such that conv ({f, | n € N}) is bounded.
Assume that lim,,—,~ fn = g holds for some g € ILQ_. Then, the following statements are
equivalent:

(1) Ewvery sequence of forward convex combinations of (fn)nen converges to g.
(2) If a sequence of forward convex combinations of (fn)nen s convergent, its limit is g.

(In the case f = 0, the equivalence of (1) and (2) holds even without assuming
limy, o0 fn =0.)

If any of the equivalent conditions above fail, the set I C L‘i of all possible limits of
forward convex combinations of (fn)nen s such that {g} G K, and g < h holds for all
hecC.

Proposition 1.10. Let C C ]Lg_ be convex. Let (fn)nen be a C-valued sequence converging
to g € C™®*. Then,
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(1) Any sequence of forward conver combinations of (fn)nen also converges to g.
(2) Any C-valued sequence (gn)nen such that f, < g, holds for all n € N also converges
to g.

Proof. In the sequel, (f,)nen is a C-valued sequence that converges to g € C™®.

Suppose that (g, )nen is a sequence of forward convex combinations of (f,)nen that
converges to h # g. By Theorem 1.9, this would contradict the fact that g € C™m.
Therefore, any convergent sequence of forward convex combinations of ( f,,),en must have
the same limit g that (f,)nen has. Again, by Theorem 1.9 it follows that all sequences of
forward convex combinations of (f,)nen converge to g, which establishes statement (1).

Now, pick any C-valued sequence (gp)nen such that f, < g, holds for all n € N,
and define (, := g, — fn for n € N; then, (, € ]LS_ for all n € N. If lim,, ,oo (, = 0
is established, lim, o fr = ¢ will imply lim, ., g, = g. For n € N, let 7,, denote
the closure of the convex hull of {Cx | k =n,n+1,...}, and set Too := [,cn Tn- For
1 € T, there exists a sequence (¢, )nen of forward convex combinations of ({,)nen such
that lim,_, ¥, = 1. Since g € C™, T, cannot contain any ¢ € LY with P[¢ > 0] > 0;
indeed, if this was the case, using statement (1) of Proposition 1.10 that was just proved,
one would be able to construct a C-valued sequence (hy,)nen with lim, o by, = g + ¥,
which would mean that (¢ + ¢) € C and would contradict g € C™*. On the other
hand, as each T, n € N, is convex, closed and bounded and (7 )nen is a non-increasing
sequence, it follows from [13] that 7o, # 0. We conclude that 7o, = {0}—in other words,
all convergent sequences of forwards convex combinations of ({,)nen converge to zero.
Then, another application of Theorem 1.9 (for the special case of zero limit) implies that
lim, 00 ¢, = 0, completing the proof of statement (2). O

2. Numéraires
2.1. The numéraire property

In the theory of financial economics, a convex set C C Lg frequently models the class
of all possible choices available for future consumption given (normalised) unit budget.
Any element g € C N ]LS)r + (note that g is strictly positive) can be used as a numéraire,
in the sense of a benchmark under which the value of all other consumption choices is
compared to; more precisely, for f € C, the random variable f/g measures f in units
of g. We regard g € C to be a “good” numéraire if there exists a valuation probability
Q ~ P that gives value at most one to all elements f € C denominated in units of g. (For
more motivation and discussion on the previous theme, we send the interested reader
to [3].)

Definition 2.1. Let C C LY be such that CNLY . # 0. An element g € C will be called
a numéraire of C if g € LY, and there exists Q ~ P such that Eq [f/g] < holds for all
f € C. The set of all numéraires of C is denoted by C™™.
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Remark 2.2. For C C ]Lg with C ﬂ]Lg 4 # 0, it is straightforward to check that a numéraire
of C C ]LSJr is a maximal element of C; in other words, C™™ C C™®* N L9r+.

