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MULTIPLICATIVE APPROXIMATION OF WEALTH PROCESSES
INVOLVING NO-SHORT-SALES STRATEGIES VIA SIMPLE TRADING

CONSTANTINOS KARDARAS
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ECKHARD PLATEN

University of Technology Sydney

A financial market model with general semimartingale asset–price processes and
where agents can only trade using no-short-sales strategies is considered. We show that
wealth processes using continuous trading can be approximated very closely by wealth
processes using simple combinations of buy-and-hold trading. This approximation is
based on controlling the proportions of wealth invested in the assets. As an application,
the utility maximization problem is considered and it is shown that optimal expected
utilities and wealth processes resulting from continuous trading can be approximated
arbitrarily well by the use of simple combinations of buy-and-hold strategies.

KEY WORDS: semimartingales, buy-and-hold strategies, stochastic integral, arbitrages of the first
kind, utility maximization.

1. INTRODUCTION

In frictionless financial market modeling, semimartingale discounted asset–price pro-
cesses are ubiquitous. On one hand, this structure is enforced by natural market viability
conditions—see for example, Delbaen and Schachermayer (1994) and Kardaras and
Platen (2009). On the other hand, the powerful tool of stochastic integration with re-
spect to general predictable integrands already permits answers to fundamental economic
questions, as is for example the classical utility maximization problem—see Kramkov and
Schachermayer (1999, 2003) for a very general framework.

In financial terms, stochastic integration using general predictable integrands translates
into allowing for continuous trading in the market. Its theoretical importance notwith-
standing, since it allows for existence and elegant representations of optimal wealth
processes, continuous trading is but an ideal approximation. In reality, agents in the
market can only use simple finite combinations of buy-and-hold strategies. It is therefore
natural to question the practical usefulness of such modeling approach. Furthermore,
in the context of numerical approximations, where time-discretization is inevitable, com-
puter modeling of hedges can simulate only simple buy-and-hold trading.

The questions we are dealing with in this paper are the following: Can wealth processes
that are obtained by allowing continuous trading be closely approximated via simple buy-
and-hold trading? If the answer to the previous question is affirmative, how can this eventually
be achieved?
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Our contribution is an approximation result for wealth processes involving no-short-
sales strategies allowing only simple wealth processes. To achieve this, we establish an
interesting intermediate result on multiplicative-type approximation of positive stochastic
integrals. This is carried out by following a time-discretized continuous trading strategy
in proportional, rather than absolute, terms. The actual number of units held in the
portfolio still remains constant between trading dates; however, the investment strategy is
parameterized by fractions. Not only is the former choice of discrete-time approximation
more reasonable from a trading viewpoint under a range of objectives, it also ensures that
the investor’s self-financing wealth process stays nonnegative, therefore admissible, even
in the presence of jumps in the asset–price process. Note that, in the case where jumps
are involved in the market model, a use of the classical additive approximation using the
dominated convergence theorem for stochastic integrals might fail to guarantee that the
approximating wealth processes are nonnegative.

We also provide an application of our approximation result to the expected utility
maximization problem. Specifically, under weak economic assumptions, it is shown that
the indirect utilities and (near-)optimal wealth processes under the possibility of no-short-
sales continuous trading can be approximated arbitrarily well using simple combinations
of buy-and-hold strategies.

There is a wealth of literature on approximations of stochastic integrals. In the context
of financial applications, we mention for example Levental and Skorohod (1997) dealing
with continuous-path assets, as well as Stricker (2003) and Černý and Kallsen (2007),
where results useful in approximating the optimal wealth process for the exponential
utility maximization problem and mean-variance hedging strategies are proved. The
analysis in the present paper is different, as we are interested in cases where wealth has
to remain positive. To the best of the authors’ knowledge, no previous work in this
respect for asset-processes that include jumps has appeared before. In this paper, we are
considering the problem of approximation of (optimal) wealth processes arising from
no-short-sale strategies, for which the multiplicative approximation is very natural. It is
reasonable to believe that, under appropriate assumptions on the asset–price processes,
approximation results can be obtained for non-constrained cases as well. For example, it is
conjectured that approximation of nonnegative wealth processes can be carried out under
the assumption that asset–price processes are locally bounded. Such questions lie beyond
the scope of this paper, which is to use the idea of approximation in a multiplicative way;
however, they are quite interesting, and the potential goal of future research.

The structure of the paper is as follows. Section 2 introduces the market model, where
no-short-sales trading is allowed. Section 3 contains the statements and proofs of the
basic approximation results. Finally, Section 4 contains the application to the utility
maximization problem.

