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Abstract A supermartingale deflator (resp. local martingale deflator) multiplica-
tively transforms nonnegative wealth processes into supermartingales (resp. local
martingales). A supermartingale numéraire (resp. local martingale numéraire) is a
wealth process whose reciprocal is a supermartingale deflator (resp. local martin-
gale deflator). It has been established in previous works that absence of arbitrage of
the first kind (NA1) is equivalent to the existence of the (unique) supermartingale
numéraire, and further equivalent to the existence of a strictly positive local martin-
gale deflator; however, under NA1, a local martingale numéraire may fail to exist. In
this work, we establish that under NA1, a supermartingale numéraire under the orig-
inal probability P becomes a local martingale numéraire for equivalent probabilities
arbitrarily close to P in the total variation distance.
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1 Introduction

A central structural assumption in the mathematical theory of financial markets is the
existence of so-called local martingale deflators, that is, processes that act multiplica-
tively and transform nonnegative wealth processes into local martingales. Under the
no free lunch with vanishing risk (NFLVR) condition of [5, 6], the density process of
a local martingale (or, more generally, a σ -martingale) measure is a strictly positive
local martingale deflator. However, strictly positive local martingale deflators may
exist even if the market allows a free lunch with vanishing risk. Both from a financial
and mathematical points of view, an especially important case occurs when a defla-
tor is the reciprocal of a wealth process called a local martingale numéraire; in this
case, the prices of all assets (and in fact, all wealth processes resulting from trading),
when denominated in units of the latter local martingale numéraire, are (positive)
local martingales.

The relevant, weaker than NFLVR, market viability property, which turns out to
be equivalent to the existence of supermartingale (or local martingale) numéraires,
was isolated by various authors under different names: no asymptotic arbitrage of
the first kind (NAA1), no arbitrage of the first kind (NA1), no unbounded profit with
bounded risk (NUPBR), and so on; see [10, 5, 9, 12, 14]. It is not difficult to show
that all these properties are in fact equivalent, even in a wider framework than that
of the standard semimartingale setting—for more information, see the Appendix. In
the present paper, we opt to utilize the economically meaningful formulation NA1,
defined as the property of the market to assign a strictly positive superhedging value
to any non-trivial positive contingent claim.

In the standard financial model studied here, the market is described by a d-dimen-
sional semimartingale process S giving the discounted prices of basic securities.
In [12], it was shown (even in the more general case of convex portfolio constraints)
that the following statements are equivalent:

(i) Condition NA1 holds.
(ii) There exists a strictly positive supermartingale deflator.
(ii’) The (unique) supermartingale numéraire exists.

In [17], the previous list of equivalent properties was complemented by
(iii) There exists a strictly positive local martingale deflator.
There are counterexamples (see e.g. [17]) showing that the local martingale nu-

méraire may fail to exist even when there is an equivalent martingale measure (and in
particular when condition NA1 holds). Such examples are possible only in the case of
discontinuous asset price processes; it was already shown in [2] that for continuous
semimartingales, among all strictly positive local martingale deflators, there exists
one whose reciprocal is a strictly positive wealth process.

In the present note, we add to the above list of equivalences a further property:
(iv) In any total-variation neighbourhood of the original probability, there exists

an equivalent probability under which the (unique) local martingale numéraire exists.
Establishing the chain (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) is rather straightforward and well

known. The contribution of the note is proving the “closing” implication (i) ⇒ (iv). It
is an obvious corollary of the already known implication (i) ⇒ (ii’) and the following
principal result of our note, a version of which was established previously only for
the case d = 1 in [14].
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Proposition 1.1 A supermartingale numéraire under P becomes a local martingale
numéraire under probabilities P̃ ∼ P that are arbitrarily close in the total-variation
distance to P .

Proposition 1.1 bears a striking similarity with the density result of σ -martingale
measures in the set of all separating measures—see [6] and Theorem A.5 in the Ap-
pendix. In fact, coupled with certain rather elementary properties of stochastic ex-
ponentials, the aforementioned density result is the main ingredient of our proof of
Proposition 1.1.

