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Minimizing the Expected Market Time to Reach a Certain Wealth Level∗
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Abstract. In a financial market model, we consider variations of the problem of minimizing the expected time
to upcross a certain wealth level. For exponential Lévy markets, we show the asymptotic optimality
of the growth-optimal portfolio for the above problem and obtain tight bounds for the value function
for any wealth level. In an Itô market, we employ the concept of market time, which is a clock that
runs according to the underlying market growth. We show the optimality of the growth-optimal
portfolio for minimizing the expected market time to reach any wealth level. This reveals a general
definition of market time which can be useful from an investor’s point of view. We utilize this last
definition to extend the previous results in a general semimartingale setting.
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1. Introduction. The problem of quickly reaching certain goals in wealth management is
one of the most fundamental tasks in the theory and practice of finance. However, making
this idea mathematically precise has been a challenge. In particular, this would require a
quantification of what is meant by achieving goals “quickly” in a model-independent manner,
or, even better, coming endogenously from the description of the market as perceived by its
participants. Such a mathematically precise description of the flow of time, as well as the cor-
responding optimal investment strategy, is clearly valuable. If a robust, model-independent
answer to the previous questions can be given, it would go a long way towards a better under-
standing of the problem, as its statement should provide a deep insight into key quantitative
characteristics of the market. Our aim in this paper is to present a way of addressing the
aforementioned issues.

We proceed with a more thorough description of the problem. Imagine an investor holding
some minute capital-in-hand, aiming to reach as quickly as possible a substantial wealth
level by optimally choosing an investment opportunity in an active market. No matter what
the mathematical formalization of the objective is, as long as it reasonably describes the
above informal setting, intuition suggests that the investor should pick an aggressive strategy
that provides ample wealth growth. The most famous wealth-optimizing strategy that could
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MINIMIZING EXPECTED TIME TO REACH A WEALTH LEVEL 17

potentially achieve this is the growth-optimal strategy, which is sometimes also called the
Kelly strategy, as the latter was introduced in [16]. Therefore, the portfolio generated by
the growth-optimal strategy is a strong candidate for solving the aforementioned problem,
at least in an approximate sense. This last point is augmented by the long line of research
on the importance and optimality properties of the growth-optimal portfolio; we mention,
for example, the following very incomplete list: [17], [1], [3], [18], [7], [12]. Note also that
minimizing expected time to reach a wealth level is not the only interesting objective that one
can seek. For example, maximizing the probability that a wealth level will be reached before
some future time is also interesting; in this respect, see [6], [9].

Here, we shall identify a variant of the “quickest goal reach” problem for continuous-time
models where the growth-optimal portfolio is indeed the best. The problem we consider then
is that of minimizing the expected market time that it will take to reach a certain wealth level.
Market time will be defined as a natural time scale which runs fast when the compensation
for taking risk in the market is high and vice versa. In a market with continuous asset prices,
this will be achieved by setting the slope of the market time equal to half the squared risk
premium. In this case, it equals the growth rate of the corresponding growth-optimal portfolio,
which leads to the interpretation of market time as integrated maximum growth rate.

The first attempt to minimize the expected upcrossing time in a discrete-time gambling-
system model was described in [5], where indeed the near optimal wealth process was found
to be characterized by Kelly’s growth-optimal strategy. Models of gambling systems, as con-
sidered in [5], could be interpreted as discrete-time financial markets where the log-asset-price
processes are random walks with a finite number of possible values for the increment of each
step. The natural continuous-time generalization of the above setting is to consider expo-
nential Lévy markets, i.e., markets where the log-asset-price processes have independent and
stationary increments. For these markets, we establish here the exact analogues of the results
in [5].

A continuous-time problem in the context of a Black–Scholes market was treated in [11],
and then as an application of a more abstract problem in [10], essentially using methods
of dynamic programming. In this case, the numéraire portfolio of the market, which was
introduced in [17] and is also called the growth-optimal portfolio, as it is generated by the
analogue of Kelly’s growth-optimal strategy, is truly optimal for minimizing the expected
calendar time to reach any wealth level. Unfortunately, the moment that one considers more
complex Itô-process models, for example ones that are modelling feedback effects, such as the
leverage effect in [4], the growth-optimal portfolio is no longer optimal for the problem of
minimizing expected calendar time for upcrossing a certain wealth level. In fact, for general
non-Markovian models there does not seem to be any hope in identifying what the optimal
strategy and wealth process are when minimizing expected calendar time. We note, however,
that for Markovian models one can still characterize the optimal strategy and portfolio in
terms of a Hamilton–Jacobi–Bellman equation, which will most likely then have to be solved
numerically.

