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NO-FREE-LUNCH EQUIVALENCES FOR EXPONENTIAL LÉVY MODELS
UNDER CONVEX CONSTRAINTS ON INVESTMENT

CONSTANTINOS KARDARAS

Boston University

We provide equivalence of numerous no-free-lunch type conditions for financial
markets where the asset prices are modeled as exponential Lévy processes, under
possible convex constraints in the use of investment strategies. The general message is
the following: if any kind of free lunch exists in these models it has to be of the most
egregious type, generating an increasing wealth. Furthermore, we connect the previous
to the existence of the numéraire portfolio, both for its particular expositional clarity in
exponential Lévy models and as a first step in obtaining analogues of the no-free-lunch
equivalences in general semimartingale models, a task that is taken on in Karatzas and
Kardaras (2007).
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1. INTRODUCTION

1.1. Discussion

An exponential Lévy process—as its name suggests—is simply the exponential of a Lévy
process. Models of financial markets that assume an exponential Lévy structure for the
movement of the stock-price processes have become increasingly popular in the last years,
partly because of their analytical tractability (since their distributional properties are
uniquely determined by their Lévy triplet) and partly because they provide a reasonably
good fit to actual financial data. Noteworthy examples are the four-parameter CGMY
model of Carr et al. (2002) and the hyperbolic model of Eberlein, Keller, and Prause
(1998). One effect of this popularity is the proliferation of academic courses that include
in their teaching curriculum models of this sort.

It is somewhat of folklore that if free lunches exist in exponential Lévy models, they
are of the most egregious form: one can invest in a way so to obtain an increasing wealth
process. As a result, many subtle differences existing in different formulations of a “free
lunch” definition in more general models disappear, something with both good and bad
consequences. On the positive side, one can provide a proof of the Fundamental Theorem
of Asset Pricing (FTAP) with minimal effort that can be easily taught—in particular,
no functional-analytic background is required and the proof uses reasonably standard
facts from Lévy-process theory. The offset is that mere knowledge of the no-free-lunch
situation in exponential Lévy models is inadequate to provide the whole picture and
complications that prevail in semimartingale models.
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The purpose of this paper is two-fold: first, to provide a quick and easy proof1 of the
above folklore fact for multi-asset, finite-time horizon models under convex constraints,
establishing many equivalences regarding no-free-lunch notions and (super)martingale
measures; second, to explore the structure of the so-called numéraire portfolio in the
context of exponential Lévy models to the extent where the transition to general semi-
martingale models will be possible.

Economic agents typically face restrictions in the free use of portfolios—a first example
being short-sale constraints. In this “constrained” setting and in the context of the FTAP,
one cannot claim any more that no-free-lunch criteria expressed in terms of the restricted
collection of admissible strategies imply existence of equivalent martingale measures
(EMM) for the stock-price process. An extreme example is total prevention for the use
of any portfolio, except keeping all the wealth in the savings account; in this trivial case
even if free lunches exist in the unconstrained market, they cannot be used because the
agent cannot invest in them. To compensate for the fact that we are only considering
constrained strategies, we have to introduce notions of equivalent probability measures
that act only on the wealth-process class and not on the stock-price process. As long as the
constraints are of the form of a convex cone, the concept of equivalent supermartingale
measure (ESMM—also called separating measure in the literature) does the trick: we
have to make sure that under an equivalent change of probability all wealth processes
are supermartingales.

The first main result of the paper—a version of the FTAP for convex-cone-constrained
exponential Lévy models—is Theorem 3.7. The “difficult” part of the proof of Theorem
3.7 follows the idea of Rogers (1994): solve a utility maximization problem and construct
an ESMM using the marginal utility evaluated on the optimal wealth process as density.
Rogers implemented this for the discrete-time case; an inductive construction based on
the simple static one-time-period model had to be utilized in order to fully prove the
FTAP for multi time-period models. Unfortunately, this construction does not carry to
general continuous-time models, exactly because this inductive step cannot be carried
over. Nevertheless, one can use this idea when Lévy processes are involved, because of
their “independent and stationary increments” structure. Theorem 3.7 presents seven
equivalences involving equivalent supermartingale measures that respect the exponential
Lévy structure, several no-free-lunch notions, and—most importantly—a condition that
involves only the characteristic triplet of the generating Lévy process. Let us note that
simpler statements than that of Theorem 3.7, dealing only with equivalences for the
one-stock, unconstrained case, have already appeared in Jacubėnas (2002), Cherny and
Shiryaev (2002), as well as in Selivanov (2005). The proof contained in the first paper is
inspired by the work of Eberlein and Jacod (1997) and the proof in the other papers more
or less use the idea of the Esscher transform (as we do here); the proofs sometimes are
slightly more complicated and—as already mentioned—are valid in a one-dimensional,
unconstrained setting.

It seems reasonable to proceed in proving analogous no-free-lunch equivalences in
the case we have convex, but not necessarily conic, constraints. The moment that we try
to do so, we face an unexpected barrier: no-free-lunch conditions are no longer sufficient
to provide us with an equivalent supermartingale measure—this slightly surprising fact is

1 In view of remarks and questions that arose during presentations of the material stemming from the
author’s Ph.D. thesis, it became clear that there was a desire for a self-contained treatment of the FTAP for
exponential Lévy models. In this respect, one of the main results (Theorem 3.7) is dedicated to those who
expressed interest for it, with the hope that it will help their teaching.
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illustrated in Example 4.1. In the quest for finding an appropriate version of the FTAP
under convex constraints we have to depart from the world of equivalent supermartingale
measures and enter the realm of equivalent supermartingale deflators, i.e., state-price-
density processes that are only supermartingales (and not martingales) and can therefore
lose mass. A particularly efficient way to obtain an equivalent supermartingale deflator
is by use of the numéraire portfolio: this is a special strategy that generates a wealth
process in such a way that relative wealth processes generated by all other portfolios with
respect to it are supermartingales. When the numéraire portfolio exists, so do equivalent
supermartingale deflators—the interesting fact is that the converse also holds: existence
of at least one equivalent supermartingale deflator will imply that the numéraire portfolio
exists. This also turns out to be equivalent to requiring that the terminal values of all
wealth processes that start from unit capital are bounded in probability, and it is exactly
that last no-free-lunch notion (which we baptize no unbounded profit with bounded risk)
that is tailor-made for the case of convex constraints in order to obtain an equivalent of
the FTAP. We state this result as Theorem 4.5; its proof is more technical than that of
Theorem 3.7 and its backbone is Lemma 5.1, whose proof is the whole purpose of Section
5. To the best of the author’s knowledge, no result of this type (dealing with convex but
not necessarily conic constraints) has appeared before in the literature. We note that
the decision to single out the statement and proof of Lemma 5.1 is made not only for
presentation reasons; it will also be used in a crucial way in Karatzas and Kardaras
(2007), where a study of the general semimartingale case is made. We further note that a
solution to the problem of maximizing expected log-utility (which is very closely related
to the numéraire portfolio, as is also discussed in Section 4.8) in a general semimartingale
model and under convex constraints has been carried by Goll and Kallsen (2003).

Let us mention two more results that appear in the text. First, completeness for multi-
asset exponential Lévy models is considered in Section 3.6—because it is not the main
point of this paper, the treatment is very brief. Second, a result concerning the infinite-
time horizon case is given—Theorem 4.7. If existence of free lunches is the exception
when dealing with finite-time planning horizon, since it happens in the most severe
way, it is the rule in infinite-time horizon models: one is always able to construct a free
lunch, provided that the original probability is not a supermartingale measure. In the
one-dimensional case, a statement of this last result appears and is proved in Selivanov
(2005); nevertheless, it is not clear how to transfer the statement appearing there to the
multi-dimensional case that we are dealing with here.

1.2. Organization of the Paper

This introduction continues with fixing notation and discussing basic facts concern-
ing Lévy processes. Section 2 introduces the financial market with exponential Lévy
discounted stock-price processes and describes wealth processes as well as constraints.
In Section 3, we introduce the no-free-lunch and equivalent-(super)martingale notions
that shall be used in the sequel and we present the first main result: Theorem 3.7, that
provides equivalences for the cone-constrained case. We proceed in Section 4 to intro-
duce the numéraire portfolio and equivalent supermartingale deflators; then, we state
Theorem 4.5 that covers no-free-lunch equivalences for cone-constrained models. In
the same section we provide a result concerning the infinite-time horizon case (The-
orem 4.7) and discuss the growth-optimal portfolio, that actually gives us the way to
construct the numéraire portfolio. Section 5 contains only the statement and proof of
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Lemma 5.1 that is needed to complete the proof of Theorem 4.5. We also include an
Appendix with some special results on Lévy processes that are needed in the main text.

1.3. Some Notation

The transpose of a vector x ∈ Rd is denoted by x�, its norm is |x| :=
√

x�x, and
superscripts denote coordinates: x = (x1, . . . xd)�. The indicator function of a set A is
denoted by IA; for subsets of Rd , we write {|x| > 1} to actually express {x ∈ Rd | |x| > 1}.

We are working on a stochastic basis (�,F, F, P), where the filtration F = (Ft)t∈R+
is right-continuous and augmented by all P-null sets. The symbol E always denotes
expectation of random variables under P. Expectations with respect to other probability
measures (say, Q) will involve the measure appearing as superscript on E (say, EQ).

For a d-dimensional semimartingale X and a d-dimensional predictable process π , we
shall denote by π · X the vector stochastic integral process whenever this makes sense,
i.e., when π is X-integrable. One can check for example Jacod and Shiryaev (2003) for
these notions.

Any càdlàg (adapted, right-continuous with left-hand limits) process Z has an
obviously-defined left-continuous—thus predictable—version Z−; for concreteness, we
set Z−(0) = 0. We also define the jump process �Z := Z − Z−.

Finally, for a one-dimensional semimartingale Y, E(Y) will denote the stochastic expo-
nential of Y, i.e., unique semimartingale with Z0 = 1 that solves the stochastic differential
equation dZt = Zt− dY t.

1.4. Basics of Lévy Processes

The are several good books from which one can obtain information on Lévy
processes—for example, Sato (1999) is a good reference for the theoretical part, while
Cont and Tankov (2004) provide applications in financial modeling.

Given a stochastic basis (�,F, F, P), a d-dimensional càdlàg process L with L0 = 0,
such that for all 0 ≤ s < t, the increment Lt − Ls is independent of Fs and its distribution
only depends on t − s will be called an F-Lévy process.