Importantly, we recover in particular the main result of [17], utilising completely
different arguments. The proof in [17] combines a change-of-numéraire technique
and a reduction to the Delbaen–Schachermayer fundamental theorem of asset pricing
(FTAP) in [5]. The latter is considered as one of the most difficult and fundamental
results of arbitrage theory, and the search for simplified proofs still continues—see,
for example, [3]. In fact, it may be obtained as a by-product of our result and the
version of the optional decomposition theorem in [16], as has been explained in [13,
Sect. 3].

2 Framework and main result

2.1 The setup

In all that follows, we fix T ∈ (0,∞) and work on a filtered probability space
(Ω,F ,F = (Ft )t∈[0,T ],P ) satisfying the usual conditions. Unless otherwise explic-
itly specified, all relationships between random variables are understood in the P -a.s.
sense, and all relationships between stochastic processes are understood modulo
P -evanescence.

Let S = (St )t∈[0,T ] be a d-dimensional semimartingale. We denote by L(S) the set
of S-integrable processes, that is, the set of all d-dimensional predictable processes
for which the stochastic integral H · S is defined. We stress that we consider general
vector stochastic integration—see [8, Chapter III, Sect. 6].

An integrand H ∈ L(S) such that x + H · S ≥ 0 for some x ∈ R+ will be called
x-admissible. We introduce the set of semimartingales

X x := {H · S : H is x-admissible integrand},

and denote X x
> its subset formed by the processes X such that x + X > 0 and

x + X− > 0. These sets are invariant under equivalent changes of the underlying
probability. Define also the sets of random variables X x

T := {XT : X ∈X x}.
For ξ ∈ L0+, we define

x(ξ) := inf{x ∈R+ : there exists X ∈ X x with x + XT ≥ ξ},

with the standard convention inf∅ = ∞.
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In the special context of financial modelling:

– The process S represents the price evolution of d liquid assets, discounted by a
certain baseline security labelled 0 or d + 1.

– With H being an x-admissible integrand, x + H · S is the value process of a self-
financing portfolio with the initial capital x ≥ 0, constrained to stay nonnegative at
all times.

– A random variable ξ ∈ L0+ represents a contingent claim, and x(ξ) is its super-
hedging value in the class of nonnegative wealth processes.

2.2 Main result

We define |P − P̃ |T V = supA∈F |P [A] − P̃ [A]| as the total-variation distance be-
tween the probabilities P and P̃ on (Ω,F).

Theorem 2.1 The following conditions are equivalent:
(i) x(ξ) > 0 for every ξ ∈ L0+ \ {0}.
(ii) There exists a strictly positive process Y such that the process Y(1 + X) is

a supermartingale for every X ∈ X 1.
(iii) There exists a strictly positive process Y with Y0 ∈ L1 such that the process

Y(1 + X) is a local martingale for every X ∈X 1.
(iv) For any ε > 0, there exists P̃ ∼ P with |P̃ − P |T V < ε and X̃ ∈ X 1

> such that
(1 + X)/(1 + X̃) is a local P̃ -martingale for every X ∈X 1.

Remark 2.2 It is straightforward to check that statements (ii), (iii), and (iv) of Theo-
rem 2.1 are equivalent to the same conditions where “for every X ∈ X 1” is replaced
by “for every X ∈X 1

>”.

Theorem 2.1 is formulated in the “pure” language of stochastic analysis. In the
context of mathematical finance, the following interpretations regarding its statement
should be kept in mind:

– Condition (i) states that any non-trivial contingent claim ξ ≥ 0 has a strictly posi-
tive superhedging value. This is referred to as condition NA1 (no arbitrage of the
first kind); it is equivalent to the boundedness in probability of the set X 1

T or, al-
ternatively, to condition NAA1 (no asymptotic arbitrage of the first kind)—see the
Appendix.

– The process Y in statement (ii) (resp. in statement (iii)) is called a strictly positive
supermartingale deflator (resp. local martingale deflator).

– A process X̃ with the property in statement (iv) is called a local martingale
numéraire under the probability P̃ . It is well known and not hard to check that
a local martingale numéraire (as well as a supermartingale numéraire) is unique if
it exists.