We introduce in this paper a market clock which does not count time according to the
natural calendar flow but rather according to the overall market growth. Under the objective
that one minimizes expected market time, we show here that the solution again yields the
growth-optimal portfolio as nearly optimal. There is a slight problem that results in the
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18 CONSTANTINOS KARDARAS AND ECKHARD PLATEN

nonoptimality of the growth-optimal portfolio, if for finite wealth levels some overshoot is
possible over the targeted wealth level at the time of the upcrossing. If there is no overshoot,
which happens in particular in models with continuous asset prices, then the growth-optimal
portfolio is indeed optimal. In [2], the author considers a ramification of the problem by
offering a rebate for the overshoot that results in the growth-optimal portfolio again being
optimal. Of course, we could do this even in the most general case. Since this rebate inclusion
is somewhat arbitrary, we shall refrain from using it in our own analysis.

The optimality of the growth-optimal portfolio for minimizing expected time according to
a clock counting time according to the overall market growth sounds a bit like a tautological
statement. However, we shall make a conscious effort to convey that the concept of market
time is very natural, by taking a stepwise approach in the model generality that we consider.
The exponential Lévy process case is considered first. There, the market-time flow coincides
with the calendar-time flow up to a multiplicative constant, since the model coefficients remain
constant through time. As soon as the model coefficients are allowed to randomly change,
one can regard the passage of time in terms of the opportunities for profit that are available.
We first discuss this in the realm of markets where asset-prices are modeled via Itô processes,
where the arguments are more intuitive. As soon as the natural candidate for the market time
is understood, we proceed to discuss the results in the very general semimartingale model.

The results presented in this work are generalizations of the constant-coefficient result in
[11]. The use of martingale methods and a natural definition of market time that we utilize
make the proof of our claims more transparent and widens the scope and validity of the
corresponding statements.

The structure of the paper is as follows. In section 2 we introduce the general financial
market model, we define the problem of minimizing expected market time, and we present
the standing assumptions, which are basically the existence of the numéraire portfolio. In
section 3 we specialize in the case of exponential Lévy market models, where market time
and calendar time coincide up to a multiplicative constant. Our first main result gives tight
bounds for the near optimal performance of the growth-optimal portfolio for any wealth level
that also result in its asymptotic optimality for increasing wealth levels. In section 4 we use
Itô processes to model the market. After some discussion on the concept of market time, our
second main result also shows here the optimality of the growth-optimal portfolio. In section
5, the concept of market time in a general semimartingale setting is introduced and a general
result that covers all previous cases is presented. Finally, section 6 contains the proofs of the
results in the previous sections.

2. Description of the problem. In the following general remarks we fix some notation
that will be used throughout.

By R+ we shall denote the positive real line, Rd the d-dimensional Euclidean space, and N

the set of natural numbers {1, 2, . . .}. Superscripts will be used to indicate coordinates, both
for vectors and for processes; for example z ∈ R

d is written z = (z1, . . . , zd). On R
d, 〈·, ·〉 will

denote the usual inner product: 〈y, z〉 :=
∑d

i=1 y
izi for y and z in R

d. Also | · | will denote
the usual norm: |z| :=

√
〈z, z〉 for z ∈ R

d.

On R+ equipped with the Borel σ-field B(R+), Leb will denote the Lebesgue measure.

All stochastic processes appearing in what follows are defined on a filtered probability
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space (Ω, F , F, P). Here, P is a probability on (Ω,F), where F is a σ-algebra that will make
all involved random variables measurable. The filtration F = (Ft)t∈R+ is assumed to satisfy
the usual hypotheses of right-continuity and saturation by P-null sets. It will be assumed
throughout that F0 is trivial modulo P.

For a càdlàg (right-continuous with left limits) stochastic process X = (Xt)t∈R+ , define
Xt− := lims↑tXs for t > 0 andX0− := 0. The processX− will denote this last left-continuous
version of X, and ΔX := X −X− will be the jump process of X.

2.1. Assets and wealth processes. The d-dimensional semimartingale S = (S1, . . . , Sd)
will be denoting the discounted, with respect to the savings account, price process of d financial
assets.

Starting with initial capital x ∈ R+, and investing according to some predictable and
S-integrable strategy ϑ, an investor’s discounted total wealth process is given by

(2.1) Xx,ϑ := x+

∫ ·

0
〈ϑt, dSt〉 .

Reflecting the investor’s ability to hold only a portfolio of nonnegative total tradeable
wealth, we then define the set of all nonnegative wealth processes starting from initial capital
x ∈ R+:

X (x) :=
{
Xx,ϑ as in (2.1)

∣∣∣ ϑ is predictable and S-integrable, and Xx,ϑ ≥ 0
}
.