2. THE FINANCIAL MARKET AND NO-SHORT-SALES TRADING

2.1. The Financial Market Model

The evolution of d risky assets in the market is modeled via nonnegative and càdlàg
(right-continuous with left-hand limits) stochastic processes S1, . . . , Sd , where we write
S = (S1

t , . . . , Sd
t )t∈R+ . We assume in the sequel that all wealth processes, including the

above assets, are denominated in units of another traded “baseline” asset; this could be,
for example, the money market account. All processes are defined on a filtered probability
space (�, (Ft)t∈R+ , P). Here, P is a probability on (�,F∞), where F∞ := ∨

t∈R+ Ft, and
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(Ft)t∈R+ is a filtration satisfying the usual assumptions of right-continuity and saturation
by all P-null sets of F . It will be assumed throughout that F0 is trivial modulo P.

2.2. Trading Via Simple No-Short-Sales Strategies

In the market with the discounted asset–price processes described above, economic
agents can trade in order to reallocate their wealth. Realistic trading consists of finite
combinations of buy-and-hold strategies. We model this by considering processes of
the form θ := ∑n

j=1 ϑτ j−1I]]τ j−1,τ j ]], where each τ j , j = 0, . . . , n, is a finite stopping time
with 0 = τ0 < τ1 < . . . < τn , and where each ϑ i

τ j−1
is Fτ j−1 -measurable for i = 1, . . . , d

and j = 1, . . . , n. Starting from initial capital x ∈ R+ and investing according to the
aforementioned simple strategy θ , the agent’s discounted, with respect to the baseline
asset, wealth process is

Xx,θ = x +
∫ ·

0
θ�

t dSt := x +
n∑

j=1

d∑
i=1

ϑ i
τ j−1

(Si
τ j ∧· − Si

τ j−1∧·),(2.1)

where we are using “�” throughout to denote vector transposition. Note that the pre-
dictable process θ is modeling the units of assets held in the portfolio, and that it is
piecewise constant over time.

The wealth process Xx,θ of (2.1) could, in principle, become negative. In real markets,
economic agents sometimes face institution-based trading constraints, the most impor-
tant and typical example of which is the prevention of short sales. Consider a wealth
process Xx,θ as in (2.1). In order to ensure that there are no short sales of the risky assets
and the baseline asset, we ask that

ϑ i
τ j−1

≥ 0 (i = 1, . . . , d) and
d∑

i=1

ϑ i
τ j−1

S i
τ j−1

≤ Xx,θ
τ j−1

, for all j = 1, . . . , n.

Note that the last requirement translates into no-short-sales constraint on the baseline
asset. Even though the previous restrictions are only asked to hold at the rebalancing
times τ0, . . . , τn , the nonnegativity of the asset prices Si , i = 1, . . . , d, implies that the
following stronger conditions hold:

θ i
t ≥ 0 for all i = 1, . . . , d, as well as

d∑
i=1

θ i
t S i

t− ≤ Xx,θ
t− , for all t ∈ R+,(2.2)

where the subscript “t−” is used to denote the left-hand limit of processes at time
t ∈ R+. For fixed initial wealth x ∈ R+, we define the set Xs(x) of all no-short-sales wealth
processes using simple trading, which are the wealth processes Xx,θ given by (2.1) such
that (2.2) holds. (Subscripts “s”, like the one used in the definition of Xs(x) for x ∈ R+,
will be used throughout the paper serving as a mnemonic for “simple, no-short-sales.”)

2.3. Arbitrages of the First Kind

The market viability concept we shall now introduce is a weakened version of the No
Free Lunch with Vanishing Risk condition of Delbaen and Schachermayer (1994).
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DEFINITION 2.1. In a market where only simple, no-short-sales trading is allowed, we
shall say that there are opportunities for arbitrage of the first kind if there exist T ∈ R+
and an FT-measurable random variable ξ such that: (a) P[ξ ≥ 0] = 1 and P[ξ > 0] > 0;
and (b) for all x > 0 there exists X ∈ Xs(x), which may depend on x, with P[XT ≥ ξ ] = 1.
If there are no opportunities for arbitrage of the first kind, we shall say that condition
NA1s holds.

For economic motivation and more information on condition NA1s, we refer the inter-
ested reader to Kardaras and Platen (2009). The next result follows in a straightforward
way from theorem 2.3 in Kardaras and Platen (2009).

THEOREM 2.2. Assume that condition NA1s of Definition 2.1 holds. Then, S is a semi-
martingale. Further, for all X ∈ ⋃x∈R+ Xs(x), defining ζ X := inf{t ∈ R+ | Xt− = 0 or Xt =
0} to be the (first) bankruptcy time of X, we have Xt = 0 for all t ∈ [ζ X, ∞[ on the event
{ζ X < ∞}.