With a Lévy process L comes its Lévy triplet (bL, cL, νL). Here, bL ∈ Rd , cL is
a nonnegative-definite d × d matrix (if d = 1 this just reads cL ∈ R+), and νL is
a Lévy measure on Rd with its Borel σ -algebra, i.e., νL satisfies νL({0}) = 0 and∫

Rd (1 ∧ |x|2)νL( dx) < +∞ (the wedge “∧” denotes minimum: f ∧ g = min{f , g}). The
finite-dimensional distributions of L are completely determined by its Lévy triplet via
the characteristic functions

E exp

⎛⎝i
n∑

j=1

u�
j (Ltj − Ltj−1 )

⎞⎠ =
n∏

j=1

exp((tj − tj−1)φ(u j )),(1.1)

for all 0 = t0 < · · · < tn and u j ∈ Rd for all j = 1, . . . , n, where i = √−1 and

φ(u) := iu�bL − u�cLu
2

+
∫

Rd

(
eiu�x − 1 − iu�xI{|x|≤1}

)
νL( dx).(1.2)
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We have E|Lt| < ∞ for all t ∈ R+ if and only if
∫

Rd |x|I{|x|>1}νL( dx) < ∞; then

ELt = t
(

bL +
∫

Rd
xI{|x|>1}νL( dx)

)
.(1.3)

In the one-dimensional case d = 1, formally setting u = −i in (1.1) and (1.2) one obtains
the exponential formula (written in logarithmic form to ease reading):

log(EeLt ) = t
(

bL + cL

2
+

∫
R

(ex − 1 − xI{|x|≤1})νL( dx)
)

;(1.4)

this always holds, in the sense that one side is finite if and only if the other is, and when
they are finite they give the same value.

Further results on Lévy processes that will be useful later are collected in the Appendix.

2. EXPONENTIAL LÉVY MODELS OF FINANCIAL MARKETS

2.1. The Financial Market Model

The prices of d financial assets are modeled as d strictly positive semimartingales
S̃

1
, . . . , S̃

d
. There is also another process S̃

0
which models the money market and plays

the role of a “benchmark,” in the sense that wealth processes will be quoted in units
of S̃

0
. We then define the discounted price processes Si := S̃

i
/S̃

0
for i = 0, . . . , d. The

d-dimensional vector process (S1, . . . , Sd) will be denoted by S.
We now enforce more structure on each of the discounted price-processes; in particu-

lar, we assume that they satisfy dSi
t = Si

t− dXi
t , or equivalently Si = Si

0E(Xi ), where for
all i = 1, . . . , d, Xi is a Lévy process with �Xi > −1 (remember that E is the stochas-
tic exponential operator). Denote by X the d-dimensional Lévy process (X1, . . . , Xd).
According to the Lévy-Itô path decomposition one can write

Xt = bt + σβt +
∫ t

0

∫
Rd

xI{|x|≤1}(μ( dx, du) − ν( dx) du)

+
∫ t

0

∫
Rd

xI{|x|>1}μ( dx, du).

(2.1)

With c := σσ�, (b, c, ν) is the Lévy triplet of X. Here, β is a standard d-dimensional
Brownian motion, and μ is the jump measure of X, i.e., the random counting measure
defined for t ∈ R+ and A ⊆ Rd\{0} by μ([0, t] × A) := ∑

0≤s≤t IA(�Xs).
Since Si = Si

0E(Xi ), one can actually write Li := log Si in terms of Xi as follows:
Li

t = Li
0 + Xi

t − cii t/2 − ∫ t
0

∫
Rd [x − log(1 + x)]μ( dx, du); we then observe that Li is a

Lévy process, and this is the reason why models like the ones we are considering are
called exponential Lévy models. Both the usual and the stochastic logarithm of the asset
prices are Lévy processes; we choose to state everything in terms of the stochastic—as
opposed to the usual—logarithm since it will be much more convenient in the sequel.

We shall be mostly working on a finite-time horizon; only one result (Theorem 4.7) will
be stated for the infinite-time horizon case. We then fix a number T ∈ R+ (the maturity)
and we denote [[0, T ]] := � × [0, T ].
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2.2. Portfolios, Wealth Processes, and Constraints

A financial agent starts with some strictly positive initial capital which we normalize to
be unit throughout, and can invest in the assets by choosing a predictable, d-dimensional
and X-integrable process π , which we shall refer to as portfolio. We interpret π i

t as the
proportion of current wealth invested in stock i at time t; the remaining proportion of
wealth π0 := 1 − ∑d

i=1 π i is then invested in the money market. The wealth generated
by this portfolio is constrained to remain strictly positive at all times; going on the red is
not allowed in our model.

If Wπ denotes the discounted wealth process obtained following π , then Wπ > 0 and
thus �Wπ

t > −Wπ
t−. The previous interpretation for π implies that

dWπ
t

Wπ
t−

=
d∑

i=0

π i
t

dSi
t

Si
t−

=
d∑

i=1

π i
t dXi

t ≡ π�
t dXt,(2.2)

the second equality simply holding because dS0
t = 0 and dSi

t = Si
t− dXi

t .
The financial agent might be constrained further in the use of any desired portfolio

position; we model this by introducing a closed and convex set C ⊆ Rd and requiring that
π (ω, t) ∈ C for all (ω, t) ∈ [[0, T ]]. For example, if the agent is prevented from selling stock
short, we have C = (R+)d . If we further prevent borrowing from the bank then we must
also have π0 ≥ 0; in other words we must use C = {p ∈ Rd | pi ≥ 0 and

∑d
i=1 pi ≤ 1}.

The constraints set C should be such that we at least give freedom not to invest in the
stock market if the agent chooses to do so. This should be modeled by requiring 0 ∈ C,
but there might also be degeneracy in the market, i.e., linear dependence of the returns
of the stocks. The effect of this is that different portfolios will produce the same wealth.
To understand how this notion should be formalized, consider two portfolios π 1 and π 2

with Wπ1 = Wπ2 . Uniqueness of the stochastic exponential implies π 1 · X = π 2 · X , or
that ζ := π 2 − π 1 will satisfy ζ · X ≡ 0, which is easily seen to be equivalent to ζ · (σβ) = 0,
ζ��X = 0 and ζ�b = 0.

DEFINITION 2.1. For a Lévy triplet (b, c, ν), the linear subspace of null investments N

is defined as the set of vectors N := {ζ ∈ Rd | ζ�c = 0, ν[ζ�x �= 0] = 0 and ζ�b = 0}.
Finally, here comes the formal definition of our portfolio strategies.

DEFINITION 2.2. Consider a convex and closed C ⊆ Rd such that N ⊆ C. The class
�C of all C-constrained portfolios is defined to consist of all predictable and X-integrable
processes π such that π��X > −1 and π (ω, t) ∈ C for all (ω, t) ∈ [[0, T ]].

REMARK 2.3 (On Natural Constraints). Observe that the positivity requirement
for Wπ implies π��X ≥ −1; in terms of the Lévy measure ν this is equivalent to
ν[π�x < −1] = 0. In other words, the set C0 := {p ∈ Rd | ν[p�x < −1] = 0} present
some already model-enforced constraints, regardless of any other constraints C enforced
to agents. Thus, insofar as C0 ⊆ C, we are basically regarding this as an unconstrained
case.

Even though we could in principle enrich the given constraints C to include the natural
ones by considering C ∩ C0 we shall not do so—we regard C as “outside” constraints.

From the wealth dynamics (2.2) it follows that for all π ∈ �C we have Wπ = E(π · X).
Observe that any constant vector π ∈ C with ν[π�x ≤ −1] = 0 can be considered as an
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element of �C and that the wealth it generates is again an exponential Lévy process,
because π · X = π�X is a Lévy process.

REMARK 2.4. The assumption N ⊆ C on the constraint set implies that C = C + N:
indeed, for any π ∈ C and ζ ∈ N ⊆ C we have that nζ ∈ C for any n ∈ N, thus the
convex combination (1 − n−1) π + ζ belongs to C as well; since C is closed, π + ζ ∈ C.
Now, C is closed and N is a linear subspace; this means that prN⊥C = C ∩ N⊥ is also
closed in the subspace N⊥, where prN⊥ is the usual Euclidean projection on N⊥, the
orthogonal complement of N. We conclude that we can restrict attention to the set
C ∩ N⊥ for the portfolios—any degeneracy originally present in the market disappears
there.

3. NO-FREE-LUNCH EQUIVALENCES FOR
CONVEX-CONE-CONSTRAINED MODELS

3.1. Classical Free-Lunch-Type Notions

We remind ourselves of some “no-free-lunch” conditions that will be matter of our
study later on.

DEFINITION 3.1. For the following three definitions we consider our financial model
with C-constrained portfolio class �C.

(1) A portfolio π ∈ �C generates an arbitrage, if P[Wπ
T ≥ 1] = 1 and P[Wπ

T > 1] > 0.

If no such portfolio exists we say that the C-constrained market satisfies no arbitrage
(NAC).

(2) The C-constrained market is said to satisfy the no unbounded profit with bounded
risk (NUPBRC) condition if the collection of positive random variables (Wπ

T )π∈�C

is bounded in probability, i.e., if limm→∞ ↓ (supπ∈�C
P[Wπ

T > m]) = 0.

(3) A free lunch with vanishing risk is a sequence of portfolios (πn)n∈N with P[Wπn
T ≥

1 − δn ] = 1 for a decreasing sequence δn ↓ 0, such that there exists ε > 0 with
P[Wπn

T > 1 + ε] > ε. If such a situation is impossible by use of C-constrained port-
folios, we say that the no-free-lunch with vanishing risk (NFLVRC) condition holds.

In the unconstrained case we skip the subscripts “Rd” and write NA, NUPBR, and
NFLVR.

NAC is the most classical of all three notions and its interpretation is straightforward.
The NUPBRC condition says that the probability of making “crazy” amounts of money
at time T starting from unit capital and staying positive can be estimated uniformly over
all portfolios and converges to zero as that “crazy” amount goes to infinity. NFLVRC was
introduced by Delbaen and Schachermayer (1994) in order to prove a general version of
the FTAP. It can be further shown that if a free lunch with vanishing risk exists, we can
choose (Wπn

T )n∈N so that it converges P-a.s. to a [1, +∞]-valued random variable f which
will (necessarily) satisfy P[ f > 1] > 0—then, f is the free lunch and δn is the downside
risk of using the portfolio π n which vanishes to zero.

It is an easy exercise that NFLVRC implies both NAC and NUPBRC and we shall use
this fact later on—actually, NFLVRC ⇔ NAC + NUPBRC if C is a cone (see Karatzas
and Kardaras 2007). In general semimartingale models, none of the two conditions NAC

and NUPBRC implies the other, and they are not mutually exclusive; for exponential
Lévy markets and cone constraints we shall see that they are equivalent.
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3.2. Unbounded Increasing Profit

We now introduce yet another form of arbitrage—actually, the most egregious one:
existence of wealth processes that start with unit capital, manage to make something,
and are furthermore increasing.

DEFINITION 3.2. Let Č := ⋂
a>0 aC be the recession cone of C. A π ∈ �

Č
is said to

generate an unbounded increasing profit if Wπ is increasing, i.e., if P[Wπ
s ≤ Wπ

t , ∀0 ≤
s < t ≤ T] = 1, and if P[Wπ

T > 1] > 0. If no such portfolio exists we say that the no
unbounded increasing profit (NUIPC) condition holds.