It is straightforward that X (x) = xX (1) and that x ∈ X (x) for all x ∈ R+. We also set
X :=

⋃
x∈R+

X (x).

2.2. The problem. We shall be concerned with the problem of quickly reaching a wealth
level � starting from capital x. This, of course, is nontrivial only when x < �, which will
be tacitly assumed throughout. The challenge is now to rigorously define what is meant by
“quickly.” Take O = (Ot)t∈R+ to be an increasing and adapted process such that, P-a.s.,
O0 = 0 and O∞ = +∞. O will be representing some kind of internal clock of the market,
which we shall call market time. In the following sections we shall be more precise on choosing
O, guided by what we shall learn when identifying the consequences of applying the growth-
optimal strategy.

For any càdlàg process X and � ∈ R+, define the first upcrossing market time of X at
level �:

(2.2) T (X; �) := inf {Ot ∈ R+ |Xt ≥ �} .

Of course, if � ≤ x, then T (X; �) = 0 for all X ∈ X (x). With the aforementioned inputs,
define for all x < � the value function

(2.3) v(x; �) := inf
X∈X (x)

E [T (X; �)] .

Our aims in this work are to
• identify a natural definition for the market time O,
• obtain an explicit formula, or at least some useful tight bounds, for the value function

v(x; �) of (2.3), and
• find the optimal, or perhaps near optimal, portfolio for the above problem.
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20 CONSTANTINOS KARDARAS AND ECKHARD PLATEN

2.3. Standing assumptions. In order to make headway with the problem described in
section 2.2, we shall make two natural and indispensable assumptions regarding the financial
market that will be in force throughout.

Assumptions 2.1. In our financial market model, we assume the following:

(1) There exists X̂ ∈ X (1) such that X/X̂ is a supermartingale for all X ∈ X .
(2) For every � ∈ R+, there exists X ∈ X (1), possibly depending on �, such that, P-a.s.,

T (X; �) < +∞.

A process X̂ with the properties described in Assumption 2.1(1) is unique and is called
the numéraire portfolio. Existence of the numéraire portfolio is a minimal assumption for the
viability of the financial market. It is essentially equivalent to the boundedness in probability
of the set {XT |X ∈ X (1)} of all possible discounted wealth starting from unit capital and
observed at any time T ∈ R+. We refer the interested reader to [7], [12], and [15] for more
information in this direction. We shall frequently refer to the numéraire portfolio as the
growth-optimal portfolio, as the two notions coincide.

Assumption 2.1(2) constitutes what has been coined a “favorable game” in [5], and it is
necessary in order for the problem described in (2.3) to have finite value and therefore to
be well-posed. Under Assumption 2.1(2), and in view of the property X (x) = xX (1) for
x ∈ R+, it is obvious that for all x ∈ R+ and � ∈ R+ there exists X ∈ X (x) such that
P [T (X; �) < +∞] = 1.

Actually, if Assumption 2.1(1) is in force, Assumption 2.1(2) has a convenient equivalent.

Proposition 2.2. Under Assumption 2.1(1), Assumption 2.1(2) is equivalent to

(2′) limt→+∞ X̂t = +∞, P-a.s.

This last result enables one to easily check the validity of Assumptions 2.1 by looking only
at the numéraire portfolio. In each of the specific cases we shall consider in what follows,
equivalent characterizations of Assumptions 2.1 will be given in terms of the model under
consideration.

3. Exponential Lévy markets.

3.1. The setup. For this section we assume that the discounted asset-price processes
satisfy dSi

t = Si
t− dRi

t for t ∈ R+, where, for all i = 1, . . . , d, Ri is a Lévy process on
(Ω,F ,F,P). Each Ri for i = 1, . . . , d is the total returns process associated with Si.

In order to make sure that the asset-price processes remain nonnegative, it is necessary
and sufficient that ΔRi ≥ −1 for all i = 1, . . . , d. We shall actually impose a further restriction
on the structure of the jumps of the returns processes, also bounding them from above. This
is mostly done in order to obtain later in Theorem 3.3 a statement which parallels the result
in [5]. For the asymptotic result that will be presented in section 3.6 this bounded-jump
assumption will be dropped.

Assumption 3.1. For all i = 1, . . . , d we have −1 ≤ ΔRi ≤ κ for some κ ∈ R+.

Denote by R the d-dimensional Lévy process (R1, . . . , Rd). In view of the boundedness of
the jumps of R, as stated in Assumption 3.1, we can write

(3.1) RT = aT + σWT +

∫
[0,T ]×Rd

z (μ( dz, dt)− ν( dz) dt)
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for all T ∈ R+. In view of Assumption 3.1, the elements in the above representation satisfy
the following:

• a ∈ R
d.