2.4. No-Short-Sales Continuous Trading

If condition NA1s is in force, Theorem 2.2 implies the semimartingale property of S.
We can therefore use general stochastic integration with respect to S, allowing in effect
agents to change their position in the assets in a continuous fashion. This form of trading
is only of theoretical interest, since it cannot be implemented in reality even if one ignores
market frictions, as we do here.

Starting from initial capital x ∈ R+ and investing according to some predictable and
S-integrable strategy θ = (θ1

t , . . . , θd
t )t∈R+ , an agent’s discounted wealth process is

Xx,θ := x +
∫ ·

0
θ�

t dSt,(2.3)

where in the above definition
∫ ·

0 θ�
t dSt denotes a vector Itô stochastic integral—see

Shiryaev and Chernyǐ (2002).
For an initial wealth x ∈ R+,X (x) will denote the set of all no-short-sales wealth

processes allowing continuous trading, that is, wealth processes Xx,θ given by (2.3) such
that (2.2) holds. As this form of continuous-time trading obviously includes as a special
case the simple no-short-sales trading described in Section 2.2, we have Xs(x) ⊆ X (x) for
all x ∈ R+.

Under condition NA1s, the conclusion of Theorem 2.2 stating that Xt = 0 for all t ∈
[ζ X, ∞[ on the event {ζ X < ∞}, where ζ X := inf{t ∈ R+ | Xt− = 0 or Xt = 0}, extends
to all X ∈ ⋃x∈R+ X (x). Again, this comes as a straightforward consequence of theorem
2.3 in Kardaras and Platen (2009). We shall feel free to imply this strengthened version
of Theorem 2.2 whenever we are referring to it.

3. APPROXIMATION OF NO-SHORT-SALES WEALTH PROCESSES VIA
SIMPLE TRADING

In this section, we discuss an approximation result for no-short-sales wealth pro-
cesses obtained from continuous trading via simple strategies. We consider conver-
gence of processes in probability uniformly on compact time-sets. The notation ucP-
limn→∞ ξ n = ξ shall mean that P-limn→∞ supt∈[0,T] |ξ n

t − ξt| = 0, for all T ∈ R+. Note
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that ucP-convergence comes from a metric topology. For more information on this
rather strong type of convergence, we refer to Protter (2005).

3.1. The Approximation Result

We now state the main result of this section.

THEOREM 3.1. Assume that condition NA1s is valid in the market. For all x ∈ R+ and
X ∈ X (x), there exists an Xs(x)-valued sequence (Xk)k∈N such that ucP-limk→∞ Xk = X.

The proof of Theorem 3.1, which will be given in Section 3.4, will involve a “multi-
plicative” approximation of the stochastic integral, discussed in Section 3.2 and Section
3.3, which is sensible from a trading viewpoint when dealing with nonnegative wealth
processes.

REMARK 3.2. In the statement of Theorem 3.1, suppose further that there exists some
ε > 0 such that X ≥ ε. Then, it is straightforward to see that the approximating sequence
(Xk)k∈N can be chosen in a way such that Xk ≥ ε, for all k ∈ N.

3.2. Proportional Trading

Sometimes it is more useful to characterize investment in relative, rather than absolute
terms. This means looking at the fraction of current wealth invested in some asset rather
than the number of units of the asset held in the portfolio, as we did in (2.1) and (2.3).

Under condition NA1s, the validity of Theorem 2.2 allows one to consider the to-
tal returns process R = (R1

t , . . . , Rd
t )t∈R+ , where R satisfies R0 = 0 and the system of

stochastic differential equations dSi
t = Si

t−dRi
t for i = 1, . . . , d and t ∈ R+. In other

words, Si = Si
0E(Ri ), where E is the stochastic exponential operator, see Protter (2005). It

should be noted that, for i = 1, . . . , d, the process Ri only lives in the stochastic interval
[[0, ζ Si

[[ until the bankruptcy time ζ Si
of Theorem 2.2, and that it might explode at time

ζ Si
. However, this does not affect the validity of the conclusions below, due to the fact

that, by Theorem 2.2, Si
t = 0 holds for all t ∈ [ζ Si

, ∞[ on
{
ζ Si

< ∞}
, i = 1, . . . , d.

Let 	
d

denote the closed d-dimensional simplex, i.e.,

	
d

:=
{

(z1, . . . , zd ) ∈ Rd | zi ≥ 0 for all i = 1, . . . , d, and
d∑

i=1

zi ≤ 1

}
.