The process Wπ is increasing if and only if π · X is increasing. The qualifier “un-
bounded” stems from the fact that since π ∈ �

Č
, one can invest as much as one wishes

on the strategy π ; by doing so, the agent’s wealth will be multiplied, and as the position
becomes arbitrarily large, the gains are unbounded.

The NUIPC condition is the weakest “no-free-lunch” notion of them all defined; both
NAC and NUPBRC obviously imply it. Amazingly (or not so amazingly—see Lemma
A.1) it turns out that in exponential Lévy markets and under cone constraints NUIPC is
equivalent to all previously-defined arbitrage notions. In other words, if any opportunities
for free lunches exist in exponential Lévy models, they are of the most egregious type:
unbounded increasing profits. Of course, the reason for this is the very special structure
of exponential Lévy models that makes many “optimal” portfolios (for example, the ones
that correspond to power utility functions) constant; this has been observed and known
since the work of Foldes (1991).

3.3. Immediate Arbitrage Opportunities

To obtain the connection of arbitrage—and especially the NUIPC condition—with
the Lévy triplet of X, we now give the definition of the immediate arbitrage opportunity
vectors.

DEFINITION 3.3. Let (b, c, ν) be any Lévy triplet. Define the set I of immediate
arbitrage opportunities to be the set of vectors ξ ∈ Rd\N such that the following three
conditions hold: (1) ξ�c = 0, (2) ν [ξ�x < 0] = 0, and (3) ξ�b − ∫

ξ�xI{|x|≤1}ν( dx) ≥ 0.

Observe that we are not considering null investments in the previous definition—a
ξ ∈ N satisfies the three conditions, but cannot be considered an “arbitrage opportunity”
since it has zero returns. It is easy to see that I is a cone with the whole “face” N removed.

As Lemma 3.5 subsequently will show, immediate arbitrage opportunities are constant
portfolios that result in increasing profits. It is instructive to give examples in two special
cases of Lévy processes, in order to also make comparison with previous work.

EXAMPLE 3.4. We first consider the multi-dimensional Samuelson-Black-Scholes-
Merton model, i.e., X t = bt + σβ t. Since ν ≡ 0, an immediate arbitrage opportunity is
a ξ ∈ Rd with ξ�c = 0 and ξ�b > 0. It then follows that absence of immediate arbitrage
opportunities is equivalent to the existence of ρ ∈ Rd such that b = cρ. The vector ρ

always exists if c is nonsingular.
Consider now a general one-stock exponential Lévy model, which we assume to be

nontrivial (in that X �= 0; here this is equivalent to N = {0}). When do immediate arbitrage
opportunities exist? Observe that if there exists a diffusion component, i.e., if c > 0, then
I = ∅ because (1) of Definition 3.3 fails for all ξ �= 0. If c = 0, then we only need to check
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(2) and (3) of Definition 3.3 for ξ = 1 and ξ = −1. Now, ξ = 1 is an immediate arbitrage
opportunity if ν [x < 0] = 0 and b − ∫

xI{|x|≤1}ν( dx) ≥ 0, and it is easy to see—or consult
Lemma 3.5 to convince yourselves—that this is the case if and only if X (equivalently,
the stock-price S) is increasing. Similarly, ξ = −1 is an immediate arbitrage opportunity
if and only if X, and equivalently S, is decreasing. We thus get exactly the condition that
appears in Cherny and Shiryaev (2002) and Jacubėnas (2002).

The following lemma explains the relevance of the above Definition 3.3 with arbitrage.

LEMMA 3.5. Suppose that I �= ∅. Then, ξ ∈ I if and only if W ξ is an increasing process
and P[Wξ

T > 1] > 0. Thus, if further ξ ∈ Č, then ξ is an unbounded increasing profit.

Proof. Suppose that I �= ∅ and pick ξ ∈ I. Condition (1) of Definition 3.3 implies
that ξ�β ≡ 0 and condition (2) that π��X ≥ 0; in particular, π�X will then be a Lévy
process of finite variation and we can write

ξ� Xt = t
(

ξ�b −
∫

Rd
ξ�xI{|x|≤1}ν( dx)

)
+

∫ t

0

∫
Rd

(ξ�x)μ( dx, dt).(3.1)

The last term
∫ t

0

∫
Rd (ξ�x)μ( dx, dt) is a pure-jump increasing process, and since ξ ∈ I

we have ξ�b − ∫
ξ�xI{|x|≤1}ν( dx) ≥ 0. Finally, since ξ /∈ N we must have that one of the

two processes in the right-hand side of (3.1) is nonzero; it follows that ξ�X is increasing
and nonzero, and thus Wξ = E(ξ� X) is increasing and nonconstant (P[Wξ

T > 1] > 0).
Let us now assume that for some ξ ∈ Rd we have W ξ being increasing; this is equivalent

to saying that ξ�X is increasing. But then it is of finite variation, thus ξ�β = 0, i.e.,
ξ�c = 0. Further, we must have ξ��X ≥ 0 which is of course equivalent to ν[ξ�x < 0] =
0. Finally, we can write ξ�X as in (3.1) and since ξ�X is increasing, the first term is
continuous (linear) and the second pure-jump we must have ξ�b − ∫

ξ�xI{|x|≤1}ν( dx) ≥
0. We have all three conditions of Definition 3.3, and finally if ξ�X is nonzero we must
have ξ /∈ N, which gives ξ ∈ I. �

3.4. Changes of Measure That Respect the Exponential Lévy Structure

Absence of free lunches in the market is connected to existence of probability mea-
sures that are equivalent to the original and endow the stock-price processes with some
martingale-type property. In the context of exponential Lévy models it is actually pos-
sible to change the original probability P in such a way so that the exponential Lévy
property remains intact. We now describe a way of doing so that will prove most useful
in the proof of Theorem 3.7.

Pick η ∈ Rd and then some g : Rd �→ R such that g(x) = 0 for |x| ≤ 1, as well as∫
e−η�x−g(x)I{|x|>1}ν( dx) < +∞—for example, this will hold for every η ∈ Rd if g is de-

fined by g(x) = 0 for |x| ≤ 1 and g(x) = |x|2 −1 for |x| > 1 (this is exactly the function g
we shall use in the sequel). The process Z(η,g) defined by

Z(η,g)
t := exp

⎛⎝−η� Xt −
∑

0<s≤t

g(�Xs) − tψ(η, g)

⎞⎠ ,(3.2)

for some constant ψ(η, g) is exponential Lévy and the exponential formula (1.4) give
us that ψ(η, g) := −η�b + 1

2η�cη + ∫
(e−η�x−g(x) − 1 + η�xI{|x|≤1})ν( dx) makes Z(η,g) a

martingale.
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Define then a new probability measure P (η,g) via ( dP (η,g)/ dP)|FT = Z(η,g)
T . Pick any

positive Borel-measurable functional � that acts on cádlág processes and observe that
for all 0 ≤ t ≤ T we have, with E(η,g) denoting expectation under P(η,g):

E(η,g)[�((Xt+s − Xt)0≤s≤T−t) | Ft] = E

[
Z(η,g)

T

Z(η,g)
t

�((Xt+s − Xt)0≤s≤T−t)

∣∣∣∣ Ft

]
= E[�̂((Xt+s − Xt)0≤s≤T−t) | Ft] = E[�̂((Xs)0≤s≤T−t)]

= E
[
Z(η,g)

T−t �((Xs)0≤s≤T−t)
] = E(η,g)[�((Xs)0≤s≤T−t)].

The functional �̂ above has obvious definition. It follows that X is still a Lévy process
under P (η,g). Since Z(η,g)

t eiu� Xt = exp[(iu − η)� Xt − ∑
0<s≤t g(�Xs) − tψ(η, g)], we have

E(η,g)[eiu� Xt
] = exp(t(ψ(η − iu, g) − ψ(η, g)));

thus, the cumulant φ(η,g) (the equivalent of (1.2) under the probability P(η,g)) sat-
isfies φ(η,g)(u) = ψ(η − iu, g) − ψ(η, g). Straightforward computations give the
Lévy triplet (b(η,g), c(η,g), ν(η,g)) of X under P(η,g) to be b(η,g) = b − cη + ∫

(e−η�x−g(x) −
1)xI{|x|≤1}ν( dx), c(η,g) = c and ν(η,g) = e−η�x−g(x)ν( dx). Definition 3.3, coupled with the
last equations involving the Lévy triplet of X under P(η,g), imply that the set I of immediate
arbitrage opportunities remains invariant when we change from P to P(η,g).

Let us finally remark that the transition from P to P(η,g) can be carried out in two
steps. First, we change P to P(0,g) “lightening” the tails of the Lévy measure using the
function e−g, which turns out to be exactly the Radon–Nikodym derivative of ν(0,g) (the
Lévy measure of X under P(0,g)) with respect to ν (the Lévy measure of X under P). As a
second step, we change P(0,g) to P(η,g), exponentially tilting P(0,g). This exponential tilting
method is also referred to as the Esscher transform.

3.5. No-Free-Lunch Equivalences for the Cone-Constrained Case

We are almost ready to present a complete characterization of the arbitrage situation in
exponential Lévy financial models for the finite-time horizon case and a constrained set C

that is a closed convex cone with N ⊆ C. There is one formal definition missing involving
the ability to change the original measure P to some other equivalent probability measure
Q such that the stock-price process, or possibly only the allowed wealth processes Wπ

for π ∈ �C, have some kind of martingale property under Q.
In the unconstrained case, the notion of an EMM (see Definition 3.6 later) does

the trick for our no-free-lunch equivalences, but in the presence of constraints this is no
longer the case. The reason is that free lunches are not allowed only for portfolios that take
values in C. Further, we cannot even hope that all wealth processes are martingales. Take
for example X to be the negative of a Poisson process and assume we are constrained in
the cone of positive strategies C = R+. Under any measure Q ∼ P, the process S = E(X)
will be nonincreasing and not identically equal zero, which prevents it from being (even a
local) martingale. It is a supermartingale though, and this turns out to be the appropriate
notion.

DEFINITION 3.6. A probability Q that is equivalent to P (we denote Q ∼ P) will be
called
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• EMM if the discounted stock-price S is a vector Q-martingale.
• C-constrained equivalent supermartingale measure (ESMMC in short) if the wealth

process Wπ is a Q-supermartingale for all π ∈ �C. The class of all ESMMC is
denoted by QC.

Stochastic integrals of martingales that are further positive processes are local martin-
gales; this has been shown by Ansel and Stricker (1994). Further, it is well-known that
positive local martingales are supermartingales. Thus, we get that an EMM a fortiori is
an ESMMC for any C; of course the opposite does not hold in general.

Even if C is just a convex set, it is easy to see that if an ESMMC exists then it is au-
tomatically an equivalent supermartingale measure for the market with cone constraints
cone(C), the closure of the smallest cone that contains C. Thus, if we want to prove any
theorem concerning equivalent supermartingale measures we might as well assume cone
constraints—the pure convex case is treated in the next section.