• σ is a (d×m)-matrix, where m ∈ N.
• W is a standard m-dimensional Brownian motion on (Ω,F ,F,P).
• μ is the jump measure of R, i.e., the random counting measure on R+ × R

d defined
via μ([0, T ]× E) :=

∑
0≤t≤T IE\{0}(ΔRt) for T ∈ R+ and E ⊆ R

d.

• ν, the compensator of μ, is a Lévy measure on (Rd,B(Rd)), where B(Rd) is the Borel
σ-field on R

d. More precisely, ν is a measure with ν[{0}] = 0, ν
[
R
d \ [−1, κ]

]
= 0, and∫

Rd |x|2ν[ dx] < +∞.

For more information on Lévy processes one can check, for example, [19].

Define the (d× d) matrix c := σσ
, where “	” denotes matrix transposition. The triplet
(a, c, ν) will play a crucial role in the discussion below.

In the notation of (2.1), let Xx,ϑ ∈ X (x). The nonnegativity requirement Xx,ϑ ≥ 0 is

equivalent to ΔXx,ϑ ≥ Xx,ϑ
− , or further to 〈ϑ, ΔS〉 ≥ Xx,ϑ

− . Since ΔSi = Si−ΔRi for each
i = 1, . . . , d, and recalling that ν is the Lévy measure of R, we conclude that Xx,ϑ ≥ 0 if and
only if (

ϑi
t(ω)S

i
t−(ω)

)
i=1,...,d

∈ Xx,ϑ
t− (ω)C for all (ω, t) ∈ Ω× R+,

where C is the set of natural constraints defined via

C :=
{
η ∈ R

d
∣∣∣ ν[z ∈ R

d | 〈η, z〉 < −1
]
= 0

}
.

It is easy to see that C is convex; it is also closed, as follows from Fatou’s lemma.

3.2. Growth rate. For any π ∈ C, define

(3.2) g(π) := 〈π, a〉 − 1

2
〈π, cπ〉 −

∫
Rd

[〈π, z〉 − log(1 + 〈π, z〉)] ν[ dz].

For π ∈ C, g(π) is the drift rate of the logarithm of the wealth process X ∈ X (1) that satisfies
dXt = Xt− 〈π, dRt〉 = Xt− d 〈π,Rt〉 for all t ∈ R+; for this reason, g(π) is also called the
growth rate of the last wealth process.

Define g∗ := supπ∈C g(π) to be the maximum growth rate. Since 0 ∈ C, we certainly have
g∗ ≥ g(0) = 0. Actually, under the bounded-jump Assumption 3.1, the standing Assumptions
2.1 are equivalent to 0 < g∗ < ∞. In order to achieve this last claim, we shall connect the
viability of the market with the concept of immediate arbitrage opportunities, as will now be
introduced.

3.3. Market viability. Define the set I of immediate arbitrage opportunities to consist of
all vectors ξ ∈ R

d such that cξ = 0, ν
[
z ∈ R

d | 〈ξ, z〉 < 0
]
= 0, and 〈ξ, a〉 ≥ 0 and where

further at least one of ν
[
z ∈ R

d | 〈ξ, z〉 > 0
]
> 0 or 〈ξ, a〉 > 0 holds. As part of the next

result, we get that the previously described exponential Lévy market is viable if and only if
the intersection of I with the recession cone of C, defined as Č :=

⋂
u>0 uC, is empty.
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Proposition 3.2. Assumptions 2.1 are equivalent to requiring both I ∩ Č = ∅ and g∗ > 0.
Suppose now that the above is true, as well as that Assumption 3.1 is in force. Then,

g∗ < ∞ and there exists ρ ∈ C such that g(ρ) = g∗. Furthermore, the numéraire portfolio X̂
satisfies the dynamics dX̂t = X̂t− 〈ρ, dRt〉 = X̂t− d 〈ρ,Rt〉. In other words, for T ∈ R+,

(3.3) log
(
X̂T

)
= 〈ρ,RT 〉 −

1

2
〈ρ, cρ〉T −

∑
0≤t≤T

(〈ρ,ΔRt〉 − log (1 + 〈ρ,ΔRt〉)) .

Instead of using the general Assumptions 2.1 in this section, we shall use the equivalent
conditions I ∩ Č = ∅ and g∗ > 0. We also note that the vector ρ ∈ C in the statement
of Proposition 3.2 that leads to the numéraire portfolio is essentially unique, modulo any
degeneracies that might be present in the market and lead to nonzero portfolios having zero
returns.