For any predictable, 	
d
-valued process π = (π1

t , . . . , πd
t )t∈R+ of investment fractions,

consider the process X(x,π ) defined via

X(x,π ) := xE
(∫ ·

0
π�

t dRt

)
.(3.1)

Observe that we are using parentheses in the “(x, π )” superscript of X in (3.1) to dis-
tinguish from a wealth process of the form Xx,θ = x + ∫ ·

0 θ�
t dSt, generated by θ in an

additive way.
Under condition NA1s, the set of all processes X(x,π ) when ranging π over all the

predictable 	
d
-valued processes is exactly equal to X (x). This is straightforward as soon
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as one notices that

{ζ X(x,π )
< ∞} =

d⋃
i=1

⎧⎨
⎩ζ Si

< ∞,

d∑
j=1

π
j
ζ Sj I{ζ Sj =ζ S i } = 1

⎫⎬
⎭ .

3.3. Stochastic Integral Approximation in a Multiplicative Way

Start with some adapted and càglàd (left continuous with right limits), therefore
predictable, 	

d
-valued process π of investment fractions. The wealth process generated

by π in a multiplicative way starting from x ∈ R+ is X(x,π ), as defined in (3.1). Consider
now some economic agent who may only change the asset positions at times contained in
T = {τ0, τ1, . . . , τn}, where 0 =: τ0 < τ1 < · · · < τn . Wanting to approximately, but rather
closely, replicate X(x,π ), the agent will decide at each trading instant τ j−1 to rearrange
the portfolio wealth in such a way as to follow with a piecewise constant number of
units of the asset held until the next trading time τ j the given investment portfolio.
More precisely, the agent will rearrange wealth at time τ j−1, j = 1, . . . , n, in a way such
that a proportion π i

τ j−1+ := limt↓τ j−1 π i
t is held in the i th asset, i = 1, . . . , d; the resulting

number of units is then held constant until time τj , when a new reallocation will be made
in the way previously described. Starting from initial capital x ∈ R+ and following the
above-described strategy, the agent’s wealth remains nonnegative and is given by

X(x,π ;T) := x
n∏

j=1

{
1 +

d∑
i=1

π i
τ j−1+

(Si
τ j ∧· − Si

τ j−1∧·
Si

τ j−1∧·

)}
.(3.2)

Note that, for all i = 1, . . . , d, j = 1, . . . , n and t ∈ R+, the ratio (Si
τ j ∧t − Si

τ j−1∧t)/Si
τ j−1∧t

is assumed to be zero on the event {Si
τ j−1∧t = 0}. Using the fact that the filtration (Ft)t∈R+

is right-continuous, it is straightforward to see that X(x,π ;T) ∈ Xs(x).
Consider a sequence (Tk)k∈N with Tk ≡ {τ k

0 , . . . , τ k
nk} for each k ∈ N, where each

τ k
j , for k ∈ N and j = 0, . . . , nk, is a finite stopping time and 0 = τ k

0 < · · · < τ k
nk .

We say that (Tk)k∈N converges to the identity if, P-a.s., limk→∞ τ k
nk = ∞ as well as

limk→∞ sup j=1,...,nk |τ k
j − τ k

j−1| = 0.

THEOREM 3.3. Assume the validity of condition NA1s. Consider any adapted and càglàd
	

d
-valued process π . If (Tk)k∈N converges to the identity, then ucP-limk→∞ X(x,π ;Tk) =

X(x,π ).

Proof . Under condition NA1s, and in view of Theorem 2.2, we have ucP-
limε↓0 X(x,(1−ε)π ) = X(x,π ), as well as that, for all k ∈ N, ucP-limε↓0 X(x,(1−ε)π ;Tk) =
X(x,π ;Tk). It follows that we might assume that π is actually (1 − ε)	

d
-valued, where

0 < ε < 1, which means that X(x,π ), as well as X(x,π ;Tk) for all k ∈ N, remain strictly
positive. Actually, since the jumps in the returns of the wealth processes involved are
bounded below by −(1 − ε), the wealth processes themselves are bounded away from
zero in compact time-intervals, with the strictly positive bound possibly depending
on the path. It then follows that ucP-limk→∞ X(x,π ;Tk) = X(x,π ) is equivalent to ucP-
limk→∞ log X(x,π ;Tk) = log X(x,π ), which is what we shall prove below.

To ease notation in the course of the proof we shall assume that d = 1. This is done
for typographical convenience only; one can read the whole proof for the case of d assets,
if multiplication and division of d-dimensional vectors are understood in a coordinate-
wise sense. Also, in order to avoid cumbersome notation, from here onwards the dot
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“·” between two processes will denote stochastic integration and [Y, Y] will denote the
quadratic variation process of a semimartingale Y.