Remark 2.3. One may offer a functional-analytic interpretation of numéraires, in terms
of “support points” of convex sets, as we now explain. For a measure (note that all
measures will be assumed countably additive, non-negative and o-finite) pu ~ P, consider
the linear mapping

LY fos G f) = [ fdue 0.00) (2.1)

Let C C Lg be such that C N IL?Hr # (. It is then straightforward to check that g €
cn ]Lg 4 is a numéraire of C if and only if there exists a measure p ~ P such that
supsec (i, f) = (1, g) < oo. Although the mapping of (2.1) fails to be continuous in
general (in view of Fatou’s lemma, it is at least lower semi-continuous), we may still
regard a numéraire as a non-standard support point of C. Note, however, that there are
special properties involved in the definition of a numéraire g of C; not only does g have
to be a strictly positive element, but also the “supporting functional” given by u has to
be strictly positive (in the sense that u ~ P) as well.

2.2. A canonical example

According to Proposition 1.6, optimisers of concave, upper semi-continuous and mono-
tone functionals over convex, max-closed and bounded sets C C ]Lg_ exist and lie on C™M&.
As mentioned in the introductory discussion, additional analysis using first order condi-
tions suggests that optimisers should “support” the convex set C. In fact, the following
example (which builds on Proposition 1.6) demonstrates that these optimisers are in-
deed numéraires of C, elaborating on the connection of numéraires and support points
mentioned in Remark 2.3.

Consider a wutility random field U : Q x (0,00) — R, such that U(-,z) € L° for all
z € (0,00) and U(w, ) : (0,00) — R is a strictly increasing, concave and continuously
differentiable function for all w € Q. Define the derivative (with respect to the spatial
variable) random field U’ : 2 x (0, 00) — R in the obvious way. By means of continuity,
the definition of U and U’ is extended so that U(-,0) := lim, o U(-,z) and U'(-,0) :=
lim, o U'(-, z)—note that the latter random variables may take with positive probability
the values —oo and oo, respectively. Assume in the sequel that the Inada condition
P[U’(0) = oo] = 1 holds, and that E [0V U(c0)] < 0o, where U(oo) = limy_0o U(+, )
and “V” denotes the maximum operation. Define the functional U : LY + [—o0,00)
via U(f) = E[U(f)], where for f € L% the map U(f) : Q — [—00,00) is defined via
(U(f)) (w) =U(w, f(w)) for w € Q. Clearly, U is concave and monotone. A combination
of E[0V U(o0)] < oo and Fatou’s lemma implies that U is upper semi-continuous.

Consider a convex, max-closed and bounded C C }Li with C N ]L& + # 0. Proposi-
tion 1.6 provides the existence of g € C™® such that U(g) = sup;cc U(f) < oo. In fact,
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because U is strictly concave, the previous maximiser in unique. In order to avoid un-
necessary technical complications, a final mild assumption involving the optimiser g is
introduced: we impose that U(ag) > —oo holds for all a € (0,1), which implies that the
function (0,00) 3 a — U(ag) is concave, strictly increasing and R-valued. Such mapping
must have a finite (right-hand-side) derivative; then, a use of the monotone convergence
theorem gives that E [U’(ag)gly>0}] < oo holds for all a € (0, 00). Define the convex set
Cy = {feC| f>agforsomeac (0,1)}. Note that g € C,; furthermore, since for all
f € C the C4-valued sequence ((1 —-n Uf+ n_lg)neN converges to f, C4 is dense in C.
Fix f € C4 and let a € (0,1) be such that f > ag. Since U(f) > U(ag) > —oo, it holds
that P[U(f) = —oo] = 0, i.e., U(f) € L°. Similarly, U(g) > —oo implies U(g) € L. For
€ (0,1), define

U(fe) — U(g)