3.4. The main result. Since Lévy processes have stationary and independent increments,
the natural candidate for market time is to consider calendar time up to a multiplicative
constant γ > 0, i.e., to set Ot = γt for t ∈ R+. In Theorem 3.3, we shall actually choose
γ = g∗. This turns out to be the appropriate choice of market velocity that reflects a universal
characteristic of the market and will result in the bounds (3.4) for the optimal upcrossing time
in Theorem 3.3 not depending on the actual model under consideration.

Theorem 3.3. We work under Assumption 3.1 and also assume that I∩ Č = ∅ and g∗ > 0.
Define the finite nonnegative constant α := inf

{
β ∈ R+ | ν

[
z ∈ R

d | 〈ρ, z〉 > β
]
= 0

}
. Let

the market time O be defined via Ot = g∗t for all t ∈ R+. With X̂(x) := xX̂, we have the
inequalities

(3.4) log

(
�

x

)
≤ v(x; �) ≤ E

[
T (X̂(x); �)

]
≤ log

(
�

x

)
+ log(1 + α).

Actually, Theorem 3.3 is an instance of a more general statement that will be presented
in section 5. We note that the bounds (3.4) are in complete accordance with the discrete-time
result in [5] and that the nonnegative constant log(1 + α) does not involve x or �.

Remark 3.4. Under a mild condition, namely that the marginal one-dimensional distribu-
tions of log(X̂) are nonlattice, the overshoot of log(X̂) over the level log(�) actually has a
limiting distribution as � → ∞ that is supported on [0, log(1 + α)]. In that case,

lim
�→∞

(
E
[
T (X̂(x); �)

]
− log

(
�

x

))
exists and is exactly equal to the mean of that limiting distribution.

3.5. True optimality. There is a special case when the growth-optimal portfolio is indeed
optimal for all levels �, which covers in particular the Black–Scholes market result in [11]. The
following result directly stems out of the statement of Theorem 3.3.

Corollary 3.5. Suppose that the numéraire portfolio X̂ of (3.3) has no positive jumps:
〈ρ, ΔR〉 ≤ 0. Then,

v(x; �) = log

(
�

x

)
= E

[
T (X̂(x); �)

]
.
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For an easy example where the last equality occurs, consider in (3.1) the case where d = 1,
κ = 0, and a = a1 > 0. This is a reasonable model where the excess rate of return is strictly
positive and only negative jumps are present in the dynamics of the discounted asset-price
process.

3.6. Asymptotic optimality without the bounded-jump assumption. Theorem 3.3 gives
the asymptotic (for large �) optimality of the growth-optimal portfolio, since, by (3.4),

(3.5) lim
�→∞

v(x; �)

log(�)
= 1 = lim

�→∞
E
[
T (X̂(x); �)

]
log(�)

.

The validity of the asymptotic optimality in (3.5) goes well beyond the bounded-jump
Assumption 3.1, as we shall describe now. For the total returns process R = (R1, . . . , Rd),
we can write the canonical representation (3.1) if and only if the Lévy measure ν is such that∫
Rd

(
|x| ∧ |x|2

)
ν[ dx] < +∞. In that case, the definition in (3.2) of the growth rate is still the

same, even without the validity of Assumption 3.1. We then have the following result.
Proposition 3.6. Suppose that the canonical representation (3.1) is valid. Then, if I∩ Č = ∅

and g∗ > 0 hold, we have g∗ < ∞ and there exists ρ ∈ C such that g(ρ) = g∗. One can
then define the growth-optimal portfolio X̂ using (3.3). Defining O via Ot = g∗t, and with
X̂(x) := xX̂, the asymptotics (3.5) hold.

4. Itô markets and market time. As already mentioned in the introduction, the growth-
optimal portfolio is not optimal for the problem of minimizing the expected calendar time
to reach a wealth level when considering models where the coefficients may change randomly
through time. If the objective is somewhat altered into minimizing expected market time, as
we shall define below, then the growth-optimal portfolio is indeed optimal. It is our belief that
the notion of market time, as it naturally emerges in our paper, has a very clear and natural
interpretation and makes deep sense, and is therefore worth studying beyond the context of
the questions raised.

To keep the technical details simple, in this section we assume that S is an Itô process.
Later, in section 5, we shall see how to relax this assumption to more complex models and
still keep the main result holding.

4.1. The setup. The dynamics of the discounted asset-prices are

(4.1) dSi
t = Si

t

⎛⎝ait dt+
m∑
j=1

σij
t dW j

t

⎞⎠
for each i = 1, . . . , d and t ∈ R+. Here a = (ai)i=1,...,d is the predictable d-dimensional process
of excess appreciation rates, σ = (σij)i=1,...,d, j=1,...,m is a predictable (d × m)-matrix-valued
process of volatilities, and W = (W j)j=1,...,m is a standard m-dimensional Brownian motion
on (Ω,F ,F,P). We let c := σσ
 denote the (d×d)-matrix-valued process of local covariances.