With the above terminology in mind, we may reformulate the properties (i)–(iv)
as was done in the Introduction.



No arbitrage of the first kind 1101

3 Proof of Theorem 2.1

3.1 Proof of easy implications

The arguments establishing the implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) in Theorem 2.1
are elementary and well known; however, for completeness of presentation, we briefly
reproduce them here.

Assume statement (iv), and in its notation fix some ε > 0. Let Z be the density
process of P̃ with respect to P , and set Z̃ := 1/(1 + X̃). For any X ∈ X 1, the process
Z̃(1 + X) is a local P̃ -martingale. Hence, with Y := ZZ̃, the process Y(1 + X) is a
local P -martingale, that is, (iii) holds.

Since a positive local martingale with initial value in L1 is a supermartingale, the
implication (iii) ⇒ (ii) is obvious.

To establish the implication (ii) ⇒ (i), suppose that Y is a strictly positive super-
martingale deflator. It follows that EYT (1 + XT ) ≤ 1 for all X ∈ X 1. Hence, the set
YT (1 + X 1

T ) is bounded in L1 and, a fortiori, bounded in probability. Since YT > 0,
the set X 1

T is also bounded in probability. The latter property is equivalent to condi-
tion NA1—see Lemma A.1 in the Appendix.

By [12, Theorem 4.12] and Lemma A.1 in the Appendix, condition (i) in the
statement of Theorem 2.1 implies the existence of the (unique) supermartingale
numéraire. Therefore, in order to establish the implication (i) ⇒ (iv) of Theorem 2.1
and complete its proof, it remains to prove Proposition 1.1. For this, we need some
auxiliary facts presented in the next subsection.

3.2 Ratios of stochastic exponentials

We introduce the notation

B(S) := {f ∈ L(S) : f �S > −1};
that is, B(S) is the subset of integrands for which the trajectories of the stochastic
exponentials E(f · S) are bounded away from zero.

Note that the set 1 +X 1
> coincides with the set of stochastic exponentials of inte-

grals with respect to S, that is,

1 +X 1
> = {E(f · S) : f ∈ B(S)}.

Indeed, the stochastic exponential corresponding to an integrand f ∈ B(S) is strictly
positive, and so is its left limit, and it satisfies the linear integral equation

E(f · S) = 1 + E−(f · S) · (f · S) = 1 + (
E−(f · S)f

) · S.

Thus, E(f ·S) ∈X 1
>. Conversely, if the process V = 1 +H ·S is such that V > 0 and

V− > 0, then

V = 1 + (V−V −1− ) · V = 1 + V− · (V −1− · (H · S)
) = 1 + V− · ((V −1− H) · S);

that is, V = E(f · S), where f = V −1− H ∈ B(S) because f �S = V −1− �V > −1.
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The above observations, coupled with Remark 2.2, imply that condition (iv) may
be alternatively reformulated as follows:

(iv) For any ε > 0, there exist g ∈ B(S) and P̃ ∼ P with |P̃ − P |T V < ε such that
E(f · S)/E(g · S) is a local P̃ -martingale for every f ∈ B(S).

Let Sc denote the continuous local martingale part of the semimartingale S. Recall
that 〈Sc〉 = c · A, where A is a predictable increasing process, and c is a predictable
process with values in the set of positive semidefinite matrices; then, g ∈ L(Sc) if and
only if |c1/2g|2 · AT < ∞.

In the sequel, fix an arbitrary g ∈ B(S) and set

Sg = S − cg · A −
∑

s≤·

gs�Ss

1 + gs�Ss

�Ss. (3.1)

As

∑

s≤·

∣∣∣∣
gs�Ss

1 + gs�Ss

∣∣∣∣ |�Ss | ≤ 1

2

∑

s≤T

∣∣∣∣
gs�Ss

1 + gs�Ss

∣∣∣∣

2

+ 1

2

∑

s≤T

|�Ss |2 < ∞,

the last term on the right-hand side of (3.1) is a process of finite variation, implying
that Sg is a semimartingale. (Recall that g ·S is a semimartingale, so that on any finite
interval, there are P -a.s. only finitely many s with |gs�Ss | ≥ 1/2.)