€

fer=(0—-¢€g+ef, and A(fc | g) := e L0,

The optimality of g gives E[A(f. | g)] < 0, for all € € (0,1). Note that A(fc|g) >0
holds on {f. > g}; furthermore, for all € € (0,1), fc > ag implies that A(f. | g) >
() — f) > ~U'(ag)gTggno) holds on {f. < g}. Since E [U"(ag)gligney] < oo,
and liminf. g A(fe | g9) = U'(9)(f — g) holds in the P-a.s. sense, Fatou’s lemma implies
that E[U'(g)(f — g)] < 0, where in particular P[U’(g)(f — g) = —oo] = 0 is implied.
By assumption, there exists h € C N ]]_43_ 4. It can be assumed without loss of generality
that h € C, (otherwise, replace h by (h + g)/2); therefore, P[U’(g)(h —g) = —o0] = 0
implies that g € L%, which in particular implies that U’(g) € L%. The fact that
E[U'(9)g] = E[U'(9)gl{y>0}] < oo holds allows to write E[U'(g)(f —g)] < 0 as
E[U'(g)f] < E[U'(g9)g] for all f € C4. Upon defining the probability measure Q via
the recipe dQ = (U'(g9)g9/E [U'(g)g]) dP, note that Q ~ P and Eq [f/g] < 1 holds for all
f €Cq. As Cy is dense in C, Fatou’s lemma implies that Eg [f/g] < 1 holds for all f € C.
Therefore, g € C™™.

Remark 2.4. It is straightforward to construct strictly increasing, concave and con-
tinuously differentiable deterministic functions U : (0,00) — R such that U’(0) = oo
and U ((0,00)) is a bounded subset of R. With U defined as in the example above, if C
is convex, max-closed and bounded then the unique maximiser g of U over C trivially
satisfies U(ag) > —oo for all a € (0,1); therefore, g € C"™™. In particular, we deduce
that C™™ # @ holds whenever C C LY with C N LY, # 0 is convex, max-closed and
bounded.

Remark 2.5. In the discussion of the above example, under certain assumptions on the
utility random field U, the set C and the optimiser g € C™®*, it is concluded that g € C™'™.
The most restrictive assumption is the boundedness from above of the utility random
field, encoded in the requirement E [0V U(c0)] < co. This assumption is there to ensure
that U is [—o00, 00)-valued and upper semi-continuous, in order to allow the invocation
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of Proposition 1.6 and obtain existence of an optimiser g € C™®*. However, if existence
of an optimiser g € C can be obtained with other methods, in which case Lemma 1.2
ensures that it can be additionally assumed that g € C™®, the discussion of the above
example goes through even without enforcing boundedness conditions on U. (The other,
milder, assumptions should of course still be satisfied.) There has been a significant body
of work in the field of mathematical finance where existence of optimisers for such types
of expected utility maximisation problems is established using convex duality methods;
for more examples, see [10] in the case of deterministic U and [6] for the case where U
may actually be a random field.

2.3. Mazimal points versus numéraires

Let C be convex, max-closed and bounded and such that C ﬁLS’r + # 0. As was discussed
in Remark 2.2 and Remark 2.4, it holds that C"'™ = () and C™™ C C™a* OLS)F+. However,
the inclusion C™™ C C™ N ]L?|r 4 can be strict, as will be shown below by an example,
which has also appeared in [7]. (Note that there are indeed special—but important—cases
where C™™ C C™> N LY | can be established; for example, see [3].)

Consider the probability space (2, F,P), where Q@ = (0,00), F the Borel o-field
over (0,00), and PP is a probability measure equivalent to Lebesgue measure on (0, c0).
Define £ : © — (0,00) via {(w) = w for all w € (0,00). Furthermore, define
K := {(o,8) € R? | 0 < 8 < y/a < 1}, and note that K is a convex and compact subset
of R2Z. Let C := {1 —a+ (a+B)¢| (a,B) € K}. Being the image of K via a continu-
ous linear mapping, C is a convex and compact subset of L(}r—therefore, it is closed (in
particular, max-closed) and bounded.

Note that P[¢ < ¢ > 0 and P[¢7! < € > 0 hold for all € € (0,00); given this,
Cm™* ={l—a+(a+/a)¢|aecl0,1]} CLY, follows in a rather straightforward way.
In particular, it holds that 1 € C™ N LY, . However, we claim that 1 ¢ C™™. In fact,
we shall show that there cannot exist any Q < P such that Eg[f] < 1 holds for all
f € C. To wit, if such a probability measure Q existed, Eg [1 — o + (o + y/@)§] < 1 for
all a € [0,1] would follow. Rearranging, Eq [§] < o/ (a + Va) = o/ (Va + 1) would
hold for all & € (0, 1]. This would imply that Eqg [{] = 0, i.e., Q[ > 0] = 0 which, in view
of P[¢ > 0] = 1, contradicts the fact that Q is a probability measure which is absolutely
continuous with respect to P.