4.2. Assumptions. The general Assumptions 2.1 have a well-described equivalent for the
Itô market we are considering.

Proposition 4.1. Assumptions 2.1 are equivalent to the following:
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(1) There exists a d-dimensional predictable process ρ such that, (P ⊗ Leb)-a.e., cρ = a.
(In that case, ρ = c†a, where c† is the Moore–Penrose pseudoinverse of c.)

(2)
∫ T
0 |λt|2 dt < ∞ for all T ∈ R+, where λ := σ
c†a is the m-dimensional risk premium
process. (Then, |λ|2 =

〈
a, c†a

〉
= 〈ρ, cρ〉.)

(3)
∫∞
0 |λt|2 dt = ∞, P-a.s.

In this case, it follows that the logarithm of the numéraire portfolio X̂ is given by

(4.2) log(X̂) =
1

2

∫ ·

0
|λt|2 dt+

∫ ·

0
λt dWt.

It follows from (4.2) that g∗t := (1/2)|λt|2 equals the maximum growth rate at time t ∈ R+

in the given Itô market.
As we did in the case of exponential Lévy markets, we shall use statements (1), (2), and

(3) of Proposition 4.1 in place of the general Assumptions 2.1 in what follows.

4.3. Market time. With the above notation define now, similar to the previous section,
the market time process O = (Ot)t∈R+ by setting it equal to the integral over the maximum
growth rate, i.e.,

Ot :=

∫ t

0
g∗s ds =

1

2

∫ t

0
|λs|2 ds

for t ∈ R+. Observe that, under the validity of statements (1), (2), and (3) of Proposition
4.1, we have P[O∞ = ∞] = 1 as follows from Proposition 4.1(3). As explained in section 2.2,
for given x < �, our aim is to find the wealth process X ∈ X (x) that minimizes E [T (X; �)].

We briefly explain why the problem of minimizing expected market time to reach a wealth
level using such a random clock and not calendar time is natural and worth studying. Consider
for simplicity the one-asset case d = 1. Then, at any time t ∈ R+, |λt|2 = |at/σt|2 is
the “squared signal to noise ratio” of the asset-price process or more precisely the squared
risk premium. When this quantity is small, the opportunities for making profits over those
obtainable from the savings account are rather small; on the other hand, when |λt|2 is large, at
time t ∈ R+ an investor has a lot of opportunities to use the favorable fact that the premium
for taking risk is high. Stalling to reach the wealth level � when opportunities are favorable
should be punished more severely, especially for fund managers, and this is exactly what the
market time O does. From an economic point of view, market time simply conforms with the
underlying growth of the market.

4.4. The main result. We are ready to present the solution to the optimization problem
of section 2.2, both giving an expression for the value function v and again showing that the
growth-optimal portfolio is optimal.

Theorem 4.2. Under the validity of statements (1), (2), and (3) of Proposition 4.1 for an
Itô market, and with X̂(x) := xX̂ ∈ X (x), for x < � we have

v(x; �) = log

(
�

x

)
= E

[
T (X̂(x); �)

]
.

Once again, this last result is a special case of Theorem 5.3 that will be presented in the
next section.
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5. Market time in general semimartingale markets. The purpose of this section is to
give a wide-encompassing definition of market time for semimartingale financial markets and
to present a general result on the expected market time to reach a given wealth level, of which
both Theorems 3.3 and 4.2 are special cases. We are now in the very general market model
described in section 2.

5.1. Market time. Guided by the discussions and results in both the exponential Lévy
market case of section 3 and the Itô market case of section 4, it makes sense to define market
time as the underlying optimal growth of the market, i.e., the drift part of the logarithm of
the growth-optimal portfolio. We shall have to make minimal assumptions for market time to
be well defined, namely, that the drift part of the logarithm of the growth-optimal portfolio
does exist. The following result, which is a refined version of Proposition 2.2, ensures that the
discussions that follow make sense.

Proposition 5.1. Under the validity of Assumption 2.1(1), further assume that the logarithm
of the numéraire portfolio X̂ is a special semimartingale and write log(X̂) = O + M for its
canonical decomposition, where O is a predictable nondecreasing process and M is a local
martingale. Then, Assumption 2.1(2) is equivalent to

(2′′) limt→+∞Ot = +∞, P-a.s.

The following slightly strengthened version of Assumptions 2.1 will enable us to state our
general result in Theorem 5.3.

Assumption 5.2. With Assumptions 2.1 in force, we further postulate that the logarithm
of the numéraire portfolio X̂ is a special semimartingale.