Proceeding with the proof, write

log

(
X(x,π ;Tk)

X(x,π )

)
=

nk∑
j=1

log
(

1 + πτ k
j−1+

S
τk

j ∧· − S
τk

j−1∧·
S

τk
j−1∧·

)

−
(

π · R− 1
2

[π · Rc, π · Rc]−
∑
t≤·

(πt	Rt − log (1 +πt	Rt))

)
,

(3.3)

where Rc is the uniquely defined continuous local martingale part of the semimartingale
R. Define the adapted càglàd process η := (π/S−)I{S−>0}. For k ∈ N and j = 1, . . . , nk,
define 	k

j S := Sτ k
j ∧· − Sτ k

j−1∧·. Further, Sc is the continuous local martingale part of the
semimartingale S. Since S − S0 = (S−I{S−>0}) · R, we can write (3.3) as

log

(
X(x,π ;Tk)

X(x,π )

)
=

nk∑
j=1

log
(

1 + ητ k
j−1+	k

j S
)

−
(

η · S − 1
2

[η · Sc, η · Sc] −
∑
t≤·

(ηt	St − log (1 + ηt	St))

)
.

(3.4)

As (Tk)k∈N converges to the identity and η is càglàd, the dominated conver-
gence theorem for stochastic integrals (Protter 2005, chapter IV, theorem 32) gives
ucP- limk→∞

∑nk

j=1 ητ k
j−1+	k

j S = η · S. Furthermore, using the fact that the function
R 
 x �→ x − log(1 + x) behaves like R 
 x �→ x2/2 near x = 0, one obtains

ucP- lim
k→∞

nk∑
j=1

(
ητ k

j−1+	k
j S − log

(
1 + ητ k

j−1+	k
j S
))

=
∑
t≤·

(ηt	St − log (1 + ηt	St)) + 1
2

[η · Sc, η · Sc]

via standard stochastic-analysis manipulation. The last facts, coupled with (3.4), readily
imply that ucP-limk→∞ log X(x,π ;Tk) = log X(x,π ), which completes the proof. �

3.4. Proof of Theorem 3.1

Consider X ≡ X(x,π ) ∈ X (x) for some 	
d
-valued predictable process π . In order to

prove Theorem 3.1, we can safely assume that X ≥ ε for some ε > 0, since if X ∈ X (x),
then ε + (1 − ε/x)X ∈ X (x) as well. This assumption is in force throughout the proof.

Recall that an elementary predictable process is of the form
∑n

j=1 h j−1I]]tj−1,tj ]], where
h j−1 ∈ Ftj−1 for j = 1, . . . , d and 0 = t0 < t1 < · · · < tn , where tj ∈ R+ for j = 0, . . . , n.

We shall show below that there exists a sequence of elementary 	
d
-valued predictable

processes (πk)k∈N such that ucP-limk→∞ X(x,πk) = X(x,π ). Given the existence of such
sequence, one can invoke Theorem 3.3 and obtain a sequence (Xk)k∈N of Xs(x)-valued
processes with ucP-limk→∞ Xk = X.

To obtain the existence of a sequence of elementary 	
d
-valued predictable processes

as described in the above paragraph, observe first that a use of the monotone class the-
orem provides the existence of a sequence (πk)k∈N of 	

d
-valued, predictable, elementary
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processes such that ucP-limk→∞ πk · R = π · R, ucP-limk→∞[(πk − π ) · R, (πk − π ) ·
R] = 0, and (πk)�	R > −1 for all k ∈ N. Indeed, a simple approximation argument
shows that only the special case when π = vI� , with v ∈ 	

d
and � is predictable and

vanishes outside [[0, T]] for some T ∈ R+, has to be treated. Then, one uses the fact that
the predictable σ -field on � × R+ is generated by the algebra of elementary predictable
sets of the form

⋃n
j=1 Hj−1 × (tj−1, tj ], where n ∈ N, 0 = t0 < · · · < tn and Hj−1 ∈ Ftj−1

for j = 1, . . . , n, and the claim readily follows.
Now, with Yk := πk · R and Y = π · R, the facts E(Yk) > 0 for all k ∈ N as well as

E(Y) > 0 allow one to write

log
(E(Yk)

E(Y)

)
= Yk − Y− 1

2
([Yk, Yk]c − [Y, Y]c) −

∑
t≤·

(
	Yk

t − 	Yt− log
(

1 + 	Yk
t

1 + 	Yt

))
.