In fact, one can say more: in this example, it holds that C™™ = C™2\ {1}. Indeed,
fix v € (0,1] and define g, := 1 —~ + (v + /7)§; we shall show that g, € C"'™. Note
that the law of the random variable 1/g, under PP is equivalent to Lebesgue measure on
(0,(1 —~)~'). Therefore, setting ¢, := (1+2,/7) (1+ /) 2 the strict inequality ey <
1 < (1—~)~! implies that there exists a probability Q, ~ P such that Eg_[1/g,] = ¢,.
The straightforward calculation £/g, = y~1/2(1+ /)~ =y 1/2(1 - /7)(1/g,) implies
Eg,[£/g,] = v 12(1+7) 1=y 2(1=A)ey =27 (1 + A7) % Therefore, it follows
that



C. Kardaras / Journal of Functional Analysis 268 (2015) 3219-3231 3229

l—a+ (a+p)¢ _ 1+27—a+2,7p
9 (1+vA)°
< 1+2ﬁia+22\/w, for all (o, 8) € K.
(1+7)

It is easily seen that the latter expression, as a function of (a, 8) € K, is maximised
when (a, 8) = (’y, \/7), and that the maximum is 1. It indeed follows that g, € C"'™.
Before abandoning this example, a final remark is in order. Even though 1 €
C™a\ €™M note that the C™™-valued sequence ((1—n~1) + (n=! +n=1/2) f)neN actu-
ally converges to 1. Theorem 3.1 in the next section will generalise this observation.

Eq

~

3. Density of numéraires in maximal elements
3.1. The main result

What follows is a density result of numéraires in maximal elements for convex, max-
closed and bounded sets of LY that contain at least one strictly positive element.

Theorem 3.1. Let C C ]LE’F be convex, max-closed and bounded, and such that CO]LE)H # 0.
Then, C™™ is dense in C™3*,

Keeping in mind the discussion in Remark 2.3, the statement of Theorem 3.1 bears
resemblance to the celebrated result of Bishop and Phelps [1, Theorem 7.43, statement 1],
stating that support points of closed and convex sets in Banach spaces are dense on the
boundary of the set. Note, however, that the present setting is by all means non-standard,
especially since L typically fails to be locally convex. For a convex and bounded C C
Lg_, there exists a probability Q ~ P, such that sup;cc Eq [f] < oo; see, for example,
[12, combination of Lemmata 1, 2 and 3 of p. 147]. This fact seems to provide hope that
one could use the classical version of the Bishop—Phelps theorem by applying L (Q)-L>°
duality. In fact, under the assumptions of Theorem 3.1 it is not hard to see that, if
C C L1(Q), then C™ is actually contained in the L'(Q)-topological boundary of C.
However, for a given g € C™®* it is not at all clear that the sequence of (usual) support
points that approximates g is C"'™-valued. As the previous issue does not appear a
priori trivial, a bare-hands alternative route is taken in the proof of Theorem 3.1, given
in Section 3.2 below.

3.2. Proof of Theorem 3.1

Assume that C is convex, max-closed and bounded, and such that C N ]Lg_ 4+ #0. Let
g € C™; we shall show that there exists a C™™-valued sequence (f,)nen such that
lim, o frn = g. We first treat the case where g € C™** ﬁ]LS)r ; then, the general case will
follow through an approximation argument.
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3.2.1. Case where g € C™®™ N IL?Hr
In order to obtain the approximating sequence (f,,)nen, we shall use the construction
of Section 2.2. For fixed n € N, define U,, :  x (0, 00) — (—00,0) via

Un(x) = —(g/x)", vz €(0,00),

where the dependence on w (coming from g € C) is suppressed, as usual. Note that U,
is concave, strictly increasing, continuously differentiable, bounded above by zero, and
that the Inada condition U}, (0) = oo is satisfied for all n € N. Define U,, : LY. — [—00,0)
via Uy (f) = E[Un(f)] for all f € LY and n € N. Note that U,(f) > —oo implies
Up(af) > —oo for all a € (0,1). In view of the general example in Section 2.2, for all
n € N we infer the existence of f,, € C™™ with the property that U, (fn) = sup;cc Un(f)-
It remains to show that lim, .. fn = ¢.