Under Assumption 5.2, we can write log(X̂) = O+M , whereO is a predictable nondecreas-
ing process and M is a local martingale. We then define market time to be the nondecreasing
predictable process O. According to Proposition 5.1, we have, P-a.s., O0 = 0 and O∞ = ∞.
This makes O a bona fide clock.

5.2. A general result. In what follows, α will denote a nonnegative, possibly infinite-
valued random variable such that

(5.1)
ΔX̂

X̂−
≤ α.

Of course, α can be chosen in a minimal way as α := supt∈R+
(ΔX̂t/X̂t−).

Theorem 5.3. Let Assumption 5.2 be in force. With the above definition of the market time
O and a random variable α satisfying (5.1), we have

(5.2) log

(
�

x

)
≤ v(x; �) ≤ E

[
T (X̂(x); �)

]
≤ log

(
�

x

)
+ E [log(1 + α)] .

It is straightforward that Theorem 5.3 covers both Theorem 3.3 and Theorem 4.2 as special
cases. For Theorem 3.3, α is the constant defined in its statement, while for Theorem 4.2 we
have α = 0.

Dividing the inequalities (5.2) with log(�) throughout, we get the following corollary of
Theorem 5.3.
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Corollary 5.4.In the setting of Theorem 5.3, suppose that E[log(1 + α)] < ∞. Then,

lim
�→∞

v(x; �)

log(�)
= 1 = lim

�→∞
E
[
T (X̂(x); �)

]
log(�)

.

This last result shows that, under some integrability condition on the possible size of the
jumps of the logarithm of the growth-optimal portfolio, the problem of possible overshoots
vanishes asymptotically when considering increasing wealth levels �.

6. Proofs. Before we embark on proving all the results of the previous sections, we define,
in accordance to (2.2), for any càdlàg process X and � ∈ R+,

τ(X; �) := inf {t ∈ R+ |Xt ≥ �}

to be the first upcrossing calendar time of X at level �. It is clear that τ(X; �) is a stopping
time and that Oτ(X;�) = T (X; �) for all càdlàg processes X and � ∈ R+.

6.1. Proof of Proposition 2.2. Recall that the clock O satisfies P[O∞ = ∞] = 1. There-
fore, for any X ∈ X and � ∈ R+, P[τ(X; �) < ∞] = 1 is equivalent to P[T (X; �) < ∞] = 1.

Condition (2′) of Proposition 2.2 obviously implies Assumption 2.1(2). Conversely, assume
that Assumptions 2.1 are in force. For any n ∈ N, pick X ∈ X (1) such that P[τn < ∞] = 1,
where τn := τ(X;n). Since X/X̂ is a nonnegative supermartingale, the optional sampling
theorem (see, for example, section 1.3.C of [13]) gives

1 ≥ E

[
Xτn

X̂τn

]
≥ nE

[
1

X̂τn

]
.

It follows that (1/X̂τn )n∈N converges to zero in probability. As 1/X̂ is a nonnegative super-
martingale, this implies that limt→∞(1/X̂t) = 0, P-a.s., which establishes the result.

6.2. Proof of Proposition 5.1. Under the assumption that the numéraire portfolio X̂ is
a special semimartingale with canonical decomposition X̂ = O +M , the event equality{

lim
t→∞ X̂t = +∞

}
=

{
lim
t→∞Ot = +∞

}
,

which is to be understood in a modulo P sense, is a consequence of Proposition 3.21 in [12].
Then, the result of Proposition 5.1 readily follows in view of Proposition 2.2.

6.3. Proof of Proposition 3.2. The fact that I ∩ Č = ∅ is equivalent to the existence
of ρ ∈ C such that g(ρ) = g∗ < ∞, as well as that X̂ as defined in (3.3) is the numéraire
portfolio, is a consequence of Lemma 4.1 in [14], as soon as one also uses the bounded-jump
Assumption 3.1.

Now, it is straightforward to check that g∗ = 0 is equivalent to X̂ being a positive local
martingale, in which case we have that, P-a.s., limt→∞ X̂t < ∞. On the other hand, if g∗ > 0,
then the Lévy process log(X̂) is integrable and has strictly positive drift g∗; therefore, P-a.s.,
limt→∞ X̂t = ∞. In view of Proposition 2.2, the result follows.
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6.4. Proof of Proposition 4.1. The fact that (1) and (2) of Proposition 4.1 are equivalent
to the existence of the numéraire portfolio X̂, as well as that X̂ is given by (4.2), is a special
case of Theorem 3.15 in [12]—see also [8]. Under the validity of (1) and (2) of Proposition
4.1, it is straightforward to see that (3) of Proposition 4.1 is equivalent to limt→∞ X̂t = ∞.
Using Proposition 2.2, the result follows.