Using ucP-limk→∞[Yk − Y, Yk − Y] = 0 and ucP-limk→∞ Yk = Y, which also im-
ply that ucP-limk→∞[Yk, Yk]c = [Y, Y]c and ucP-limn→∞ 	Yn = 	Y, we get ucP-
limn→∞ E(Yn) = E(Y), which is exactly what we wished to establish. �

4. APPLICATION TO THE EXPECTED UTILITY
MAXIMIZATION PROBLEM

In this section we show that, for expected-utility-maximizing economic agents, allowing
only simple trading with appropriately high trading frequency, results in indirect utilities
and wealth processes that can be brought arbitrarily close to their theoretical continuous-
trading optimal counterparts.

4.1. The Utility Maximization Problem

A utility function is an increasing and concave function U : (0, ∞) �→ R. We also set
U(0) := ↓ limx↓0 U(x) to extend the definition of U to cover zero wealth. Note that no
regularity conditions are hereby imposed on U.

In what follows, we fix a finite stopping time T that should be regarded as the financial
planning horizon of an economic agent in the market. We then define the agent’s indirect
utility that can be achieved when continuous-time trading is allowed via

u(x) := sup
X∈X (x)

E[U(XT)].(4.1)

Observe that u is a concave function of x ∈ R+ and that u(x) < ∞ for some x > 0 if
and only if u(x) < ∞ for all x ∈ R+. In particular, if u(x) < ∞ for some x > 0, u is a
proper continuous concave function. If U is strictly concave (in which case it is a fortiori
strictly increasing as well) and a solution to the utility maximization problem defined
above exists, then it is necessarily unique.

Similarly, define the agent’s indirect utility under simple, no-short-sales trading via

us(x) := sup
X∈Xs(x)

E[U(XT)].(4.2)

It is obvious that us ≤ u. All the above remarks concerning u carry over to us mutatis-
mutandis. Observe however that in almost no case is the supremum in (4.2) achieved.
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In other words, it is extremely rare that an optimal wealth process in the class of simple
trading strategies exists for the given utility maximization problem.

4.2. Near-Optimality Using Simple Strategies

We now show that the value functions us and u are actually equal and that “near
optimal” wealth processes under simple trading approximate arbitrarily close the solution
of the continuous trading case, if the latter exists.

THEOREM 4.1. In what follows, condition NA1s of Definition 2.1 is assumed. Using the
notation introduced above, the following hold:

(1) us(x) = u(x) for all x ∈ R+.
(2) Suppose that U is strictly concave and that u < ∞. Then, for any x ∈ R+,

any Xs(x)-valued sequence (Xk)k∈N and any X (x)-valued sequence (X̂k)k∈N with
limk→∞ E[U(Xk

T)] = u(x) = limk→∞ E[U(X̂k
T)], we have P-limk→∞ |Xk

T − X̂k
T| = 0.

(3) Suppose that U is strictly concave and continuously differentiable, and that
for some x ∈ R+ there exists X̂ ∈ X (x) with X̂ > 0, E[U(X̂T)] = u(x) < ∞,
and E[U ′(X̂T)XT] ≤ E[U ′(X̂T)X̂T] < ∞ holding for all X ∈ X (x). Then, for
any Xs(x)-valued sequence (Xk)k∈N with limk→∞ E[U(Xk

T)] = u(x), we have P-
limk→∞ supt∈[0,T] |Xk

t − X̂t| = 0.

The proof of Theorem 4.1 is given in Section 4.4; in Section 4.3, an interesting interme-
diate result is stated and proved. However, we first list a few remarks on the assumptions
and statements of Theorem 4.1.

REMARK 4.2. Under the mild assumption that for all i = 1, . . . , d, we have Si
ζ i − > 0

on {ζ Si
< ∞} (the asset lifetimes ζ Si

were introduced in the statement of Theorem 2.2),
condition NA1s needed in the statement of Theorem 4.1 is actually equivalent to the
semimartingale property of S. For more information, check theorem 3.3 in Kardaras
and Platen (2009).

REMARK 4.3. The utility maximization problem for continuous trading has attracted
a lot of attention and has been successfully solved using convex duality methods. In
particular, in Kramkov and Schachermayer (1999) and Kramkov and Schachermayer
(2003) it is shown that an optimal solution (wealth process) to problem (4.1) exists for
all x ∈ R+ and fixed financial planning horizon T under the following conditions: U is
strictly concave and continuously differentiable in (0, ∞), satisfies the Inada conditions
limx↓0 U ′(x) = +∞, limx↑+∞ U ′(x) = 0, as well as a finite dual value function condition.
These conditions can be used to ensure existence of the optimal wealth process in state-
ment (3) of Theorem 4.1, that additionally satisfies the prescribed properties mentioned
there.