For exponential Lévy models, and even under the weakest of no-free-lunch conditions
(namely, NUIPC), not only can we find an ESMMC, but we can do so in a matter that
respects the exponential Lévy structure as was described in the previous section.

THEOREM 3.7. For an exponential Lévy model with closed convex cone constraints C on
a finite financial planning horizon [0, T ], the following are equivalent:

(1) There exists a Q ∼ P under which X remains a Lévy process and π�X is a Lévy
supermartingale for all π ∈ C.

(2) The ESMMC condition holds: QC �= ∅;
(3) The NFLVRC condition holds;
(4) The NAC condition holds;
(5) The NUPBRC condition holds;
(6) The NUIPC condition holds;
(7) I ∩ C = ∅.

Proof. The implication (1) ⇒ (2) is obvious: (1) is stronger than (2).
For (2) ⇒ (3), we have that Wπ for all π ∈ �C is a positive Q-supermartingale.

Consider a sequence (πn)n∈N of elements in �C that is a candidate for being a free
lunch with vanishing risk, i.e., suppose that there exists a sequence (δn)n∈N with
δn ↓ 0 and P[Wπn

T ≥ 1 − δn ] = 1. Then, for all ε > 0, (1 + ε)Q[Wπn
T > 1 + ε] + (1 −

δn)(1 − Q[Wπn
T > 1 + ε]) ≤ EQWπn

T ≤ 1, which by simple algebra manipulations implies
Q[Wπn

T > 1 + ε] ≤ δn/(ε + δn). The right-hand side of this last inequality converges to
zero as n tends to infinity; since P ∼ Q we have that limn→∞ P[Wπn

T > 1 + ε] = 0 as well,
and NFLVR holds.

The implications (3) ⇒ (4) and (3) ⇒ (5) are an easy exercise (use Definition 3.1), and
implications (4) ⇒ (6) and (5) ⇒ (6) are even easier.

Implication (6) ⇒ (7) is one direction of Lemma 3.5.
The cycle will be closed as soon as we prove (7) ⇒ (1), which is the harder

one. As mentioned in Section 1, we follow the idea of Rogers (1994), who ap-
plied it for discrete-time processes. Using the notation of the previous Section 3.4,
begin by changing the measure P into P(0,g), where g is defined by g(x) = 0 for
|x| ≤ 1 and g(x) = |x|2 −1 for |x| > 1. Then E(0,g)[exp(|XT|2)] < ∞; this is due to
the behavior of the tails of the Lévy measure ν(0,g) (in the notation of Section 3.4) under
P(0,g)—one can check for example Sato (1999) for matters like this. Since X is still a Lévy
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process under P(0,g) and I remains invariant under this change of measure we might as
well assume from the outset that E[exp(|XT|2)] < ∞ (i.e., P ≡ P(0,g)).

We proceed by considering the exponential utility function U(x) := 1 − e−x and
setting φ(p) := EU(p� XT) = 1 − E[e−p� XT ]. The function φ is real-valued (because
E exp(|XT|2) < ∞) and concave. Let φ∗ := supp∈C φ(p); since φ(p) = φ(p + ζ ) for ζ ∈ N,
nothing changes if we restrict this infimum on N⊥ (see Remark 2.4). Clearly, φ∗ ≥
φ(0) = 0.

We claim that if I = ∅, the supremum φ∗ is achieved by a point in N⊥ ∩ C. Otherwise,
there would exist a sequence (pn)n∈N in N⊥ ∩ C such that limn→∞ ↑ |pn| = +∞, φ(pn) ∈
R+ and limn→∞ φ(pn) = φ∗. Then, set ξ n := pn/|pn| and fix a ∈ R+; eventually, for all n
≥ na where na is large enough to satisfy a ≤ |pna |, we have aξn ∈ N⊥ ∩ C and φ(a ξ n) ≥
0 (the last follows from concavity of φ as soon as one remembers that φ(0) = 0 and
φ(p n) ≥ 0). Since (ξn)n∈N is a sequence of unit vectors in N⊥ ∩ C we can assume without
loss of generality that it converges to some unit vector ξ ∈ N⊥ ∩ C (choosing a subse-
quence otherwise). Since U (x) ≤ 1 for all x ∈ R, Fatou’s lemma is applicable and will
give

φ(aξ ) = EU
(
aξ� XT

) ≥ lim sup
n→∞

EU
(
aξ�

n XT
) = lim sup

n→∞
φ(aξn) ≥ 0.

In other words, E[(e−ξ� XT )a ] ≤ 1 for all a ∈ R+; this can only hold if P[ξ� XT ≥ 0] = 1.
Since ξ�X is a Lévy process, Lemma A.1 suggests that ξ�X is increasing; since ξ ∈
N⊥, Lemma 3.5 would finally give ξ ∈ I ∩ C, which is assumed empty. We reached a
contradiction to our assumption because we assumed that the supremum of φ is not
attained by any vector in N⊥ ∩ C. Thus, there exists η ∈ N⊥ ∩ C such that φ(η) = φ∗.

Now, pick any p ∈ C and observe that R+ � a �→ φ(η + ap) is concave in a ∈ R+ that
has a maximum at a = 0. It follows that

E

[
e−η� XT − e−(η+ap)� XT

a

]
= φ(η + ap) − φ(η)

a
≤ 0, for all a > 0.

The convexity of x �→ e−x implies that the expression inside the expectation above
is an increasing function of decreasing a; it is also clear that it converges P-a.s. to
e−η�XT p�XT as a ↓ 0. Since φ is finite-valued, we can use the monotone convergence
theorem to get E[e−η�XT p�XT] ≤ 0. In other words, defining P(η,0) as in Section 3.4 we
get E(η,0)[p� XT] ≤ 0 for all p ∈ C. This means that p�X is a Lévy supermartingale for all
p ∈ C. �

REMARK 3.8 (On the Unconstrained Case). Recall from Remark 2.3 the natural
constraints set C0. Then If C0 ⊆ C, i.e., in the unconstrained case, then one can replace
conditions (1) and (2) of Theorem 3.7 above by

(1′) There exists Q ∼ P under which X is a Lévy martingale and S a martingale.
(2′) An EMM exists.

Indeed (1′) ⇒ (2′) is obvious, while (1) ⇒ (1′) follows like this: p�X being a Q-martingale
for all p ∈ Rd means that X is a Q-martingale. Then, each Si, i = 1, . . . , d is a positive local
martingale; the exponential formula (1.4) gives EQST = S0, i.e., that S is a martingale.

REMARK 3.9 (Martingale vs. σ -Martingale Measures). In their seminar work, Delbaen
and Schachermayer (1998) have showed that in a general semimartingale model in the
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unconstrained case and a possibly nonlocally bounded asset-price process S, the NFLVR
condition is equivalent to existence of some Q ∼ P such that S is a σ -martingale under
Q (which basically means that we can write S as a stochastic integral of a martingale).

For exponential Lévy markets, it turns out from the previous remark that any of our
no-free-lunch conditions is equivalent to the existence of an EMM. There has been work
from some authors (we mention for example Cherny 2005 and Yan 1998) on establishing
a version of the FTAP in which no-free-lunch criteria are equivalent to the existence of an
EMM, instead of simply a σ -martingale one. Obviously, these no-free-lunch criteria are
equivalent to the ones mentioned in Theorem 3.7. In particular, Yan’s work (1998) allows
us to conclude that we can enlarge the class of strategies that agents can use. Indeed, any
predictable process θ (where now θ i

t is perceived as the units of asset i that is held by the
agent at time t) such that θ · S ≥ −a(1 + ∑d

i=1 Si ) for some a > 0 is allowed, and will
not lead to free lunch.

REMARK 3.10 (On Exponential Utility Maximization). The ESMMC Q in the proof
of equivalence (7) ⇒ (1) in Theorem 3.7 above is constructed via exponential utility
maximization in the financial market where the “original” probability measure is P(0,g).
We are not able to use directly P because E[ep� XT ] might be infinite for some p ∈ C; in case
E[ep� XT ] < ∞ for all p ∈ C we can proceed with the proof and the measure Q = P(η,0)

that we end up with is the minimal entropy martingale measure. The theme has received
a lot of attention; let us just mention here that it has been treated by Fujiwara and
Miyahara (2003) and recently by Esche and Schweizer (2005), as well as Hubalek and
Sgarra (2006).

Nevertheless, if E[ep� XT ] could take possibly infinite values, things are slightly
more complicated. In that case, we can still find an optimal vector η ∈ C such that
E[U(η� XT)] ≥ E[U(p� XT)] for all p ∈ C (under the assumption I = ∅, of course), but
we cannot conclude that P(η,0) is an equivalent martingale measure. Take for example an un-
constrained, one-stock exponential Lévy model with c = 0 and Lévy measure ν of the form
ν(dx) = f (x) dx with f (x) > 0 for all x ≥ 1 (so that I = ∅), and (i)

∫
eaxI{x>1} f (x) dx = ∞

for all a > 0, (ii)
∫

xI{x>1} f (x) dx < ∞, and (iii) b + ∫
xI{x>1} f (x) dx < 0. An example

of such density f satisfies f (x) ∼ x−p as x → ∞ for some p > 2; then (i) and (ii) hold
automatically and an appropriate choice of small enough b will ensure (iii) as well. Now,
with φ(p) := 1 − Ee−pXT we have φ(p) = −∞ for all p < 0, and a simple use of Jensen’s
inequality gives φ(p) < 0 = φ(0) for all p > 0 (because by (iii) we have E[pXT] < 0 for
p > 0). It follows that the optimal portfolio is η = 0; this gives us Q = P, which is not an
equivalent martingale measure, since EXT < 0 by (iii). Observe nevertheless that it is an
ESMM, and it can be shown that it will always be—this is not just a coincidence here.

3.6. Completeness

Though not our main concern, we give here a characterization of completeness (the
ability to perfectly replicate any bounded contingent claim) in exponential Lévy markets.
We do not provide full details—we trust they can be filled by the reader. We note however
that the weak martingale representation property for the filtration generated by a Lévy
process as described for example in Jacod and Shiryaev (2003) will have to be used.

DEFINITION 3.11. The exponential Lévy market in a finite-time horizon [0, T ] is called
complete if for all positive and bounded H ∈ FT one can find π ∈ � and x > 0 such that
xWπ

T = H.
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In order to talk about completeness one should better assume that we are in the
unconstrained case C = Rd (thus the absence of a subscript from � in the definition
above), and that the filtration F is the usual augmentation of the one generated by S, or
equivalently of the one generated by X. These conditions are in force for this section.

We decompose Rd = K ⊕ K⊥, where K := {x ∈ Rd | cx = 0} is the kernel of the covari-
ance matrix c and K⊥ is its orthogonal complement, and we denote by k the dimension
of the linear subspace K. We also denote by supp(ν) the support of the measure ν, i.e., the
smallest closed subset of Rd that ν gives full measure.