6.5. Proof of Theorem 5.3. Let L̂(x) := log(X̂(x)). Observe that, since ΔX̂ ≤ αX̂−,

(6.1) ΔL̂(x) = log

(
1 +

ΔX̂

X̂−

)
≤ log(1 + α).

Write L̂(x) = log(x) + O + M , where M is a local martingale. Let (τn)n∈N be a localizing
sequence for M . The estimate (6.1) gives, for all n ∈ N,

log(x) + E

[
Oτn∧τ( ̂X(x);�)

]
= E

[
L̂τn∧τ( ̂X(x);�)(x)

]
≤ log(�) + E[log(1 + α)].

Now letting n tend to infinity and using the monotone convergence theorem, we get

(6.2) E
[
T (X̂(x); �)

]
≤ log(�/x) + E[log(1 + α)].

Now take any X ∈ X (x). If P[T (X, �) = ∞] > 0, we have E [T (X, �)] = ∞ and log(�/x) ≤
E [T (X, �)] is trivial. It remains to consider the case P[T (X, �) < ∞] = 1, or equivalently
P[τ (X, �) < ∞] = 1.

For all ε ∈ (0, 1), define Xε := (1−ε)X+εx. Then, Xε ∈ X (x) and τ (Xε, εx+ (1− ε)�) =
τ (X, �). The drift part of the process Lε := log (Xε) is bounded above by O. Therefore,

Lε ≤ log(x) +O +M ε

for some local martingaleM ε. Let (τ ε,n)n∈N be a localizing sequence forM ε. Since the stopped
process M ε

τ(X,�)∧τε,n∧· is a martingale, we have that

E

[
Lε
τ(X,�)∧τε,n

]
≤ log(x) + E

[
Oτ(X,�)∧τε,n

]
= log(x) + E [T (X, �) ∧ Oτε,n ] .

Now, Lε is uniformly bounded from below by log(εx). Furthermore, ↑ limn→∞Oτn = ∞
holds in a P-a.s. sense. Therefore, applications of Fatou’s lemma and the monotone convergence
theorem will give

log(�) + log(1− ε) ≤ E

[
Lε
τ(X,�)

]
≤ lim inf

n→∞ E

[
Lε
τ(X,�)∧τn

]
≤ log(x) + lim inf

n→∞ E [T (X, �) ∧Oτn ]

= log(x) + E [T (X, �)] .

Now sending ε to zero, we also get log(�/x) ≤ E [T (X, �)] for all X ∈ X (x) that satisfy
P[T (X, �) < ∞] = 1. This, coupled with (6.2), finishes the proof.
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6.6. Proof of Proposition 3.6. The existence of ρ ∈ C such that g(ρ) = g∗ < ∞ follows
from Lemma 4.1 in [14] in view of I ∩ Č �= ∅. Note that the finiteness of g∗ is straightforward
from the defining equation (3.2) for g.

Call L̂ := log(X̂). For each n ∈ N, let

L̂n := L̂−
∑
t≤·

(ΔL̂t)I{Δ̂Lt>n}.

Then, L̂n is a Lévy process and we can write

L̂n
t = gnt+Mn

t

for all t ∈ R+, where Mn is a Lévy martingale and ↑ limn→∞ gn = g∗ > 0. Then,

E[T (X̂(x); �)] = g∗E[τ(X̂(x); �)] ≤ g∗E
[
τ
(
L̂n(x); log(�)

)]
≤ g∗

gn

(
log

(
�

x

)
+ log(1 + n)

)
holds for all n ∈ N such that gn > 0, where the last inequality follows along the same lines of
the proof of (6.2). It then follows that

lim sup
�→∞

E[T (X̂(x); �)]

log(�)
≤ g∗

gn

holds for all n ∈ N such that gn > 0. Since ↑ limn→∞ gn = g∗ > 0, sending n to infinity in the
last inequality we get

lim sup
�→∞

E[T (X̂(x); �)]

log(�)
≤ 1.

Of course, in view of the bounds (5.2) of Theorem 5.3, we always have

1 = lim
�→∞

v(x; �)

log(�)
≤ lim inf

�→∞
E[T (X̂(x); �)]

log(�)
,

which completes the proof.
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[12] I. Karatzas and C. Kardaras, The numéraire portfolio in semimartingale financial models, Finance

Stoch., 11 (2007), pp. 447–493.
[13] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in

Math. 113, Springer-Verlag, New York, 1991.
[14] C. Kardaras, No-free-lunch equivalences for exponential Lévy models under convex constraints on in-
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