Noting that �Sg = �S/(1 + g�S), we obtain from (3.1) that

S = Sg + cg · A +
∑

s≤·
(gs�Ss)�S

g
s .

Lemma 3.1 L(S) = L(Sg).

Proof Let f ∈ L(S). Then

|(f, cg)| · AT ≤ 1

2
|c1/2f |2 · AT + 1

2
|c1/2g|2 · AT < ∞

and

∑

s≤T

|gs�Ssfs�Ss |
1 + gs�Ss

≤ 1

2

∑

s≤T

|fs�Ss |2 + 1

2

∑

s≤T

∣∣∣
∣

gs�Ss

1 + gs�Ss

∣∣∣
∣

2

< ∞.

Thus, L(S) ⊆ L(Sg). To show the opposite inclusion, take f ∈ L(Sg). The conditions
g ∈ L(S) and f ∈ L(Sg) imply that f and g are integrable with respect to Sc = (Sg)c,
that is, |c1/2g|2 · AT < ∞ and |c1/2f |2 · AT < ∞. As previously, it then follows that
|(f, cg)| · AT < ∞. Since also

∑

s≤t

|(gs�Ss)(fs�S
g
s )| ≤ 1

2

∑

s≤T

|gs�Ss |2 + 1

2

∑

s≤T

|fs�S
g
s |2 < ∞,

we obtain that f ∈ L(S), that is, the inclusion L(Sg) ⊆ L(S). �

Lemma 3.2 B(Sg) = B(S) − g.



No arbitrage of the first kind 1103

Proof Let h = f − g, where f ∈ B(S). Then, h ∈ L(S) = L(Sg) by Lemma 3.1, and

h�Sg = (f − g)�Sg = (f − g)�S

1 + g�S
= 1 + f �S

1 + g�S
− 1 > −1.

Conversely, start with h ∈ B(Sg). Then, using again Lemma 3.1, we obtain that
f := h+g belongs to L(S). Moreover, recalling the relation �S = �Sg/(1 − g�Sg),
we obtain that

f �S = (h + g)�S = (h + g)�Sg

1 − g�Sg
= 1 + h�Sg

1 − g�Sg
− 1 > −1,

which completes the proof. �

For f ∈ B(S), Lemma 3.2 gives f −g ∈ B(Sg); then, straightforward calculations
using Yor’s product formula

E(U)E(V ) = E(U + V + [U,V ]),
which is valid for arbitrary semimartingales U and V , lead to the identity

E(f · S)

E(g · S)
= E

(
(f − g) · Sg

)
.

(In this regard, see also [12, Lemma 3.4].) Then, invoking Lemma 3.2, we obtain the
set equality

1 +X 1
>(Sg) = E−1(g · S)

(
1 +X 1

>(S)
)
.

3.3 Proof of Proposition 1.1

Let the process E(g ·S), where g ∈ B(S), be the (unique) supermartingale numéraire;
in other words, the ratio E(f · S)/E(g · S) is a supermartingale for each f ∈ B(S).
Passing to Sg and using Lemma 3.2, we obtain that EET (h ·Sg) ≤ 1 for all h ∈ B(Sg).
Therefore, EH ·Sg

T ≤ 0 for every H ∈ L(Sg) such that H ·Sg > −1 and H ·Sg
− > −1

and thus for every H ∈ L(Sg) for which the process H · Sg is bounded from below.
This means, in the terminology of [9], that the probability P is a separating measure
for Sg . An application of [6, Proposition 4.7] (or Theorem A.5) implies, for any
ε > 0, the existence of probability P̃ ∼ P , depending on ε, with |P − P̃ |T V < ε and
such that Sg is a σ -martingale with respect to P̃ , that is, Sg = G · M where G is
a (0,1]-valued one-dimensional predictable process and M is a d-dimensional local
P̃ -martingale. Recall that a bounded from below stochastic integral with respect to a
local martingale is a local martingale [1, Proposition 3.3]. The ratio E(f ·S)/E(g ·S),
being an integral with respect to Sg , hence with respect to M , is a P̃ -local martingale
for each f ∈ B(S), which is exactly what we need. �

Remark 3.1 An inspection of the arguments in [12] used to establish the implica-
tion (i) ⇒ (ii’) reveals that in the case where the (random, (w, t)-dependent) Lévy
measures of S are concentrated on finite sets also depending on (ω, t), the (unique)
supermartingale numéraire is in fact the (unique) local martingale numéraire.
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Appendix: No-arbitrage conditions, revisited

A.1 Condition NA1: equivalent formulations

We discuss equivalent forms of the condition NA1 in the context of a general abstract
setting, where the model is given by specifying the set of wealth processes. The ad-
vantage of this generalization is that we can use only elementary properties without
any reference to stochastic calculus and integration theory.

Let X 1 be a convex set of càdlàg processes X with X ≥ −1 and X0 = 0, contain-
ing the zero process. For x ≥ 0, we define the set X x = xX 1 and note that X x ⊆ X 1

when x ∈ [0,1]. Put X := coneX 1 = R+X 1 and define the sets of terminal random
variables X 1

T := {XT : X ∈ X 1} and XT := {XT : X ∈ X }. In this setting, the ele-
ments of X are interpreted as admissible wealth processes starting from zero initial
capital; the elements of X x are called x-admissible.

Remark A.1 (“Standard” model) In the typical example, a d-dimensional semimartin-
gale S is given and X 1 is the set of stochastic integrals H ·S, where H is S-integrable
and H · S ≥ −1. Though our main result deals with the standard model, it is natural
to discuss the basic definitions and their relations with concepts of arbitrage theory
in a more general framework.

Define the set of strictly 1-admissible processes X 1
> ⊆ X 1 as composed of those

X ∈ X 1 such that X > −1 and X− > −1. The sets x + X x , x + X x
>, and so on,

x ∈ R+, have obvious interpretations. We are particularly interested in the set 1+X 1
>.

Its elements are strictly positive wealth processes starting with unit initial capital and
may be thought of as tradable numéraires.

For ξ ∈ L0+, define the superhedging value x(ξ) := inf{x : ξ ∈ x +X x
T −L0+}. We

say that the wealth-process family X satisfies the condition NA1 (no arbitrage of the
first kind) if x(ξ) > 0 for every ξ ∈ L0+ \ {0}. Alternatively, the condition NA1 can be
defined via

( ⋂

x>0

{
x +X x

T − L0+
}) ∩ L0+ = {0}.

The family X is said to satisfy the condition NAA1 (no asymptotic arbitrage of
the first kind) if for any sequence (xn)n of positive numbers with xn ↓ 0 and any
sequence of value processes Xn ∈X such that xn + Xn ≥ 0, we have

lim sup
n→∞

P [xn + Xn
T ≥ 1] = 0.

Finally, we say that the family X satisfies the condition NUPBR (no unbounded
profit with bounded risk) if the set {XT : X ∈ X 1

>} is bounded in L0. Since we have
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(1/2)X 1
T = X 1/2

T ⊆ {XT : X ∈ X 1
>}, the set {XT : X ∈ X 1

>} is bounded in L0 if and
only if the set X 1

T is bounded in L0.
The next result shows that all three market viability notions introduced above co-

incide.

Lemma A.1 NAA1 ⇐⇒ NUPBR ⇐⇒ NA1.

Proof NAA1 ⇒ NUPBR: If the family {XT : X ∈ X 1
>} fails to be bounded in L0,

then P [1 + X̃n
T ≥ n] ≥ ε > 0 for a sequence (X̃n) ⊆ X 1

>, and we obtain a violation of
NAA1 with n−1 + n−1X̃n

T .
NUPBR ⇒ NA1: If NA1 fails, then there exist ξ ∈ L0+ \ {0} and a sequence (Xn)

with Xn ∈ X 1/n such that 1/n + Xn ≥ ξ . Then the sequence nXn
T ∈ X 1 fails to be

bounded in L0, in violation of NUPBR.
NA1 ⇒ NAA1: If the implication fails, then there are sequences xn ↓ 0 and