PROPOSITION 3.12. With the assumptions and notation set above (in particular, C = Rd )
and an exponential Lévy market on a finite-time horizon [0, T ], suppose that the model
satisfies any (and thus all) of the equivalent conditions of Theorem 3.7. The following are
equivalent:

(1) The exponential Lévy model is complete.
(2) There exists a unique EMM Q.

(3) We have (i) supp(ν) ⊆ K, (ii) supp(ν) contains at most k points.

One can start directly from the exponential Lévy model and not assume that it satisfies
the equivalent conditions of Theorem 3.7. In that case, (1) should be substituted with
(1′) The exponential Lévy model satisfies any of the conditions of Theorem 3.7 and
is complete. Implication (2) remains the same, while for (3) we have to add an extra
requirement (3 iii) appearing later. To prepare the ground, notice that if (3) holds, and
with XK denoting the orthogonal projection of X on K, we have XK

t = at + ∑Nt
n=1 Yn , for

a ∈ K, N a Poisson process with some arrival rate λ > 0, and (Yn)n∈N a sequence of i.i.d.
(and independent of N) random variables with simple discrete distributions charging less
than k points on K. Condition I = ∅ of Theorem 3.7 is now equivalent to the following:
(3 iii) if ξ ∈ K satisfies ξ�a ≥ 0 and ξ�x ≥ 0 for all x ∈ supp(ν), then we actually have ξ�a
= 0 and ξ�x = 0 for all x ∈ supp(ν).

4. THE NUMÉRAIRE PORTFOLIO, SUPERMARTINGALE
DEFLATORS, AND NO-FREE-LUNCH EQUIVALENCES

FOR CONVEX-CONSTRAINED MODELS

In this section, we aim in extending the scope of Theorem 3.7 to the convex-constrained
case. As a byproduct we shall obtain even more equivalences for the cone-constrained and
unconstrained case than the ones covered by Theorem 3.7. We introduce a very special
portfolio that will help us do that. As discussed in Remark 3.10, in the course of proving
Theorem 3.7 we used the optimal portfolio for exponential utility for a possibly changed
probability measure; vis-à-vis, here we shall use the optimal portfolio for logarithmic
utility under the original measure P. This will enable us to prove equivalences valid under
closed and convex—but not necessarily cone—constraints; more importantly, it is exactly
this result that allows for generalization in general semimartingale models. The drawback
is that we have to work harder; part of the proof of the main result here (Theorem 4.5)
is more technical and long, and will be the focus of the next section—this contrasts the
(fair) easiness of the proof of Theorem 3.7. After the work is done, we continue the story
in Karatzas and Kardaras (2007) for the semimartingale case.
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4.1. The Inadequacy of Equivalent Supermartingale Measures

As soon as we face nonconic convex constraints, the NAC—or even NFLVRC—
condition is not any more sufficient to imply existence of an equivalent supermartingale
measure.

EXAMPLE 4.1. We take X be a two-dimensional compound Poisson process, i.e.,
Xt = ∑Nt

i=1 Yi , for t ∈ [0, T ], where N is a standard Poisson process and Y i is a sequence
of two-dimensional independent and identically distributed random variables with
Y i = (ei, f i −1), ei and f i being independent with a standard exponential distribu-
tion (we only use the fact that they are independent and their distributions are supported
on the positive half-line—even less is needed as the reader will note). Of course, in the
unconstrained case there is clear arbitrage: take a strict long position in the first stock and
null position on the second. Consider now the constraints set C := {(x, y) ∈ R2 | x2 ≤ y},
i.e., only points on and above the parabola y = x2 are allowed for investing. We claim
that NFLVRC holds, but no ESMMC exists.

To see that no ESMMC exists is easy: we have already noted that if it did it should
already be an equivalent supermartingale measure for the market with constraints
cone(C) = R+ × R; the latter is clearly impossible, since there is arbitrage.

In the process of showing that no free lunches exist for the C-constrained market,
we use the following observation: for p ≡ (x, y) ∈ C\{0} it must be that y > 0 (due to
the constraints y = 0 ⇒ x = 0); also, since P[e1 > 0] = 1, we have xe1 + y( f1 − 1) ≤√

ye1 + y( f1 − 1). Then, P[p��Y1 < 0] ≥ P[e1 <
√

y(1 − f1)] > 0; this should already
give you a hint why no C-constrained arbitrage exists.

We now show that NAC holds. Pick any portfolio π ∈ �C that is supposed to generate
an arbitrage and define τ := inf{t ∈ [0, T] | �Wπ

t �= 0}, where we set τ = T when the
set that we are taking the infimum is empty. It is obvious that τ is an F-stopping time;
actually, with τn := inf{t ∈ R+ | Nt = n} denoting the nth jump of N, we have {τ =
τn} = {πτk = 0 for all k < n, πτn �= 0} ∈ Fτn−, a fact that will be important. Now, {τ
= T} ⊆ {Wπ

T = 1}, thus if P[τ = T] = 1 we have P[Wπ
T = 1] = 1 and π is not an

arbitrage. Suppose then that P[τ < T] > 0; we shall show that P[Wπ
T < 1, τ < T] >

0, and then NAC readily follows. Define the second time that a wealth readjustment
happens τ ′ := inf{t ∈ (τ, T] | �Wπ

t �= 0}, where again we set τ ′ = T if the last set is
empty. τ ′ is an F-stopping time and we have P[Wπ

T < 1] ≥ P[Wπ
T < 1, τ < T, τ ′ = T] =

P[π�
τ �Xτ < 0, τ < T, τ ′ = T]. Since {τ = τn} ∈ Fτn−, Lemmata A.2 and A.3 in the

Appendix give that πτ ∈ Fτ− is independent of �X τ and that the latter jump is distributed
as Y 1. On {τ < T} we have πτ ∈ C\{0}; the observation made in the previous paragraph
coupled with the trivial fact P[τ < T, τ ′ = T] > 0 imply P[π�

τ �Xτ < 0, τ < T, τ ′ =
T] > 0, and thus P[Wπ

T < 1] > 0. We conclude that NAC holds for this constrained
market.

The fact that NAC holds implies that actually NFLVRC holds as well. The reason is
that finite-time-horizon compound-Poisson-process models are equivalent to discrete-
time models with a stochastic, but finite-time horizon; for discrete-time models, it is not
hard to see that NFLVRC is equivalent to the generally weaker NAC (this is no longer
true for infinite-time horizon models).

4.2. The Numéraire Portfolio

The following concept will prove crucial.
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DEFINITION 4.2. A portfolio ρ ∈ �C will be called numéraire portfolio for the class
�C, if for every other π ∈ �C the relative wealth process Wπ/Wρ is a supermartingale.

The reader is referred to Becherer (2001) for the definition and more on this concept.
The numéraire portfolio has many optimality properties; you can check Karatzas and
Kardaras (2007), where an extensive discussion on the existence of the numéraire portfolio
for general semimartingale models and its relationship with free lunches is taking place.

EXAMPLE 4.3. The numéraire portfolio exists and is equal to zero if and only if all
wealth processes Wπ for π ∈ �C are P-supermartingales. This is a trivial example, but
it will find use in Theorem 4.7 where arbitrage in infinite-time horizon exponential Lévy
markets is studied.

4.3. Equivalent Supermartingale Deflators

We now introduce a concept that is weaker—but very closely related—to equivalent
supermartingale measures. Let us assume that the numéraire portfolio exists; by way
of definition, the process (Wρ)−1 acts as a “deflator,” under which all wealth processes
Wπ for π ∈ �C become supermartingales. There are more processes sharing this last
property.

DEFINITION 4.4. A C-constrained equivalent supermartingale deflator (ESMDC) is a
process D with D0 = 1, DT > 0 and such that DWπ is a supermartingale for all π ∈ �C.

The class of all ESMDC’s is denoted by DC.

An ESMMC (say, Q) generates an ESMDC D via the positive martingale Dt =
( dQ/ dP)|Ft , for t ∈ [0, T ], so that QC �= ∅ ⇒ DC �= ∅. The reverse implication
DC �= ∅ ⇒ QC �= ∅ does not hold in general as a simple example involving the noto-
rious three-dimensional Bessel process shows; see Delbaen and Schachermayer (1995).
Nevertheless, for exponential Lévy models and under cone constraints we shall soon see
that DC �= ∅ ⇒ QC �= ∅ does hold.

4.4. The Main Result

Here is the result that puts the numéraire portfolio in the context of arbitrage. The dif-
ficult implication below is (5) ⇒ (1) and will be the result of discussion in the subsequent
subsections and the following Section 5.

THEOREM 4.5. For an exponential Lévy model under closed convex constraints C ⊆ Rd

on a finite-time horizon [0, T ], the following are equivalent:

(1) The numéraire portfolio exists in the class �C.

(2) An ESMDC exists: DC �= ∅.

(3) The NUPBRC condition holds.
(4) The NUIPC condition holds.
(5) I ∩ Č = ∅.

If C is further a cone (C = Č), (1) and (2) above are equivalent to all conditions of
Theorem 3.7.

Proof. The implication (1) ⇒ (2) is trivial: (Wρ)−1 is an element of DC.
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Now, for the implication (2) ⇒ (3), start by assuming that DC �= ∅ and pick an element
D ∈ DC. We wish to show that {Wπ

T | π ∈ �C} is bounded in probability. Since DT > 0,
this is equivalent to showing that {DTWπ

T | π ∈ �C} is bounded in probability. This easily
follows from the fact that DWπ for π ∈ �C are positive supermartingales with D0Wπ

0 =
1 and so, for all m > 0, supπ∈�C

P[DT Wπ
T > m] ≤ m−1 supπ∈�C

E[DTWπ
T ] ≤ m−1.

The implication (3) ⇒ (4) is (as already noticed) trivial.
For (4) ⇒ (5), if I ∩ Č �= ∅ then Lemma 3.5 shows that NUIPC fails.
The implication (5) ⇒ (1) is significantly harder; after some preparation in the sequel,

its proof will be the context of Lemma 5.1 in the next section.
Finally, the claim for the further equivalences in the cone-constrained case is

obvious. �

REMARK 4.6. Unless C is a cone, the conditions of Theorem 4.5 are not equivalent to
NAC in general. Actually, an increasing (but not unbounded) profit might exist. Indeed, in
the context of Example 4.1 consider the constraints set C = [0, 1] × [0, 1]. Since Č = {0},
NUIPC trivially holds, but of course π = (1, 0) ∈ C is an increasing profit.

4.5. No-Free-Lunch Equivalences in the Infinite-Time Horizon Case

The situation for infinite-time horizon exponential Lévy models is drastically differ-
ent than what we have seen in Theorems 3.7 and 4.5. It turns out that we can always
construct free lunches (albeit not increasing profit necessarily) unless the original mea-
sure P is supermartingale measure, meaning that Wπ is a P-supermartingale for all
π ∈ �C.