Note first that, since U, (g) = E[U,(g)] = —1, it follows that E [U,(f,)] > —1 for all
n € N; in other words, E [(g/f,)"] < 1 holds for all n € N. In view of Markov’s inequality,
it holds that

Plfu/g < Bl < B"El(g/fn)"] < B", Vne€Nand Ve (0,1).

The Borel-Cantelli lemma implies that for any fixed g € (0,1), Bg < liminf, o fn
holds in the P-a.s. sense. It then follows that g < liminf, .. f, holds in the P-a.s.
sense.

We proceed in showing that lim, .o P[fn/g > 1+ € = 0 holds for all € € (0,00).
Assume on the contrary that there exists € > 0 and a subsequence (fy, )ren of (fn),cy
such that P[f,./g > 1+¢] > € holds for all & € N. Since C is convex and bounded,
12, Lemma A1.1] gives the existence of a sequence (hg),cy of forward convex combina-
tions of (fn, )ken that converges to some h € LY ; since C is convex, it follows that h € C.
More precisely, write hy = ifl:k opmfn,, for all k € N, where I, > k, agm > 0
for all ¥ € N and m € {k,...,lx}, as well as Ziﬁ:k akm = 1. Convexity implies
that

E[(g/h4)" <Zakm [(9/ fun)™], VE€EN.

Jensen’s inequality gives E[(g/fn.)™] < (E[(g/fn,)"" ™™™ < 1, for all N 5
k < m € N. A combination of the previous gives E[(g/ht)"*] < 1, for all k¥ € N.
As before, this implies that ¢ < liminfy ,. hy holds in the P-a.s. sense; in par-
ticular, ¢ < h. On the other hand, the fact that P[f,, /g >1+¢€ > ¢ holds for
all k& € N, combined with liminfy_,o (fn,/g9) > 1 holding in the P-a.s. sense, im-
plies that limsup,,_, o E [exp(—fn,/9)] < (1 — €)exp(—1) + eexp(—1 — €). Then, con-
vexity and boundedness of the function (0,00) 3> x +— exp(—z) € (0,1) imply
that
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Elexp(—h/g)] = lim E[exp(~hi/g)]

Ly
< lim sup Z ag,mE [exp(=fn,, /h)]
k—o0 m—k

< liirisupE [exp(—fn,/h)] < (1 —€)exp(—1) + eexp(—1 —€) < exp(—1).

We obtain that P[h/g > 1] > 0, which together with ¢ < h contradicts the fact
that ¢ € C™ = C™>, the last set-equality coming from Lemma 1.3. Therefore,
limy, 0o P[fn/g > 1+€ = 0 holds for all € € (0,00); coupled with the fact that
g < liminf, , f, holds in the P-a.s. sense that was previously established, we con-
clude that lim,, o fr = g-

3.2.2. Case of arbitrary g € C™

Let g € C™, and fix some f € CNLY . For alln € N, set h,, :== (1—-1/n)g+ (1/n)f
and note that h, € CN ]Lg_ .. Furthermore, by Lemma 1.2 it follows that for each n € N
there exists g, € C™* with h, < g,; of course, g, € C™>* N }L?|r+ holds for all n € N.
According to what we have already proved, there exists a C"'™-valued sequence (fy)nen
such that lim, o (gn — frn) = 0 holds. Theorem 3.1 will be fully established if we can
show that lim, . g, = g holds. Since lim,,_,, h, = g, g € C™* and h,, < g, holds for
all n € N, this fact follows from statement (2) of Proposition 1.10, which completes the
proof.
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