REMARK 4.4. In statements (2) and (3), strict concavity of U cannot be dispensed with
in order to obtain the result: even in cases where the supremum in (4.1) is attained, the
absence of strict concavity implies that the optimum is not necessarily unique.

REMARK 4.5. Even if we do not directly assume condition NA1s in statement (3), it
is indirectly in force because of the existence of X̂ ∈ X (x) with X̂ > 0 and E[U(X̂)] =
u(x) < ∞. Indeed, suppose that NA1s fails and pick T ∈ R+ and (Xn)n∈N such that
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Xn ∈ Xs(1/n) and P[Xn
T ≥ ξ ] = 1 for all n ∈ N, where P[ξ ≥ 0] = 1 and P[ξ > 0] > 0. In

that case, the convexity of X (x + 1/n) gives that (X̂ + Xn) ∈ X (x + 1/n) for all n ∈ N.
Therefore,

u(x + 1/n) ≥ E[U(X̂ + Xn)] ≥ E[U(X̂ + ξ )] > u(x)

holds for all n ∈ N, which implies that u(x) < limn→∞ u(x + 1/n) and contradicts the
continuity of the finitely-valued function u. For a similar result in this direction, see
proposition 4.19 in Karatzas and Kardaras (2007).

REMARK 4.6. The difference between statements (2) and (3) in Theorem 4.1 is that in
the latter case we can infer uniform convergence of the wealth processes to the limiting
one, while in the former we only have convergence of the terminal wealths. It is an open
question whether the uniform convergence of the wealth processes can be established
without assuming that the utility maximization problem involving continuous trading
has a solution.

4.3. A Result on Supermatingale Convergence

The following result, stated separately due to its independent interest, will help proving
statement (3) of Theorem 4.1.

PROPOSITION 4.7. On the filtered probability space (�, (Ft)t∈R+ , P), let (Zk)k∈N be a
sequence of nonnegative supermartingales on [[0, T]] with Zk

0 = 1 for all k ∈ N and P-
limk→∞ Zk

T = 1, where T is a finite stopping time. Then, P-limk→∞ supt∈[0,T] |Zk
t − 1| = 0.

Proof . Since Zk ≥ 0 for all k ∈ N, it suffices to show that P-limk→∞ supt∈[0,T] Zk
t = 1

and P-limk→∞ inf t∈[0,T] Zk
t = 1.

For proving P-limk→∞ supt∈[0,T] Zk
t = 1, observe that limk→∞ E[Zk

T] = 1 as a conse-
quence of Fatou’s lemma; this implies the uniform integrability of (Zk

T)k∈N and as a
consequence we obtain limk→∞ E[|Zk

T − 1|] = 0. In particular, the probabilities (Pk)k∈N

defined on (�,FT) via (dPk/dP)|FT = Zk
T/EP[Zk

T] converge in total-variation norm to P.
Fix ε > 0 and let τ k := inf{t ∈ R+|Zk

t > 1 + ε} ∧ T. We have E[Zk
T] ≤ E[Zk

τ k ] ≤ 1,
which means that limk→∞ E[Zk

τ k ] = 1. Showing that limk→∞ P[τ k < T] = 0 will imply
that P-limk→∞ supt∈[0,T] Zk

t = 1, since ε > 0 is arbitrary. Suppose on the contrary (pass-
ing to a subsequence if necessary) that limk→∞ P[τ k < T] = p > 0. Then,

1 = lim
k→∞

E
[
Zk

τ k

] ≥ (1 + ε)p + lim inf
k→∞

E
[
Zk

TI{τ k=T}
]

= (1 + ε)p + lim inf
k→∞

(
E
[
Zk

T

]
Pk[τ k = T]

) = 1 + ε p,

where the last equality follows from limk→∞ E[Zk
T] = 1 and limk→∞ Pk[τ k = T] =

limk→∞ P[τ k = T] = 1 − p. This contradicts p > 0 and the first claim is proved.
Again, with fixed ε > 0, redefine τ k := inf{t ∈ [0, T] | Zk

t < 1 − ε} ∧ T — we only
need to show that limk→∞ P[τ k < T] = 0. Since P[Zk

T > 1 − ε2|Fτ k ] ≤ (1 − ε)/(1 − ε2) =
1/(1 + ε) holds on the event {τ k < T}, we have

P
[
Zk

T > 1 − ε2] = E
[
P
[
Zk

T > 1 − ε2 | Fτ k

]] ≤ P[τ k = T] + P[τ k < T]
1

1 + ε
.
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Use P[τ k = T] = 1 − P[τ k < T], rearrange and take the limit as n goes to infinity to
obtain

lim sup
k→∞

P[τ k < T] ≤ 1 + ε

ε
lim sup

k→∞
P
[
Zk

T ≤ 1 − ε2] = 0,

which completes the proof of Proposition 4.7. �

4.4. Proof of Theorem 4.1

We close by giving the proof of each of the three statements of Theorem 4.1.