Previous definitions on free lunches, equivalent (super)martingale measures and de-
flators can be read for infinite-time horizons by plugging T = +∞; the terminal wealths
Wπ

T in Definition 3.1 have to be replaced by Wπ
∞ = limt→∞Wπ

t , where we assume that
this last limit exists P-a.s. (this is for example the case when π is supported on a stochastic
interval [[0, τ ]], where τ is a P-a.s. finite stopping time).

THEOREM 4.7. For an exponential Lévy stock-price model under closed convex con-
straints C ⊆ Rd on an infinite-time horizon, the following are equivalent:

(1) Wπ is a P-supermartingale for all π ∈ �C.

(2) An ESMMC exists: QC �= ∅;
(3) An ESMDC exists: DC �= ∅;
(4) The NFLVRC condition holds;
(5) The NUPBRC condition holds;
(6) The NAC condition holds.

REMARK 4.8. Even though there is no direct reference to a condition involving the
Lévy triplet (b, c, ν) as there was in Theorems 3.7 and 4.5 for finite-time horizons,
observe that actually condition (1) of Theorem 4.7 is one. Indeed, in order for P to
be such that Wπ is a P-supermartingale for all π ∈ �C it is necessary and sufficient
that E[p� X1] ≤ 0 (this does not mean that p�X 1 is integrable—just that the positive
part is integrable) for all p ∈ C ∩ C0. In other words, for every p ∈ C ∩ C0 we must have
p�b + ∫

p�xI{|x|>1}ν( dx) ≤ 0.
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Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) and (4) ⇒ (6) are all trivial. We
only prove (5) ⇒ (1) and (6) ⇒ (1) below by showing that if P is not a supermartingale
measure, both NUPBRC and NAC fail.

Assume then that P is not a supermartingale measure. If I ∩ Č �= ∅, then NUIPC fails
and so both NUPBRC and NAC will fail. On the other hand, if I ∩ Č = ∅, the numéraire
portfolio exists: it is a constant portfolio ρ that gives rise to a positive supermartingale
(Wρ)−1. We know that (Wρ

∞)−1 := limt→∞(Wρ
t )−1 exists P-a.s. in R+. We actually claim

that (Wρ
∞)−1 = 0. Indeed, the fact that this limit is a constant follows from Kolmogorov’s

0-1 law for the Lévy process Lρ := log Wρ ; but we can only have Lρ
∞ = +∞, for

otherwise Lρ would be a Lévy process with finite limit at infinity, which cannot happen
unless it is constant through time, and this would mean Wρ ≡ 1, or ρ ∈ N, which
cannot happen unless P is a supermartingale measure (see Example 4.3) and we are
working under the assumption that it is not. Now, the fact Wρ

∞ = ∞ allows us to
construct portfolios πn ∈ �C by requiring πn := ρI[[0,τn ]], where τ n is the finite stopping
time τn := inf{t ∈ R+ | Wρ

t ≥ n}. Then, Wπn∞ ≥ n and both conditions NUPBRC and
NAC fail. �

REMARK 4.9 (On the One-Dimensional, Unconstrained Case). For the infinite-time
horizon case, Selivanov (2005) shows that if d = 1 and C = Rd , then NFLVR is equivalent
to the following: either (1) S is a P-martingale, or (2) S is a P-supermartingale and the
jumps of S are locally unbounded above. We can actually get this result from Theorem
4.7: if the jumps of S are locally bounded above (equivalently, the jumps of X are bounded
above) we have that 0 belongs to the relative interior of the natural constraints C0. From
Remark 4.8 this would mean that both E[X1] ≤ 0 and E[−X1] ≤ 0, which means that X,
and thus S, is a P-martingale.

4.6. Relative Rate of Return

In order to figure out whether a constant vector ρ ∈ C is the numéraire portfolio we
should (at least) check that Wπ/Wρ is a supermartingale for all other constant π ∈ C.
This is seemingly weaker than the requirement of Definition 4.2, but the two will actually
turn out to be equivalent.

Since for all π and ρ vectors in C we have that Wπ and Wρ are exponential Lévy process
we get that the log-relative-wealth-process Lπ |ρ := log (Wπ/Wρ) is a Lévy process itself.
The exponential formula (1.4) implies that E[Wπ

T /Wρ

T ] = E exp(Lπ |ρ
T ) = exp(Trel(π |

ρ)), where straightforward computations lead us to set

rel(π | ρ) := (π − ρ)�b − (π − ρ)�cρ

+
∫ [

(π − ρ)�x
1 + ρ�x

− (π − ρ)�xI{|x|≤1}

]
ν( dx)

.

(4.1)

The quantity rel(π | ρ) is the relative rate of return of π with respect to ρ.
The integrand appearing in (4.1) is equal to (1 + π�x)/(1 + ρ�x) − 1 − (π −

ρ)�xI{|x|≤1}; this quantity is bounded from below by −1 on {|x| > 1} for the Lévy
measure ν, while on {|x| ≤ 1} behaves like (ρ − π )�xx�ρ, which is comparable to |x|2.
It follows that the integral always makes sense, but can take the value +∞. In any case,
the quantity rel(π | ρ) of (4.1) is well-defined.

The relative wealth process Wπ/Wρ is a supermartingale if and only if E[Wπ
T /Wρ

T ] ≤ 1,
equivalently if rel(π | ρ) ≤ 0. We remark that this result extends to the case where
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π (and ρ) are nonconstant predictable processes in �C; the reason being that the pre-
dictable finite variation part of Wπ/Wρ = exp(Lπ |ρ)—given that it is a special semi-
martingale and admits a Doob–Meyer decomposition—is

∫ ·
0 exp(Lπ |ρ

t− )rel(πt | ρt) dt; one
can check this directly or refer to Karatzas and Kardaras (2007). The previous discussion
proves the following.

LEMMA 4.10. In order for a constant vector ρ ∈ C to be the numéraire portfolio in the
class �C it is necessary and sufficient that rel(π | ρ) ≤ 0 for every π ∈ C.

It follows then that in order to prove the implication (5) ⇒ (1) in Theorem 4.5 it suffices
to show that I ∩ Č = ∅ implies that there exists a ρ ∈ C such that rel(π | ρ) ≤ 0 for every
π ∈ C; this is taken on in Lemma 5.1.

4.7. The Growth-Optimal Portfolio

In this subsection we continue towards the goal to construct the numéraire portfolio
via the Lévy triplet (b, c, ν) in case I ∩ Č = ∅, using the fact that it is essentially equal
to the growth-optimal portfolio, which has been studied in Algoet and Cover (1988) in a
general discrete-time setting. Take a constant portfolio π ∈ �C; its growth rate is defined
as the drift rate of the log-wealth process log Wπ . Since log Wπ is a Lévy process, one
can use (1.3) and formally (since it will not always exist) compute the growth rate of π

to be

g(π ) := π�b − 1
2
π�cπ +

∫ [
log(1 + π�x) − π�xI{|x|≤1}

]
ν( dx).(4.2)

It turns out that the numéraire portfolio and the growth-optimal portfolio (defined as
the one that maximizes the growth rate (4.2) over all portfolios) are essentially the same.

EXAMPLE 4.11. We consider the Samuelson–Black–Scholes–Merton model X t =
bt + σβ t, in the unconstrained case C = Rd . According to Example 3.4 we have I = ∅
if and only if there exists ρ ∈ Rd such that b = cρ (which always holds if c = σσ� is
nonsingular). The derivative of the growth rate is (∇g)π = b − cπ , and it is trivially zero
for π ≡ ρ, which is the numéraire portfolio.

Let us describe in more generality the connection between the numéraire and the
growth-optimal portfolio, being somewhat informal for the moment: a vector ρ ∈ C

maximizes this concave function g if and only if the directional derivative of g at the
point ρ in the direction of π − ρ is negative for any π ∈ �. One can use (4.2) to compute
(∇g)ρ(π − ρ) and it is straightforward to see that it turns out to be exactly rel(π | ρ) of
(4.1).

Let us try now to be a little more formal. We do not know if we can differentiate under
the integral appearing in equation (4.2). Even more to the point, we do not know a priori
whether the integral is well-defined: both its positive and negative parts could be infinite.
Nonintegrability of the negative part is not too severe, since one wants to maximize g: if
a portfolio π results in an integrand whose negative part integrates to infinity, all vectors
aπ for a ∈ [0, 1) will lead to a finite result. More problematic is the fact that the positive
part can integrate to infinity, especially when one notices that if this happens for at least
one vector π ∈ C, concavity will imply that it happens for many vectors—actually for
all vectors in the relative interior of C, with the possible exception of those of the form
−aπ for a > 0. This problem is related to the one when the expected log-utility is infinite
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and one cannot find a unique solution to the log-utility maximization problem—see the
next Section 4.8.

In the spirit of the above discussion, let us describe a class of Lévy measures for which
the concave growth rate function g(·) of (4.2) is well-defined.

DEFINITION 4.12. A Lévy measure ν integrates the log, if
∫

log(1 + |x|)I{|x|>1}ν( dx) <

∞. For any Lévy measure ν, a sequence (νn)n∈N of Lévy measures that integrate the log
with νn ∼ ν, whose densities f n := dνn/dν satisfy 0 < f n ≤ 1, f n(x) = 1 for |x| ≤ 1, and
limn→∞ ↑ fn = I, will be called an approximating sequence.

One specific choice for the densities appearing in the definition of approximating
sequence is fn(x) = I{|x|≤1} + |x|−1/nI{|x|>1}. The sets C0, N and I remain unchanged if we
move from the original triplet to any of the approximating triplets, thus I(b, c, ν) ∩ Č = ∅
if and only if I(b, c, νn) ∩ Č = ∅ for all n ∈ N.

The problem of the positive infinite value for the integral appearing in equation (4.2)
disappears when the Lévy measure ν integrates the log, and the growth-optimal portfolio
is also the numéraire portfolio. In the general case, where ν might not integrate the log,
our strategy will be the following: solve the optimization problem concerning g for a
sequence of problems using the approximation described in Definition 4.12, and then
show that the corresponding solutions converge to the solution of the original problem.

REMARK 4.13. Even in the unconstrained case the supermartingale deflator corre-
sponding to the numéraire portfolio need not be a martingale, and can in fact be a strict
supermartingale. Of course, the importance of supermartingales in utility maximization
(after all, we are basically dealing with log-utility here) has been recognized by Kramkov
and Schachermayer (1999). Hurd (2004) gives a treatment of log-utility in exponential
Lévy models. For completeness, we give in the next paragraph an elementary example to
illustrate what can go wrong.

Take a one-dimensional Lévy process with X with b = 1, c = 0 and ν( dx) = (1 +
x)I(−1,1](x) dx. One can easily check that C0 = [−1, 1] and that g′ (the derivative of g) is
decreasing in π ∈ (−1, 1) with g′(−1) = +∞ and g′(1) = 1/3. The numéraire portfolio is
ρ = 1 and (Wρ)−1 is a strict Lévy supermartingale, since rel(0 | 1) = −g′(1) = −1/3 < 0.