Xn ≥ −xn such that P [xn + Xn
T ≥ 1] ≥ 2ε > 0. By the von Weizsäcker theorem (see

[18] or [11, Theorem A.2.3]), any sequence of random variables bounded from below
contains a subsequence converging in the Cesarò sense a.s. as well as all its further
subsequences. We may assume without loss of generality that for ξn := xn +Xn

T , the
sequence ξ̄ n := (1/n)

∑n
i=1 ξi converges to ξ ∈ L0+. Note that ξ �= 0. Indeed,

ε(1 − P [ξ̄ n ≥ ε]) ≥ 1

n

n∑

i=1

EξiI{ξ̄ n<ε} ≥ 1

n

n∑

i=1

EξiI{ξ i≥1, ξ̄ n<ε}

≥ 1

n

n∑

i=1

P [ξ i ≥ 1, ξ̄ n < ε] ≥ 1

n

n∑

i=1

(P [ξ i ≥ 1] − P [ξ̄ n ≥ ε])

≥ 2ε − P [ξ̄ n ≥ ε].
It follows that P [ξ̄ n ≥ ε] ≥ ε/(1 − ε). Thus,

E[ξ ∧ 1] = lim
n

E[ξ̄ n ∧ 1] ≥ ε2/(1 − ε) > 0.

It follows that there exists a > 0 such that P [ξ ≥ 2a] > 0. In view of Egorov’s theo-
rem, we can find a measurable set Γ ⊆ {ξ ≥ a} with P [Γ ] > 0 on which xn +Xn ≥ a

for all sufficiently large n. But this means that the random variable aIΓ �= 0 can be
superreplicated starting with arbitrarily small initial capital, in contradiction with the
assumed condition NA1. �

Remark A.2 (On terminology and bibliography) The conditions NAA1 and NA1 have
clear financial meanings, whereas the boundedness in L0 of the set X 1

T , at first glance,
looks like a technical condition—see [5]. The concept of NAA1 first appeared in [10]
in a much more general context of large financial markets, along with another funda-
mental notion NAA2 (no asymptotic arbitrage of the second kind). The boundedness
in L0 of X 1

T was discussed in [9] (as the BK-property), in the framework of a model
given by value processes; however, it was overlooked that it coincides with NAA1 for
the “stationary” model, that is, when the stochastic basis and the price process do not
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depend on n. The same condition appeared under the acronym NUPBR in [12] and
was shown to be equivalent to NA1 in [13].

A.2 NA1 and NFLVR

Remaining in the framework of the abstract model of the previous subsection, we
provide here results on the relation of the condition NA1 with other fundamental
notions of arbitrage theory; compare with [9].

Define the convex sets C := (XT − L0+) ∩ L∞ and denote by C̄ and C̄∗ the norm-
closure and weak∗ closure of C in L∞, respectively. The conditions NA, NFLVR,
and NFL are defined correspondingly via

C ∩ L∞+ = {0}, C̄ ∩ L∞+ = {0}, C̄∗ ∩ L∞+ = {0}.
Consecutive inclusions induce a hierarchy of these properties via

C ⊆ C̄ ⊆ C̄∗,
NA ⇐= NFLVR ⇐= NFL.

Lemma A.2 NFLVR =⇒ NA&NA1.

Proof Assume that NFLVR holds. Condition NA follows trivially. If NA1 fails, then
there exists a [0,1]-valued ξ ∈ L0+ \ {0} such that for each n ≥ 1, we can find
Xn ∈ X 1/n with 1/n + Xn

T ≥ ξ . Then the random variables Xn
T ∧ ξ belong to C

and converge uniformly to ξ , contradicting NFLVR. �

To obtain the converse implication in Lemma A.2, we need an extra property. We
call a model natural if the elements of X are adapted processes and for any X ∈ X ,
s ∈ [0, T ) and Γ ∈Fs , the process X̃ := IΓ ∩{Xs≤0}I[s,T ](X−Xs) is an element of X .
In words, a model is natural if an investor deciding to start trading at time s when the
event Γ happened can use from this time, if Xs ≤ 0, an investment strategy that leads
to a value process with the same increments as X.