4.4.1. Proof of statement (1). We begin by proving that us = u. Assume first
that u is finite. Since limε↓0 u(x − ε) = u(x) for all x > 0, it suffices to prove that
for all ε ∈ (0, x) there exists an Xs(x)-valued sequence (Xk)k∈N such that u(x −
ε) ≤ lim infk→∞ E[U(Xk

T)] + ε. Pick ξ ∈ X (x − ε) such that E[U(ξT)] ≥ u(x − ε) − ε;
then, X := ε + ξ satisfies E[U(XT)] ≥ u(x − ε) − ε, X ∈ X (x) and X ≥ ε. According
to Theorem 3.1 (combined with Remark 3.2), we can find an Xs(x)-valued sequence
(Xk)k∈N with P-limk→∞ Xk

T = XT and Xk
T ≥ ε. Fatou’s lemma implies that E[U(XT)] ≤

lim infk→∞ E[U(Xk
T)] and the proof that us = u for the case of finitely-valued u is clarified.

The case where u ≡ ∞ is treated similarly.

4.4.2. Proof of statement (2). Pick anyXs(x)-valued sequence (Xk)k∈N and anyX (x)-
valued sequence (X̂k)k∈N with limk→∞ E[U(Xk

T)] = u(x) = limk→∞ E[U(X̂k
T)]. We shall

show below that P-limk→∞ |Xk
T − X̂k

T| = 0.
For any m ∈ N, define Km := {(a, b) ∈ R2|a ∈ [0, m], b ∈ [0, m] and |a − b| > 1/m}.

As follows from Proposition 2.1 of Kardaras and Platen (2009), under con-
dition NA1s both sequences (Xk

T)k∈N and (X̂k
T)k∈N are bounded in probability.

Therefore, P-limk→∞ |Xk
T − X̂k

T| = 0 will follow if we establish that, for all m ∈
N, limk→∞ P[(Xk

T, X̂k
T) ∈ Km] = 0.

Fix some m ∈ N; the strict concavity of U implies the existence of some βm > 0 such
that for all (a, b) ∈ (0, ∞) × (0, ∞) we have

U(a) + U(b)
2

+ βmIKm (a, b) ≤ U
(a + b

2

)
.

Setting a = Xk
T, b = X̂k

T in the previous inequality and taking expectations, one gets

βmP
[(

Xk
T, X̂k

T

) ∈ Km
] ≤ E

[
U

(
Xk

T + X̂k
T

2

)]
− E[U(Xk

T)] + E[U(X̂k
T)]

2

≤ u(x) − E[U(Xk
T)] + E[U(X̂k

T)]
2

;

since limk→∞(E[U(Xk
T)] + E[U(X̂k

T)]) = 2u(x), limk→∞ P[(Xk
T, X̂k

T) ∈ Km] = 0 follows.

4.4.3. Proof of statement (3). Pick any Xs(x)-valued sequence (Xk)k∈N with the
property that limk→∞ E[U(Xk

T)] = u(x). We already know from part (2) of Theorem
4.1 that P-limk→∞ Xk

T = X̂T. What remains in order to prove statement (3) is to pass to
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the stronger convergence ucP-limk→∞ Xk = X̂. Observe that since inf t∈[0,T] X̂t > 0, which
is a consequence of X̂ > 0 and condition NA1s, the latter convergence is equivalent to
ucP-limk→∞(Xk/X̂) = 1.

Define a new probability Q on F∞ via the recipe

dQ

dP
= X̂TU ′(X̂T)

E[X̂TU ′(X̂T)]
.

The assumptions of statement (3) in Theorem 4.1 imply that Q is well defined and
equivalent to P on F∞, as well as that X/X̂ is a Q-supermartingale on [[0, T]] for all
X ∈ X (x). Letting Zk := Xk/X̂ for all k ∈ N, we are in the following situation: Zk is a
nonnegative Q-supermartingale on [[0, T]] with Zk

0 = 1 for all k ∈ N, and Q-limk→∞ Zk
T =

1. Using Proposition 4.7 with Q in place of P gives that Q-limk→∞ supt∈[0,T] |Xk
t /X̂t − 1| =

0. Then, the equivalence of P and Q on F∞ allows us to conclude. �

REFERENCES
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