The above fact gives some justice to the Esscher transform method in the proof
of Theorem 3.7, which provides us with a probability measure. The situation should
be contrasted to the continuous-path case of Example 4.11 where, in the absence of
constraints, (Wρ)−1 is a martingale. We also see that we cannot expect to be able in general
to compute the numéraire portfolio just by naively trying to solve ∇g(ρ) = rel(0 | ρ) = 0.

4.8. Relative Log-Optimality and the Numéraire Portfolio

We rush through the (well-understood) relevance of the numéraire portfolio with
the relatively log-optimal, i.e., a portfolio ρ ∈ �C such that E[log(Wπ

T /Wρ

T )] ≤ 0 (we
tacitly assume that E log+(Wπ

T /Wρ

T ) < ∞), for every π ∈ �C. A treatment for the general
semimartingale case is given in Karatzas and Kardaras (2007).

If the numéraire portfolio ρ exists, then for any other π ∈ �C we have E[Wπ
T /Wρ

T ] ≤ 1;
applying Jensen’s inequality we get E log(Wπ

T /Wρ

T ) ≤ 0, i.e., that ρ is relatively log-
optimal.

Now, suppose that the numéraire portfolio does not exist—according to Theorem
4.5, this means that we can pick ξ ∈ I ∩ Č �= ∅. For any ρ ∈ �C, we have ρ + ξ ∈ �C
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as well; simple computations, using the fact that ξ ∈ I, give that the relative-log-ratio
log (Wρ+ξ

T /Wρ
T ) is equal to (ξ�b − ∫

ξ�xI{|x|≤1}ν( dx))T + ∑
0≤t≤T log[1 + ξ��Xt/(1 +

ρ�
t �Xt)], which by Definition 3.3 of immediate arbitrage opportunities is positive, with

positive probability of being strictly positive; this implies E log(Wρ+ξ

T /Wρ

T ) > 0. Thus,
if the numéraire portfolio does not exist, a relative-log-optimal portfolio cannot exist
either.

The somewhat amazing conclusion from the above discussion is that for ρ ∈ �C we
have the following equivalence:

log
(

E
Wπ

T

Wρ

T

)
≤ 0, for all π ∈ �C ⇐⇒ E log

(
Wπ

T

Wρ

T

)
≤ 0, for all π ∈ �C.

Of course, Jensen’s inequality gives direction ⇒ for any portfolios π and ρ in �C; the
opposite direction ⇐ fails in general for any π and ρ in �C — it will hold for all π ∈ �C

if we fix the specific ρ that makes all expectations of the relative log-wealth process
nonpositive.

If for the relative log-optimal portfolio ρ we have E log Wρ

T < ∞, then ρ also is the
unique log-optimal portfolio. If E log Wρ

T = ∞, the log-utility maximization problem
has an infinite number of solutions. For an example where this happens take a one-
dimensional Lévy process with b = c = 0 and a Lévy measure with density ν( dx)/ dx =
I(−1,1](x) + x−1(log(1 + x))−2I[1,∞)(x)—we have C0 = [0, 1] and it is easy to check that
E[log Wπ

T ] = ∞ for all π ∈ (0, 1). For this example, the problem of maximizing expected
log-utility does not have unique solution. Of course, the numéraire and relatively log-
optimal portfolios exist and will be unique (and the same).

5. FINISHING THE PROOF OF THEOREM 4.5

The focus of this section is the proof of the following Lemma 5.1 which will complete the
proof of Theorem 4.5. We state it separately of everything else because it will also find
good use in Karatzas and Kardaras (2007).

LEMMA 5.1. Let (b, c, ν) be a Lévy triplet and C a closed convex subset of Rd . Then,
I ∩ Č = ∅ if and only if there exists a unique vector ρ ∈ C ∩ N⊥ with ν [ρ�x ≤ −1] = 0
such that rel(π | ρ) ≤ 0 for all π ∈ C.

If ν integrates the log, the vector ρ above is characterized as ρ = arg maxπ∈C∩N⊥ g(π ).
In general, ρ is the limit of solutions to a series of problems, in which ν is replaced by a
sequence of approximating measures.

Although it will come as a result of Theorem 4.5, let us give a quick proof of the fact
that if I ∩ Č �= ∅ then one cannot find a ρ ∈ C such that rel(π | ρ) ≤ 0 for all π ∈ C.
To this end, pick a vector ξ ∈ I ∩ Č �= ∅, and suppose that ρ satisfied rel(π | ρ) ≤ 0,
for all π ∈ C. Since ξ ∈ Č, we have nξ ∈ C for all n ∈ N and the convex combination
(1 − n−1)ρ + ξ ∈ C too; but C is closed, and so ρ + ξ ∈ C. Easy computations show
that rel(ρ + ξ | ρ) is equal to ξ�b − ∫

ξ�xI{|x|≤1}ν( dx) + ∫
[ξ�x/(1 + ρ�x)]ν( dx); this is

strictly positive quantity from the definition of ξ . This is a contradiction to ρ satisfying
rel(π | ρ) ≤ 0 for all π ∈ C.

We want to prove the converse; namely, if I ∩ Č = ∅, then one can find a ρ that
satisfies the requirement of Lemma 5.1—Sections 5.1 and 5.2 are devoted to the proof of
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this. In the process we shall need the following simple characterization of the condition
I ∩ Č �= ∅:

LEMMA 5.2. If C ⊆ C0 and ξ ∈ Č\N, then ξ ∈ I if and only if rel(0 | aξ ) ≤ 0 for all
a ∈ R+.

Proof. The fact that ξ ∈ I ∩ Č implies rel(0 | aξ ) ≤ 0 for all a ∈ R+ is trivial.
For the converse, let ξ ∈ Č\N satisfy rel(0 | aξ ) ≤ 0 for all a ∈ R+; we wish to show

that ξ ∈ I. The second condition of Definition 3.3 is readily satisfied, since we assume
that C contains the natural constraints. Now, for all a ∈ R+, we have −a−1rel(0 | aξ ) ≥ 0;
writing this down gives ξ�b − aξ�cξ + ∫

[ξ�x/(1 + aξ�x) − ξ�xI{|x|≤1}]ν( dx) ≥ 0. Ob-
serve that the integrand ξ�x/(1 + aξ�x) − ξ�xI{|x|≤1} is ν-integrable and decreasing in a
(remember that ν[ξ�x < 0] = 0), so we must have ξ�c = 0 (condition (1) of Definition
3.3), which now implies that ξ�b + ∫

[ξ�x/(1 + aξ�x) − ξ�xI{|x|≤1}]ν( dx) ≥ 0. Letting
a → ∞ and using the dominated convergence theorem and we get condition (3) of Defi-
nition 3.3, namely, ξ�b − ∫

ξ�xI{|x|≤1}ν( dx) ≥ 0. �
We make one more observation. On several occasions during the course of the proof

we shall use Fatou’s lemma in the following form: if we are given a finite measure κ and
a sequence (vn)n∈N of Borel-measurable functions that are κ-uniformly bounded from
below, then

∫
lim infn→∞ vn(x)κ( dx) ≤ lim infn→∞

∫
vn(x)κ( dx). The finite measures κ

that we shall consider will be of the form (|x| ∧ k)2
ν( dx), where k ∈ R+ and ν is our Lévy

measure.
We can now proceed with the proof of the sufficiency of the condition I ∩ Č = ∅ in

solving rel(π | ρ) ≤ 0. We shall first do so for the case of a Lévy measure that integrates
the log, then extend to the general case. Throughout the course of the proof we shall be
assuming that C ⊆ C0; otherwise, replace C by C ∩ C0.

5.1. Proof of Lemma 5.1 for a Lévy Measure That Integrates the Log

We are trying to show (1) ⇒ (2) of Lemma 5.1, so let us assume I ∩ Č = ∅. For this
subsection we also make the assumption

∫
{|x|>1} log(1 + |x|)ν( dx) < ∞.

Recall from Section 4.7 the growth rate function g of (4.2). This is a concave function
on C, it is well-defined, in the sense that we always have g(π ) < +∞ for π ∈ C and upper
semi-continuous on C (the last two facts follow because ν integrates the log). Of course,
g can take the value −∞ on the boundary of C.

We set g∗ := supπ∈C g(π ), and let (ρn)n∈N be a sequence of vectors in C with
limn→∞ g(ρn) = g∗. Since for any π ∈ C and any ζ ∈ N we have g(π + ζ ) = g(π ), we
can choose the sequence ρn to take values on the subspace N⊥ (it would be useful to
recall the discussion of Remark 2.4).

We first want to show that the sequence (ρn)n∈N of vectors of C ∩ N⊥ is bounded;
then we shall be able to pick a convergent subsequence. Suppose then on the contrary
that (ρn)n∈N unbounded, and without loss of generality suppose also that the sequence
of unit-length vectors ξ n := ρn/|ρn| converges to a unit-lenth vector ξ ∈ N⊥ (picking a
subsequence otherwise). We shall use Lemma 5.2 applied to the vector ξ and show that
ξ ∈ I ∩ Č, contradicting condition (1) of Lemma 5.1.

Start by picking any a ∈ R+; for all large enough n ∈ N we have aξn ∈ C, and since
C is closed we have aξ ∈ C as well, which implies ξ ∈ Č (since a ∈ R+ is arbitrary).
We have ξ ∈ Č\N, and only need to show rel(0 | aξ ) ≤ 0. For this, we can assume that
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the sequence (ρn)n∈N is picked in such a way that the functions [0, 1] � u �→ g(uρn) are
increasing; otherwise, replace ρn by the vector uρn for the choice of u ∈ [0, 1] that
maximizes [0, 1] � u �→ g(uρn). This would imply that eventually, for all large enough
n ∈ N we have rel(0 | aξn) ≤ 0; this means∫ [ −ξ�

n x
1 + aξ�

n x
+ ξ�

n xI{|x|≤1}

]
ν( dx) ≤ ξ�

n b − aξ�
n cξn .

If we can show that we can apply Fatou’s lemma to the quantity on the left-hand side
of this inequality, we get the same inequality with ξ in place of ξ n and so rel(0 | aξ ) ≤
0; an application of Lemma 5.2 shows that ξ ∈ I ∩ Č, contradicting condition (1) of
Lemma 5.1.

To show that we can apply Fatou’s lemma, let us show that the integrand is bounded
from below for the finite measure (|x| ∧ k)2 ν(dx) with k := 1 ∧ (2a)−1. Since ξ�

n x/(1 +
a ξ�

n x) ≤ a−1 and | ξ�
n x| ≤ |x|, the integrand is uniformly bounded from below by −(a−1 +

1), and we only need consider what happens on the set {|x| ≤ k}; there, the integrand is
equal to − a (ξ�

n x)2/(1 + a ξ�
n x), which cannot be less than −2 a |x|2 and we are done.