Lemma A.3 Suppose that the model is natural. If NA holds, then any X ∈ X admits
the bound X ≥ −λ, where λ = ‖X−

T ‖∞.

Proof If P [Xs < −λ] > 0, then X̃ := I{Xs<−λ}I[s,T ](X − Xs) belongs to X and sat-
isfies X̃T ≥ 0 and P [X̃T > 0] > 0, in violation of NA. �

Proposition A.4 Suppose that the model is natural and in addition that for every
n ≥ 1 and X ∈X with X ≥ −1/n, the process nX is in X 1. Then

NFLVR ⇐⇒ NA & NA1.

Proof By Lemma A.2, we only have to show the implication “⇐”. If NFLVR fails,
then there are ξn ∈ C and ξ ∈ L∞+ \ {0} such that ‖ξn − ξ‖∞ ≤ n−1. By definition, we
have ξn ≤ ηn = Xn

T , where Xn ∈ X . Obviously, ‖η−
n ‖∞ ≤ n−1, and since NA holds,
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nXn ∈ X 1 by virtue of Lemma A.3 and our hypothesis. By the von Weizsäcker theo-
rem, we may assume that ηn → η a.s. Since P [η > 0] > 0, the sequence nXn

T ∈ X 1
T

tends to infinity with strictly positive probability, violating condition NUPBR or,
equivalently, NA1. �

Examples showing that the conditions NFLVR, NA, and NA1 are all different,
even for the standard model (satisfying, of course, the hypotheses of the above propo-
sition) can be found in [7].

Assume now that X 1 is a subset of the space S of semimartingales, equipped with
the Emery topology given by the quasi-norm

D(X) := sup{E[1 ∧ |H · XT |] : H is predictable, |H | ≤ 1}.
Define the condition ESM as the existence of a probability P̃ ∼ P such that ẼXT ≤ 0
for all processes X ∈ X . A probability P̃ with this property is referred to as an equiv-
alent separating measure. According to the Kreps–Yan separation theorem [11, The-
orem 2.1.4], the conditions NFL and ESM are equivalent. The next result is proved
in [9] on the basis of the paper [5], where this theorem was established for the “stan-
dard” model; see also [3].

Theorem A.3 Suppose that X 1 is closed in S and that the following concatenation
property holds: for any X,X′ ∈ X 1 and any bounded predictable processes H,G ≥ 0
such that HG = 0, the process X̃ := H · X + G · X′ belongs to X 1 if it satisfies the
inequality X̃ ≥ −1. Then, under the condition NFLVR, it holds that C = C̄∗, and as
a corollary, we have

NFLVR ⇐⇒ NFL ⇐⇒ ESM.

Remark A.4 It is shown in [15, Theorem 1.7] that the condition NA1 is equivalent
to the existence of the (unique) supermartingale numéraire in a setting where the
wealth-process sets are abstractly defined via a requirement of predictable convexity
(also called fork-convexity).

In the case of the “standard” model with a finite-dimensional semimartingale S de-
scribing the prices of the basic risky securities, we have the following: If S is bounded
(resp. locally bounded), a separating measure is a martingale measure (resp. local
martingale measure). Without any local boundedness assumption on S, we have the
following result from [6], a short proof of which is given in [9] and which we use
here.

Theorem A.5 In any neighbourhood in total variation of a separating measure, there
exists an equivalent probability under which S is a σ -martingale.

It follows that if NFLVR holds, then the process S is a σ -martingale with respect
to some probability measure P ′ ∼ P with density process Z′. Therefore, for any
process X = H · S from X 1, the process 1 + X is a local martingale with respect
to P ′, or equivalently, Z′(1 + X) is a local martingale with respect to P ; therefore,
Z′ is a local martingale deflator.
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Remark A.6 A counterexample in [4, Sect. 6] involving a simple one-step model
shows that Theorem A.5 is not valid in markets with countably many assets. As a
corollary, the condition NFLVR (equivalent in this one-step model to NA1) is not
sufficient to ensure the existence of a local martingale measure or a local martingale
deflator.
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