We now know that (ρn)n∈N is bounded in Rd ; without loss of generality, suppose that
(ρn)n∈N converges to a point ρ ∈ C (otherwise, choose a convergent subsequence). The
concavity of g implies that g∗ is a finite number and it is obvious from continuity that
g(ρ) = g∗. Of course, we have that ν [ρ�x ≤ −1] = 0, otherwise g(ρ) = −∞.

Pick now any π ∈ C� := {π ∈ C | ν[π�x ≤ −u] = 0 for some u < 1}, then it is clear
that g(π ) > −∞. If follows that the mapping [0, 1] � u �→ g(ρ + u(π − ρ)) is well-defined
(i.e., real-valued), concave, and decreasing, so that the right-derivative at u = 0 should be
negative; this derivative is just rel(π | ρ), so we have rel(π | ρ) ≤ 0 for π ∈ C�.

The extension of the inequality rel(π | ρ) ≤ 0 for all π ∈ C now follows easily. Indeed,
if π ∈ C, then for 0 ≤ u < 1 we have uπ ∈ C� and rel(uπ | ρ) ≤ 0; by using Fatou’s lemma
one can easily check that we also have rel(π | ρ) ≤ 0. �

5.2. The Extension to General Lévy Measures

We now have to extend the result of the previous section to the case where ν does not
necessarily integrate the log. Recall from Definition 4.12 the use of the approximating
triplets (b, c, νn), where for every n ∈ N we define the measure νn(dx) := f n(x) ν(dx); all
these measures integrate the log. We assume throughout that I ∩ Č = ∅.

We remarked that the sets N and I remain invariant if we change the Lévy measure
from ν to νn. Then, since we have I(b, c, νn) ∩ Č = ∅, the discussion in the previous
section, gives us unique vectors ρn ∈ C ∩ N⊥ such that reln(π | ρn) ≤ 0 for all π ∈ C,
where reln is associated with the triplet (b, c, νn).

As before, the constructed sequence (ρn)n∈N is bounded. To prove it, we shall use
Lemma 5.2 again, in the exact same way that we did for the case of a measure that
integrates the log. Assume by way of contradiction that (ρn)n∈N is not bounded. By picking
a subsequence if necessary, assume without loss of generality that |ρn| diverges to infinity.
Now, call ξ n :=ρn/|ρn|. Again, by picking a further subsequence if the need arises, assume
that limn→∞ ξ n = ξ , where ξ is a unit vector in N⊥. Since ρn ∈ C for all n ∈ N it follows
that aξ ∈ C for all a ∈ R+, i.e., ξ ∈ Č\N. We know that for sufficiently large n ∈ N, we
have that reln(0 | aξn) ≤ 0; equivalently

∫
[−ξ�

n xfn(x)/(1 + aξ�
n x) + ξ�

n xI{|x|≤1}]ν( dx) ≤
ξ�

n b − aξ�
n cξn . The situation is exactly the same as in the proof in the case of a measure

that integrates the log, but for the appearance of the density f n(x) which can only have a
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positive effect on any lower bounds that we have established there, since 0 < f n ≤ 1. We
show that the integrand is bounded from below for the finite measure (|x| ∧ k)2 ν(dx) with
k = 1 ∧ (2a)−1, thus we can apply Fatou’s lemma to the left-hand side of this inequality
to get the same inequality with ξ in place of ξ n, and so rel(0 | aξ ) ≤ 0. Invoking Lemma
5.2, we arrive at a contradiction with the assumption I ∩ Č = ∅.

Now that we know that (ρn)n∈N is a bounded sequence, we can assume that it converges
to a point ρ ∈ C ∩ N⊥, picking a subsequence if needed. We shall show that ρ satisfies
rel(π | ρ) ≤ 0 for all π ∈ C. Pick any π ∈ C; we know that we have∫ [

(π − ρn)�x
1 + ρ�

n x
fn(x) − (π − ρn)�xI{|x|≤1}

]
ν( dx) ≤ −(π − ρn)�b + (π − ρn)�cρn

for all n ∈ N. Yet once more, we shall use Fatou’s lemma on the left-hand side to get to
the limit the same inequality with ρn and f n(x) being replaced by ρ and 1 respectively; in
other words, we get rel(π | ρ) ≤ 0 for all π ∈ C.

To justify the use of Fatou’s lemma, we shall show that the integrands are uniformly
bounded from below for the finite measure (|x| ∧ k)2ν(dx), where k := 1 ∧ (2 supn∈N

|ρn|)−1 is a strictly positive number from the boundedness of (ρn)n∈N. First, observe that
the integrands are uniformly bounded by −1 − supn∈N |π − ρn|, which is a finite number.
Thus, we only need worry about the set {|x| ≤ k}. There, the integrands are equal to
(π − ρn)�x(ρ�

n x)/(1 + ρ�
n x); this cannot be less than −2 supn∈N(|π − ρn||ρn|)|x|2, and

Fatou’s lemma can be used.
Up to now we have shown that rel(π | ρ) ≤ 0 for all π ∈ C for the limit ρ of a sub-

sequence of (ρn)n∈N. Nevertheless, carrying the previous steps we see that every subse-
quence of (ρn)n∈N has a further convergent subsequence whose limit ρ̂ ∈ C ∩ N⊥ satisfies
rel(π | ρ̂) ≤ 0 for all π ∈ C. The uniqueness of ρ ∈ C ∩ N⊥ that satisfies rel(π | ρ) ≤ 0 for
all π ∈ C gives that ρ̂ = ρ, and we conclude that the whole sequence (ρn)n∈N converges
to ρ. �

APPENDIX A: FACTS REGARDING LÉVY PROCESSES

We hereby collect some results that are used within the text; they are mostly simple
consequences of the definition of a Lévy process; we include them for completeness,
since they might not be part of the usual treatment in textbooks.

First of all, Lévy processes have the following property, which already points out in
some way the fact that “if there is arbitrage it should be an increasing profit”:

LEMMA A.1. If for some one-dimensional Lévy process L and some time T > 0 we have
LT ≥ 0, P-a.s., then L is actually an increasing process.

Proof. Write LT = LT/2 + L′
T/2, where L′

T/2 is independent of, and has the same dis-
tribution as LT/2. Then, 0 = P[LT < 0] = P[LT/2 < −L′

T/2] ≥ P[LT/2 < 0, L′
T/2 < 0] =

(P[LT/2 < 0])2, hence P[LT/2 < 0] = 0. Continuing like this and using the stationary-
increments property of L we get P[Lt < 0] = 0 for all t ∈ D := {kT/2n | n ∈ N, k =
0, . . . , 2n}. The stationarity of increments of L coupled with the countability of D implies
that P[Ls ≤ Lt for all s ∈ D, t ∈ D with s < t] = 1; then, right-continuity of L will give
us that the latter is an increasing process. �

An F-Lévy process X is regenerating at every stopping time σ—this means that on {σ
< ∞} the process Y := (Xσ+s − Xσ )s∈R+ is a G-Lévy process, independent of Fσ , where
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we set Gs := Fσ+s for all s ∈ R+. If τ is an F-stopping time with σ ≤ τ, P-a.s., then the
random time τ − σ is a G-stopping time and we obviously have �Yτ−σ = �Xτ I{σ<τ }.
These remarks will be used in the proof of the result below which states that the jump-
size at a stopping time is independent of whatever has happened strictly before that
stopping time. This “strict history” notion is formalized by introducing the σ -algebra
Fτ− of events strictly prior to τ , that is the smallest σ -algebra generated by the class
Aτ− := F0 ∪ {B ∩ {t < τ } | B ∈ Ft for some t ∈ R+}.

LEMMA A.2. If X is an F-Lévy process for some filtration F = (Ft)t∈R+ , then for any
stopping time τ , the jump �Xτ I{τ<∞} is independent of Fτ−.

Proof. The class Aτ− defined above is closed under intersection and generates Fτ−.
Therefore, it suffices to prove that all A ∈ Aτ− are independent of �X τ . For A ∈ F0 this is
trivial. Thus, consider A = B ∩ {t < τ} for some B ∈ Ft. Let σ := τ ∧ t; we have σ ≤ τ and
the regenerating property of Lévy processes implies that Y := (Xσ+s − Xσ )s∈R+ is a G-
Lévy process, independent of Fσ , where again G was defined above. These considerations
give us that

P[A∩ {�Xτ ∈ D}] = P[B ∩ {t < τ } ∩ {�Yτ−σ ∈ D}] = P[B ∩ {t < τ }]P[Yτ−σ ∈ D]

for all D ∈ B(Rd ); the last term above is just P[A]P[�Xτ ∈ D], and the claim follows. �
If the Lévy measure ν of the Lévy process X has finite mass (ν(Rd ) < ∞), then one can

represent X in the following form: Xt = b̃t + σβt + ∑Nt
i=1 Yi , where N is a Poisson process

with rate ν(Rd ) and Y i is a sequence of independent and identically distributed random
variables with distribution ν(·)/ν(Rd ), further independent of N. In that case we can
define the time of the nth jump of X via τn := inf{t ∈ R+ | Nt = n}. The independence
of N and (Yn)n∈N gives that �Xτn has the distribution of Y 1 and is independent of τ n.
For general stopping times τ with P[�Xτ �= 0] = 1 we cannot of course expect that �X τ

has the same distribution as Y 1, since we might be sampling the paths in a biased way;
for example if D is a Borel subset of Rd\{0} and τ := inf{t ∈ R+ | �Xt ∈ D} then �X τ

is only supported on D. Nevertheless, if the decision on whether to stop at the nth jump
of X or not is depending only on information collected strictly before τ n, the fact that
�X τ has the same distribution as Y 1 is still valid.

LEMMA A.3. If the Lévy measure ν of the Lévy process X is such that ν(Rd ) < ∞, and
with the notation set above, consider the stopping time τ := ∧∞

n=1(τn)An , where we have
set as usual (σ )A := σ IA + ∞I�\A for a random time σ and A ⊆ � . If An ∈ Fτn− for all
n ∈ N, then, conditional on {τ < ∞}, �X τ is identically distributed as Y 1.

Proof. Observe first of all that we can assume that the sequence (An)n∈N consists
of disjoint sets; otherwise, we can replace An by An\(

⋃
i<n Ai ); these sets are still in

Fτn−, they are disjoint and τ is still given by the same formula τ = ∧∞
n=1(τn)An . We

obviously have {τ < ∞} = ⋃
n∈N An . Pick any Borel-measurable g : Rd �→ R+; writ-

ing g(�Xτ ) = ∑∞
n=1 g(�Xτn )IAn and observing that the previous Lemma A.2 implies

E[g(�Xτn )IAn ] = E[g(�Xτn )]P[An ] for all n ∈ N, we get

E
[
g(�Xτ )I{τ<∞}

] =
∞∑

n=1

E[g(�Xτn )]P[An ] =
∞∑

n=1

E[g(Y1)]P[An ] = E[g(Y1)]P[τ < ∞];
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in other words, E[g(�Xτ ) | τ < ∞] = E[g(Y1)], i.e., �X τ is identically distributed
as Y 1. �
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